
B2.IV Nuclear and Particle Physics

A.J. Barr

February 13, 2014



ii



Contents

1 Introduction 1

2 Nuclear 3

2.1 Structure of matter and energy scales . . . . . . . . . . . . . . . . 3

2.2 Binding Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Semi-empirical mass formula . . . . . . . . . . . . . . . . . 4

2.3 Decays and reactions . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Alpha Decays . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Beta decays . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Nuclear Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Resonances and the Breit-Wigner formula . . . . . . . . . . 19

2.4.3 Nuclear scattering and form factors . . . . . . . . . . . . . . 22

2.5 Key points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Appendices 25

2.A Natural units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.B Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.B.1 Decays and the Fermi Golden Rule . . . . . . . . . . . . . . 26

2.B.2 Density of states . . . . . . . . . . . . . . . . . . . . . . . . 26

2.B.3 Fermi G.R. example . . . . . . . . . . . . . . . . . . . . . . 27

2.B.4 Lifetimes and decays . . . . . . . . . . . . . . . . . . . . . 27

2.B.5 The flux factor . . . . . . . . . . . . . . . . . . . . . . . . 28

2.B.6 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.C Shell Model § . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.D Gamma decays § . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Hadrons 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Pions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Baryon number conservation . . . . . . . . . . . . . . . . . 34

3.1.3 Delta baryons . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Linear Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



CONTENTS CONTENTS

3.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Quark flow diagrams . . . . . . . . . . . . . . . . . . . . . 38

3.3.4 Strangeness . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.5 Pseudoscalar octet . . . . . . . . . . . . . . . . . . . . . . 40

3.3.6 Baryon octet . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Colour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Heavier quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Charmonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Hadron decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Appendices 48

3.A Isospin § . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.B Discovery of the Omega § . . . . . . . . . . . . . . . . . . . . . . . 50

4 Scattering theory 53

4.1 Scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Scattering amplitudes . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 The Born approximation . . . . . . . . . . . . . . . . . . . 56

4.2 Virtual Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 The Yukawa Potential . . . . . . . . . . . . . . . . . . . . . . . . . 57

Appendices 61

4.A Beyond Born§ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Feynman diagrams 63

5.1 Aim of the game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Anti-particles . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Distinct diagrams . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.4 Relativistic propagators . . . . . . . . . . . . . . . . . . . . 66

5.2.5 Trees and loops . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 The Standard Model 73

6.1 Matter particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Lepton flavour number . . . . . . . . . . . . . . . . . . . . 74

6.2 Force particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Strong force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Deep inelastic scattering . . . . . . . . . . . . . . . . . . . 81

6.3.2 σ(e++e−→hadrons)
σ(e++e−→µ+µ−) . . . . . . . . . . . . . . . . . . . . . . . 82

iv



CONTENTS CONTENTS

6.4 W and Z bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.1 The Z0 particle . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.2 Production and decay . . . . . . . . . . . . . . . . . . . . . 86

6.4.3 Parity violation . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5.1 Solar neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.2 Atmospheric neutrinos . . . . . . . . . . . . . . . . . . . . 94

6.6 The Higgs field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6.1 Finding a Higgs boson . . . . . . . . . . . . . . . . . . . . 97

6.7 Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . 98

6.7.1 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7.2 A theory of flavour . . . . . . . . . . . . . . . . . . . . . . 99

6.7.3 Matter / antimatter asymmetry . . . . . . . . . . . . . . . 99

6.7.4 Unification of the forces? . . . . . . . . . . . . . . . . . . . 99

6.7.5 The dark side of the universe . . . . . . . . . . . . . . . . . 99

6.7.6 The hierarchy problem . . . . . . . . . . . . . . . . . . . . 100

6.7.7 Strings and things . . . . . . . . . . . . . . . . . . . . . . . 100

Appendices 102

6.A Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Applications 103

7.1 Fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Energy and barriers . . . . . . . . . . . . . . . . . . . . . . 103

7.1.2 Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.3 Chain reactions . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.4 Fission reactor principles . . . . . . . . . . . . . . . . . . . 107

7.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3.1 The pp-II and pp-III chains . . . . . . . . . . . . . . . . . . 113

7.3.2 The CNO cycles . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.3 Solar neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.4 Heavier elements . . . . . . . . . . . . . . . . . . . . . . . 115

8 Accelerators and detectors 119

8.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2 Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2.1 Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.3 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4.1 Photon interactions . . . . . . . . . . . . . . . . . . . . . . 123

8.4.2 Very high-energy electrons and photons . . . . . . . . . . . 125

8.4.3 Very high-energy, strongly interacting particles . . . . . . . . 126

v



CONTENTS CONTENTS

8.4.4 Detecting neutrons . . . . . . . . . . . . . . . . . . . . . . 127

8.4.5 Detecting neutrinos . . . . . . . . . . . . . . . . . . . . . . 127

8.4.6 Measuring properties . . . . . . . . . . . . . . . . . . . . . 127

Appendices 129

8.A Linacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.B Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.C Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.C.1 Semiconductor detectors . . . . . . . . . . . . . . . . . . . 132

8.C.2 Gas and liquid ionization detectors . . . . . . . . . . . . . . 133

8.C.3 Scintillator detectors . . . . . . . . . . . . . . . . . . . . . 133

9 Examples 137

9.1 Problems 1: Radioactivity and nuclear stability . . . . . . . . . . . 138

9.2 Problems 2: Quarks and scattering . . . . . . . . . . . . . . . . . . 143

9.3 Problems 3: Relativistic scattering . . . . . . . . . . . . . . . . . . 152

9.4 Problems 4: The Standard Model . . . . . . . . . . . . . . . . . . . 156

9.5 Problems 5: Energy production, stars . . . . . . . . . . . . . . . . . 160

vi



Chapter 1

Introduction

When the great American physicist and bongo-drums player, Richard Feynman, was
asked to think of a single sentence that would convey the most important scientific
knowledge, he answered simply: ‘Everything is made of atoms.’

Our understanding of matter at the atomic scale has made possible much of mod-
ern life, with its the mobile phones, computers and communications technology.
Technologies from semiconductors, lasers, displays, and materials developments all
require knowledge of how atoms behave and interact. The fundamentals of chem-
istry, drug development and biochemistry all rely on that fundamental insight. But
we also know that atoms are not fundamental, and not indivisible; smaller structures
exist inside.

The discovery of the atomic nucleus within the atom had profound consequences.
The implications were not initially obvious; indeed the pioneering New Zealand
nuclear physicist, Ernst Rutherford, reportedly said that the idea of getting practical
energy out of the atomic nucleus was ‘moonshine’.1 Later in the 20th century,
theory and experiment on nuclear structure allowed us to understand the energy
source of stars (including the sun), the most violent supernovae, the heating of the
earth, and even the method of formation of the chemical elements around us. More
immediately, fission power stations continue to provide the greatest contribution to
low-carbon electricity in the UK, generating 18% of electricity in the UK and as
much as 75% in France.

Like fission, the physics of nuclear fusion (combining nuclei) has been understood
for decades. The nuclear physics is not an area of current research in the field of
nuclear physics, but future developments in controlling the plasma in which fusion
occurs will be needed if we are to unlock the potential of this almost inexhaustible
source of energy. Large-scale experimental facilities at the Culham Laboratory in
Oxfordshire and the ITER fusion prototype plant in France are investigating ways
to control high-energy plasmas for long times.

Today the physics questions about the fundamental make-up of forces and matter

1He turned out to be right, in a way, since the moonlight has since been understood to originate
from fusion of hydrogen to helium inside the sun. It’s perhaps unlikely that this is what he intended.

Richard Feynman having
fun.

The plasma inside the
MAST tokamak reactor
runs at temperatures of up
to 3,000,000 K.

1



CHAPTER 1. INTRODUCTION

The first web server. When Tim
Berners Lee wrote his proposal
for the World Wide Web it was
annotated by his manager
‘vague but interesting’.

Not dark matter.

have moved on. We observe the most basic building blocks of nature to be point-
like constituents . the quarks, leptons, making up matter, and with gauge bosons
as the force-carrying particles. The experimental observations are described to
amazing accuracy by the Standard Model of particle physics, a theoretical triumph
of relativistic quantum field theory that correctly predicts the gyromagnetic ratio of
the electron to an accuracy of one part in a trillion.

Laboratory measurements, together with a mathematical formalism, let us enquire
into the nature of the vacuum, and into the dense and hot conditions of the universe
a fraction of a second after its birth. They are also providing insights into the
reasons why matter dominates over anti-matter, and the origins of mass. Performing
experiments length scales and higher energies than ever before requires the invention
of new technologies. The technologies of the future will, no doubt, grow out of our
current areas of research. At the same time, spin-offs are already affecting the
wider world. Perhaps the most remarkable invention of our era, the World Wide
Web, was developed by Queens college graduate Tim Berners Lee when working at
CERN in order to help physicists collaborate on designing and building the LHC.
The technologies developed for current particle physics experiments have been used
in medical imaging, climate forecasting, decoding the human genome, nuclear anti-
proliferation, cancer treatment, information analysis and drug development.

Recently the LHC has opened up a new field by discovering a completely new type
of particle. Observations suggest it is remarkably similar to the ‘Higgs boson’ of
the Standard Model. This apparently fundamental spin-0 particles, and is only just
starting to be investigated and understood. It is almost certainly the manifestation
of entirely new fundamental force of nature, different from all of the others observed
until now. Much about that force has not yet been investigated. To understand the
properties of that force will require a long programme at a high-energy LHC and
most likely new facilities and new ideas.

Many other experimental and theoretical questions remain open. The properties of
neutrinos, are only now starting to be probed with precision. Soon we may know
whether or not neutrinos are their own anti-particles. Other crucial differences
between matter and anti-matter, differences essential to our existence, are being
studied with ever greater detail in the decays of hadrons.

The ‘Dark Matter’ particle, believed to be responsible for the missing 80% of the
matter in the universe, is being hunted by astroparticle and underground direct
detection experiments. And it is hoped that future theories or experiments may
throw light onto the enormous difference in strength between the forces.

New theories exist which can solve these problems. All predict the existence of new
particles or phenomena, often within reach of either operating or proposed facilities.
The close interplay of theory with experiment at the cutting edge of knowledge will
be required if these new phenomena are to be predicted, measured and added to
the canon of human knowledge.

2



Chapter 2

Nuclear physics and decays

2.1 Structure of matter and energy scales

Subatomic physics deals with objects of the size of the atomic nucleus and smaller.
We cannot see subatomic particles directly, but we may obtain knowledge of their
structures by observing the effect of projectiles that are scattered from them. The
resolution any such probe is limited to of order the de Broglie wavelength,

λ =
h

p
(2.1)

where h is Planck’s constant, and p is the momentum of the projectile. If we
wish to resolve small distances, smaller than the size of the atom, we will need to
do so with probes with high momenta. Smaller objects also tend to have larger
binding energies holding them together, so require larger energies to excite their
internal components. Some typical sizes of objects are given below, together with
the momementum of the projectile required to resolve their size, and typical binding
energies in electron-volt (eV) units.

Object Size p = h
λ Binding energy

Atom 10−10 m 10 keV/c ∼ eV

Nucleus ∼ 10−15 m 1 GeV/c ∼ MeV

Quark < 10−19 m > TeV/c > TeV

We can see that small objects also tend to have high binding energies, and hence
probes of large energy will be required in order to excite them or break them up. The
momenta are indicated in units of eV/c where c is the speed of light. These units
make it easy to compare the momentum of the projetile to its corresponding energy
E = pc for the case of a massless probe such as a photon. The most convenient
unit for describing the size of nuclei is the femtometer 10−15 m.1 No sub-structure
has yet been found for quarks even when using very high energy (TeV) probes.

1The unit of 10−15 m or femtometer is sometimes called the ‘fermi’ reflecting the many seminal
contributions of the Italian physicist Enrico Fermi to the field of nuclear physics.

keV 103 eV
MeV 106 eV
GeV 109 eV
TeV 1012 eV

3



2.2. BINDING ENERGY CHAPTER 2. NUCLEAR

Isotopes Same Z

Isotones Same N

Isobars Same A

Notation for related nuclei

2.2 The Nuclear Periodic Table and Binding Energy

Nuclei are found to be made out of two constituents: protons and neutrons. We
label nuclei by their atomic number Z which is the number of protons they contain,
by their neutron number N , and by their mass number A = Z +N .

The symbol used to identify a nucleus is

A
ZXN

where X is the name of the chemical element. For example the Carbon-14 nucleus,
which contains 8 neutrons and 6 protons is denoted 14

6C8. Since the element’s
name specifies the number of electrons, and hence the atomic number Z, and since
A = N + Z, we can fully specify the nucleus by just the symbol for the chemical
and the mass number,

AX e.g. 14C.

Most nuclei are spherical in shape. The nuclear radius r can be measured in scat-
tering experiments, and follows the general rule

r = r0A
1/3 (2.2)

where the constant r0 is the characteristic nuclear size and is about 1.2× 10−15 m.
The fact that r is proportional to A1/3 indicates that the volume of the nucleus
V ∝ r3 is proportional to the mass number A. Each proton or neutron is therefore
making an equal contribution to the overall nuclear volume.

2.2.1 Binding energy and the semi-empirical mass formula

The mass m(A,Z) of the nucleus containing Z protons and A−Z neutrons should
be given by the mass of its consituents, less the mass associated with the binding
energy. The mass-energy is therefore

m(A,Z)c2 = Zmpc
2 + (A− Z)mnc

2 −B(A,Z), (2.3)

where mp ≈ 938.3 MeV/c2 and mn ≈ 939.6 MeV are the masses of the proton and
neutron respectively. In nuclear physics it is convenient to measure energies in units
of MeV and masses in units of MeV/c2. Using these units makes it easy for us to
convert from mass to mass-energy and vice versa. By assuming such units, we can
omit the factors of c2 in what follows. 2

We can build up a functional form for the binding energy B(A,Z) by considering
the forces between the nuclear constituents. To find the full quantum mechanical
ground state for all of the protons and neutrons would be a very difficult problem.
However we can understand a great deal about nuclear behaviour by building up a
model of the mass which encapsulates its key features. This we will do over the rest
of the section, building up towards the semi-empirical mass formula of equation
(2.5). The ‘semi-empirical’ means that the model is built partly partly by demanding
agreement with data, and partly from our understanding of the underlying theory.

2For more on ‘natural units’ see appendix 2.A.

4



CHAPTER 2. NUCLEAR 2.2. BINDING ENERGY

Figure 2.1: Binding energy per nucleon (B/A) as a function of A for some common
nuclei. Data taken from [5]. Plot from [source].

Firstly, we will need an attractive force in order to hold the nucleus together against
the mutual electrostatic replusion of its constituent protons. That force must be
very strong, since the Coulomb electrostatic repulsion between a pair of protons,
each of charge e and separated by distance d ≈ 1 fm, is

F =
e2

4πε0 d2

≈ 230 N

which is macroscopic – comparable to the weight of a child.

What form should that nucleon-nucleon attractive force take? We can get clues
about the force by looking at the binding energy per nucleon B/A is shown for some
common nuclei, shown in Figure 2.1. For nuclei this binding energy is typically of
order 8 MeV per nucleon. It can be seen that the most stable nuclei are found
around 56Fe. Different behaviours can be seen in different regions. There is a broad
flattish plateau for the central region 30 < A < 200 for which B/A ≈ 8 MeV.
For A below about 30 the binding energy per nucleon is smaller than the plateau
value and is spiky. There is a systematic drop in B/A for large A, particularly for
A > 200.

To obtain a value of B/A that is rather flat, we cannot permit strong attractions
between each of the constituent nucleons and every one of the others. If every
nucleon felt an attraction to each of the others, then the binding energy would be
expected to grow as approximately B ∝ A(A− 1) ∼ A2, and hence B/A would be
approximately proportional to A. Such a linear growth in B/A is ruled out by the
data (Figure 2.1).

To obtain the flat B/A found in nature we must assume that the strongly attractive
force acts only between nearest neighbour nucleons. In this way, each nucleon
binds to the same number of nearest neighbours, independently of the size of the
nucleus, and hence the binding energy per nucleon is the same regardless of the

5
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2.2. BINDING ENERGY CHAPTER 2. NUCLEAR

NP

ΕF

E

gNHELgZHEL
The density of states g(E) for

protons and neutrons as a
function of energy E.

nuclear size,
B ≈ αA

where α is a constant with units of energy. The use of nearest-neighbour interactions
indicates that the force must either be short-range, or screened from long-range
interactions by the effects of the nucleons in between.

In modelling a nearest-neighbour force we ought to make a correction for the fact
that those nucleons on the surface have fewer neighbours. To correct for the reduced
number of binding opportunities on the surface we reduce the binding energy by an
amount proportional to the surface area, leading to the corrected formula

B ≈ αA− βA 2
3 . (2.4)

The new contribution is negative since it reduces the binding energy. We have made
use of the observation (2.2) that since the volume of the nucleus scales as r3 ∝ A,
the surface area scales as r2 ∝ A2/3.

These two terms (2.4) in this first approximation to the binding energy are known
as the volume term and the surface term respectively. Together they form what is
known as the liquid drop model, since a similar result would be found for a drop of
fluid with nearest neighbour interactions and a surface tension parameterised by β.
The liquid drop model is consistent with the observation that each nucleon requires
the same volume of space, in agreement with equation (2.2).

So far, so good. However there is nothing in this liquid drop model to prevent the
growth of arbitrarily large nuclei. Such large nuclei are not observed in nature, so
we must be missing something. The obvious candidate is the Coulomb repulsion,
which interacts over long distances, and so will tend to push larger nuclei apart.
This electrostatic repulsion between protons will reduce the binding energy by an
amount proportional to Z(Z − 1) ≈ Z2 because every proton feels the repulsion
from all of the other protons (not just nearest neighbours). The binding energy will
be reduced by the electrostatic binding energy which can be parameterised by

ε
Z2

A
1
3
.

Here ε is a another constant with dimensions of energy, which we will calculate a
value for in the examples. The Coulomb repulsion energy is inversely proportional to
the radius of the nucleus, and hence to A

1
3 , since the potential energy of a uniform

sphere of charge Q is proportional to Q2/r.

Two further terms are required to give a good match between our model and the
data. Both of them are quantum mechanical in origin.

Firstly there is an asymmetry term. The origin of this term is as follows. Since
protons are identical fermions, the Pauli exclusion principal states that no two of
them may exist in the same state. Nor may any neutron occupy the same state as
any other neutron. However it is possible for a proton and a neutron to exist in the
same state since the two particles are not identical. The allowed states are therefore
distinct, and are separately filled for the protons compared to the neutrons.

We can work out the size of the asymmetry effect by calculating the number of
states available. Neutrons and protons are both fermions, and so obey Fermi-Dirac

6
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Figure 2.2: Diagram showing binding energies as a function of proton and neutron
number for (a) data [5] and (b) the Semi-Empirical Mass Formula.

statistics. The temperatures we are interested in are small compared to the chemical
potential (kBT � µ). Under these circumstances the Fermi-Dirac distribution tends
towards a step function — all levels are filled up to some energy level, known as the
Fermi Energy εF , with all states with energy above εF left vacant.

At large mass number A the Coloumb repulsion term would tend to favour larger
N and smaller Z, since neutrons do not suffer from the Coulomb repulsion as
protons do. However this energic advantage of neutrons over protons will be partially
cancelled out by the fact that the additional neutrons must (on average) be placed
in higher energy levels than additional protons, since all of the lower-energy neutron
states will already be filled.

The density of available states is found to be proportional to E
1
2 . In the examples

we show that this leads to an energy equation of the form

γ
(N − Z)2

A
.

This asymmetry term reduces the binding energy, doing so most when the differ-
ence between the number of protons and of neutrons is largest.

Finally there is a pairing term which accounts for the observation that nuclei with
either even numbers of protons (Z even) or with even numbers of neutrons (N
even) tend to be more stable than those with odd nuclei. The pairing term is zero
for odd-A nuclei. Even A nuclei have two possibilities. If both Z and N are even
then the nucleus is more tightly bound and have an extra binding contribution, so
B is increased by δ. If both Z and N are odd then the nucleus is less tightly bound
and so B is decreased by δ.

Putting all five terms together we obtain a formula for the binding energy,

B(A,Z) = αA− βA 2
3 − γ (A− 2Z)2

A
− ε Z

2

A
1
3

+ δ(A,Z),

having eliminated N in favour of A. Substituting this into the formula defining the

p(Ei) =
1

e(Ei−µ)/kBT + 1

The Fermi-Dirac function gives
the probability p(Ei) of filling a

state with energy Ei for a
system at temperature T and
with chemical potential µ. kB

is the Boltzmann constant.

NP

ΕF

E

gNHELgZHEL
The density of states g(E) for

protons and neutrons as a
function of energy E.

N Z pairing term

even even δ

even odd 0

odd even 0

odd odd −δ
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Volume Surface Asymmetry Coulomb Pairing

α β γ ε δ

15.835 18.33 23.2 0.71 11.2/
√
A

Figure 2.3: Typical values of the SEMF parameters (in MeV). From Bowler.

Sketch of the shape of the
valley of stability.

Α
Β-

Β+, EC
Z

N
The changes in (Z,A) induced
by various decays.

binding energy (2.3) we obtain the semi-empirical mass formula (SEMF)

M(A,Z) = Zmp + (A− Z)mn − αA+ βA
2
3 + γ

(N − Z)2

A
+ ε

Z2

A
1
3
− δ(N,Z).

(2.5)

Other than for A < 30, where our approximations are less valid, the SEMF gives a
rather good description of the binding energies of the observed nuclei (Figure 2.2).
In particular the SEMF correctly predicts the shape of the curved valley of stability
in the Z, N plane within which the stable nuclei are found. The relative numbers
of protons and neutrons along this valley reflects a trade-off between the Coulomb
and asymmetry terms. At low A the asymmetry term favours N = Z. At larger A
the Coulomb term starts to compete with the asymmetry term, reducing the ratio
of protons to neutrons.

It is energetically favourable for nuclei far from that valley to migrate towards it by
nuclear decay, in the ways we describe in the following section.

2.3 Decays and reactions

A table of the nuclides can be found in Figure 2.4. The stable long-lived nuclides
lie along the valley of stability where the binding energy per nucleon is largest. The
valley lies along N ≈ Z for light nuclei but has N > Z for heavier nuclei. Nuclei far
from that valley, and very heavy nuclei, tend to be unstable against nuclear decay.

While unstable nuclei will decay spontaneously, other reactions can be initiated by
firing projectiles at a nucleus. Reactions are said to be elastic if the final state
contains the same set of particles e.g. the elastic scattering of a photon from a
nucleus, via an excited intermediate state:

X + γ −→ X∗ −→ X + γ.

Reactions are inelastic if there is a change in particle content during the reaction
e.g. radiative capture of a neutron

AX + n −→ A+1X∗ −→ A+1X + γ.

For all nuclear decays and reactions we define the Q value to be amount of energy
‘released’ by the decay,

Q =
∑

Mi −
∑

Mf

8
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2.3. DECAYS AND REACTIONS CHAPTER 2. NUCLEAR

Figure 2.5: Decay modes of the nuclei. From [5].

The first sum is over the masses of the initial particles in the decay (including
their binding energies), while the second sum is over the masses of the final-state
particles (including their binding energies). A positive Q value shows that a reaction
is energetically favourable.

2.3.1 Alpha Decays

Alpha decays occur when (usually heavy) nuclei eject an ‘α particle’, that is a helium
nucleus containing two protons and two neutrons. The decay is

A
ZX −→ A−4

Z−2Y + 4
2He.

The change of mass number of the heavy nucleus is ∆A = −4 and the change in
its atomic number is −2.

The process of decay of heavy nuclei is often via sequential chains involving both
alpha and beta decays. Since ∆A = −4 for α decays and ∆A = 0 for β and γ
decays we see that for any nucleus starting with mass number A (and if it only
decays via alpha, beta or gamma decay processes) all other nuclei in that chain
must have some other set of mass numbers A′ = A − 4m, where m is an integer
indicating the number of alpha decays that have occured.

10
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�

Re[Ψ]

V
Q

Rb

Ra

1 2 3 4 5 6 7
r

-1

1

2

3

Real part of 〈r|Ψ〉 (as
calculated in the WKBJ
approximation) and V (r) for a
thin Coulomb potential barrier.

Rate calculation for α decays

We can model the α decay as a process in which ‘proto α particles’ are pre-formed
inside the nucleus. Each is assumed to have a large number of collisions with the
edge of the nucleus, but a small probability on each collision of tunnelling through
the Coulomb barrier and escaping.

If the Q value of the decay is positive, then the decay is energetically favourable,
but it may still be suppressed by a large tunnelling factor. Let us try to model
the probability of tunnelling through the barrier. We will assume that the large
exponential in the quantum tunnelling factor will dominate the calculation of the
rate of decay, so we will neglect differences in the probability of formation of the
proto-alpha particle, and its rates of hitting the barrier.

The time independent Schrödinger equation defines the energy eigenstate |Ψ〉,

E|Ψ〉 =
(
p2

2m
+ V

)
|Ψ〉.

where E is the energy of the alpha particle, p is the momentum operator, m is its
mass, and V is the potential in which it moves.

For simplicity, we will ignore the spherical geometry and treat the problem as one-
dimensional in the radial direction r so that for a state with energy Q,

Q〈r|Ψ〉 =
(
− 1

2m
∂2

∂r2
+ V (r)

)
〈r|Ψ〉, (2.6)

where we use natural units such that ~ = h
2π = c = 1 (see appendix 2.A). In the

Dirac notation 〈r|Ψ〉 represents the wave function — that is the amplitude to find
the alpha particle located between r and r + dr. Without losing any generality we
can write the wave function as the exponential of some other function η(r),

〈r|Ψ〉 = exp[η(r)]. (2.7)

After inserting (2.7) into (2.6) and dividing by exp(η) we find

Q = − 1
2m

[
η′′ + (η′)2

]
+ V (r),

where the primes indicate derivatives by r. We can model the potential V (r) felt
by any α particle by the function

V (r) =

{
const r < Ra

zZαEM
r r > Ra

where inside the nucleus V is large and negative, and outside the nucleus it is given
by the Coulomb potential and hence characterised by the charges z and Z of the
α-particle and the daughter nucleus respectively. The constant αEM in the Coulomb
potential is the dimensionless electromagnetic fine structure constant

αEM =
e2

4πε0~c
≈ 1

137
.

12
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Within the barrier the potential is smoothly varying, so η should be a smoothly
varying function of (r). We then expect η′′ � (η′)2, and we can safely neglect the
η′′ term compared to the (η′)2.3

The tunnelling probability can be found from the ratio of the mod-squared ampli-
tudes:

P =
|〈Rb|Ψ〉|2

|〈Ra|Ψ〉|2
= e−2G.

where G (> 0) is given by

−G = η(Rb)− η(Ra) = −
√

2m
∫ Rb

Ra

dr
√
V (r)−Q.

The minus sign before the radical ensures that we select the exponentially falling
solution. The inner limit of the integration is the radius of the nucleus

Ra ≈ r0A
1
3 ,

and the outer limit

Rb =
Z1Z2αEM

Q
,

the radius for which Q > V , i.e. where the α particle enters the classically allowed
region.

2.3.2 Beta decays, electron capture

There are three related nuclear decay processes which are all mediated by the weak
nuclear interaction. Neutron-rich isotopes can decay through the emission of an
electron e and an anti-neutrino ν̄e in the beta decay a process:

A
ZX −→ A

Z+1Y + e− + ν̄e. (2.8)

The effect is to increase the atomic number by one, but to leave the mass number
unchanged. At the level of the individual nucleons the reaction is

n −→ p+ e− + ν̄e. (2.9)

The emitted electron can be observed and its energy measured. The associated
anti-neutrino has a very small interaction probability, and so is expected to escape
unobserved. Long before neutrinos were observed, Wolfgang Pauli realised that an
additional, invisible, massless particle was required in order to conserve energy and
momentum in the decay (2.8). His arguments ran as follows. The emitted electrons
are observed to have a variety of different kinetic energies, up to Q. Meanwhile
the mass difference between the parent and daughter nucleus is fixed to a single
value. The energy given to the recoiling daughter nucleus is small and is fixed by
momentum conservation, so it can’t be responsible for the deficit observed when
the electron has energy less than Q. Energy conservation is then only possible if

3This is known as the WKBJ approximation. It is a good approximation if many wave-lengths
(or in the classically forbidden regions, as here, many factors of 1/e) of the wave-function occur
before the potential changes significantly.

13
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EO�OE

Z

EE

OO

Z

Mass as a function of Z for
nuclides of the same A, for
odd-A nuclei (above) and
even-A nuclei (below). The
even-A case has two curves
separated by 2δ.

the total energy Q can be shared between the electron and some other unobserved
partice – the (anti-)neutrino.

Pauli also argued that without the neutrino the reaction (2.9) would violate angular
momentum conservation. Adding the angular momenta of just the two observed
final state spin-half particles – the electron and the proton – according to the rules
of quantum mechanical angular momentum addition we would find

1
2
⊕ 1

2
= 0 or 1.

Neither of the possibilities of total angular momentum s = 0 or s = 1 match the
spin of the initial neutron, which has s = 1

2 . However by adding a third spin-half
particle to the final state – the s = 1

2 anti-neutrino – we can reconstruct a state
which has total angular momentum equal to that of the proton (s = 1

2 ) since

1
2
⊕ 1

2
⊕ 1

2
=

1
2

or
3
2
.

Isotopes which have a surplus of protons can proceed via one of two processes. The
first is the emission of a positively charge anti-electron. This is known as positron
emission or β+ decay

A
ZX −→ A

Z−1Z + e+ + νe (2.10)

The positron is the anti-particle of the electron. It has the same mass as the
electron, but positive charge.

The second method of decay of proton-rich nuclei is by the nucleus removing one
of the atomic electrons, the electron capture process:

A
ZX + e− −→ A

Z−1Z + νe (2.11)

These two processes ((2.10) and (2.11)) result in the same change to the nucleus,
and so compete with one another to reduce the Z number of proton-rich nuclei.
When considering whether electron capture or β+ decay will dominate we note that

• The Q value for positron emission is 2 × mec
2 smaller than that for the

corresponding electron capture.

• Electron capture relies on there being a substantial overlap of an electron
wave-function with the nucleus.

When viewed at the level of the nuclear consitutents, all three of the interactions
above — β decay (2.8), β+ decay (2.10) and electron capture (2.11) — involve the
interaction of four particles: a proton, a neutron, an (anti-)electron and an (anti-)
neutrino.

n −→ p+ e− + ν̄e (2.12)

p −→ n+ e+ + νe, (2.13)

p+ e− −→ n+ νe. (2.14)

We note that all of the reactions (2.12)–(2.14) are assumed to be occurring inside
the complex environment of the nucleus. Of these three reactions, only neutron

14
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decay (2.12) can occur in isolation, since it is the only one with Q > 0, (the neutron
being about 1.3 MeV/c2 heavier than the proton). The other two reactions (2.13)–
(2.14) occur only within a nucleus, when the energy released from the rearrangement
of the nuclear constituents is sufficient to compensate for the endothermic nature
of the reaction at the level of the individual nucleon.

We note that all of three transitions — β−, β+, and e− capture — leave the mass
number A unchanged. The parent and daughter nuclei are isobars. The decay
processes (2.12)–(2.14) allow transitions between isobars, and mean that for odd-A
nuclei for any value of A there is usually only one stable isobar, that for which the
mass of the system is minimum.

Even-A nuclei may have one stable isobar, but can also have two or very occasionally
three. Multiple stable states are possible for A even because the binding curves for
(even-Z, even-N) and (odd-Z odd-N) are separated by 2δ, where δ is the pairing
energy in the SEMF. For an even-even nucleus, since all of the reactions (2.12)–
(2.14) change both |Z| and |N | by one they result in an odd-odd nucleus, and so a
transition to the higher of the two curves. None of the reactions permit a change
in Z of two units, and the probability of two such reactions happening at once is
extremely small, so an even-even nucleus with some Z can be stable provided that
both the neighbouring nuclei with Z + 1 and Z − 1 have larger mass.

Fermi theory of beta decays

To understand the lifetimes of the nuclei, we wish to calculate the expected rates
for β± decays. We follow the method and approximations of Enrico Fermi.

If we put the initial state particles on the left hand side of the diagram, and the final
state particles on the right hand side, then we obtain the following three diagrams
for the reactions (2.12)–(2.14).

n

p

ν̄e

e
−

p

n

e
+

νe

p

e

n

νe

We shall assume that each of these four-particle interactions will happen at a single
point in space. The amplitude for each reaction is given by the same constant —
a four-body coupling constant which tells us the amplitude for each interaction at
that point in space. For each of the three diagrams that coupling is the Fermi
constant,

GF ≈ 1.17× 10−5 GeV−2

which has units of inverse energy squared.

In using a single, constant factor, we implicitly make the simplifying assumption
that the four-body interaction does not depend on the spins of the incoming or
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outgoing particles. To simplfy calculations we will also follow Fermi in assuming
that the wave-functions of the electron and the anti-neutrino can be represented by
plane waves. This ignores the effect of the Coulomb attraction between the electron
and the nucleus, and is a good approximation provided that the electron energy is
sufficiently high.

We recall that in quantum mechanics, the rate of some a transition from an initial
state to a final state characterised by a continuum of energy levels is given by the
Fermi Golden Rule4

Γ =
2π
~
|Afi|2

dN

dEf
(2.15)

Here the transition rate Γ is given in terms of the amplitude Afi connecting the
initial and the final states, and the degeneracy dN

dEf
of states at the final energy. It

is the Afi and dN
dEf

that we shall have to calculate.

To be concrete, let us consider the beta decay reaction (2.12). We denote the initial
nuclear wave-function by 〈x|Ψi〉, the final nuclear wave-function by 〈x|Ψf 〉. The
electron and anti-neutrino wave-functions are approximated as plane waves

〈x|φe〉 ≡ φe = exp (ipe · x) (2.16)

〈x|φν〉 ≡ φν = exp (ipν · x). (2.17)

We can now write down the initial state |Ψi〉, which is just that of the parent nucleus

|Ψi〉 = |ψi〉,

and final state |Ψf 〉, which is the product of the daughter nucleus state |ψf 〉, the
electron state |φe〉 and the anti-neutrino state |φν̄e〉

|Ψf 〉 = |ψf 〉 × |φe〉 × |φν̄e〉.

The matrix element Afi controls the transition from the initial to the final state

Afi = 〈Ψf |A|Ψi〉

It can be obtained by working in the position representation and recognising that the
amplitude GF associated with the point-like interaction (2.12) should be integrated
over the volume of the nucleus,

Afi =
∫
d3x GF φ∗e φ

∗
ν ψ

∗
f ψi.

The φ and ψ terms are the position representations (wave functions) of the four
particles, and in the final state are found in complex conjugate form. The inte-
gral sums over the amplitudes for the point-like reaction to occur anywhere in the
nucleus, since the reaction could have occurred anywhere within.

To perform the integral we first Taylor expand the exponentials in the plane wave
functions (2.16)–(2.17) for the electron and the neutrino. The expansion is useful
because the exponents p ·x are small.5 The product of φ∗e and φ∗ν can therefore be
written

e−i(pe+pν)·x ≈ 1− i(pe + pν) · x + . . . (2.18)

4For a refresher, see appendix 2.B.1
5The size of x is of order the typical nuclear size, i.e. ∼ 10 fm, which in natural units is

10 fm/(197 MeV fm) ∼ 10−1 MeV−1. The typical momenta of the out-going particles are of order
MeV, so the dot products in the exponents are of order 10−1.
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Provided that the first term in this expression does not vanish when performing the
integral, it can be expected to dominate, and the whole integral can be approximated
by

Afi = GF

∫
d3x ψ∗f ψi

≡ GF Mnucl

where in the lower line Mnucl denotes the overlap integral between the neutron in
the parent nucleus and the proton in the daughter nucleus. The size of the quantity
Mnucl depends on the participating nuclei, and is known as the nuclear matrix
element.

In some particularly simple cases Mnucl can be calculated analytically. In particular,
if the initial-state neutron, and the final-state proton happen to inhabit the same
state within a nucleus, the overlap integral is maximal, i.e. for those nuclei

|Mnucl| = 1.

An example of a maximum overlap integral is found for the simplest case of the
isolated neutron decay. 6

To complete the job of calculating Γ we need to find the density of states factor
dN
dEf

. The density of states for the outgoing electron can be calculated from the

density of states inside a box7,

dN =
d3p

(2π)3
.

Assuming spherical symmetry the angular integrals yield 4π so

dN =
4π p2dp

(2π)3
.

A similar result holds for the neutrino. The states allowed by the daughter nucleus
are fixed by total momentum conservation, so provide no further contribution to
the density of states. The recoil energy of the heavy daughter nucleus is negligible,
so conservation of energy gives

Ee + Eν = Q,

where Ee is the kinetic energy of the electron. Hence the rate of decays that yield
electrons with momenta between pe and pe + dpe is

dΓ(pe) = G2
F |Mnucl|2

(Q− Ee)2

2π3
p2

edpe.

In the relativistic limit where Ee � me we can perform the integral and obtain the
simple result

Γβ ∝ Q5.

i.e. the rate depends on the fifth power of the available energy.

6Such decays are called ‘super-allowed’.
7See appendix 2.B.2 for the source of this term.
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‘Forbidden’ decays (Non examinable)

We have assumed that the first term in (2.18) will dominate, but it can
vanish due to selection rules. For example, if the nuclear matrix element has
odd parity the first term vanishes, since then we are integrating the product
of an odd and an even function. In that case, the next term in the series
is required, and the reaction rate is suppressed. Such decays are said to
be ‘first forbidden’. In general the larger the change in angular momentum
required in the nuclear transition, the further along the series one will need
to go to find a non-zero term, and the slower will be the decay.

We will later find that Beta decays are mediated at very small length
scales (∼ 10−18 m) by charged spin-1 force-carrying particles known as
W± bosons.

W
−d

u

ν̄e

e
−

W
+u

d

νe

e
+

W
+

u

e
−

d

νe

The Feynman diagrams above show the W± bosons responsible for β−

decay, β+ decay, and electron capture. For probes with wavelength λ �
λc,W , where

λc,W =
~

mW c

is the W boson Compton wavelength, or equivalently for probes with mo-
mentum p � mW , the small-distance behaviour of the interaction is not
apparent. We do not resolve the W boson and instead we get what appears
to be a single four-body interaction.

2.4 Nuclear Scattering

The structure of the nucleus can be probed by scattering projectiles from it. Those
projectiles might be protons, electrons, muons, or indeed other nuclei.

2.4.1 Cross sections

Many experiments take the form of scattering a beam of projectiles into a target.

Provided that the target is sufficiently thin that the flux is approximately constant
within that target, the rate of any reaction Wi will be proportional to the flux of
incoming projectiles J (number per unit time) the number density of scattering
centres n in the target (number per unit volume), and the width δx of the target

Wi = σi nJ δx. (2.19)

The constant of proportionality σi has dimensions of area. It is known as the cross
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As well as scattering experiments, the size of various nuclei can be deter-
mined by other methods, including:

• Shifts in the energy-levels of atomic electrons from the change of
their Coulomb potential caused by the finite size of the nucleus.

• Muonic equivalents of the above. Muons are about 200 times heavier
than electrons, so their “Bohr raduis” is about 200 times smaller. One
observes the series of x-rays from the atomic (muonic) transitions

section for process i and is defined by

σi =
Wi

nJ δx
(2.20)

We can get some feeling for why this is a useful quantity if we rewrite (2.19) as

Wi = (nAδx)︸ ︷︷ ︸
Ntarget

J
σ

A︸︷︷︸
Pscatt

where A is the area of the target. Here Ntarget is the total number of targets
illuminated by the projectile, and the cross section can be interpreted as the effec-
tive area presented to the beam per target for which a particular reaction can be
expected to occur.

The total rate of loss of beam is given by W = ΣWi, and the corresponding total
cross section is therefore

σ =
∑

i

σi.

We could choose to quote cross sections in units of e.g. fm2 or in natural units of
GeV−2, however the most common unit used in nuclear and particle physics is the
so-called barn (b) where

1 barn = 10−28 m2

We can convert the barn to natural units of MeV−2 using the ~c conversion constant
as follows

1 barn = 10−28 m2

= 100 fm2/(197 MeV fm)2

= 0.00257 MeV−2.

The ‘differential cross section’ dσ
dΩ is the cross section per unit solid angle of scat-

tered particle. It is defined to be the rate of scattering per target per unit incoming
flux density per unit solid angle (dΩ) of deflected particle.

2.4.2 Resonances and the Breit-Wigner formula

Sometimes the projectile can be absorbed by the nucleus to form a compound
state, then later reabsorbed. The time-energy uncertainty relationship of quantum
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The decay width can be generalised to a particle which has many different decay
modes. The rate of decay into mode i is given Γi. The total rate of decay is
given by the sum over all possible decay modes

Γ =
X

i=1...n

Γi.

The fraction of particles that decay into final state i, is known as the branching
ratio

B =
Γi

Γ
.

The quantity Γi is known as the partial width to final state i, whereas the sum
of all partial widths is known as the total width.

mechanics tells us that if a state has only a finite lifetime (of order ∆t), then it has
an uncertaintity on its energy ∆E given by

∆E∆t ∼ ~.

Using the fact that the decay rate Γ = 1/τ , and using natural units to set ~ = 1,
we find that

∆E ∼ Γ. (2.21)

In these units, the uncertainty in the rest-energy of a particle is equal to the rate
of its decay. This means that if we take a set of identical unstable particles, and
measure the mass of each, we will expect to get a range of values with width of
order Γ.

Long-lived intermediate states have small Γ and hence well-defined energies. We
tend to think of these reasonably long-lived intermediate states as ‘particles’. The
neutron is an example of an unstable state that lives long enough for the word
‘particle’ to be meaningfully applied to it.

Short-lived intermediate states have large widths and less well defined energies.
When the intermediate state is so short-lived that its width Γ is similar to its mass,
then the decay is so rapid that it is no longer useful to think of it as a particle — it’s
really some transition through which the state happens to be momentarily passing.

We can develop these ideas more quantitatively by considering the general process

A+B −→ O −→ C +D. (2.22)

The initial particles A and B collide to form an unstable intermediate O, which then
decays to the final state C and D (which may or may not have the same particle
content as the initial state). An example of a familiar process is the absorption and
then emission of a photon by an atom, with an intermediate excited atomic state,

A+ γ −→ A∗ −→ A+ γ.

Alternatively the reaction could represent an inelastic nuclear interaction, for exam-
ple the nuclear absorption of a neutron to form a heavier isotope followed by its
de-excitation

25Mg + n −→ 26Mg
∗ −→ 26Mg + γ.

Other reactions can create and annihilate other types of particle.
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The reaction will proceed most rapidly when the energies of the incoming particles
are correctly tuned to the mass of the intermediate. The reaction rate will be fastest
when the energy of A+B is equal to the rest-mass energy EO of the intermediate
state. The energy need only match EO to within the uncertainty Γ in the energy
of the intermediate.

Under the condition that the transition from A+B to C+D proceeds exclusively
via the intermediate state ‘0’, of mass m0 and that the width of the intermediate
is not too large (Γ� m0), the probability for the scattering process, as a function
of total energy E takes the familiar Lorentzian shape

p(E) ∝ 1
(E − E0)2 + Γ2/4

. (2.23)

This is the same peaked shape as seen in resonances in situations involving oscil-
lators, and so the excited intermediate state is often called a resonance, and the
process is known as resonant scattering.

Taking into account density of states and flux factors, and the possibilities of decay
into multiple different final states, the overall cross-section for the process (2.22) is
given by the famous Breit-Wigner formula

σi→0→f =
π

k2

ΓiΓf

(E − E0)2 + Γ2/4
. (2.24)

Since excited states are very common, this is an important result not just in nuclear
and particle physics, but also in any process where excitations are found. The terms
in this equation are as follows:

• Γi is the partial width of the resonance to decay to the initial state A+B

• Γf is the partial width of the resonance to decay to the final state C +D

• Γ is the full width of the resonance at half-maximum (and equal to the sum∑
j Γj over all possible decay modes)

• E is the centre-of-mass energy of the system

• E0 is the characteristic rest mass energy of the resonance

• k is the wave-number of the incoming projectile in the centre-of-mass frame
which is equal to its momentum in natural units.

The cross-section is non-zero at any energy, but has a sharp peak at energies E close
to the rest-mass-energy E0 of the intermediate particle. Longer lived intermediate
particles have smaller Γ and hence sharper peaks.

Resonant scattering experiments can tell us about the excited states of nuclei,
and hence provide further information about nuclear structure and interactions.
All sorts of particles which are too short-lived to travel macroscopic distances can
nevertheless be created as intermediate states and studied from the properties of
their Breit-Wigner peaks.

G

E0 E

Σ

The Breit-Wigner line shape.
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Diffractive scattering from a slit
and from an object.

2.4.3 Nuclear scattering and form factors

When a target only slightly perturbs the wave-function of the projectile, the resulting
scattering behaives rather like optical diffraction.

In optics, the properties of a microscopic aperture can be understood from the
pattern obtained when light, of wavelength similar to the size of the aperture, is
diffracted by that apperture. Far from the aperture, the optical pattern observed is
the two dimensional Fourier transformation of the aperture function. This is true
even if the optical aperture is too small to observe directly.

Now consider scattering a wave from a three-dimensional projectile. Again, the
observed diffraction pattern comes from a Fourier transform of the object, but now
the aperture function is replaced with the potential V (x).

In the Born approximation, which is valid for weak potentials, the amplitude f(∆k)
for scattering a projectile such that its change in momentum is ∆k, is proportional
to the 3D Fourier transform of the scattering potential V ,

f(∆k) = A

∫
d3x V (x) e−i∆k·x (2.25)

where A is a normalising constant. The probability to scatter into some small angle
dΩ is then proportional to |f(∆k)|2.

Let us consider the scattering of a projectile of charge z from a nucleus with charge
Z and spherically symmetric local charge density ρ(r), centred at the origin. The
potential at some point x′ is given by summing over the Coulomb potentials from
distributed charges at all other locations x′′,

V (x′) =
ze2

4πε0

∫
d3x′′

ρ(x′′)
|x′ − x′′|

= zα

∫
d3x′′

ρ(x′′)
|x′ − x′′|

where in the second step we again use the relation (valid in natural units) that the

electromagnetic fine structure constant α = e2

4πε0
.

Substituting this form of the potential into the Born relation (2.25) we find

f(∆k) = zαA

∫
d3x′

∫
d3x′′e−i(∆k)·x′ ρ(x′′)

|x′ − x′′|
.

We may simplify this expression by defining a new variable X = x− x′. This change
of variables allows us to factorize the two integrals, giving the result

f(∆k) =
[

1
Z

∫
d3x′ρ(x′)e−i∆k·x′

]
︸ ︷︷ ︸

Form Factor

×ZzαA
[∫

d3X
e−i∆k·X

|X|

]
︸ ︷︷ ︸

Rutherford

. (2.26)

The scattering amplitude from a distributed charge is therefore equal to the product
of two terms. The second term can be recognised as the Rutherford scattering
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amplitude – the amplitude that would be obtained from scattering from a point
charge density ρ(x) = Zδ(x). The second term therefore tells us nothing about
the internal structure of the nucleus. All of the interesting information about the
nuclear structure is encapsulated in the first term,

Fnucl(∆k) =
∫
d3x N(x) e−i∆k·x

which is known as the nuclear form factor. The form factor is the three-dimensional
Fourier transform of the normalised charge density N(x) = ρ(x)/Z. All of the inter-
esting information about the size and structure of the nucleus is found in Fnucl(∆k).
We will find interesting scattering — that is interesting ‘diffraction patterns’ — if
the exponent is of order unity. For this to be true the de Broglie wave-length of
the projectile must be of the same order as the nuclear size, as was noted in the
introduction to this chapter.

The mod-squared of the optical amplitude gives the intensity. Similarly it is |F |2
which is important when considering the flux of scattered projectile particles. The
rate at which particles are scattered into unit solid angle is given by

dN

dΩ
= |Fnucl(|∆k|)|2

(
dN

dΩ

)
Rutherford

. (2.27)

This equation is more often written in terms of the differential cross section for
scattering

dσ

dΩ
= |Fnucl(|∆k|)|2

(
dσ

dΩ

)
Rutherford

.

By examining the form factor for particles scattered with various changes in mo-
mentum |∆k| we can infer information about N(x) and hence about the size and
shape of the nuclear potential V (x).

Sketch of a nuclear form factor
diffraction pattern.
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2.5 Key points

• In natural units (appendix 2.A), ~ = c = 1 and

[Mass] = [Energy] = [Momentum] = [Time]−1 = [Distance]−1

A useful conversion constant is

~c ≈ 197 MeV fm

• The nuclear mass is well described by the semi-empirical mass formula

M(A,Z) = Zmp + (A− Z)mn − αA+ βA
2
3 + γ

(A− 2Z)2

A
+ ε

Z2

A
1
3
− δ(A,Z).

• The binding energy leads to a valley of stability in the (A,Z) plane where
the stable nuclei lie

• In a reaction or decay, the Q-value is the energy released in a decay

Q =
∑

Mi −
∑

Mf

If Q > 0 the reaction is exothermic – it gives out energy, whereas if Q < 0
the reaction is endothermic, and energy must be supplied for it to proceed.

• Alpha decay rates are dominated by quantum tunnelling through the Coulomb
barrier.

• Beta decay rates and electron capture are governed by the Fermi coupling
constant

GF ≈ 1.17× 10−5 GeV−2

• The cross section is defined by:

σi =
Wi

nJ δx
(2.28)

The differential cross section is the cross section per unit solid angle

dσi

dΩ

• Cross sections for sub-atomic physics are often expressed in the unit of barns.

1 barn = 10−28 m2

• The Breit Wigner formula for resonant scattering is

σi→0→f =
π

k2

ΓiΓf

(E − E0)2 + Γ2/4
.
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• In elastic nuclear scattering the form factor

F (|∆k|) =
∫
d3x

(
ρ(x)
Z

)
e−i∆k·x,

is the 3D Fourier transform of the normalised charge density, and is related
to the Rutherford scattering differential cross section by

dσ

dΩ
= |Fnucl(|∆k|)|2

(
dσ

dΩ

)
Rutherford

.

2.A Natural units

In the S.I. system of units, times are measured in seconds and distances in meters.
In those units the speed of light takes the value close to 3× 108 ms−1.

We could instead have chosen to use unit of time such that c = 1. For example
we could have used units in which time is measured in seconds and distance in
light-seconds. In those units the speed of light is one (one light-second per second).
Using units in which c = 1 allows us to leave c out of our equations (provided
we are careful to remember the units we are working in). Such units are useful in
relativistic systems, since now the relativistic energy-momentum-mass relations are
simplified to

E = γm

p = γmv

E2 − p2 = m2.

So for a relativistic system setting c = 1 means that energy, mass and momentum
all have the same dimensions.

Since we are interested in quantum systems, we can go further and look for units in
which ~ is also equal to one. In such units the energy E of a photon will be equal
to its angular frequency ω

E = ~ω = ω.

Setting ~ = 1 therefore means that the units of energy are the same as the units of
inverse time. Units with ~ = 1 imply that time (and via c = 1 distance too) must
have the same dimensions as inverse energy, E−1.

So in our system natural units with ~ = c = 1 we have have that all of the following
dimensions are the same:

[Mass] = [Energy] = [Momentum] = [Time]−1 = [Distance]−1

We are still free to choose a convenient unit for all of these quantities. In subatomic
physics it is common to use units of energy (or inverse energy). The nuclear energy
levels have typical energies of the order of 106 electron-volts, so we shall measure
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energies, momenta and masses in MeV, and lengths and times in MeV−1. At the
end of a calculation we might wish to recover, for example, a “real” length from
one measured in our MeV−1 units. To do so we can make use of the conversion
factor

~c ≈ 197 MeV fm

which tells us that one of our MeV−1 length units corresponds to 197 fm where
1 fm = 10−15 m.

2.B Tools for cross-section calculations

2.B.1 Decays and the Fermi Golden Rule

In subatomic physics we are interested in the decays of unstable particles, such
as radioactive nuclei, muons from the atmosphere, or Higgs bosons. Using time-
dependent perturbation theory in quantum mechanics it is possible to show that
that the transition rate of an unstable state into a continuum of other states is
given by the Fermi Golden Rule:

Γ =
2π
~
|Vfi|2

dN

dEf
, (2.29)

where

• Γ is the rate of the decay

• Vfi is the matrix element of the Hamiltonian coupling the initial and the final
states

• dN
dEf

is the density of final states.

2.B.2 Density of states

The density of states for a single particle within a cubic box with sides length a can
be calculated as follows. The plane wave solution is of form

〈x|Ψ〉 ∝ exp (ik · x) .

If we require periodic boundary conditions, with period a equal to the side of the
box, then the values of the wavenumber kx are constrained to kx = 2πn/a for
integer n. Similar conditions hold for ky and kz. The number of momentum states
within some range of momentum d3p = d3k (for ~ = 1) is therefore given by

dN =
d3p

(2π)3~
V

where V = a3 is the volume of the box.
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2.B.3 Fermi G.R. example

Consider the isotropic decay of a neutral spin-0 particle A into two massless daugh-
ters, B and C

A −→ B + C.

The Fermi G.R. gives the decay rate (in natural units) of A as

Γ = 2π |Vfi|2
dN

dEf
.

The density of final states can be found from the allowed momenta pB of particle
B.

dN =
d3pB

(2π)3
V

When pB is fixed there is no further freedom for pC since the sum of the momenta
of the two final state particles is fixed by total momentum conservation. This
constraint means that for the two body final state there is no additional term in the
density of states for pC .8 Since all decay angles are equally probable, the integrals
over the angles contribute 4π, leading to

Γ = 2π |Vfi|2
4π p2

B

(2π)3
dpB

dEf
V.

The relativistic decay products each have momentum |pB | = Ef/2 so dpB

dEf
= 1

2 .

Normalising to one unstable particle in our unit volume gives V = 1, and results in
a decay rate

Γ =
1
2π
|Vfi|2 p2

B

=
1
8π
|Vfi|2m2

A.

2.B.4 Lifetimes and decays

The number of particles remaining at time t is governed by the decay law9

dN

dt
= −ΓN,

where the constant Γ is the decay rate per nucleus. The equation is easily integrated
to give

N(t) = N0 exp (−Γt) .

We can calculate the particles’ average proper lifetime τ , using the probability that
they decay between time t and t+ δt

p(t) δt = − 1
N0

dN

dt
δt = Γexp (−Γt) δt.

8For a three-body final state there would be terms in dN of the form d3p
(2π)3

for two of the three

particles, the third again being fixed by momentum conservation.
9The decay law was discovered experimentally by Frederick Soddy (1877-1956). Soddy, who

had been a scholar at Merton, was also first person to understand that radioactivity led to the
transmutation of the elements — in effect making him the first true alchemist.
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The mean lifetime is then

τ = 〈t〉

=

∫∞
0
t p(t) dt∫∞

0
p(t) dt

=
1
Γ

The decay law can be justified from precise experimental verification. In essence
it represents a statement that the decay rate is independant of the history of the
nucleus, its method of preparation and its environment. These are often excellent
approximations, provided that the nucleus lives long enough that has mass m� Γ
where Γ is its decay width, and provided it it not bombarded with disruptive probes,
such as high-energy strongly interacting particles.

2.B.5 The flux factor

When calculating a cross section σ from a rate Γ, we need to take into account
that for scattering from a single fixed target

σ =
W

J
where J is the flux density of incoming particles. The flux density is itself given by

J = npv

where np is the number density of projectiles and v is their speed. If we normalise to
one incoming particle per unit volume, then np = 1 and the cross section is simply
related to the rate by

σ =
W

v

2.B.6 Luminosity

In a collider — a machine which collides opposing beams of particles — the rate
of any particular reaction will be proportional to the cross section for that reaction
and on various other parameters which depend on the machine set-up. Those
parameters will include the number of particles in each collding bunch, their spatial
distributions, and their frequency of bunch crossings.

We can define a parameter called the luminosity L which encapsulates all the
relevant machine parameters. It is related to the rate W and the cross section σ by

L =
W

σ
.

For any collider the luminosity tells us the instantaneous rate of reaction for any
cross section. The product of the time-integrated luminosity and the cross section
tell us the expected count of the events of that type

Nevents, i = σi

∫
L dt .
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For a machine colliding trains of counter-rotating bunches containing N1 and N2

particles respectively at a bunch-crossing rate f , we can show that the luminosity
is

L =
N1N2f

A
,

where A is the cross-sectional area of each bunch (perpendicular to the beam di-
rection).

We have assumed above that the distributions of particles within each bunch is
uniform. If that is not the case (e.g. in most real experiments the beams have
approximately Gaussian profiles) then we will have to calculate the effective overlap
area A of the bunches by performing an appropriate integral.

2.C Shell Model §

Non examinable

The SEMF provides a reasonable description of the binding energies of the nuclei
for A > 30 but only the overall structure, not the finer details.

Differences at small A (e.g. the tightly bound isotopes 4
2He and 16

8O) are already
obvious in Figure 2.1. Figure 2.7 shows in more detail the difference between
the measured binding energy (per nucleon) and the SEMF prediction. Islands of
particularly high stability — that is with anomalously large B/A — are clearly visible
near some special values of N or Z:

{2, 8, 20, 28, 50, 82, 126}.

These are known as the magic numbers. They correspond to configurations of
nuclear shells that are precisely filled with either protons or neutrons. Evidence
for this shell structure can be found in the binding energies, excitation energies,
abundances, spins, and magnetic moments. Some nuclei, such the Helium nucleus
4
2He have magic numbers both for N and for Z. This observation goes some way to
explaining why it is that Helium nuclei are emitted by heavy particles in the process
of alpha decay. The shell model gives further insight into a variety of nuclear
properties, but is beyond the scope of this course.

2.D Gamma decays §

Non examinable

Gamma decays are electromagnetic transitions, and are found when excited nuclear
states relax to their ground states.

Similarly to the beta decay case, one can work out the rate using the Fermi golden
rule. If one represents the initial nuclear wave-function by Ψa and the final nuclear
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Figure 2.7: Difference between the measured binding energy (per nucleon) and
the SEMF prediction. (a) The x-axis shows the number of neutrons in the nu-
cleus; curves show isotopes (same Z). (b) The x-axis shows the number of
protons in the nucleus; curves show isotones (same N). In both cases the inset
shows the binding energy per nucleon for the low-A nuclei. The magic numbers
{2, 8, 20, 28, 50, 82, 126} are marked with dashed lines.
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wave-function by Ψb, then the appropriate matrix element is found to be

〈Ψf |M |Ψi〉 =
∫
d3xΨ∗b(A · Ĵ) e−ik·xΨa

where A represents the electromagnetic 4-potential and Ĵ = qP̂/m is the electric 4-
current operator. The electromagnetic selection rules and transitions are analogous
to those of atomic physics.

Further Reading

• “An Introduction to Nuclear Physics”, W. N. Cottingham and D. A. Green-
wood, 2001 for the basics

• “Nuclear Physics”, M.G. Bowler, Pergamon press, 1973

• “Introductory Nuclear Physics”, P.E. Hodgeson, E. Gadioli and E. Gadioli
Erba, OUP, 2003

• The BNL table of the nuclides provides good reference data
http://www.nndc.bnl.gov/nudat2/.

Bolwer and Hodgeson et. al. are good books which go well beyond this course.
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Chapter 3

Hadrons

3.1 Symmetry, patterns and substructure

The proton and the neutron have rather similar masses. They are distinguished from
one another by at least their different electromagnetic interactions, since the proton
is charged, while the neutron is electrically neutral, but they have identical properties
under the strong interaction. This provokes the question as to whether the proton
and neutron might have some sort of common substructure. The substructure
hypothesis can be investigated by searching for other similar patterns of multiplets
of particles.

There exists a zoo of other strongly-interacting particles. Exotic particles are ob-
served coming from the upper atmosphere in cosmic rays. They can also be created
in the labortatory, provided that we can create beams of sufficient energy. The
Quark Model allows us to apply a classification to those many strongly interacting
states, and to understand the constituents from which they are made.

3.1.1 Pions

The lightest strongly interacting particles are the pions (π). These can be produced
by firing protons with energies of order GeV into material. Different pion creation
interactions are observed to occur, such as

p+ p → p+ p+ π0

p+ p → p+ p+ π+ + π−

p+ n → p+ n+ π0 + π+ + π−.

There are three different pions with charges, +1, 0 and −1 (π+, π0 and π− respec-
tively). In each of these pion production interactions electric charge is conserved.
However some of the energy of the incident particle(s) is turned into creation of
new pion particles.

mp = 938.3 MeV/c2

mn = 939.6 MeV/c2
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The three pions have masses

mπ+ = mπ− = 139.6 MeV/c2

mπ0 = 135.0 MeV/c2.

Again we see an interesting pattern – all three pions have similar masses, in this
case that mass is about one seventh of that of the proton or neutron.

In fact the two charged pions have exactly the same mass. This is because the π+

and π− are anti-particles of one another. Anti-particles share the same mass, but
have opposite charges. The π0 has no charge, and is its own anti-particle.

Collisions also produce negatively charged anti-protons, p̄.

p+ p→ p+ p+ p+ p̄.

There is also an anti-neutron n̄, with the same mass mn as the neutron, and which
which can also be produced in collisions e.g.

p+ p→ p+ p+ n+ n̄.

Though the neutron has no charge it is not its own anti-particle. We can tell the
two are different because the anti-neutron decays differently from the neutron:

n → p+ e− + ν

n̄ → p̄+ e+ + ν̄.

Another piece of evidence that neutrons are not the same as anti-neutrons is that
they do not annihilate against one another inside nuclei.

3.1.2 Baryon number conservation

In all of the reactions above, we observe that the total number of protons and
neutrons less anti-protons and anti-neutrons

N(p) +N(n)−N(p̄)−N(n̄)

is conserved. This rule is a special case of the conservation of baryon number,
which is a quantum number carried by protons and neutrons, but not by pions.
Protons and neutrons each have baryon number +1, while their anti-particles have
baryon number -1.

Baryon number conservation keeps the proton stable, since it forbids the decay of
the proton to e.g. a π0 and a π+ each of which have baryon number of zero.
Experimental lower bound on the lifetime of the proton can be made by close
observation of large tanks of water underground, yielding

τp > 1.6× 1025 years.

This is very much longer than the lifetime of the universe (≈ 1.4 × 1010 years)
so we would expect protons created in the early universe still to be around today.
Thankfully they are – as you can easily verify experimentally.
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Magnetic moments Non examinable

Hints about proton and neutron substructure can also be found in their magnetic
dipole moments. It is a prediction of the Dirac theory that any fundamental
spin-half fermion with charge Q and mass m should have a magnetic moment

µ =
Q~
2m

.

This would predict that if the proton was a fundamental particle it would have
magnetic moment equal to the nuclear magneton

µN =
e~

2mp

However the proton has a magnetic moment of 2.79 µN , in disagreement with
the Dirac prediction for a fundamental particle. The neutron, which would have
no magnetic moment in the Dirac theory, has magnetic moment equal to -1.91
µN . These observations suggest that protons and neutrons are not fundamental
particles, but are made of something smaller.

3.1.3 Delta baryons

Other groups of strongly interacting particles are also observed. Charged pions live
long enough to be made into beams, and so we can study their reactions with
protons and neutrons. Examples of reactions observed include the production and
decay of a the ∆ multiplet of particles, which are observed as resonances in the
cross-sections for processes such as

π− + n → ∆− → π− + n

π− + p → ∆0 → π0 + n

π+ + n → ∆+ → π0 + p

π+ + p → ∆++ → π+ + p

The four short-lived delta particles ∆ have different charges (+2, +1, 0, -1), includ-
ing a double-positively charged particle, ∆++. All have rest-mass-energy close to
1232 MeV. All are produced in charge-conserving reactions. All have spin quantum
number s = 3/2. They decay in a very short time — of order 10−22 s — so can-
not be observed as propagating particles. Instead they are observed as resonances.
From the width Γ of the resonance we can infer the lifetime of the corresponding
particle.

From the reactions above we can see that all four deltas must have baryon number
+1, in order to conserve baryon number throughout each reaction — these ∆
particles are baryons. Conservation of baryon number implies that none of the
∆ particles can be anti-particles of one another – they must have separate anti-
particles, which would be created in reactions with anti-protons or anti-neutrons.
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dp
dt

= Q[E + v ×B]

Reminder of the Lorentz
force law.

The linear accelerator injector
to the CERN proton
synchrotron. c©CERN

3.2 Accelerating protons – linear accelerators

We needed protons with kinetic energy of order GeV to perform these experiments.
Unless we are willing to wait for the occasional high-energy cosmic ray coming from
space, we’ll need to accelerate them. Since the magnetic field changes only the
direction of p, it is the electrical field which is used to increase their energy of the
particles.

The problem we encounter if we try to use a constant electric field to do our
acceleration is that to get these very high energies (of order GeV) we need to pass
them through an enormous potential difference – of order 109 volts. Van der Graaff
generators can reach potentials of order ten million volts, but then tend to break
down because of electrical discharge (sparking) to nearby objects. For the particle
creation reactions above, we’re looking for about two orders of magnitude more
energy than this.

We can get around the limitations of a static potential difference by realizing that
only that only the local E field needs to be aligned along v, and only during the
period in which the particle is in that particular part of space.

We can use then use time-varying electric fields. In the margin is a picture of a linear
accelerator or linac. In this device we have a series of cylindrical electrodes with
holes through the middle of each which allow the beam to pass through. Electrodes
are attached alternately to either pole of an alternating potential. The particles are
accelerated in bunches. As each bunch travels along we reverse the potential while
the bunch is inside electrode (where this is no field). We can then ensure that when
the bunch is in the gap between the electrodes the field is always in the correct
direction to keep it accelerating.

The oscillating potential on the electrodes may be created by connecting wires
directly from the electrodes to an oscillator. For radio frequency AC oscillations we
can instead bathe the whole system in an electromagnetic standing wave, such that
the protons always ‘surf’ the wave and are continually accelerated.

3.3 Hadrons – symmetries as evidence for quarks

We have noted the existence of a variety of strongly-interacting particles coming in
multiplets with similar masses. The generic name for all these strongly interacting
particles is hadrons. There are many more of them than we have listed. We
therefore need an organising principle – a model that can explain why the strongly
interacting particles should come in these multiplets with similar properties. That
model is the quark model.
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3.3.1 Baryons

In the quark model, we can explain the properties of the nucleons, the delta particles,
and other similar states as being composites — bound states of smaller, fundamental
particles, called quarks. The quarks are spin-half fermions, and are point-like. No
internal structure has ever been observed for a quark.

If we try to build a state out of two spin-half fermions, then quantum mechanical
angular momentum addition formulae tell us that the four resulting states will be
a spin-1 triplet and a spin-0 singlet. These are the wrong spins for our baryons, so
baryons can not be made of pairs of spin-half constituents. However if we build a
state out of three spin-half fermions, then the eight resulting states are two spin- 1

2
doublets and a spin- 3

2 quadruplet. These are the right spins for the the baryons we
observe.

Baryons are made out of triplets of spin-half fermions called quarks.

If sets of three constituent quarks are to explain all of the charge states discussed
above, then we will need them to come in two distinct types or flavour, with electric
charges of +2/3e and -1/3e. As shown in Table 3.1, the proton is made of two
up-quarks and a down-quark. The neutron is made of two down-quarks and an up
quark.

Particle Quarks Spin Charge Mass / MeV

p uud 1
2 +1 938.3

n udd 1
2 0 939.6

∆++ uuu 3
2 +2 ∼ 1232

∆+ uud 3
2 +1 ∼ 1232

∆0 udd 3
2 0 ∼ 1232

∆− ddd 3
2 -1 ∼ 1232

Table 3.1: Properties of the nucleons and ∆ baryons as explained by the quark
model. The charges of the baryons are equal to the sum of the charges of their
constituent quarks. The proton and neutron are the spin-half angular momentum
combinations, while the heavier, unstable delta baryons form the spin- 3

2 combina-
tions.

3.3.2 Mesons

The pions have spin zero. If they are made out of quarks, it must be from an even
number of them. The simplest hypothesis is to use only two quarks. How can we
build the triplet of pion charges {−1, 0,+1} out of pairs quarks of charge Qu = +2

3
and Qd = − 1

3? We can do so if we also use anti-quarks, which have the opposite
charges to their respective quarks. The positively charged pion is composed of an
up quark and an anti-down quark. The negatively charged pion is a anti-up quark
and a down quark.

Charge Spin Parity

u + 2
3
e 1

2
+

d − 1
3
e 1

2
+

ū − 2
3
e 1

2
−

d̄ + 1
3
e 1

2
−

Up and down quarks, their
antiparticles, and quantum

numbers.
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Quarks Spin Charge Mass / MeV

π+ ud̄ 0 +1 139.6

π0 uū, dd̄ 0 0 135.0

π− dū 0 -1 139.6

Table 3.2: Properties of the pions as explained in the quark model. The neutral
pion exists in a superposition of the uū and dd̄ states.

Composite hadrons formed from a quark and an anti-quark are known as mesons.

We have found that the pions are spin-0 states of u and d quark/anti-quark pairs.
What happens to the spin-1 states? We would expect to see a set of mesons with
spin-1, and indeed we do. The ρ+, ρ0 and ρ− mesons are the equivalent spin-1
combinations. They all have mass of about 770 MeV.

The mesons and baryons are eigenstates of the parity operator, which inverts the
spatial coordinates. The eigen-values be found as follows. The Dirac equation
describing the relativistic propagation of spin-half particles requires that a particle
and its anti-particles have opposite parity quantum numbers. The parity of the
quark is set to be positive (+1) by convention, so the anti-quark has negative parity
(-1). The parity of the meson state is therefore

Pmeson = (+1)(−1)(−1)L = (−1)L+1

where the term (−1)L is the spatial parity for a state with orbital angular momentum
quantum number L. The lowest-lying meson states for any quark content all have
L = 0 so we can expect them to have negative parity – this is indeed what we
observe for the pions.

The term symbol for the mesons is written JP , where J is the angular momentum
quantum number of the meson, and P is its parity quantum number. The pions
have JP = 0− and so are called pseudoscalars.

3.3.3 Quark flow diagrams

We’re now in a position to understand the production and decay reactions of the
∆ baryons at the quark level. Let us take the example of the ∆0 and examine the
reaction as a flow of quarks:

π− + p → ∆0 → π0 + n

dū + uud → udd → dd̄ + udd

In the first part of the reaction a ū antiquark in the pion annihilates against a u
quark in the proton, leaving a udd state in the correct configuration to form a ∆0

baryon. In the decay, a quark—anti-quark pair is created to form a neutral pion and
a neutron. In the quark model, the conservation of baryon number is a consequence
of the conservation of quark number. Each quark has baryon number of 1

3 , and each
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anti-quark has baryon number of − 1
3 . This leads to the correct baryon numbers:

+1 for qqq baryons, -1 for q̄q̄q̄ anti-baryons, and 0 for qq̄ mesons.

Since quarks can only annihilate against antiquarks of the same flavour, quark
flavour is conserved throughout the strong reaction1. This is a characteristic prop-
erty of all of the strong interactions:

Strong interactions conserve quark flavour

3.3.4 Strangeness

The up and down quarks are sufficient to describe the proton, neutron, pions and
delta baryons. However the story does not stop there. Other particles are also
created in strong interactions — particles which did not fit into the two-quark-
flavour model and were called ‘strange particles’. Bubble chamber experiments
were used to examine the properties of beams of strange particles and demonstrated
that the strange particles could travel macroscopic distances before decaying. Their
stability could be explained if there was a new, almost-conserved, quantum number
associated with these strange particles. This ‘strangeness’ quantum number is
conserved in strong interaction. In order to decay the particles had to undergo
a weak interaction, which changed the strangeness.

For example some strong interactions produce charged Kaon particles, K± with
masses just less than 500 MeV, and which carry the strange quantum number

p+ p→ p+ p+K+ +K−.

The positively charged Kaon is said to have strangeness +1, while the negatively
charged particle has strangeness -1.

Each kaon can decay to a final state consisting only of pions (e.g. K+ → π0π+).
Considering the baryon number of the final state pions is zero, this tells us that kaons
must also have zero baryon number and so must be mesons rather than baryons,
since the pions carry no baryon number. Within the quark model we expect

The strangeness can then be transferred to other particles in other strong interac-
tions. For example

K̄0 + p→ π+ + Λ0

or
K+ + n→ K0 + p

These various different interactions can be understood if we introduce a third
quark s, to join u and d. This strange quark must have charge − 1

3 . Due to an
accident of history the strange quark carries strangeness quantum number of -1
rather than +1. It’s anti-particle, the anti-strange quark s̄ has charge + 1

3 and
carries strangeness +1. We can now see that the positively charged kaon can be a
us̄ meson, and the negatively charged kaon a sū meson.

1Quark flavour is conserved in strong and electromagnetic interactions, but not in weak inter-
actions. For example the beta decay process n → p + e− + ν̄ does not conserve quark flavour
number, so must be mediated by the weak interaction.

39



3.3. SYMMETRIES CHAPTER 3. HADRONS

The octet of pseudoscalar
mesons along with the η′

singlet. All have JP = 0−. The
mesons are positioned according
to their strangeness (vertical)
and the third component of
their isospin (horizontal).

Drawing quark flow diagrams we see that the K0 must be a ds̄ meson – a neutral
particle with strangeness +1. The Λ0 must be a baryon with quark content uds.

3.3.5 The light pseudoscalar octet

We can list the meson states it’s possible form with three quarks, u, d and s and
their anti-quarks. There are three flavours of quarks and three (anti-)flavours of
anti-quarks so we should find 3× 3 states. These states break down into an octet
and a singlet (3× 3 = 8 + 1).

The octet contains three pions, four kaons, and the η meson. The singlet η′ is
largely a ss̄ state, and is heavier than the other mesons.

The four kaons, K+, K−, K0 and K̄0 are the lowest lying strange mesons, and
therefore have S = L = 0. They must then have ‘spin’ J = 0 and negative parity
(JP = 0−), just like the three pions we have already encountered.

The flavour content of the K mesons and the π± mesons is uniquely determined
from their strangeness and charge. There are three uncharged mesons with zero
strageness, which are mixtures of uū, dd̄ and ss̄ states. That makes the full set of
S = 0, L = 0, J = 0 mesons made from u, d, s quarks and their anti-quarks. All of
these lightest states have orbital angular momentum L = 0, and so parity quantum
number equal to the product of the quark and anti-quark parities, which according
to the Dirac equation is -1.

We should expect another nine states, also with L = 0 but with S = 1 and hence
J = 1. Those states are also observed, the ρ mesons mentioned above, being three
of them. These states also have negative parity as expected from the value of L.
These spin-1 states are known as the vector mesons.

3.3.6 The light baryon octet

Baryon parity

Using similar arguments to those used in calculating meson parity, we can calculate
the spin and parity of the lightest baryons. The spin is 1

2
⊕ 1

2
⊕ 1

2
which is either

1
2

or 3
2
. The parity is (+1)(+1)(+1) × (−1)L which is positive for the lightest

L = 0 states. We therefore expect to have JP = 3
2

+
and JP = 1

2

+
states. The

anti-baryon partners have the same spins and negative parity.

(Note JP is a term symbol specifying both J and P . It should not be confused
with an exponent and does not mean ‘J to the power of P ’.)

We also expect to be able to form various baryons using quark combinations that
include strange quarks. Such baryons do indeed exist. If we examine the spin-half
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baryons we find a triplet of strangeness -1 baryons:

Σ+ = uus

Σ0 = uds

Σ− = dds

We also find a doublet of strangeness -2 baryons:

Ξ0 = uss

Ξ− = dss

The Λ0 singlet is a uds state, so shares the same quark content as the Σ0 but has

a different internal organisation of those quarks. The light JP = 1
2

+
baryons are

therefore organised into an octet comprising: two Ξ baryons, two nucleons, three Σ
baryons and the Λ0.

We can find out more about the masses of the constituent quarks by examining the
masses of the composite baryons. The masses of the Σ baryons, with one strange
quark, are around 1200 MeV. The masses of the Ξ baryons with two such quarks
are about 1300 MeV. The proton and neutron have masses close to 940 MeV. The
baryon masses lead us to the conclusion that the strange quark mass must be of
the order of 100 to 150 MeV. The u and d quark masses are so small that they are
in fact very hard to measure. Almost all the rest mass energy of their host hadrons
is tied up in the energy of the strong interaction field in which they reside.

The JP = 3
2

+
multiplet of u, d and s baryons contains ten different states – it

is a decuplet. It is noticable that, unlike the lighter 1
2

+
baryons, the 3

2

+
multiplet

includes states with the triplets of quarks of the same flavours.

3.4 Colour

A closer investigation of the J = 3
2 baryons shows an interesting problem when we

consider the symmetry – under exchange of labels – of the three quarks in the uuu,
ddd and sss baryons. The problem will be found to be resolved when we consider
the ‘charges’ of the quarks under the strong force that bind them together.

The quarks in these baryons are identical fermions, so from the spin statistics the-
orem, the state-vector |ψ〉 should be antisymmetric under interchange of any pair
of labels:

|ψ(1, 2, 3)〉 = −|ψ(2, 1, 3)〉 etc.

Let’s test this taking the ∆++ baryon as an example. The state vector must describe
the spin, the spatial wave-function, and the flavour. If the separate parts of the
state vector can be written as a direct product, then we might expect

|ψtrial〉
??= |ψflavour〉 × |ψspace〉 × |ψspin〉. (3.1)

Let us examine the exchange symmetry of each part of (3.1) in turn, taking the
example of the the ∆++ baryon.

The 1
2

+
octet of baryons made

from triplets u, d and s quarks.

The 3
2

+
baryon decuplet.
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Spin statistics

Given a system of particles, the state vector |ψ〉 must be symmetric under inter-
change of labels of any pair of identical bosons. It must be anti-symmetric under
interchange of labels of any pair of identical fermions.

The ∆++ is composed of three up-type quarks, so we expect that

|ψflavour〉 = |u1〉|u2〉|u3〉.

The flavour part of the state vector is symmetric under interchange of any pair of
labels.

The spin of the ∆ baryons is 3
2 , which means that the spin part of its state vector

must also be symmetric under interchange of labels. For example the m = 3
2 spin

state can be written in terms of the quark spins as

|s =
3
2
,ms =

3
2
〉 = | ↑1〉| ↑2〉| ↑3〉

which is symmetric under exchange of any pair of labels. The three other s = 3
2

states (which have ms = 1
2 ,−

1
2 and − 3

2 ) can be created from | 32 ,
3
2 〉 using the

lowering operator
Ŝ− = Ŝ1− + Ŝ2− + Ŝ3−

which is also symmetric under interchange of any pair of labels. This means that
all of the s = 3

2 states have a spin part which is symmetric under interchange of
any pair of labels.

The space part of the state vector is also symmetric under interchange of any pair of
quark labels, since for this ‘ground state’ baryon all of the quarks are in the lowest-
lying l = 0 state. The result is that |ψtrial〉 is overall symmetric under interchange
of any pair of labels of quarks, and does not satisfy the spin statistics theorem.
Something is wrong with equation (3.1).

The resolution to this dilemma is that there must be some other contribution to
the state vector which is anti-symmetric under interchange of particles. What is
missing is the description of the strongly interacting charges – also known as the
‘colour’.

To describe the baryon state we need to extend the space of our quantum model
to include a colour part |ψcolour〉 to the state vector,

|ψbaryon〉 = |ψflavour〉 × |ψspace〉 × |ψspin〉 × |ψcolour〉. (3.2)

The flavour, space and spin parts remain symmetric under interchange of any pair
of labels, provided that the colour part is totally antisymmetric under interchange.
We can arrange for total antisymmetry by using a determinant2

|ψcolour〉 =
1√
6

∣∣∣∣∣∣
∣∣∣∣∣∣
 r1 g1 b1

r2 g2 b2
r3 g3 b3

∣∣∣∣∣∣
∣∣∣∣∣∣ , (3.3)

2This can be compared to the more familiar case of the two-particle spin state

|ψ(S = 0)〉 =
1
√

2

˛̨̨̨˛̨̨̨„
↑1 ↓1
↑2 ↓2

«˛̨̨̨˛̨̨̨
=

1
√

2
(| ↑1〉| ↓2〉 − | ↓1〉| ↑2〉)

which has S = 0 and hence no net spin.
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which will change sign under interchange of any two rows – a procedure equivalent
to swapping the corresponding labels.

For us to be able to build such a determinant we require that there must be three
different colour charges, which we have labelled ‘r’, ‘g’ and ‘b’, following the con-
vention that they are known as red, green and blue. The need for three such colour
‘charges’ has since been proven in very many other experimental measurements.
The antisymmetric colour combination (3.3) is the only combination of three quark
states that has no net colour.

Quarks carry colour, while anti-quarks carry anti-colour. The colour in the mesons
is contained in quark-antiquark combinations in the superposition

|ψmeson
colour 〉 =

1√
3

(
|rr̄〉+ |gḡ〉+ |bb̄〉

)
which is also colourless.

The strongly interacting particles observed – the qqq baryons and the qq̄ mesons
have no net colour. Quarks, which do have net colour have never been observed in
isolation.

No coloured object has ever been observed in isolation.

Quarks only occur within the colourless combinations consisting of three quarks qqq
for baryons and a quark and an anti-quark qq̄ for mesons.

The quarks are confined within hadrons by the strong force, and are unable to exist
as free particles. If we attempt to knock a u quark out of a proton (for example by
hitting the proton with a high-energy electron, as we shall discuss on page 81) we
do not observe a free u quark in the final state. Instead the struck u-quark uses part
of its kinetic energy to create other qq̄ pairs out of the vacuum, and joins together
with them so that the final state contains only colour-neutral hadrons.

The particles that carry the strong force between quarks are known as gluons. Each
gluon carries both colour and anti-colour. There are eight gluons, since of the nine
possible othogonal colour–anti-colour combinations, one is colourless. We will later
find (§6.3) that the fact that the gluon also carries colour charge itself makes the
strong force very different from the electromagnetic force, which is mediated by
neutral photons.

3.5 Heavier quarks

We have so far discussed hadrons made from three flavours of quarks, u, d and s.
In fact these are only half of the total number which are found in nature. The full
set of six quarks is as follows:

It’s very difficult to obtain good values for the masses of the light quarks, since they
are always bound up inside much heavier hadrons.

Baryon and mesons are both
colourless states.
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Figure 3.1: The diagram on the left shows the emission of a gluon from a quark.
The right hand side shows a possible colour-flow. The gluon changes the colour of
the quark, and itself carries both colour and anti-colour.

Name Symbol Charge Mass [GeV]

down d - 1
3 ∼0.005

up u + 2
3 ∼0.003

strange s - 1
3 0.1

charm c + 2
3 1.2

bottom b - 1
3 4.2

top t + 2
3 172

It can be seen that the quarks only come in charges of − 1
3 and + 2

3 . Their anti-
quark partners have the opposite charges. It is useful to group the quarks into three
generations, each containing a + 2

3 and a − 1
3 partner:

(
u

d

) (
c

s

) (
t

b

)
← Q = +2

3

← Q = − 1
3

where the up and down form the first generation, the strange and charm quarks the
second, and the top and bottom quarks form the third generation. The pairings are
those favoured by the weak interaction (§6.4), and mean that (for example) when
a t quark decays it does so dominantly to a b quark.

What further hadrons may we expect from these additional quarks? All these quarks
– other than the top quark – form hadrons in both meson (qq̄) and baryon (qqq)
combinations. The top quark is so heavy that it decays almost immediately, before
it can form hadrons. An example of a charmed meson is the cd̄ state with J = 0
known as the D+ meson. Similarly there are mesons containing b quarks, such as
the bb̄ meson known as the Υ.

We can put these quarks and anti-quarks together to form colourless hadrons in
any qqq or qq̄ flavour combinations we choose, so long as we ensure that the final
state-vector is antisymmetric with respect to exchange of labels of any identical
quarks. So for example valid combinations are:

cds, bū, cc̄, uud, etc.
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3.6 Charmonium

The charm quark was first discovered in cc̄ bound states. These ‘charmonium’
mesons are interesting because bound states of heavy quarks can tell us about the
properties of the strong nuclear force which binds them.

The hadrons containing only the lightest quarks, u, d and s, have masses that tell
us only a little about the mass of their constituent quarks. Most of the energy of
the lightest baryons and mesons is stored in the strong-interaction field.

The charm quark (and to an even greater extent the bottom quark) is sufficiently
heavy that mesons containing cc̄ combinations are dominated by the mass of the
constituent quarks. The energy in the field is now a relatively small correction to
the rest mass energy of the baryons, and the whole two-particle system can be
reasonably well described by non-relativistic quantum mechanics. If we model the
system as a two-body quantum system, with reduced mass µ = mc/2 then we can
write down the Schrödinger equation for the energy eigenstates of the system,(

P 2

2µ
+ V

)
|Ψ〉 = E|ψ〉.

The potential V due to the strong force between a quark and its anticolour partner
is well described by the function

V (r) = −4
3
αs

r
+

r

a2
, (3.4)

The first term is the strong-force equivalent to the Coulomb potential. The elec-
tromagnetic fine structure constant (α) has replaced by the strong-force constant
αs, and the factor of 4/3 has its origin in the three colour ‘charges’ rather than the
single one electromagnetic charge. The term linear in r means that V continues
growing as r→∞. It is this linear term that leads to quark confinement, since an
infinite amount of energy would be required to separate the quarks to infinity.

For cc̄ or ‘charmonium’ mesons, the typical separation r is rather smaller than a. In
these states the linear term can be neglected, and the potential takes the 1/r form
familiar from atomic physics. We then expect that the energy eigenstates should
follow the pattern of the hydrogenic states.

The energy levels should then be given by the strong-force equivalent of the hydro-
genic energies:

En = − µ

2n2

(
4
3
αs

)2

. (3.5)

Therefore we expect to see charmonium states with energies equal to 2mc + En.
The observed charmonium spectrum bears out these predictions (Figure 3.2).

The lowest-lying state again has L = S = 0, and hence J = 0 and parity
(+1)(−1)(−1)L = (−1)L+1 = −1. This state is labelled ηC in Figure 3.2.

The first meson to be discovered was not the lightest one η but the slightly heavier
J/Ψ. The J/Ψ has spin 1 and negative parity resulting from S = 1 and L = 0.

En = −µα
2

2n2

Hydrogen atomic energy
levels.

n 2S+1LJ jP Name

11S1 0− ηc

11L1 1+ hc

13S1 1− J/Ψ

23S1 1− Ψ′

Some charmonium states and
their quantum numbers
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Figure 3.2: Some of the lowest-lying charmonium (cc̄) states. Radiative transitions
between states are indicated by arrows.

The ‘OZI-suppressed’ decay of
the J/ψ proceeds via a-three
gluon intermediate state.

These are exactly the right quantum numbers to allow it to be made in electron-
positron collisions, via an intermediate (virtual) photon, since the photon also has
quantum numbers JP = 1−

e− + e+ → γ∗ → J/ψ.

The transitions in the plot indicate possible electromagnetic transitions between
charmonium states. Measurement of the gamma-ray photon energies allows us to
make precision measurement of mass differences, and hence of the predictions of
(3.5). Charmonium states which are heavier than 2mD can decay rapidly via the
strong force to either a D0 and a D̄0 meson or to final state consisting of a D+

and a D− meson.

Those charmonium states which are lighter than 2mD cannot decay to a pair of
charmedD mesons. Instead the charm and anti-charm quarks must annihilate either
via the electromagnetic force, or via a suppressed version of the strong interation.
3 This unusally suppressed strong decay is known as an ‘OZI suppression’ and is
a feature of decays in which the intermediate state consists only of gluons. The
cc̄ states with m < 2mD are therefore unusually long-lived and are visible as very
narrow resonances with masses close to 3GeV.

We can go further and use the difference between the 1S and the 2S levels to find
out the size of the strong ‘fine structure constant’. It is found that αs is much
larger than for the electromagnetic case – in fact close to unity.

αs ≈ 1

This much larger value of αs compared the electromagnetic fine structure constant
α ≈ 1

137 is a reflection of the relative strengths of the two forces.

3The reason for this suppression is that a single-gluon intermediate state cannot be colourless,
so is forbidden. A two-gluon final state has positive parity under the charge conjucation operator
so is forbidden for any state, such as the J/ψ, which is negative under charge conjugation. Hence
a three-gluon intermediate state is required.
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The ‘bottomonium’ (bb̄) system of mesons are the corresponding set of hydrogenic
states for the bottom quark. They lead to sharp resonances close to 2m(b) ≈
10 GeV.

3.7 Hadron decays

The strong interaction allows reactions and decays in which quarks are interchanged
between hadrons, but there is no change of net quark flavour. For example we saw
in §3.3.3 that strong decays such as

∆+

udd
→ n

udd
+ π+

ud̄
,

conserve net quark content. The strong decays occur very rapidly, typically occur
over lifetimes of order 10−22 s.

Electromagnetic interactions do not change quark flavour either. Therefore if overall
quark flavour is changed, for example in the strangeness-violating reactions,

K+

us̄
→ π+

ud̄
+ π0

uū,dd̄
[∆S = −1]

Σ−
dds
→ n

ddu
+ π−

ud̄
[∆S = +1]

a weak interaction must involved.

Only weak interactions can change quark flavour.

Weak decays are suppressed by the Fermi coupling constant, and so weakly decaying
particles are characterised by much longer lifetimes, of order 10−10 s. This may seem
like a short life, but is twelve orders of magnitude much longer than typical strong
decays.

Examples of other weak decays include the decay of the charged pion to a muon4

and an associated neutrino
π− → µ− + ν̄µ

and the beta decay of a neutron.

n→ p+ e− + ν̄e

The neutron is unusually long-lived even for a weak decay (τ = 881 s). The long life
is due to the closeness in mass between the neutron and the proton, which results in
a small density of states for the decay products (recall the Γ ∝ Q5 rule in §2.3.2).

Electromagnetic decays have typical lifetimes intermediate between those of strong
and weak decays. For example the electromagnetic decay

π0 → γ + γ

has a lifetime of 8× 10−17 s.

4As we will see in §6.1 the muon is a fundamental particle with electric charge but no strong
interactions – like an electron electron but heavier.

Decay Typical lifetime

Strong 10−22 s

EM 10−18 s

Weak 10−10 s
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Hadron lifetimes

The lifetime of hadron states depends on the force by which they decay. Typical
lifetimes are as follows:

Force Typical lifetime Example

Strong 10−22 s ∆− → π+ + p

Electromagnetic 10−18 s π0 → γ + γ

Weak 10−10 s K+ → π0 + π+

Where more than one decay mode is possible, decay modes with much very small
rates are often unobserved. For example consider the two baryons in the JP = 1

2

+

multiplet with quark content uds:

Λ0 (1115.7 MeV)

Σ0 (1192.6 MeV)

The Λ0 is the lightest neutral strange baryon. Strangeness-conserving decays to
other hadrons e.g. p +K− are kinematically forbidden, hence the only way the
Λ0 can decay is via the strangeness-violating weak decays:

Λ0 → p+ π− (64%)

Λ0 → n+ π0 (36%)

The lifetime of the Λ0 is therefore relatively long by subatomic stanards – τ ≈
2.6× 10−10 s.

By contrast the heavier Σ0 is decays electromagnetically to the Λ0 with a lifetime
of 7× 10−20 s:

Σ0 → Λ0 + γ

Since ΓEM � ΓWeak the weak decay mode of the Σ0 is not observed.

Key concepts

• Strongly interacting objects are composed of point-like spin-half objects called
quarks q

• Quarks come in three strong-charges, r, g, b known as colours

• There are six different flavours of quark in three generations(
u
d

) (
c
s

) (
t
b

)
each containing a +2/3 and a −1/3 charged partner.

• Anti-quarks q̄ have the opposite charges and colours to their respective quarks

• The quarks are confined in the ‘colourless’ combinations called hadrons

• Mesons are colourless qq̄ combinations

• Baryons are colourless qqq combinations
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3.A Isospin §

Non-examinable

We can get extra insight into the meson and baryon combinations using the concept
of isospin. The name ‘isospin’ is used in analogy to the spin, since the algebra of the
isospin states has the same structures as the angular momentum states of quantum
mechanics. However isospin is completely separate from angular momentum – it
is simply an internal quantum number of the system that tells us about the quark
content.

Let us consider the u and d quarks to be the isospin-up and isospin-down states of
an isospin-half system.

The quantum number I is the total isospin quantum number, with I = 1
2 for the

nucleon doublet. The third component of isospin, I3 distinguishes the proton with
I3 = 1

2 from the neutron with I3 = − 1
2 . These are analogous to the quantum

numbers s and ms which label the eigenstates of the angular momentum operators
S2 and Sz.

We can label the quark states with their quantum numbers |I, I3〉. The |u〉 and |d〉
quarks form a | 12 ,±

1
2 〉 isospin doublet:(

|u〉
|d〉

)
as do the the antiquarks (

−|d̄〉
|ū〉

)
.

The minus sign in front of the |d̄〉 state ensures that the anti-quark doublet has the
correct transformation properties.

The ladder operators I± change the third component of isosipin

I− |u〉 = |d〉
I+ |d〉 = |u〉

Similarly the ladder operators act on the anti-quarks

I−|d̄〉 = −|ū〉
I+|ū〉 = −|d̄〉.

Using the ladder operators we can generate the other pion states from the π+:

I−|π+〉 = I−|ud̄〉

= |dd̄〉 − |uū〉 =
√

2 |π0〉

Operating again with I− will generate the state |π−〉 = |dū〉. The three pions
{π+, π0, π−} form a I = 1 triplet with I3 = {+1, 0, −1}.

The |0, 0〉 state is the linear combination of |uū〉 and |dd̄〉 that is othogonal to |π0〉,

|0, 0〉 = 1√
2
(|dd̄〉+ |uū〉).
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Figure 3.3: Bubble chamber photograph and line drawing showing the discovery of
the Ω− baryon. From [6].

This is the state of the η meson. Quarks other than the u and d do not carry
isospin.

3.B Discovery of the Omega §

Non examinable

The triply strange Ω− baryon was discovered in the set of decays shown in Figure 3.3.

The weak interaction is the only interaction that can change quark flavour, so
strange hadrons can and do travel macroscopic distances before they decay.

In the figure the production of the Ω− was from the interaction of a negatively
charged beam of kaons onto the hydrogen target:

K− + p → Ω− +K+ +K0.

and found through its three sequential weak decays:

Ω− → Ξ0 + π−

Ξ0 → Λ0 + π0

Λ0 → p+ π−.

Only the charged particles create tracks of bubbles in the chamber. The presence
of the neutral pion can be inferred due to a happy accident. The π0 particle almost
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always decays to a pair of photons π0 → γ + γ. Unusually, both of the photons
produced in the pion decay have converted into e+ + e− pairs γ → e+ + e− in the
presence of the atomic nuclei, leaving vee-shaped bubble tracks.

Further reading

• B. Martin, Nuclear and Particle Physics: An Introduction

• W. S. C. Williams, Nuclear and Particle Physics

• K.S. Krane Introductory Nuclear Physics
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Chapter 4

Non-relativistic scattering theory

4.1 Scattering theory

We are interested in a theory that can describe the scattering of a particle from a
potential V (x). Our Hamiltonian is

H = H0 + V.

where H0 is the free-particle kinetic energy operator

H0 =
p2

2m
.

In the absence of the potential V the solutions of the Hamiltonian could be written
as the free-particle states satisfying

H0|φ〉 = E|φ〉.

These free-particle eigenstates could be written as momentum eigenstates |p〉, but
since that isn’t the only possibility we hold off writing an explicit form for |φ〉 for
now. The full Schrödinger equation is

(H0 + V )|ψ〉 = E|ψ〉.

We define the eigenstates of H such that in the limit where the potential disappears
(V→0), we have |ψ〉→|φ〉, where |φ〉 and |ψ〉 are states with the same energy
eigenvalue. (We are able to do this since the spectra of both H and H + V are
continuous.)

A possible solution is1

|ψ〉 =
1

E −H0
V |ψ〉+ |φ〉. (4.1)

1Functions of operators are defined by f(Â) =
P

i f(ai)|ai〉〈ai|. The reciprocal of an operator
is well defined provided that its eigenvalues are non-zero.
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x

x´

By multiplying by (E − H0) we can show that this agrees with the definitions
above. There is, however the problem of the operator 1/(E −H0) being singular.
The singular behaviour in (4.1) can be fixed by making E slightly complex and
defining

|ψ(±)〉 = |φ〉+ 1
E −H0 ± iε

V |ψ(±)〉 . (4.2)

This is the Lippmann-Schwinger equation. We will find the physical meeting of
the (±) in the |ψ(±)〉 shortly.

4.1.1 Scattering amplitudes

To calculate scattering amplitudes we are going to have to use both the position
and the momentum basis, the incoming beam is (almost) a momentum eigenstate,
and V is a function of position x. If |φ〉 stands for a plane wave with momentum
~k then the wavefunction can be written

〈x|φ〉 =
eik·x

(2π)
3
2
.

We can express (4.2) in the position basis by bra-ing through with 〈x| and inserting
the identity operator

∫
d3x′ |x′〉〈x′|

〈x|ψ(±)〉 = 〈x|φ〉+
∫
d3x′

〈
x
∣∣∣ 1
E −H0 ± iε

∣∣∣x′〉〈x′|V |ψ(±)〉. (4.3)

The solution to the Greens function defined by

G±(x,x′) ≡ ~2

2m

〈
x
∣∣∣ 1
E −H0 ± iε

∣∣∣x′〉
is

G±(x,x′) = − 1
4π

e±ik|x−x′|

|x− x′|
.

Using this result we can see that the amplitude of interest simplifies to

〈x|ψ(±)〉 = 〈x|φ〉 − 1
4π

2m
~2

∫
d3x′

e±ik|x−x′|

|x− x′|
V (x′)〈x′|ψ(±)〉 (4.4)

where we have also assumed that the potential is local in the sense that it can be
written as

〈x′|V |x′′〉 = V (x′)δ3(x′ − x′′).

The wave function (4.4) is a sum of two terms. The first is the incoming plane
wave. For large r = |x| the spatial dependence of the second term is e±ikr/r.
We can now understand the physical meaning of the |ψ(±)〉 states; they represent
outgoing (+) and incoming (−) spherical waves respectively. We are interested in
the outgoing (+) spherical waves – the ones which have been scattered from the
potential.
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We want to know the amplitude of the outgoing wave at a point x. For practical
experiments the detector must be far from the scattering centre, so we may assume
|x| � |x′|.

We define a unit vector r̂ in the direction of the observation point

r̂ =
x
|x|

and also a wave-vector k′ for particles travelling in the direction x̂ of the observer,

k′ = kr̂.

Far from the scattering centre we can write

|x− x′| =
√
r2 − 2rr′ cosα+ r′2

= r

√
1− 2

r′

r
cosα+

r′2

r2

≈ r − r̂ · x′

where α is the angle between the x and the x′ directions.

It’s safe to replace the |x − x′| in the denominator in the integrand of (4.4) with
just r, but the phase term will need to be replaced by r− r̂ ·x′. So we can simplify
the wave function to

〈x|ψ(+)〉 r large−−−−→ 〈x|k〉 − 1
4π

2m
~2

eikr

r

∫
d3x′ e−ik′·x′V (x′)〈x′|ψ(+)〉

which we can write as

〈x|ψ(+)〉 =
1

(2π)
3
2

[
eik·x +

eikr

r
f(k′,k)

]
.

This makes it clear that we have a sum of an incoming plane wave and an outgoing
spherical wave with amplitude f(k′,k) given by

f(k′,k) = − 1
4π

(2π)3
2m
~2
〈k′|V |ψ(±)〉. (4.5)

We will ignore the interference between the first term which represents the orig-
inal ‘plane’ wave and the second term which represents the outgoing ‘scattered’
wave, which is equivalent to assuming that the incoming beam of particles is only
approximately a plane wave over a region of dimension much smaller than r.

We then find that the partial cross-section dσ — the number of particles scattered
into a particular region of solid angle per unit time divided by the incident flux2 —
is given by

dσ =
r2|jscatt|
|jincid|

dΩ = |f(k′,k)|2 dΩ.

2Remember that the flux density is given by j = ~
2im

[ψ∗∇ψ − ψ∇ψ∗].
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e
−

e
−

e
−

γ

e
−

This means that the differential cross section is given by the simple result

dσ

dΩ
= |f(k′,k)|2.

The differential cross section is simply the mod-squared value of the scattering
amplitude.

4.1.2 The Born approximation

If the potential is weak we can assume that the eigenstates are only slightly modified
by V , and so we can replace |ψ(±)〉 in (4.5) by |k〉.

f (1)(k′,k) = − 1
4π

(2π)3
2m
~2
〈k′|V |k〉. (4.6)

This is known as the Born approximation. Within this approximation we have the
simple result that

f (1)(k′,k) ∝ 〈k′|V |k〉.

Up to some constant factors, the scattering amplitude is found by squeezing the
perturbing potential V between incoming and the outgoing momentum eigenstates
of the free-particle Hamiltonian.

Expanding out (4.6) in the position representation (by insertion of a couple of
completeness relations

∫
d3x′ |x′〉〈x′|) we can write

f (1)(k′,k) = − 1
4π

2m
~2

∫
d3x′ei(k−k′)·x′V (x′).

This result is telling us that scattering amplitude is proportional to the 3d Fourier
transform of the potential. By scattering particles from targets we can measure
dσ
dΩ , and hence infer the functional form of V (r). This result is used, for example,
in the nuclear form factor (Section 2.4.3).

4.2 Virtual Particles

One of the insights of subatomic physics is that at the microscopic level forces are
caused by the exchange of force-carrying particles. For example the Coulomb force
between two electrons is mediated by excitations of the electromagnetic field – i.e.
photons. There is no real ‘action at a distance’. Instead the force is transmitted
between the two scattering particles by the exchange of some unobserved photon or
photons. The mediating photons are emitted by one electron and absorbed by the
other. It’s generally not possible to tell which electron emitted and which absorbed
the mediating photons – all one can observe is the net effect on the electrons.

Other forces are mediated by other force-carrying particles. In each case the mes-
senger particles are known as virtual particles. Virtual particles are not directly
observed, and have properties different from ‘real particles’ which are free to prop-
agate.
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To illustrate why virtual particles have unusual properties, consider the elastic scat-
tering of an electron from a nucleus, mediated by a single virtual photon. We can
assume the nucleus to be much more massive than the electron so that it is approx-
imately stationary. Let the incoming electron have momentum p and the outgoing,
scattered electron have momentum p′. For elastic scattering, the energy of the
electron is unchanged E′ = E. The electron has picked up a change of momentum
∆p = p′ − p from absorbing the virtual photon, but absorbed no energy. So the
photon must have energy and momentum

Eγ = 0
pγ = ∆p = p′ − p.

The exchanged photon carries momentum, but no energy. This sounds odd, but is
nevertheless correct. What we have found is that for this virtual photon, E2

γ 6= p2
γ .

The particular value Eγ = 0 is special to the case we have chosen, but the general
result is that for any virtual particle there is an energy-momentum invariant3 which
is not equal to the square of its mass

P · P = E2 − p · p 6= m2.

Such virtual particles do not satisfy the usual energy-momentum invariant and are
said to be ‘off mass shell’.

Note that we would not have been able to escape this conclusion if we had taken the
alternative viewpoint that the electron had emitted the photon and the nucleus had
absorbed it. In that case the photon’s momentum would have been pγ = −∆p.
The square of the momentum would be the same, and the photon’s energy would
still have been zero.

These exchanged, virtual, photons are an equally valid solution to the (quantum)
field equations as are the more familiar travelling-wave solutions of ‘real’ on-mass-
shell photons. It is interesting to realise that all of classical electromagnetism is
actually the result of very many photons being exchanged.

4.3 The Yukawa Potential

There is a type of potential that is of particular importance in subatomic scattering,
which has the form (in natural units)

V (r) =
g2

4π
e−µr

r
. (4.7)

This is known as the Yukawa potential. The constant g2 tells us about the depth
of the potential, or the size of the force. When µ = 0 (4.7) has the familiar 1/r
dependence of the electrostatic and gravitational potentials. When µ is non-zero,
the potential also falls off exponentially with r, with a characteristic length of 1/µ.

3We used sans serif capitals P to indicate Lorentz four-vectors P = (E, px, py , pz). The dot
product of two Lorentz vectors A · B = a0b0 − a1b1 − a2b2 − a3b3 is a Lorentz invariant scalar.

e
−

e
−

γ
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The Yukawa potential and the range of forces

The electromagnetic force is mediated by excitations of the electromagnetic force,
i.e. photons. The photon is massless so the electrostatic potential falls as 1/r.
The exponential fall-off of (4.7) is removed since µ = 0, and so electromagnetism
is effective even at large distances.

By contrast, the weak nuclear force, which is mediated by particles with µ
close to 100 GeV is feeble at distances larger than about 1/(100 GeV) ≈
(197 MeV fm)/(100 GeV) ∼ 10−18 m. This makes it short-range in nature, and
so it appears to be weak. (In fact the coupling constant g for the so-called ‘weak’
force is actually larger than that for the electromagnetic force.)

To understand the meaning of the µ term it is useful to consider the relativistic
wave equation known as the Klein-Gordan equation(

∂2

∂t2
−∇2 + µ2

)
ϕ(r, t) = 0. (4.8)

This is the relativistic wave equation for spin-0 particles. The plane-wave solutions
to (9.5) are

φ(X) = A exp (−iP ·X)
= A exp (−iEt+ ip · x) .

These solutions require the propagating particles to be of mass µ =
√
E2 − p2.

The Klein-Gordon equation is therefore describing excitations of a field of particles
each of mass µ. The Yukawa potential is another solution to the field equation
(9.5). The difference is that the Yukawa potential describes the static solution due
to virtual particles of mass µ created by some source at the origin.

The scattering amplitude of a particle bouncing off a Yukawa potential is found to
be

〈k′|VYukawa|k〉 = − g2

4π (2π)3
1

µ2 + |∆k|2
. (4.9)

We can go some way towards interpreting this result as the exchange of a virtual
particle as follows. We justify the two factors of g as coming from the points where
a virtual photon is either created or annihilated. This vertex factor g is a measure
of the interaction or ‘coupling’ of the exchanged particle with the other objects.
There is one factor of g the point of creation of the virtual particle, and another
one at the point where it is absorbed.

The other important factor in the scattering amplitude (4.9) is associated with the
momentum and mass of the exchanged particle:

− 1
µ2 + |∆k|2

In general it is found that if a virtual particle of mass µ and four-momentum P is
exchanged, there is a propagator factor

1
P · P− µ2

(4.10)
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Vertex factors in electromagnetism

In electromagnetism we require that at a vertex where a photon interacts with a
particle, the vertex factor g should to be proportional to the charge of the particle
Qe. For a particle of charge Q1e scattering from a field generated by another
particle of charge Q2e, we seek a (µ = 0) Yukawa potential of the form

VEM =
(Q1e)(Q2e)

4πε0r
.

For scattering from a Coulomb potential we can therefore use the Yukawa result
(4.9) by making the substitution

g2

4π
⇒ Q1Q2e

2

4πε0
.

This identification shows that the vertex factors g are just dimensionless measures
of the charges of the particle. The vertex factor for a charge Qe is QgEM where

g2
EM

4π
= αEM ≈ 1

137
.

in the scattering amplitude. This relativistically invariant expression is consistent
with our electron-scattering example, where the denominator was:

P · P− µ2 = E2 − p2 − µ2

= 0− |∆k|2 − µ2

= −
(
µ2 + |∆k|2

)
Note that the propagator (4.13) becomes singular as the particle gets close to its
mass shell. i.e. as P · P → µ2. It is only because the exchanged particles are off
their mass-shells that the result is finite.

The identification of the vertex factors and propagators will turn out to be very useful
when we later try to construct more complicated scattering processes. In those cases
we will be able to construct the most important features of the scattering amplitude
by writing down:

• an appropriate vertex factor each time a particle is either created or annihilated
and

• a propagator factor for each virtual particle.

By multiplying together these factors we get the scattering amplitude.
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Key concepts

• The amplitude for scattering from a potential can be solved iteratively, using
the Lippman-Schwinger equation:

|ψ(±)〉 = |φ〉+ 1
E −H0 ± iε

V |ψ(±)〉

• The leading Born approximation to the scattering amplitude is

f (1)(k′,k) ∝ 〈k′|V |k〉

• The differential cross-section is given in terms of the scattering amplitude by

dσ

dΩ
= |f(k′,k)|2

• Forces are transmitted by virtual mediating particles which are off-mass-shell:

P · P = E2 − p · p 6= m2

• The Yukawa potential for an exchanged particle of mass µ and coupling g
is

V (r) =
g2

4π
e−µr

r
(4.11)

• The scattering amplitude contains a vertex factors g for any point where
particles are created or annihilated

• The relativistic propagator factor is

1
P · P− µ2

for each virtual particle.
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4.A Beyond Born: non-relativistic propagators §

Non examinable

To see how things develop if we don’t want to rashly assume that |ψ±〉 ≈ |φ〉 it is
useful to define a transition operator T such that

V |ψ(+)〉 = T |φ〉

Multiplying the Lippmann-Schwinger equation (4.2) by V we get an expression for
T

T |φ〉 = V |φ〉+ V
1

E −H0 + iε
T |φ〉.

Since this is to be true for any |φ〉, the corresponding operator equation must also
be true:

T = V + V
1

E −H0 + iε
T.

This operator is defined recursively. It is exactly what we need to find the scattering
amplitude, since from (4.5), the amplitude is given by

f(k′,k) = − 1
4π

2m
~2

(2π)3〈k′|T |k〉.

We can now find an iterative solution for T :

T = V + V
1

E −H0 + iε
V + V

1
E −H0 + iε

V
1

E −H0 + iε
V + . . . (4.12)

We can interpret this series of terms as a sequence of the operators corresponding
to the particle interacting with the potential (operated on by V ) and propagating
along for some distance (evolving as it goes according to 1

E−H0+iε ).

The operator

1
E −H0 + iε

(4.13)

is the non-relativistic propagator. Propagators are central to much of what we will
do later on, so it is a good idea to try to work out what they mean. Physically
the propagator can be thought of as a term in the expansion (4.12) which is giving
a contribution the amplitude for a particle moving from an interaction at point
A to another at point B. Mathematically it is a Greens function solution to the
Lippmann-Schwinger equation in the position representation (4.3).

We are now in a position to quantify what we meant by a ‘weak’ potential earlier
on. From the expansion (4.12) we can see that the first Born approximation (4.6)
will be useful if the matrix elements of T can be well approximated by its first term
V .

When is this condition likely to hold? Remember that the Yukawa potential was
proportional to the square of a dimensionless coupling constant ∝ g2. If g2 � 1
then successive applications of V introducing higher and higher powers of g and can

Vk

k´

V

k

k´

V

1/(E-H +i )0 e
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usually be neglected. This will be true for electromagnetism, since the dimensionless
coupling relevant for electromagnetism is related to the fine structure constant

g2

4π
= α =

e2

4πε0~c
≈ 1

137
.

Since α� 1, we can usually get away with just the first term of (4.12) for electric
interactions (i.e. we can use the Born approximation).
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Chapter 5

Feynman diagrams

5.1 Aim of the game

To calculate the probabilities for relativistic scattering processes we need to find
out the Lorentz-invariant scattering amplitude which connects an initial state |Ψi〉
containing some particles with well defined momenta to a final state |Ψf 〉 containing
other (often different) particles also with well defined momenta.

We make use of a graphical technique popularised by Richard Feynman1. Each
graph – known as a Feynman Diagram – represents a contribution to Mfi. This
means that each diagram actually represents a complex number (more generally
a complex function of the external momenta). The diagrams give a pictorial way
to represent the contributions to the amplitude.

In Feynman diagrams, spin- 1
2 particles such as electrons are indicated with a straight

line with an arrow.

The arrow follows the direction of particle flow, in the same was as in quark-flow
diagrams (§3.3.3).

Diagrams consist of lines representing particles and vertices where particles are
created or annihilated. I will place the incoming state on the left side and the
outgoing state on the right side. Since the diagrams represent transitions between
well-defined states in 4-momentum they already include the contributions from all
possible paths in both time and space through which the intermediate particles
might possibly have passed. This means that it is not meaningful to ask about
the time-ordering of any of the internal events, since all possible time-orderings are
necessarily included.

1American physicist (1918-1988).

Fermion line

Photon line

e
−

γ

e
−

Vertex
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e
−

γ

e
−

The electromagnetic vertex.
The vertex factor is −gEM.

5.2 Rules for calculating diagrams

It turns out that are simple rules for calculating the complex number represented
by each diagram. These are called the Feynman rules. In quantum field theory we
can derive these rules from the Lagrangian density, but in this course we will simply
quote the rules relevant for the Standard Model.

5.2.1 Vertices

Vertices are places where particles are created or annihilated. In the case of the
electromagnetic interaction there is only one basic vertex which couples a photon
to a charged particle with strength proportional to its charge.

To calculate the contribution toMfi, for each vertex we associate a vertex factor.

For interactions of photons with electrons the vertex factor is of size −gEM where

gEM is a dimensionless charge or coupling constant.2 The coupling constant is a
number which represents the strength of the interaction between the particle and the
force carrier at that vertex. For the electromagnetic force the coupling strength must
be proportional to the electric charge of the particle. So for the electromagnetic
vertex we need a dimensionless quantity proportional to the charge. Recall that for
the electromagnetic fine structure constant:

αEM ≡
e2

4πε0~c
≈ 1

137
.

is dimensionless. It is convenient to choose gEM such that

αEM =
g2
EM

4π
.

In other words the coupling constant gEM is a dimensionless measure of the |e|
where e is the charge of the electron. The size of the coupling between the photon
and the electron is

−gEM = −
√

4παEM.

The electromagnetic vertex factor for any other charged particle f with charge Qf

times that of the proton is then

gEMQf

So, for example, the electromagnetic vertex factor for an electron is of size −gEM

while for the up quark it is of size + 2
3gEM.

2We are simplifying the situation by ignoring the spin of the electron. If spin is included
the vertex factor becomes −gEM times a matrix, in fact a Dirac gamma matrix, allowing the
spin direction of the electron as represented by a 4-component spinor. For now we will ignore
this complication and for the purpose of Feynman diagrams treat all spin 1

2
fermions, such as

electrons, muons, or quarks, as spinless. The Dirac matrices also distinguish electrons from anti-
electrons. The sign of the vertex factor is well defined when the Dirac representations are used for
the particles.
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5.2.2 Anti-particles

An anti-particle has the same mass as its corresponding particle cousin, but his
charge is the opposite to that of the particle.3 The Feynman diagram for an
anti-particle shows the arrow going the ‘wrong’ way (here right to left), since the
particle flow is opposite to that of anti-particle.

The same basic electromagnetic vertex is responsible for many different reactions.
Consider each of the partial reactions

e− → e− + γ

e− + γ → e−

e+ → e+ + γ

e+ + γ → e+

e− + e+ → γ

γ → e− + e+. (5.1)

Each of these is just a different time ordering of the same fundamental vertex that
couples an electron to a photon.

5.2.3 Distinct diagrams

A Feynman diagram represents all possible time orderings of the possible vertices,
so the positions of the vertices within the graph are arbitrary. Consider the following
two diagrams for e+ + e−→µ+ + µ−:

γ

e
+

e
−

µ
+

µ
−

e
+

e
− µ

+

µ
−

In the left diagram it appears that the incoming particles annihilated to form a virtual
photon, which then split to produce the outgoing particles. On the right diagram
it appears that the muons and the photon appeared out of the vacuum together,
and that the photon subsequently collided with the electron and positron, leaving
nothing. Changing the position of the internal vertices does not affect the Feynman
diagram – it still represents the same contribution to the amplitude. The left side
and right side just represent different time-orderings, so each is just a different way
of writing the same Feynman diagram.

On the other hand, changing the way in which the lines in a diagram are connected

3In fact if the particle is charged under under more than one force then the anti-particle has
the opposite values of all of those charges. For example an anti-quark, which has electromag-
netic, strong and weak charges will have the opposite value of each of those compared to the
corresponding quark.

Anti-fermion.

γ
∗

e
+

e
−

The electromagnetic vertex
with particle-antiparticle final

state
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to one another does however result in a new diagram. Consider for example the
process e+ + e−→γ + γ

e
− (P1)

e
+ (P2)

γ (P3)

γ (P4)

e
−

e
+

γ (P3)

γ (P4)

In the two diagrams above the outgoing photons have been swapped. There is no
way to move around the vertices in the second diagram so that it is the same as
the first. The two diagrams therefore provide separate contributions to Mfi, and
must be added.

5.2.4 Relativistic propagators

For each internal line – that is each virtual particle – we associate a propagator
factor. The propagator tells us about the contribution to the amplitude from a
particle travelling through space and time (integrated over all space and time). For
a particle with no spin, the Feynman propagator is a factor

1
Q · Q−m2

where Q · Q = E2
Q − q · q is the four-momentum-squared of the internal virtual

particle4.

These intermediate particles are called virtual particles. They do not satisfy the
usual relativistic energy-momentum constraint Q · Q = m2. For an intermediate
virtual particle,

Q · Q = E2
Q − q · q 6= m2.

Such particles are said to be off their mass-shell.

If this inequality worries you, it might help you if you consider that their energy and
momentum cannot be measured without hitting something against them. So you
will never “see” off-mass-shell particles, you will only see the effect they have on
other objects they interact with.

External particles in Feynman diagrams do always individually satisfy the relativis-
tic energy-momentum constraint E2 − p2 = m2, and for these particles we should
therefor not include any propagator factor. The external lines are included in the
diagram purely to show which kinds of particles are in the initial and final states.

4 This propagator is the relativistic equivalent of the non-relativistic version of the Lippmann-
Schwinger propagator (E − H + iε)−1 that we found in non-relativistic scattering theory. Why
are the forms different? Non-relativistic propagators are Greens functions for integration over all
space. Relativistic propagators by contrast are Greens functions for integrations over both space
and time.
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Propagator example

Consider the annihilation-creation process e+ + e− → γ∗ → µ+ + µ− proceeding
via a virtual photon γ∗. (The star on the particle name can be added to help remind
us that it is off mass shell and virtual). We will ignore the spin of all the particles,
so that we can concentrate on the vertex factors and propagators. The Feynman
diagram is:

γ(P1 + P2)

e
+(P2)

e
−(P1)

µ
+(P4)

µ
−(P3)

where we have labelled the four-momenta of the external legs. The diagram shows
two vertices, and requires one propagator for the internal photon line. We can
calculate the photon’s energy-momentum four-vector Qγ from that of the electron
P1 and the positron P2. Four momentum is conserved at each vertex so the
photon four-vector is Qγ = P1 + P2. Calculating the momentum components in
the zero momentum frame:

P1 = (E,p), P2 = (E,−p). (5.2)

Conserving energy and momentum at the first vertex, the energy-momentum vector
of the internal photon is

Qγ = (2E,0).

So this virtual photon has more energy than momentum.

The propagator factor for the photon in this example is then

1
(2E)2 −m2

γ

=
1

4E2
.

The contribution toMfi from this diagram is obtained my multiplying this propa-
gator by two vectex factors each of size gEM. The modulus-squared of the matrix
element is then

|Mfi|2 =
∣∣∣∣g2

EM

4E2
e

∣∣∣∣2 .
We can get the differential scattering cross section by inserting this |Mfi|2 into
Fermi’s Golden Rule with the appropriate density of states

dN

dpµ
=
p2

µdΩ
(2π)3

,

and divide by an incoming flux factor 2ve. The differential cross section is then

dσ =
1

2ve
2π |Mfi|2

p2
µ

(2π)3
dpµ

d(E0)
dΩ.

A little care is necessary in evaluating the density of states. Overall momentum
conservation means that only one of the two outgoing particles is free to contribute
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γ

µ
−(P2)

e
−(P1)

µ
−(P4)

e
−(P3)

A Feynman diagram for
electron–muon elastic scat-
tering, via photon (γ) ex-
change.

Feynman diagram for Compton
scattering, with a virtual

internal electron

to the density of states. The muon energy in the ZMF, for Eµ � mµ is Eµ = 1
2E0,

so
dpµ

dE0
=

1
2
dpµ

dEµ
,

where pµ and Eµ are the momentum and energy of one of the outgoing muons.
Since those muons are external legs they are on-shell so that

p2
µ +m2

µ = E2
µ.

Taking a derivative pµ dpµ = Eµ dEµ. Inserting this into the F.G.R. we get

dpµ

dE0
=

1
2
dpµ

dEµ
=

1
2
Eµ

pµ
=

1
2

1
vµ
≈ 1

2
.

We then integrate over all possible outgoing angles to gain a factor of 4π and note
that g2/4π = α, and that

pµ

Eµ
= vµ. Gathering all the parts together, and taking

the limit v → c we find we have a total cross-section for e+ + e− → µ+ + µ− of 5

σ = π
α2

s

where s = (2E)2 is the square of the center-of-mass energy.

A quick check of dimensions is in order. The dimensions of s are [E]2, while those
of σ should be [L]2 = [E]−2. The fine structure constant α is dimensionless, so the
equation is dimensionally consistent.

Other propagator examples

In the previous example the virtual photon’s four-momentum vector (E,0) was
time-like.

In the electron–muon scattering case e− + µ− → e− + µ− the virtual photon
(γ∗) is exchanged between the electron and the muon. The virtual photon carries
momentum and not energy, so the propagator is space-like.

To see this, transform to in the zero-momentum frame. In the ZMF the electron is
kicked out with the same energy as it came in with, so it has received no energy
from the photon, and conserving energy at the vertex Eγ = 0. The direction of
the electron momentum vector has changed so it has received momentum from the
photon, pγ 6= 0. Therefore E2

γ − |p|2γ < 0 and the propagator is space-like.

An internal line requires a propagator regardless of the type of particle. An example
of a process in which an electron is the virtual particle is the Compton process in
which an electron scatters a photon

e− + γ → e− + γ.

5Neglecting spin and relativistic normalization and flux factor issues – see ‘caveats’.
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5.2.5 Trees and loops

In principle to calculate |Mfi| we are supposed to draw and calculate all of the
infinite number of possible Feynman diagrams. Then we have to add up all those
complex numbers to get the total amplitude Mfi.

However in practice we can get away with just summing the simplest diagram(s).
To see why, we first note that the electromagnetic fine structure constant is small
(αEM � 1)

The simplest “tree level” scattering diagram has two vertices so contains two factors
of gEM. The diagrams with the loops contain four vertices and hence four factors of
gEM. Since g2

EM/4π = αEM � 1, we can see that the more complicated diagrams
with with more vertices will (all other things being equal) contribute much less to
the amplitude than the simplest ones since they contain higher powers of αEM. This
process of truncating the sum of diagrams is a form of perturbation theory.

In general tree diagrams are those without closed loops. Loop diagrams – those with
internal closed loops – tend to have larger powers of the coupling constant. A good
approximation toMfi can usually be obtained from the sum of the amplitudes for
the ‘leading order’ diagrams – those with the smallest power of αEM that make a
non-zero contribution to Mfi.

The other forces also have coupling constants, which have different strengths. The
strong force is so-called because it has a fine structure constant close to 1 which
is about a hundred times larger than αEM. In fact the weak force actually has
a larger coupling constant ≈ 1/29 than the electromagnetic force ≈ 1/137. The
reason why this force appears weak is because the force is transmitted by very heavy
particles (the W and Z bosons) so it is very short-range.

5.3 Key concepts

• Feynman (momentum-space) diagrams help us calculate relativistic, Lorentz-
invariant scattering amplitudes.

• Vertices are associated with dimensionless coupling constants g with vertex
factors that depend on the charge Qg

• Internal lines are integrated over all time and space so include all internal
time orderings.

• Intermediate/virtual/off-mass-shell particles have Q2 6= m2 and have prop-

agators
1

Q2 −m2
.

• For fermions, arrows show the sense of particle flow. Anti-particles have
arrows pointing the “wrong way”.

Some of the more complicated
loop diagrams for
electron–muon scattering.
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Caveats

• Sometimes you will see books define a propagator with a plus sign on the
bottom line: 1/(q2 + m2). One of two things is going on. Either (a) q2

is their notation for a four-vector squared, but they have defined the metric
(−,+,+,+) in the opposite sense to us so that q2 = −m2 is their condi-
tion for being on-mass-shell or (b) q2 is acually intended to mean the three-
momentum squared. A bit of context may be necessary, but regardless of the
convention used the propagator should diverge in the case when the virtual
particle approaches its mass-shell.

• We have not attempted to consider what the effects of spins would be. This
is done in the fourth year after the introduction of the Dirac equation – the
relativistic wave equation for spin-half particles. The full treatment is done in
e.g. Griffiths Chs. 6 & 7.

• We have played fast and loose with phase factors (at vertices and overall
phase factors). You can see that this will not be a problem so long as only one
diagram is contributing toMfi, but clearly relative phases become important
when adding diagrams together.

• Extra rules are needed for diagrams containing loops, because the momenta in
the loops are not fully constrained. In fact one must integrate over all possible
momenta for such diagrams. We will not need to consider such diagrams in
this course.

• The normalization of the incoming and ougtoing states needs to be considered
more carefully. The statement “I normalize to one particle per unit volume”
is not Lorentz invariant. The volume of any box at rest will compress by a
factor of 1/γ due to length contraction along the boost axis when we Lorentz
transform it. For relativistic problems we want to normalize to a Lorentz
invariant number of particles per unit volume. To achieve this we convention-
ally normalize to 1/(2E) particles per unit volume. Since 1/(2E) also scales
like 1/γ it transforms in the same manner as V . Therefore the statement “I
normalize to 1/(2E) particles per unit volume” is Lorentz invariant.

Terminology

Mfi . . . . . . . . . . . . . . . . Lorentz invariant amplitude for |Ψi〉 → |Ψf 〉 transition

Feynman diagram . . . Graphical representation of part of the scattering amplitude

Vertex . . . . . . . . . . . . . . Point where lines join together on such a graph

Constant coupling (g) Dimensionless measure of strength of the force

Vertex factor (Qg) . . The contribution of the vertex to the diagram

Propagator . . . . . . . . . . Factor of 1/(Q · Q−m2) associated with an internal line

Tree level / leading
order . . . . . . . . . . . . . .

.
Simplest diagrams for any process with the smallest
number of g factors. Contain no closed loops.
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References and further reading

• “Introduction to Elementary Particles” D. Griffiths Chapters 6 and 7 does
the full relativistic treatment, including spins, relativistic normalization and
relativistic flux factor.

• “Femptophysics”, M.G. Bowler – contains a nice description of the connection
between Feynman propagators and non-relativistic propagators.

• “Quarks and Leptons”, Halzen and Martin – introduction to the Dirac equa-
tion and full Feynman rules for QED including spin.

• “QED - The Strange Theory of Light and Matter”, Richard Feynman. Popular
book with almost no maths. Even a PPE student could understand it – if you
explained it slowly to him. In fact it has a lot to recommend it, not least that
you can buy it for about five points.
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Chapter 6

The Standard Model

The Standard Model of particle physics provides the most accurate description of
nature at the subatomic level. It is based on the quantum theory of fields and has
been tested with exquisite precision. In the quantum field theory there is one field
for each type of particle – matter particles and force particles.

6.1 Matter particles

The fundamental matter particles in the Standard Model are the quarks and the
leptons. All are spin-half point-like fermions.

We introduced the six quarks in §3 their distinguishing characteristic is that they are
charged (‘coloured’) under the strong force and as a result they are always found
to be confined within hadrons.

The second class of matter particles is the leptons. These are also spin- 1
2 fermions

but unlike the quarks they do not have any strong interactions, because they carry
no colour charge. Like the quarks, there are three families of leptons. The lightest
generation (or family) contains the electron e− and its partner neutrino νe.

The second generation consists of the muon µ− and its partner neutrino νµ. The
muon is very similar to the electron with the same (Q = −1) electric charge, but
is about 200 times heavier. The larger mass of the muon means that it accelerates
less than the electron in electric fields, therefore it emits less electromagnetic radi-
ation than the electron when passing through material. Muons are therefore highly
penetrating. High energy muons created in the upper atmosphere are able to pass
through the atmosphere and can be observed on the earth’s surface. The muon
lifetime is 2.2µs after which it decays as follows

µ− → e− + ν̄e + νµ.

The third generation contains the tau τ− and its neutrino ντ . The tau also has
Q = −1, and is heavier again: about 3,500 times heavier than the electron. The
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Quarks Leptons

Generation Q = − 1
3 Q = +2

3 Q = −1 Q = 0

First
down (d) up (u) electron (e) e neutrino (νe)

∼ 5 MeV ∼ 2.5 MeV 0.511 MeV < 1 eV

Second
strange (s) charm (c) muon (µ) µ neutrino (νµ)

∼ 101 MeV 1270 MeV 105.7 MeV < 1 eV

Third
bottom (b) top (t) tau (τ) τ neutrino (ντ )

4200 MeV 172 GeV 1777 MeV < 1 eV

Table 6.1: The quark and lepton families, their masses and their charges Q. All
are spin- 1

2 fermions. The corresponding anti-particles have the same masses as the
particles, but the opposite charges. The fermionic particles have positive parity
while their anti-particles have negative parity.

tau lepton decays very rapidly in 2.9 × 10−13 s. It can decay to either an electron
or a muon (plus associated neutrinos)

τ− → e− + ν̄e + ντ

τ− → µ− + ν̄µ + ντ

These are not the only options. Because the τ has a mass larger than many hadrons,
it also decays into hadrons, through reactions such as

τ− → π− + ντ

τ− → π− + π0 + ντ

τ− → π− + π+ + π− + ντ

τ− → K− + ντ .

A summary of the some of the most important properties of the six quarks and six
leptons can be found in Table 6.1.

6.1.1 Lepton flavour number

It is useful to define quantum numbers that count the number of leptons. Associated
with each lepton is an anti-lepton. We can define lepton flavour numbers to be the
number of leptons of each generation less the number of corresponding anti-leptons
in that generation:

Le = N(e−) +N(νe)−N(e+)−N(ν̄e)

Lµ = N(µ−) +N(νµ)−N(µ+)−N(ν̄µ)

Lτ = N(τ−) +N(ντ )−N(τ+)−N(ν̄τ )

We can also define a total lepton number L` = Le+Lµ+Lτ . Total lepton number
is conserved in all known reactions. The individual lepton flavour numbers are also
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Force Quantum Symbol Mass Spin α Range

Electromagnetic Photon γ 0 1 1
137 ∞

Strong Gluon (×8) g 0 1 ∼1 ∼ 10−15 m

Weak
W± 80.4GeV 1

1
29 ∼ 10−18 m

Z0 91.2GeV 1

Gravity Graviton? G 0 2? ∞

Table 6.2: The force-carrying particles γ, g, W± and Z0 of the Standard Model.
The spin is in units of ~. The symbol α indicates the corresponding dimensionless
‘fine structure constant’.

conserved in most reactions. The exception is in the phenomenon of neutrino
oscillation, which we shall meet later (§6.5).

6.2 Force particles

There are four fundamental forces which act on the matter particles (Table 6.2).
They are: electromagnetism, the weak nuclear force, the strong nuclear force and
gravity.

The gravitational force is a special case. It is very familiar, but at the level of
individual subatomic particles is so much weaker than the other forces that it has a
negligible effect. This makes it difficult to study, and so the microscopic mechanism
behind gravitation is yet to be fully understood. We will not discuss it further in
this course.

Each of the other three forces is known to be carried by an intermediate particle
or particles. The mediating particles are excitations of the associated fields and are
spin-1 bosons.

The quantum of the electromagnetic force is the photon, which is a massless bo-
son with no electrical charge. It is through virtual photons that electromagnetic
forces are transmitted between charges. The scattering process by virtual photons
is described in §5. The quantum theory of electromagnetism is known as quantum
electrodymanics or QED.

The electromagnetic interaction is felt by all charged particles. The vertex factor

for a particle of with charge quantum number Q is QgEM where
g2
EM
4π = αEM. For

example, the u-quark has charge Q = 2
3 , so the coupling strength in the uuγ vertex
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u

ū

Feynman diagram for neutral
pion decay

Gluon line.

q

g

q

A quark-gluon vertex

g

g

g

Three-gluon vertex

u

γ

u

2

3
g

e
−

γ

e
−

−g

is only two thirds as large as that in the eeγ vertex, and of the opposite sign.

The electromagnetic interaction does not change quark flavour, nor lepton flavour.
Flavour-changing vertices such as:

µ− + γ /→ e− [violates lepton flavour - forbidden

u+ γ /→ c [violates quark flavour - forbidden

are forbidden in electromagnetism.

Decays which do not require changes in flavour quantum numbers may proceed via
the electromagnetic interaction, for example the decay of the neutral pion to two
photons

π0 −→ γ + γ.

Another example is the decay of the Σ0 baryon to the Λ0 baryon, both of which
having quark content uds,

Σ0 −→ Λ0 + γ.

6.3 The strong force and the gluon

The quantum theory of the strong force is known as quantum chromodynamics or
QCD. The strong force is mediated by spin-1, massless particles known as gluons.
The gluons couple to colour charge, rather like the photons couple to electromag-
netic charge. Since the leptons have no colour charge, they do not interact with
gluons, and hence do not interact via the strong force.

Quarks carry colour, r, g and b. Anti-quarks carry anti-colour r̄, ḡ and b̄. Each
gluon carries both colour and anti-colour. We might then think that there should
be 3× 3 = 9 gluons. However one of those nine combinations

1√
3
(|rr̄〉+ |gḡ〉+ |bb̄〉)

is colourless, and so there are 32 − 1 = 8 orthogonal gluon states. Total colour
charge is conserved at each vertex, with any change in the colour of the quark being
introduced or carried away by the gluon.

The strong interaction has a larger coupling constant than the electromagnetic force

αS ∼ 1 whereas αEM ≈
1

137
,

76



CHAPTER 6. THE STANDARD MODEL 6.3. STRONG FORCE

A precise theory

Non-examinable

Quantum electrodynamics has been tested to amazing accuracy. The most precise
measurement is of the gyromagnetic ratio ge of the electron. We define g by the
equation

µ = −g
2

e

me
s

where µ is the electron’s magnetic moment, e is the magnitude of its charge, and
s is its spin. The Dirac theory of electromagnetism predicts that

gdirac
e = 2.

The Dirac theory prediction is the value obtained by considering the direct cou-
pling of photons to the charge. If one includes the one-loop correction, the
prediction can be refined to

gone−loop
e /2 = 1 +

1

2

αEM

π
≈ 1.0011

The experimental and theoretical measurements have been improving in precision
almost in parallel, competing for higher precision. The current best experimental
measurement [10] has been made with the extraordinary accuracy of better than
one part per trillion:

gexperiment/2 = 1.001 159 652 180 7 (3),

where the number in brackets shows the uncertainty in the last digit.
To achieve this level of accuracy in the theory, one must calculate a very large
number of Feynman diagrams (there are 891 four-loop diagrams and 12672 five-
loop diagrams). The five-loop theoretical calculation [4] was completed in 2012,
giving

gtheory/2 = 1.001 159 652 181 8 (8),

in agreement with the experimental measurement.

77



6.3. STRONG FORCE CHAPTER 6. THE STANDARD MODEL

Why eight gluons?

Non-examinable

There are three colours of quarks, which we have labelled r, g and b. We can
place them in a basis such that:

|r〉 =

0BBB@
1

0

0

1CCCA |g〉 =

0BBB@
0

1

0

1CCCA |b〉 =

0BBB@
0

0

1

1CCCA
Colour forms a 3-dimensional Hilbert space, and so for colour transformations,
induced by gluons, we want the set of linear operators on that space. This can be
represented by the group of 3× 3 unitary matrices with unit determinant, which
is called SU(3).

A group SU(N) has N2− 1 degrees of freedom (the -1 coming from the require-
ment of unit determinant). There are therefore 22 − 1 = 3 Pauli matrices acting
on the two-dimensional Hilbert space for a spin-half particle. There are 32−1 = 8
generators of SU(3) for the three-dimensional complex space of colour. The eight
matrices {T1, T2, . . . T8} are the generators and are traceless, Hermitian matri-
ces. They can be represented by Ta = i 1

2
λa, where the λa are the Gell-Mann

matrices

λ1 =

0BBB@
0 1 0

1 0 0

0 0 0

1CCCA λ2 =

0BBB@
0 −i 0

+i 0 0

0 0 0

1CCCA λ3 =

0BBB@
1 0 0

0 −1 0

0 0 0

1CCCA

λ4 =

0BBB@
0 0 1

0 0 0

1 0 0

1CCCA λ5 =

0BBB@
0 0 −i

0 0 0

i 0 0

1CCCA λ6 =

0BBB@
0 0 0

0 0 1

0 1 0

1CCCA

λ7 =

0BBB@
0 0 0

0 0 −i

0 +i 0

1CCCA λ8 =

0BBB@
1 0 0

0 1 0

0 0 −2

1CCCA

the three-dimensional analogues of the Pauli matrices. A transformation in colour
space can then be represented by the unitary transformation

|Ψ〉 −→ exp
“
~λ · ~α

”
|Ψ〉

for some eight-dimensional vector ~α.
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meaning that if both forces are present, the strong force tends to dominate. The
largeness of the strong coupling constant gS also means that if a reaction can
occur both through the strong force and the electromagnetic force, the strong force
reaction can be expected to dominate.

However the strong force is more than just a stronger version of the electromagnetic
interaction. Gluons (unlike photons) can act as sources for their own field. This
means that there is a gluon self-interaction force, involving a three-gluon interaction
vertex. This makes a dramatic difference to the way the strong force works.

The self-interactions of gluons help us better understand quark confinement. Con-
sider pulling a meson apart by slowly separating the quark from the antiquark. There
is an attractive strong force between the quark and the antiquark, carried by a field
of virtual gluons. The self-interaction of the gluons pulls this field into a narrow
tube or string of colour-field, which connects the quark with the anti-quark. The
cross section of the string, and hence the energy per unit length of the string is
approximately constant. When the quark and anti-quark are separated, the string
is stretched and the potential energy increases linearly with separation. This phe-
nomenon leads to a term in the strong potential V (r) proportional to r, which then
dominates at large separation (see §3.6, equation (3.4)).

When sufficient energy has built up in the string it becomes energetically favourable
for the string to break by dragging multiple quark-antiquark pairs out of the vacuum.
The quarks and anti-quarks rapidly gather together into colour-neutral combinations
– mesons or barons. It is those hadrons that are experimentally observed if a quark
and an antiquark are forcibly separated. The relativistic ‘headlight effect’ squeezes
the emitted hadrons into a narrow cone or ‘jet’ of hadrons.

Consider the high energy collision process

e+ + e−→q + q̄.

At high energy this process produces a rapidly separating quark-antiquark pair. Each
quark leads to a jet of hadrons. The experimental verification of this can be seen in
Figure 6.1. The jets indicate the directions, momenta and energies of the out-going
quark and anti-quark.

Gluons are coloured particles so, like quarks, they cannot exist in isolation. Gluons
cannot be seen directly, but their presence can be inferred. The gluon was discovered
in reactions of the sort

e+ + e− → q + q̄ + g

where the outgoing high-momentum gluon is emitted at large angle from both the
quark and the anti-quark. Since each of the three outgoing particles is coloured,
each must pull quarks and anti-quarks out of the vacuum to form neutral hadrons.
The result is an event containing three jets of hadrons, each following the direction
of one of the three out-going coloured particles (Figure 6.2).

Meson production caused by
rapidly separating quarks. A
similar mechanism forms
baryon-antibaryon pairs.

γ

e
−

e
+

q̄

g

q

Feynman diagram with gluon
emission leading to a three-jet

event.
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Figure 6.1: A two-jet event in the Delphi detector at a electron-positron centre-of-
mass energy close to 100GeV. c© CERN 1992.

Figure 6.2: A three-jet event in the JADE detector. The process e++e− → q+q̄+g
leads to three jets, one from each of the three coloured particles.
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Figure 6.3: Longitudinal (left) and transverse (right) event display showing the
debris from a deep inelastic scattering event, as measured in the Zeus detector.
The electron has entered the detector from the left hand side on the transverse
view, and the proton from the right hand side. The scattered electron forms an
isolated track, terminating in an energy deposit in the calorimeter. A jet of hadrons
recoils against the scattered electron.

6.3.1 Deep inelastic scattering

Though it seems to be impossible to isolate an individual quark, it is still possible
to perform scattering experiments at the quark level. Consider a high-momentum
electron scattering from a proton. A high-momentum electron can resolve distances
of order ~

p . If the momentum is larger than about 1 GeV (so that its de Broglie

wavelength λ is much smaller than the radius of the proton) then it will not scatter
coherently from the proton as a whole. Instead it will resolve the proton’s internal
structure — and at sufficiently high momentum will act as if it has been scattered
from one of the constituent quarks.

The scattering of a probe from a quark inside a hadron is known as deep inelastic
scattering.1

At high energies, the energy of the out-going quark will be much larger than typical
hadron masses. As the quark is pulled away from the other quarks, some the energy
is transferred into the string of gluon field lines that connect the quark and the
anti-quark. Eventually the energy is high enough to pull quark-antiquark pairs out
of the vacuum. What we observe is a jet of hadrons pointing in the direction of the
original outgoing quark. The unscattered ‘spectator’ quarks in the proton also form
a coloured state, and so must also form into hadrons.

Scattering experiments of this sort were performed at the HERA electron-proton
collider, near Hamburg. Protons were accelerated to energy of Ep = 920GeV, and
electrons to energies of Ee = 27.5 GeV. A quark is scattered out of the proton by

1Deep because we are probing deep inside the hadron.

A high momentum probe can
resolve the substructure of the
proton.

P

xP

P′

Q

K

K′

Scattering of an electron
(momentum K→K′) from
quark (momentum xP) within a
proton (momentum P).

The force is transmitted by a
virtual photon of momentum
Q = K− K′. Note that
unusually here the incoming
proton is on the right side and
the outgoing fragments of that
proton are on the left side of
the diagram.
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γ

e
+

e
−

µ
+

µ
−

Feynman diagram for
electron-positron annihilation,
via a virtual photon to a
muon-antimuon pair.

the incident electron. In Figure 6.3 we can see a display of such a scattering event.
The scattered electron produces a single track terminating in an energy deposit
in the calorimeter. Recoiling against that electron is a jet of hadrons pointing in
the direction of the scattered quark. A further jet of hadrons can be seen in the
transverse section close to the beam line, formed from the proton di-quark remnant.

Though the individual quark cannot be observed, the jet of hadrons tell us about
its direction and momentum, and the electron behaves as if it were scattering from
a point-like spin-half particle.

6.3.2 Further evidence for quarks and colour: R

Further evidence for the existence of both quarks and colour can be found in when
quark-antiquark pairs are created in electron-positron scattering. Consider the ratio

R ≡ σ(e+ + e− → hadrons)
σ(e+ + e− → µ+µ−)

.

Each process involves the collision of an electron and its anti-particle, a transition
through a short-lived virtual photon.

The denominator comes from

e+ + e− → γ∗ → µ+µ−

At the quark level the numerator comes from

e+ + e− → γ∗ → q + q̄

where various different quark flavours may contribute, depending on the centre-of-
mass energy available.

The coupling of the photon to the quark i is proportional to the quark charge
Qi. The Feynman diagram for the amplitude for production of the quark-antiquark
pair is therefore proportional to Qi. The rate will therefore be proportional to the
mod-squared of the amplitude, and so

σi ∝ Γi ∝ Q2
i

The corresponding amplitude for the creation of the muon-antimuon pair will look
the same, but with Q(µ) = 1

The density-of-states factor for the muon and the quarks are also very similar,
provided that E � m, so that E ≈ p for each out-going particle. The main
difference in the density of states is that there are three different colours of quarks
for any spin and momentum state, so the total density of states for any quark flavour
is a factor of three larger than for the corresponding muon. We therefore expect
that the value of the ratio will be

R =
3×

∑
iQ2

i

1× 12

where the sum is over the qq̄ states available at the given centre-of-mass energy, that
is those with mq < Ecm/2. Measurements confirm that as the threshold energy for
production of new cc̄ and bb̄ states is passed, the value of R increases as expected.
The value of R is also consistent with the three different colours of quarks.
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Figure 6.4: Sketch of the ratio of cross sections R ≡ σ(e++e−→hadrons)
σ(e++e−→µ+µ−) .

6.4 The weak interaction: W and Z particles

The weak interaction is mediated by three particles, the charged W± bosons and
the neutral Z0 boson. The W+ and W− are antiparticles of one another, while the
Z0, like the photon, is its own antiparticle.

The W and Z particles are spin-1 bosons. The weak force is very short range as a
result of their large masses.

mW = 80.3 GeV mZ = 91.2 GeV

which from their approximate range ~c/mc2 is about 2× 10−3 fm, which is about
1000 times smaller than the size of the proton.

The weak force is responsible for all flavour-changing reactions. The only particles
capable of changing quark flavour are the W± bosons. For example the beta decay
of the neutron

n→ p+ e− + ν̄e

requires us to change a d quark into a u quark. This can occur with the emission of
a highly virtual W− which subsequently produces an electron and a neutrino. For
this reaction to proceed it is clear that the W boson must be able to interact both
with the quarks and with the leptons.

The emission or absorption of a W± particle changes an up-type quark (u, c or t)
into a down-type quark (d, s, or b) or vice versa. For example, the decay of a K+

meson
K+ → π0 + π+

at the quark level is mediated by a virtual W boson

u+ s̄→ u+ ū+
(
W+ → u+ d̄

)
.

The coupling of the W boson to leptons is universal. The vertex factor for each is
takes the same value of gW . This means that the W− is equally likely to decay to

W
−d

u

ν̄e

e
−

β decay

W
+

u

s̄

u

ū

d̄

u

K+ → π+ + π0
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W+

u

d̄

gW cos θc

W−

s

ū

gW sin θc

W−

s

c̄

gW cos θc

any of the three lepton species:

W− → e− + ν̄e

W− → µ− + ν̄µ

W− → τ− + ν̄τ .

The coupling constants are equal, and the density of states factors are very similar
since each of the decay products is highly relativistic, so the rates for each lepton
flavour are identical.

A vertex involving a W and two quarks must include an upper Q = + 2
3 quark

and a lower Q = − 1
3 quark. The vertices which include two quarks from the

same generation dominate, while those involving transitions between generations
are suppressed. The preference of the W boson for ‘keeping it in the family’ is one
of the reasons why the concept of generations (or families) is useful.

In the first and second generations the couplings for vertices within the same gen-
eration — i.e. the vertices for the (W,u, d) vertex or for the (W, c, s) vertex take
the value

gW × cos θC ,

where the θC , the Cabibbo angle, is about 13◦.

The inter-generational couplings between the first and second generations – i.e. the
vertex factors for the (W,u, s) vertex and the (W, c, d) vertex — are suppressed by
the sine of the Cabibbo angle,

gW × sin θC .

The effect of this same-family favouritism can be seen, for example, when a hadron
containing a charm quark decays, when it is likely to produce other hadrons con-
taining strange quarks, since the (W, c, s) vertex is not Cabibbo suppressed.

An explanation for the relative sizes of the couplings can be found if we consider the
down-type quarks to have weak interaction eigenstates, |d′〉 and |s′〉, each of which
is a superposition of the two mass eigenstates |d〉 and |s〉. In the interaction basis
the couplings of the W are diagonal, so the (W,u, d′) and the (W, c, s′) couplings
each take the same value gW , whereas the couplings for (W,u, s′) and (W, c, d′)
are each zero.

The flavour eigenstates {|d′〉, |s′〉} in the primed basis must differ from the mass
eigenstates {|d〉, |s〉} in the un-primed basis. This can be achieved by rotating the
states by a matrix  |d′〉

|s′〉

 = Vc

 |d〉
|s〉


where the 2× 2 Cabibbo rotation matrix is given by

Vc =

 cos θc − sin θc

sin θc cos θc

 .
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Three-generation flavour mixing

In the diagram below the solid lines show the unsuppressed transitions, while the
dashed and dotted lines show progressively more suppressed transitions for decays
between quarks of all three generations.

u c t

d s b

The three-generational extension of the Cabibbo matrix is the 3×3 unitary ‘CKM’
matrix,

VCKM ∼

0BBB@
·

·

· ·

1CCCA .

where the larger boxes indicate larger couplings, and the dots show small cou-
plings. The upper-left 2×2 block of the CKM matrix contains the mixing between
the first two generations, which is also represented by the simpler 2× 2 Cabibbo
matrix.

The third generation is almost completely decoupled from the first two. Couplings
involving either t or b any any of the quarks from the first two generations are very
small. Top quarks almost always produce b quarks in when they decay. Hadrons
containing b quarks have CKM suppressed decays and can travel macroscopic
distances before they decay.
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q

ν

q
Z0

ν

Neutral current neutrino
scattering

` B
`
Z0 → `+ + `−

´
e (3.363± 0.004)%

µ (3.367± 0.007)%

τ (3.370± 0.008)%

The branching ratios of Z0

boson to different charged
leptons are all consistent with

one another. [12].

6.4.1 The Z0 particle

The third weak boson is the Z0. Like the W± bosons it is about 100 times heavier
than the proton. Unlike the W± bosons it is electrically neutral.

The Z0 also interacts with all of the fundamental fermions. Indeed since the neu-
trinos have no electrical or colour charge, interactions involving the weak force are
the only way in which they may interact. The first evidence for the Z0 boson was
the discovery of scattering of neutrinos via the ‘neutral current’ exchange of a Z0

boson.

The Z0 does not change quark or lepton flavour, so there is for example no (u, c, Z0)
vertex. This is an example of the rule that there are ‘no flavour-changing neutral
currents’ in the Standard Model. The branching ratios of the Z0 to the differ-
ent charged leptons are all consistent with one another, demonstrating that the
couplings to each generation of leptons are equal.

6.4.2 Production and decay of the W± and Z0 particles

The W± and Z0 particles were first directly observed in 1983 in proton-antiproton
collisions at the CERN Spp̄S proton-antiproton collider. The pp̄ centre-of-mass
energy of 540 GeV was sufficiently high that, even though the incoming (anti-)quarks
carried only a fraction of the (anti-)proton momenta, collisions with q − q̄ centre-
of-mass energy close to the ∼ 100 GeV mass of the W or Z were likely.

In each case the intermediate vector bosons are created when a quark from the
proton annihilates with an anti-quark from the anti-proton. To produce a Z0 the
quarks must be of the same flavour — either u+ ū or d+ d̄. To produce a W+ or
a W−, the combinations u+ d̄ and d+ ū respectively are required.

p

q

p̄

q̄
Z0

e−

e+

p

u

p̄

d̄ W+

νe

e+

The diagrams above show the production of the Z0 (left) and the W+ boson (right)
in proton-proton collisions, followed by their leptonic decays.

If the quark carries momentum fraction x1 of the proton, and the anti-quark carries
momentum fraction x2 of the anti-proton, then to produce a Z0 close to its mass
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q + q̄ → Z0 → e+ + e−

q + q̄′ →W → τ + ν

Figure 6.5: Event displays from the UA1 experiment for Z0 production (top) and
W production (bottom). In the top figure, the electrons follow in the direction of
the black dotted lines. They leave straight, high-momentum tracks in the inner
tracking detector and then are absorbed in the calorimeter, as indicated by the dark
cuboids. In the bottom figure, the tau lepton from the W decay has itself decayed
to three charged hadrons, visible as high-momentum straight tracks close to one
another in the upper part of the plot. Other hadrons are also emitted from the
proton remnants. These are more tightly curved tracks in the magnetic field.

shell, where the cross section is largest, we require that

m2
Z = (Pq + Pq̄)

2

= P2
q + P2

q̄ + 2 Pq · Pq̄

≈ 0 + 0 + 2x1x2Pp · Pp̄

= x1x2 × ECM (pp̄)

Where ECM (pp̄) is the centre-of-mass energy of the proton antiproton system.

The W and Z particles were discovered in the leptonic decay modes. There are
large backgrounds to the hadronic decay modes from elastic qq̄ scattering through
the strong interaction. Event displays of collisions producing Z and W bosons can
be found in Figure 6.5.
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Z0/γ

e−

e+

W−

W+

e
−

e
+

W
−

W
+

W production via a highly
virtual γ or Z propagator (top)
or via neutrino exchange
(bottom).

Tracks
bending in the magnetic field.

Secondary vertex
reconstruction.

Different particles leave
different signatures in the
detector.

The W± bosons then each decay to the fermions. For the W+ these are

W+ → u+ d̄′

W+ → c+ s̄′

W+ → e+ + νe

W+ → µ+ + νµ

W+ → τ+ + ντ

The other possible quark-antiquark state, t+ b̄, is inaccessible for W bosons close to
their mass shells, since the top quark is much heavier than the W boson. We have
ignored the mixing in the quark sector, in which approximation the coupling of the
W to each of the fermions is the same. The couplings to the fermions are universal
in the flavour basis, but are mixed by CKM matrix factors in the mass–energy basis.
Decays to the quark states are enhanced by a colour factor of 3, since the qq̄ pair
can be in any of the colour states rr̄, bb̄ or gḡ.

Many of the most precise measurements of the W and Z bosons have been deter-
mined from in electron-positron collisions

e− + e+ −→W− +W+

Three different leading order Feynman diagrams contribute to this process (a) via
a photon γ (b) via a Z0 or (c) via νe exchange.

Particle detectors

General purpose particle detectors at colliders generally have a series of different
layers surrounding the interaction point.

The inner part of the detector is used to track the trajectory of charged particles
and measure their momenta as they bend in an externally applied magnetic field.
The direction of curvature of the track indicates the sign of the charge, and the
radius of curvature R permits calculation of the component of the momentum p⊥
perpendicular to the field

p⊥ = QBR.

Closest to the interaction point are usually high precision semiconductor pixel detec-
tors, or microstrip detectors. By measuring tracks to precisions of order 10µm, it’s
possible to reconstruct the position of the decay of particles with lifetimes as short
∼ 100 ps. Charged particles traversing the semiconductor layers generate electron-
hole pairs, allowing a current to flow.

Beyond the tracker are layers of calorimeter which are designed to stop the parti-
cles and convert their energies into electrical signal. Electromagnetic calorimeters
rely on cascades caused by sequential Bremsstrahlung and pair creation in the elec-
tromagnetic field of an atomic nucleus:

e± + nucleus→ e± + γ + nucleus

γ + nucleus→ e− + e+ + nucleus

88



CHAPTER 6. THE STANDARD MODEL 6.4. W AND Z BOSONS

Electromagnetic calorimeters are effective at detecting (anti-)electrons and photons.

Hadronic calorimeters lie beyond the electromagnetic calorimeters, and are used to
measure the energies of the long-lived baryons and mesons. The hadrons interact
with the atomic nuclei via the strong interaction, producing inelastic scattering
reactions such as

n+ nucleus → n+ π0 + nucleus

p+ nucleus → n+ π+ + nucleus

π− + nucleus → π− + π+ + π− + nucleus

π+ + nucleus → π+ + π0 + nucleus.

Rather like in the electromagnetic case, cascades of such interactions create large
numbers of charged pions — the lightest strongly interacting particles — and pho-
tons from the subsequent decay π0 → γ + γ.

The final layer in the detector is usually a muon tracker. Muons are highly pen-
etrating, and are the only particles to pass through the calorimeters. Most large
muon detectors work by measuring the ionization caused in a gas by the passage of
the muon. By bathing the muon detector in a magnetic field, the measurement of
the muons’ momenta can be improved.

The invisible width of the Z0 boson

A beautiful experiment allows us to count the number of neutrino families to which
the Z0 decays, even though the neutrinos themselves are not directly observed.

Consider the production of Z0 bosons via the resonant process

e+ + e− → Z0 → f + f̄

where f represents one of the Standard Model fermions, which could be a quark, a
charged lepton or a neutrino. The total width of the Z0 boson will be given by the
sum of the partial widths,

Γ = ΓHad + Γee + Γµµ + Γττ + ΓInvis. (6.1)

The decays to each of the five kinematically available quarks (uū, dd̄, ss̄, cc̄, bb̄)
all lead to hadronic final states. The partial width ΓHad represents decays into any
of these final states. The invisible width – the rate of decay to neutrinos – is given
by the simple product of the partial width to a particular neutrino species Γνν and
the number of such species Nν ,

ΓInvis = Nν × Γνν ,

since the Z0 couples equally to each of the generations within the Standard Model.

The width of the Z0 boson peak was precisely measured at the LEP e++e− collider
at CERN. The full width at half max of the Breit Wigner, Γ, was measured from the
dependence of σHad on electron-positron centre-of-mass energy. The partial widths

Z0

e+

e−

f̄

f

Production and decay of a Z0

boson.

Cross section for
e+ + e− → f + f̄ as a function
of centre-of-mass energy.
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to each of the observable final states can each be calculated from their production
cross sections at the Z0 peak.

Knowing of all of the other widths in (6.1), ΓInvisib can be calculated. The partial
width Γνν is calculable from the related process of neutral-current scattering of
neutrinos. Treating Nν as an unknown, the following value was obtained:

Nν = 2.984± 0.008,

consistent with the three generational model, and excluding the existence of another
similar generation of particles.

6.4.3 Parity violation in the weak interaction

The strong and the electromagnetic interaction both respect parity. That is the
part of the Hamiltonian that involves those interactions commutes with the parity
operator, P.

The parity operator generates the transformation of inversion of coordinates

P : x 7→ −x.

Under the parity operation, polar vectors such as those for position x, velocity v,
momentum p, and electric field E pick up a minus sign. Axial vectors such as
angular momentum J, and magnetic field B remain unchanged. An example of an
axial vector is the orbital angular momentum L which transforms as follows:

L P7→ L′ = x′ × p′ = −x×−p = x× p = L,

that is, like J and B, it is unmodified.

The electromagnetic laws of Maxwell and Lorentz remain valid after the parity
operation. For example under a parity transformation, the Lorentz force law F =
q(E + v ×B) transforms to

P (F) = P (q(E + v ×B))
−F = q(−E +−v ×+B)

F = q(E + v ×+B)

which remains a valid statement of the same law.

This may seem obvious, but becomes much less so when it is realized that unlike the
electromagnetic and the strong forces, both of which are insensitive to the parity
operation, the weak interaction is peculiar in that the law that describes it does not
remain valid after a parity operation.

The discovery of parity violation

A test for parity violation in the weak interaction was suggested in 1956 [11]. The
proposed experiment involved the beta decay

60Co→ 60Ni + e− + ν̄e.
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The cobalt nucleus, which has JP = 5+, decays to the JP = 4+ nickel nucleus.

The cobalt is cooled to 0.01K and immersed in a strong magnetic field B so that
the nuclear spins are preferentially aligned along the magnetic field, due to a term
in the Hamiltonian −µ ·B. The directions of the outgoing beta electrons are then
observed.

Consider the behaviour of the momentum vector p of the observed electrons and
the magnetic moment direction µ of the nuclei under the parity operation:

p P−→ −p

µ
P−→ +µ

After a parity operation the momentum vector is inverted, but the nuclear spin
points in the same direction. Therefore if parity is to be conserved, there must be
as many electrons emitted in the +B direction as in the −B direction.

What was observed [16] was that the emission of beta particles was not symmetric
with respect to the B-field direction. When measured, there were more beta elec-
trons found in the direction opposite to that of the nuclear spin. The implication is
that parity is not conserved in this interaction. The weak force behaves differently
after the parity operation.

Parity is not conserved in weak interactions

The laws of physics are therefore not the same after reflecting a system in a mirror.

Parity and neutrino helicity

Another striking example of the violation of parity is found in the helicity of the
neutrinos. Helicity h is the projection of the spin onto the direction of motion of a
particle. Neutrinos are produced only with h = − 1

2 , and anti-neutrinos only with
h = + 1

2 . No h = +1
2 neutrino has ever been observed. Since under the parity

operation, helicity is reversed

h
P−→ −h,

we can infer that the laws which control the neutrino production cannot conserve
parity, since if they did we should find as many h = +1

2 as h = − 1
2 neutrinos.

The implication of parity violation is that nature has an inherent ‘handedness’, seen
only in the weak decay. Left-handed particles feel the weak force more strongly than
right-handed ones. The opposite is true for antiparticles: the weak force interacts
with right-handed antiparticles rather than left-handed ones.

Angular momentum in the
60Co decay.

h =
S · p
|p|

h

ν − 1
2

⇐−→

ν̄ + 1
2

⇒−→
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6.5 Neutrino Oscillations

There are three different types of neutrino, which we have labelled

{νe, νµ, ντ}

according to the flavour of charged lepton they interact with via the W boson
interaction.

But flavour is not necessarily ‘good’ quantum number — by which we mean a
quantum number which is conserved. If lepton flavour is not strictly conserved then
a neutrino that is born as an electron-type neutrino might not still be an electron-
type neutrino later on. More precisely, if the flavour eigenstates are not eigenstates
of the Hamiltonian, then flavour will not be conserved, and the amplitude to find
the neutrino in a particular flavour eigenstate will be a time-dependent quantity.

Let us label the energy eigenstates according to their mass

{ν1, ν2, ν3}.

A neutrino is created as an electron-type neutrino if it is produced in association
with an antielectron W+ → νe + e+. The amplitude a(t) for it still to be an
electron-type neutrino at some later time t is

a(t) = 〈νe(t)|νe(0)〉.

If flavour is conserved, then |a(t)|2 = 1 for all t. However if the Hamiltonian does
not conserve flavour then |a|2 will be a time dependent quantity, and in general will
oscillate with time.

Let us consider the simplified two-neutrino system. We label the flavour eigenstates
|νe〉 and |νµ〉 as mixtures of the the energy (i.e. mass) eigenstates |ν1〉 and |ν2〉

|νe〉 = |ν1〉 cos θ + |ν2〉 sin θ
|νµ〉 = − |ν1〉 sin θ + |ν2〉 cos θ.

where θ is the mixing angle.

Let the neutrino start off as an electron-type neutrino at its initial position x = 0
when t = 0. At later times the neutrino’s state |Ψ〉 is given by

|Ψ(L, T )〉 = |ν1〉 cos θ e−iφ1 + |ν2〉 sin θ e−iφ2

where

φi = EiT − |pi|L.

where, without loss of generality, we have reduced to single spatial dimension for
the propagating wave. The amplitude for the initial (electron) neutrino to then be
found as a muon neutrino can be found by bra-ing through with 〈νµ|,

〈νµ|Ψ(x, t)〉 = sin θ cos θ
(
e−iφ2 − e−iφ1

)
.
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The flavour-change probability P (νe → νµ) is then

|〈νµ|Ψ(L, T )〉|2 = sin2 2θ sin2

(
φ1 − φ2

2

)
If the masses of the two neutrinos are the same, then the phases φ1 and φ2 will
remain in synch and no flavour change results. However if m1 6= m2 then we have
a phase change

∆φ12 ≡ φ1 − φ2 = (E1 − E2)T − (|p1| − |p2|)L

To work out the phase difference in full we ought to use a wave-packet analysis, but
we can quickly arrive at the correct answer by assuming2 |p1| = |p2|, and expanding
for m� E, to find

∆φ12 ≈ |p|

(√
1 +

m2
1

|p|2
−

√
1 +

m2
2

|p|2

)
L

≈ m2
1 −m2

2

2E
L.

The probability P (νe → νµ) is therefore (in SI units)

P (e→ µ) = sin2 2θ sin2

(
∆m2c3L

4~E

)
(6.2)

where ∆m2 = m2
1 −m2

2. The survival probability P (νe → νe) is, for the two-state
system, simply 1 − P (νe → νµ). In more convenient units the argument of the
oscillation phase can be written

∆m2c3L

4~E
= 1.3

∆m2

eV2

L

km

GeV

E
,

making it clear that for differences in mass-squared ∆m2 � eV2 the distance
oscillations will happen over a length of many kilometers.

The masses of the neutrinos are very small, and so extremely difficult to measure di-
rectly. Cosmological constraints indicate that the sum of the three neutrino masses
must be less than about 0.6 eV. We can find out about the (differences in squares
of) masses of the three different neutrinos ν1, ν2 and ν3 by examining the oscilla-
tions between the the three different flavours. Experiments over many kilometres
are needed to search for such oscillations, otherwise the oscillation probability will be
negligible. The long distances over which they are oscillating come from a combina-
tion of the near-degeneracy of the masses, and the neutrinos’ large Lorentz gamma
factors (of order 1012), meaning that they are subject to a huge time dilation.

2If this makes you a little uncomfortable, it should. This is the ‘textbook’ method, but not
terribly convincing, since it’s hard to convince yourself that the state is in a momentum eigenstate.
A little more confidence can be gained by noting that the expression for the phase difference could
also have been written

∆φ12 = (E1 − E2)

„
T −

E1 + E2

|p1|+ |p2|
L

«
+

m2
1 −m,22

|p1|+ |p2|
L.

Therefore had we chosen to demand that E1 = E2 or even β1 = β2 the first term would have
vanished and we would have arrived at the same answer as under the equal-momentum assumption.
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6.5.1 Solar neutrinos

The earliest indication of neutrino oscillations was found in solar neutrinos. The
sun emits only electron-type neutrinos, through processes such as

p+ p→ 2
1H + e+ + νe

After they travel to earth we can capture the higher energy solar neutrinos as νe

using isotopes like 37Cl in the inverse beta decay reaction

νe + 37Cl→ e− + 37Ar.

This reaction cannot occur for other neutrino flavour states, so any deficit in the
expected amount of 37Ar will indicate that electron-type neutrinos have either dis-
appeared or have oscillated into another flavour state.

The experiment was first performed in the Homestake Gold Mine in South Dakota
using a 390,000 litre tank of dry-cleaning fluid, C2Cl4 [7]. To perform the experi-
ment, the team had to isolate about one atom of 37Ar produced per day in all that
cleaning fluid, while working in a mine 1.5 km underground. The rate predicted
by consideration of the solar nuclear reactions was 7.6 SNU, where one SNU (solar
neutrino unit) is 10−36 captures per target atom per second. The observed rate was
2.56 SNU. Only about a third of the expected number of neutrinos was observed,
indicating that the νe had oscillated into an equal mixture of νe, νµ and ντ by the
time they reached earth.

Confirmation of the oscillation hypothesis was found from the Sudbury Neutrino
Observatory in Ontario, Canada. SNO could detect three different reactions

νe +D → p+ p+ e− (CC)
νx +D → p+ n+ νx (NC)

νx + e− → νx + e− (ES)

where νx is any neutrino species, and D is a duterium nucleus 2
1H. The charged

current (CC) reaction is only sensitive electron-type neutrinos, while the neutral
current (NC) and elastic scattering (ES) reactions each detect all three neutrino
flavours. Comparison of the rates [13] shows that CC reactions are reduced to a
third of what would be expected in the absence of neutrino oscillations. Both NC
and ES reactions occur at the rate one would expect with or without reactions,
showing that the total number of neutrinos is unchanged. The initially electron-
type neutrinos are therefore oscillating into an approximately equal mixture of νe,
νµ and ντ .

6.5.2 Atmospheric neutrinos

Neutrinos are also produced in the upper atmosphere when high-energy cosmic rays
strike the upper atmosphere producing pions. The charged pions decay to muons,
which decay to electrons, a sequence of reactions which emits neutrinos of both
electron-type and muon-type flavours:

π+ → µ+ + νµ

µ+ → e+ + ν̄µ + νe
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A corresponding reaction occurs for the negative pions.

Most of these neutrinos will pass through the earth unhindered. Occasionally we
can see one if it happens to hit our target. A neutrino experiment sensitive to
direction will see some neutrinos coming down from the atmosphere, which will
have travelled only a few km. Those neutrinos which have passed through the
earth, and travel up through the detector will have travelled up to about 13,000 km
before we observe them. By recording the direction and flavour of the arriving
neutrinos, an experiment can test the survival probability of the neutrino flavour
(6.2) as a function of distance (or rather as a function of L/E).

The Super-Kamiokande experiment in Japan measured electron and muon type neu-
trinos of ∼ GeV energies using a 50 kton water Čerenkov detector. The experiment
did not have sensitivity to tau-type neutrinos, since the neutrino energies were not
high enough to produce τ leptons in charged current interactions. A deficit of
muon neutrinos was found in the up-coming neutrinos which had travelled longer
distances. The electron-type neutrinos were as would be expected in the absence
of oscillations. These results indicate that flavour oscillations of the sort

νµ 
 ντ

were leading to loss of muon-type neutrinos. In the atmospheric experiment, the
baseline L is too short for νe 
 ντ or νe 
 νµ oscillations.

6.6 The Higgs field

[non-examinable]

One particle, the spinless Higgs particle, plays a particularly special role in the
Standard Model. It has unique properties in that it interacts with the other particles
with couplings proportional to their masses.

To understand why the Higgs boson is necessary, consider the masses of the force-
carrying particles. In quantum field theory, gauge bosons, the force-carrying par-
ticles, naturally arise as massless spin-1 excitations of the field carrying the force.
This is fine for the photon and the gluons, which are indeed spin-1 bosons without
mass. However the W and Z particles, though having spin 1 as expected, have large
masses ≈ 100 GeV, so cannot so easily be explained as the massless excitations of
the weak field. A mechanism is needed to provide the W and Z bosons with mass.

In the Higgs theory, the whole of space – the vacuum itself – is filled with a non-zero
expectation value of the Higgs field. The particles which interact with this scalar
field have modified properties. Those particles which interact with the field acquire
masses according to their strength of interaction with the field. The W and Z
particles, which would otherwise be massless, acquire their masses by interacting
with the Higgs field in the vacuum. The photon is massless because it does not
interact with the (electrically neutral) Higgs field.

The fundamental fermions – the quarks and leptons – also obtain their mass by
interacting with this all-pervasive Higgs field. The top is the heaviest of the quarks

Upward-coming neutrinos have
travelled further than have
those coming directly down
from the atmosphere.

Super-Kamiokande found fewer
upward coming muon neutrinos
than expected.

W W

H

The Higgs field is non-zero in
the vacuum (indicated by the
cross). The vacuum
interactions of the Higgs field
with the W boson, of the sort
shown in the diagram, give the
W bosons its mass.
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Figure 6.6: Display of a candidate Higgs boson event with the CMS detector. The
red lines show muon tracks. The invariant mass of the four muons is equal to the
mass of the Higgs boson.

The potential associated with
the Higgs field has a ‘Mexican
hat’ shape. The vertical axis
shows the potential V (ϕ), as a
function of the real and
imaginary parts of the Higgs
field ϕ. The potential has a
local maximum at ϕ = 0, and a
degenerate minimum at which
ϕ 6= 0.

exactly because it couples most strongly to the Higgs field. The electron is much
lighter because its coupling to the Higgs field is much weaker.

How does the vacuum get filled with Higgs field? Consider a ‘Mexican hat’ potential,

V (ϕ) = µ2 |ϕ|2 + λ |ϕ|4 ,

associated with a field ϕ, where µ2 < 0 and λ > 0. This potential has a local
maximum at the origin (where ϕ = 0), and a minimum elsewhere where the fields
are non-zero. The vacuum will settle into one of the states around the circle where
V is minimum, meaning that ϕ takes a non-zero value in the vacuum. Thus the
vacuum is filled with the field.3

The excitation – or quantum – of the Higgs field is the Higgs boson. The Higgs
boson is unique amongst the fundamental particles, in being a scalar – it has no
intrinsic spin. It is responsible for a new Higgs interaction. This is a new type of
force in nature, different from the electromagnetic, weak, strong and gravitational
forces.

The couplings of the Higgs boson are fixed by the interactions of the Higgs field.
The Standard Model particles must couple to the Higgs boson H with couplings
proportional to their masses if they are to acquire their mass from the Higgs field.
This means that the Higgs boson must couple strongly to heavy particles, light the
top quark, and very weakly to light particles like the electron.

The discovery of the Higgs boson, was announced by the two large experiments at
the Large Hadron Collider (LHC) in July 2012. Its mass was found to be close to

3In fact because a particular vacuum state is chosen by nature we break the gauge symmetry.
This type of symmetry breaking happened in the very early universe, before the formation of
hadrons. This is similar to what happens when directional symmetry is broken when a crystal
freezes, selecting a particular direction.
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Figure 6.7: The discovery of the Higgs boson in the di-photon channel. The x-
axis shows the di-photon invariant mass. The y-axis show the number of weighted
events observed, after subtracting backgrounds. A peak can be observed at mH ≈
125 GeV. The width of the peak is dominated by experimental resolution.

125 GeV and its properties consistent with being those expected from the Standard
Model theory.4

6.6.1 Finding a Higgs boson

The Large Hadron Collider, where the Higgs boson was discovered, accelerates
protons. Protons can be accelerated to the high energies required to make the
Heavy Higgs boson. However protons are less than ideal for making Higgs particles,
because the proton’s constituent quarks – the up and down quarks – are the lightest
of the quarks, and so couple only very weakly to Higgs boson. At the LHC the Higgs
boson is dominantly made from gluon-gluon interactions. This seems counter-
intuitive, since the gluon is massless, and so there is no direct coupling between the
Higgs and the gluon at all. Instead the H must be made via an intermediate state
- a triangular loop diagram,. The largest contribution comes from the top quark
triangle diagram. The top quark can exist briefly in this virtual state, and has the
advantage of a very large coupling to the Higgs boson.

The Higgs boson has been observed decaying in a variety of different ways, including

H →W + W ∗ → (e+ + νe) + (µ− + ν̄µ)

H → Z + Z∗ → (e+ + e−) + (µ+ + µ−)
H → γ + γ

H → τ− + τ+

The stars on the W and Z indicate that one or other of the W or Z particles is
well off its mass shell. Both cannot be on-shell (or near-shell) since the Higgs boson
mass mH ≈ 125 GeV is less than either 2mW or 2mZ . The Higgs boson has no
spin, and is represented as dashed line (reserved for scalars) on a Feynman diagram.
The photon γ is massless, the Higgs boson does not couple to it directly. Instead
that decay must proceed via a loop diagram, typically involving a W boson or a t
quark.

The ATLAS and CMS experiments each observe a clear (Figure 6.7) a characteristic
Breit-Wigner peak in the histogram of the diphoton invariant mass mγγ for events

4For a good series of articles explaining the discovery, try the special edition of ‘Science’
magazine published in December 2012: ATLAS paper and CMS paper.

H

g

g

Production of a Higgs boson
from a pair of gluons, via a top

quark loop.
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A simulation of a microscopic
TeV-energy black hole
evaporating through Hawking
radiation at the LHC.

containing pairs of photons. This, together with similar evidence in decays to τ
leptons, and W and Z bosons led to confirmation of the Higgs boson’s existence.

Experiments are currently on-going to determine the couplings of the Higgs boson
to all of the Standard Model fermions and bosons, and to measure the shape of the
Higgs potential.

6.7 Beyond the Standard Model

[Non-examinable]

The Standard Model provides an extremely successful description of the fundamental
constituents of nature as we observe them. However, it is known to have a limited
range of validity, and it fails to address some of the most important questions about
the matter and forces in our universe.

6.7.1 Gravity

Gravity is notably absent from the Standard Model. While a description of grav-
ity exists at the classical level in the form of General Relativity, this provides no
microscopic explanation for gravity. We don’t yet know what is transmitting the
force at the quantum level. The difficulty in finding out is because gravity is so
weak, despite it being the most familiar of the fundamental forces. Gravity can be
incorporated within wider theories, such as string theories, however such theories
do not yet make predictions that can be tested by experiment.

It has been suggested that a spin-2 graviton is responsible for the gravitational force.
Such a particle might be detectable at extremely high energies, close to the Planck
energy which in natural units is

EPlanck =
1√

GNewton

≈ 1028 eV.

This energy scale is well beyond the reach of current colliders.

Some theories with extra dimensions of space suggest that gravity could become
exponentially strong at TeV energies. In such theories gravitons (and/or microscopic
black holes) could be observed at existing high-energy colliders, such as the LHC.
Every time a collider reaches higher energies one of the first things one does is to
perform a search for the effects of quantum gravity.
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Figure 6.8: Dark matter detectors require low radioactive backgrounds, and are
operated deep underground to shield them from cosmic rays. Some make use of
copper from sunken Roman ships, which has particularly low induced radioactivity
because it has been shielded from cosmic rays by the sea for centuries.

6.7.2 A theory of flavour

6.7.3 Matter / antimatter asymmetry

6.7.4 Unification of the forces?

6.7.5 The dark side of the universe

The Standard Model only accounts for the 5% of the matter-energy content of
the universe. The astronomical and cosmologically evidence clearly favours a pre-
ponderance of Dark Matter (24% of the matter/energy content) and Dark Energy
71%.

The evidence for dark matter comes from a variety of sources, from the rotation
curves of galaxies, to the formation of galaxies, to the acoustic oscillations in the
early universe, to the evolution of the universe as a whole. So far we have no micro-
scopic description for the source of the Dark Matter particles. We can infer some
properties, for example we know that such particles cannot have electromagnetic
interactions, otherwise they would not be ‘dark’. They can’t have strong interac-
tions or they would already been observed as they bounce off our detectors. It’s
possible that they may interact only via the Weak or Higgs forces.

There are three major ways of looking for dark matter, all of which are competing to
find it first. One method is to search for such particles being produced in colliders.
The dark matter particles would not be observed directly, but would betray their
presence through apparent non-conservation of energy or momentum, rather similar
to the way neutrinos were first found.

An alternative search strategy is to look for the effects of naturally-occuring dark
matter particles, as they bump into a very precise detector. The energy transmitted
to the detector is observed as light, or as an electrical signal. Such detectors have
to be radiologically pure, otherwise the energy signal from the dark matter particle
would be lost in a background from nuclear interactions. They are also placed deep
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underground, in order to shield them from cosmic rays.

A third method is to search for Dark Matter particles annhilating against one another
in space. Such annihilations could produce high energy Standard Model particles
which we could be able to observe.

If dark matter does have Weak or Higgs interactions, it could be discovered soon
via any of these methods.

Dark Energy

Dark Energy is believed to form the remaining 71% of the matter/energy contents
of the universe. It takes the form of an energy density of empty space, and makes
itself felt via the acceleration it causes in the expansion of the universe.

No good particle physics explaination yet exists for the Dark Energy. A non-zero
energy of space is expected from quantum field theory, but unfortunately the cal-
culated value is a factor of about 10120 too large. This has been called the worst
prediction in physics. A value as large as that calculated would not allow struc-
ture to form in the universe. This has led some to speculate that there are many
universes with different energy densities, and that we find ourselves, necessarily, in
one which is ‘antropically selected’ to favour the formation of structure, stars and
intellegent life.

6.7.6 The hierarchy problem

6.7.7 Strings and things

Key concepts

• The fundamental matter particles are spin- 1
2 fermions

• There are three families of quarks, and three corresponding families of leptons

• The forces and interactions between the quarks and leptons are mediated by
spin-1 bosons

• The electromagnetic force is mediated by the neutral, massless photon γ

• The strong force is mediated by the eight massless gluons g which are them-
selves coloured, and so interact with one another.

• In deep inelastic scattering, a projectile scatters off the constituent quarks

• Free quarks are not observed, instead, when a quark is knocked hard, we
find jets of colourless mesons and baryons.

• The weak force is mediated by the W± and Z0 particles, which have large
masses, and so only interact over ∼ 10−18 m
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• The weak force violates conservation of parity

• The W± bosons are the only particles that can change quark flavour

• Neutrinos are observed to change flavour (oscillate) when travelling over long
distances

Further reading

• B. Martin, Nuclear and Particle Physics: An Introduction

• W. S. C. Williams, Nuclear and Particle Physics

• K.S. Krane Introductory Nuclear Physics
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6.A Conservation laws

Operator Strong EM Weak

Charge, Q X X X

Baryon number X X X

Lepton number X X X

Parity, P X X ×

Charge conjugation C X X ×

CP X X almost

Strangeness X X ×

Charm X X ×

Bottomness X X ×

Isospin X × ×

Table 6.3: Some important operators and their invariance properties for different
interactions. A tick X indicates that the interaction conserves that quantity. A
cross × indicates that it does not conserve that quantity. The combined operation
CP is almost conserved in the weak interaction.

102



Chapter 7

Applications

”Anyone who expects a source of power from the transformation of
these atoms is talking moonshine.”

Ernest Rutherford, 1933

Rutherford was wrong. The energy changes during nuclear reactions are of order
106 times larger than those during chemical reactions. They are responsible for the
energy emitted by stars, including our own sun, the geothermal heat that keeps
the centre of the earth. Nuclear fuels represent the overwhelming majority of the
available energy resources on earth.

We have previously seen that the binding energy per nucleon B/A is typically
8 MeV. The different contributions to the binding energy, as represented in the
Semi-Empirical Mass Formula, lead to a maximum B/A close to the common iso-
tope 56Fe which has B/A = 8.79 MeV.

Isotope 2H 4He 6Li 16O 44Ca 56Fe 107Ag 238U

B/A [MeV] 1.112 7.074 5.332 7.976 8.658 8.790 8.554 7.570

Table 7.1: Examples of binding energy per nucleon.

7.1 Fission

7.1.1 Energy and barriers

From the Table 7.1 we see that it would be energetically favourable for nuclei in
the region of A ∼ 100 to split into two lighter nuclei, each with larger values of
B/A. It is then reasonable to ask why it is that nuclei with values of A ∼ 100 do
not split into two parts, given that it is energetically possible. The reaction would
be exothermic, and so must be suppressed by some mechanism.
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Fission of a nucleus into two
smaller nuclei

The potential barrier is small
for A ∼ 200.

The potential barrier disappears
for A ∼ 300.

Consider the splitting of a large sphere into two smaller, equally sized, spheres. The
intermediate steps must involve the first sphere elongating, then becoming ellipsoid,
pinching in the middle, and finally separating. During the elongation and separation,
the charges move further apart, decreasing the size of the Coulomb term. However
the surface area, and hence the surface energy must increase.

At the point where the daughter nuclei have only just separated, the electrostatic
energy from their proximity will be of order the Coulomb potential of

Ebarrier =
α (Z/2)2

2r0(A/2)1/3
(7.1)

where Z/2 and A/2 are the atomic number and mass number respectively of the
daughter nuclei, and a symmetric split has been assumed. For Z = 40 and A = 100
the energy barrier is of height 65 MeV, which is large enough to prevent fission.

For larger values of A, the barrier (7.1) continues to increase relative to the final
state of two well-separated daughters. However the heavier parent nucleus also has
less binding energy, and so moves closer to the top of the Coulomb barrier. For A
as large as about 200, the barrier becomes sufficiently small (relative to the initial
parent’s energy) that it becomes possible to tunnel through that barrier. Fission
proceeds, at a rate determined by the tunnelling probability. Since the barrier is
small, it may also be possible to push the nucleus over the barrier, if a relatively
small amount of energy can be added, for example from a projectile.

If one considers values of A as large as 300, there is no barrier at all from the
parent’s side, and so the nucleus will immediately fall apart. Such nuclei are not
observed in nature.

Let us consider how energy might be added to induce fission for two example A ∼
200 nuclei. For the uranium isotop 238

92U the energy barrier is of order 6 MeV. We
can induce fission in this nucleus by bombarding it with sufficiently high-energy
neutrons:

238U + n(E > 6 MeV) −→ fission products.

Low-energy neutrons impacting on 238U have a relatively high capture cross section
through the (n, γ) process

238U + n→ 239U
∗ → 239U + γ (7.2)

leading to neutron capture without fission.

Fission is easier to induce in the other naturally occuring isotope of uranium 235U.
The arrival of even very low-energy (thermal) neutrons on 235U leads to fission with
84% probability. The radiative neutron capture reaction (n, γ) occurs with only
16% probability.

To understand why a very low-energy neutron can cause fission in 235U, but that
a much higher energy neutron is required to push 238U over the energy barrier, we
need to consider the change in the Z and N numbers as the two isotopes gain a
neutron.
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Fissionable nuclei

Nuclei that are fissionable with slow-moving neutrons include: 235
92U and 239

94Pu.
Plutonium-239 does not occur naturally, since it has only a 24 kyr half life. It
is produced as a by-product in nuclear reactors, when 239U, created via reaction
(7.2), followed by successive β decays

239
92U −→ 239

93Np + e− + ν̄e

239
93Np −→ 239

94Pu + e− + ν̄e.

Reactors designed specifically to produce and burn fissionable 239Pu fuel during
their operation are called breeder reactors.

Isotope Z N Type
235U 92 143 Even-Odd
238U 92 146 Even-Even

On addition of a neutron, 235U moves from being even-odd to being being even-
even, thus releasing pairing energy δ. By contrast 238U on absorbing a neutron
moves from even-even to even-odd, for which one must pay the price of an additional
δ of pairing energy. It is the release of the pairing energy δ that taps 235U over the
energy barrier, no matter how low-energy the incident neutron may be.

7.1.2 Cross sections for fission reactions

The important reactions for fissionable reactors are elastic scattering of neutrons
(n, n) radiative absorption of neutrons (n, γ) and neutron-induced fission (n, f).
The radiative absorption cross section is important because it removes neutrons
which would otherwise be able to induce fission. For fission to proceed we will need
to know the cross sections for each of these processes, and their energy dependences.

The elastic (n, n) scattering cross section is found to be approximately independent
of the speed of the neutron – other than where resonant scattering occurs. By
contrast, for the (n, γ) radiative capture reaction, the cross section falls rapidly
with the speed vin of the incoming neutron,

σcapture ∝
1
vin
.

The same fall-off with vin is seen for the fission reaction

σfission ∝
1
vin
. (7.3)

7.1.3 Chain reactions

When 235U fissions, it releases about 200 MeV of energy. The products are two
fission fragments, and several neutrons. The reason for the emission of neutrons is Graph of lnσ against ln v
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Neutron scattering, capture and fission cross sections.
We can understand the functional dependence of the cross sections σelastic, σcapture

σfission on neutron speed as follows. The rate is governed by the Fermi golden rule
(2.15). The matrix element is Mfi and the density of states will be proportional
to

p2
f
dpf

dE
.

Now, cross section is rate divided by incoming neutron flux, and flux is proportional
to vin. Hence the cross section has the following dependence on vin and pf :

σ ∝ 1

vin
|Mfi|2 p2

f
dpf

dE
, (7.4)

We can simplify the equation by noting that the energy-momentum relation E2 =
p2 +m2 implies thata

dp

dE
=
E

p
=

1

v

For elastic (n, n) reactions, the incoming and outgoing speeds are the same (vf =
vf) in the centre-of-mass frame, hence for a low energy neutron with p = mv the
energy dependence simplifies to

σelastic ∝
1

vin
|M |2

m2
nv

2
f

vf
= |M |2m2

n

Hence we expect the elastic cross section to be approximately constant, except
perhaps where resonant scattering causes sharp peaks.

For the very exothermic (n, γ) and (n, f) reactions, the starting point (7.4) is
the same, but the density of states factor is now completely dominated by the
energy released to the decay products – the photon for the radiative case, or the
fission products. The density of final states is now almost completely indepen-
dent of the incoming neutron speed. Aside from any energy dependence of the
matrix element, the capture and fission cross sections will be proportional to the
reciprocal of the flux, i.e.

σexothermic ∝ 1/vin.

aThe same v dependence is found using the non-relativistic formula E = p2/(2m).

The fission tends to be
asymmetric, resulting in
fragments peaked around
A ∼ 90 and A ∼ 140.

as follows. Heavy nuclei, such as the parent, are more neutron-rich than lighter ones
(recall the curve in the valley of stability in §2.2.1). Hence the fission products, if
they had the same ratio of protons-to-neutrons as their parent, would be too neutron
for their value of A. This leads to the direct emission of on average 2.5 neutrons
per fission.

These fission fragments are also neutron rich and hence they must beta-decay
towards the valley of stability.

If the ejected neutrons can be induced to cause further (n, f) reactions, then a
chain reaction can occur in which neutrons produced in one generation of decays
initiate the next.

For a power station, the chain reaction must proceed in a controlled manner. The
rate of fissions, and hence the number density of neutrons at fissionable energies,
must be controlled. Possible fates of neutrons within a reactor are:

106



CHAPTER 7. APPLICATIONS 7.1. FISSION

• Neutrons can decay with an average lifetime of τn = 885 s

• Lost from the reactor core

• Radiatively captured on the fuel

• Induce further fissions

We might try to improve reaction rates by using pure uranium-235. In pure 235U,
the mean-free path travelled by a neutron before it will induce fission is

λfission =
1

n235σfission
≈ 10 cm

where n235 is the number density of 235U nuclei. We would need to make our pure-
235 reactor at least this large. Neutrons will be emitted from fissions with ∼ MeV
energies and so will be travelling at v =

√
2mnEn ≈ 0.1c. Since these speeds

are much faster than the speed of sound in the material, the emitted neutrons will
induce fission in further nuclei the before the material structure is disrupted by the
release of energy. A chain reaction started in a critical mass of pure 235U will
therefore exponentially increase in number of neutrons emitted and energy released.
This fast release of a large amount of energy in a short time will not provide the
controlled release of energy desired for a power station.

7.1.4 Fission reactor principles

Naturally-occurring uranium is approximately only 0.07% 235U with the rest made
up from 238U.

The majority isotope 238U has a series of sharp resonances in (n, γ) reactions in
the approximate energy range 10 eV to 10 keV. These resonances absorb neutrons
and make it difficult to sustain a chain reaction. To keep a reaction going one
must increase the probability for fission relative to absorption by: (a) increasing the
fraction of uranium-235 in the fuel or (b) increasing σfission compared to σcapture, or
both.

Increasing the fraction of uranium-235 is known as enrichment. It can only be
achieved using the difference in the physical properties caused by the mass differ-
ences of the isotopes — the chemical properties of the two isotopes are identical.
Enrichment can be achieved by e.g. mass spectrometers for small amounts of ma-
terial, or by exploiting differential gaseous UF6 diffusion rates, or with centrifuges.

It is possible to further reduce the radiative capture on 238U by rapidly cooling the
∼MeV energy neutrons. Cooling of neutrons is known as moderation. Cooling
neutrons to thermal temperatures (< 0.1 eV) reduces their energies below the energy
at which the resonances in 238U lead to radiative neutron capture. Cooling also
increases the fission cross-section since, as shown in (7.3), the fission cross section
σfission ∝ 1/vn. To avoid captures, and to increase efficiency, we wish to cool the
neutrons in a space away from the fuel. This requirement leads to a heterogeneous
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Figure 7.1: If a neutron can be cooled rapidly, there is a decreased probability for
it to be lost to radiative capture.

reactor design, in which lumps (usually rods) of fuel are embedded in a matrix of
moderating material1.

The moderating material must have low neutron capture cross section and, for
efficient cooling, should contain nuclei with small A. Typical moderating materials
are graphite 12C or heavy water D2O, where D = 2

1H is the deuteron. Rapid cooling
— in a small number of collision steps — reduces the probability of a neutron having
energy close to the 238U(n, γ) resonant peaks (Figure 7.1).

In a chain reaction the number of neutrons at any time will be given by

n = n0e
(k−1)t/T

where k is the average number of neutrons produced per fission less the number lost
through decays, radiative captures, or loss from the core. T is the characteristic time
for one generation of fissions. Since the neutron transit time between reactions is of
order nanoseconds, even if k = 1.001 such a chain reaction can lead to exponential
growth with a short doubling time. In order for the reaction to be controlled one
must maintain k very close to unity.

Loss of neutrons to the surrounding material can be reduced by increasing the size
of the reactor, and/or by surrounding it with a neutron reflector – a material with a
large elastic scattering cross section. The reactor core is usually held within a steel
pressure vessel, which is itself within a concrete shield. The steel reflects neutrons,
and absorbs γ radiation. The concrete absorbs residual γ radiation and provides
physical protection.

Energy is extracted from the reactor by circulating a fluid inside the core. Air, water
or liquid sodium coolants have all been used. The thermal energy is transferred
through a heat exchanger, used to boiling water, and to generate electricity using
steam turbines.

The fission fragments are neutron rich, and so waste products include isotopes
unstable to beta decay. Products with half-lives less than a day decay rapidly and

1There is also a more subtle reason why lumps of fuel are better. Since the de Broglie wavelength
of the thermal neutron is larger λthermal > λcapture, more of the fuel lump is ‘seen’ by the thermal
neutron than by the higher energy, shorter wavelength, ∼ 100 eV ready-to-capture neutron.
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Moderators and energy loss
Consider an elastic collision between a moving body of mass m with another,
initially stationary, body of mass M . In the zero momentum frame (ZMF), let
the speed of the first mass be u and that of the second be U = um/M , and
let the scattering angle in the ZMF be θ. In the lab the speed of m before the
collision is

vin = U + u,

whereas after the collision it is given by vout where

v2
out = v2

out‖ + v2
out⊥

= (U + u cos θ)2 + (u sin θ)2

= U2 + u2 + 2Uu cos θ

The fraction of energy lost by m by in the lab frame is v2
out/v

2
in. To find the

average energy loss, we need to average over the scattering angle θ. For isotropic
scattering

〈cos θ〉 = −
Z +1

−1

cos θ d(cos θ) = 0

so the average fraction of energy lost by m isfi
Eout

Ein

fl
=

U2 + u2

(U + u)2
=

m2 +M2

(M +m)2

A moderator material will be maximally efficient when M is equal to m, meaning
that we want materials with small A. At maximum efficiency, with A = 1, half
of the initial neutron energy will be lost on average. An initial 1 MeV neutron
will then cool to 0.1 eV after about log2 (MeV/0.1 eV) ≈ 23 collisions.

do not present a problem. At the other extreme, products with half-lives larger than
about 106 years have such small decay rates that they too are safe. In between
lie the more awkward waste products. Small quantities of 90Sr (T1/2 = 29 yr),
137Cs (30 yr) and 99Tc (200 kyr) must be dealt with. There are proposals to use
proton beams to transmute these into other safe isotopes, but for the moment such
isotopes are typically encased in glass (vitrified) and held in secure storage.

7.2 Fusion

Since the most stable elements are found in the middle of the table of nuclides,
energy can also be released by fusing together nuclei with very small A. The fusion
process is responsible for the power of the stars, including the sun. Fusion is also a
necessary step in the formation of the chemical elements. It also offers the potential
of providing clean and abundant power for the future.

An example of a reaction which would liberate a large amount of energy is

4H → 4
2He + 2e+ + 2νe [Q = 28MeV]. (7.5)

The isotope 4He is particularly tightly bound2, so this reaction is very energetically
favourable. Despite being energetically favourable it is inhibited by the requirement

24He is a doubly magic nucleus, with the special property that all four nucleons occupy essen-
tially the same spatial wave function.
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Reactor control

Control on timescales of order seconds is possible by inserting and withdrawing
control rods with high neutron-capture cross section. Nuclides with large capture
cross sections include the boron isotope 10B and the cadmium isotope 113Cd.

How is it possible to control reactors by moving rods over timescales of seconds
when the typical time between fission reaction generations is of order nanosec-
onds? Fortunately about 1% of neutrons emitted after fission come not from
fission fragments themselves, but from their daughters after beta decay.

A
ZX

β−−−→ A
Z+1Y −→ A−1

Z+1Y + n.

These neutron emissions are delayed by time taken for the the beta decays, which
have typical time constants of 0.1 s – 1 s. The reactor is then operated at such
that it is subcritical (k < 1) with fast neutrons alone. The reactor is then critical
only because of the delayed neutrons, and the effective time constant for control
increases to of order seconds.

Nuclide T1/2

D Deuterium 2
1H stable

T Tritium 3
1H 12.3 yr

p(v) ∝ exp

„
−
mv2

2kBT

«
The Maxwell-Boltzmann

velocity distribution.

that four protons need to come together overcoming Coulomb repulsion. In addition
two factors of the Fermi coupling constant GF enter the matrix element, one for
each of the proton to neutron transitions.

What fuel to use in man-made fusion reactions?

Prototype fusion reactors achieve best fusion rates using a duterium-tritium fuel
mixture.

The barrier height for D + D and D + T fusion would appear to be the same
as for H+H using our naive calculation. In fact the barrier is reduced since the
nucleons within these composite nuclei have some freedom to arrange themselves
to reduce the height of the Coulomb barrier.

The rate for D + T is further enhanced by a resonant reaction involving an
intermediate excited state of 5He:

3
1T + 2

1D −→ 5He
∗ −→ 4He + n [+17.6 MeV]

The D+T reaction is used because it combines a large resonant cross section and
a large Q value.

The simpler reaction
p+ p→ D + e+ + νe,

has the advantage of not requiring the coincidence of four particles, but it is also
inhibited by Coulomb repulsion. The Coulomb barrier is of size

Eb ≈ αEM
~c

2 fm
=

1
137

(197 MeV fm)
2 fm

≈ 0.7 MeV.

Fusion will therefore only proceed uninhibited by this barrier at temperatures where
each proton has energy of order Eb/2. We can use the Boltzman constant kB to
convert this to a temperature, which is of order Eb/(2kB) ≈ 4×109 K. Uninhibited
fusion therefore requires extremely high temperatures.

Fusion can proceed at lower temperatures — indeed the temperature in the centre
of the sun is a relatively ‘mild’ 1.6 × 107 K. Two factors enable fusion to happen
at temperatures significantly lower than 109 K. The first is that fusion may occur

110



CHAPTER 7. APPLICATIONS 7.3. NUCLEOSYNTHESIS

via quantum tunnelling through the Coulomb barrier. The calculation is analogous
to that performed during the consideration of α decay (§2.3.1). The second factor
that assists fusion at lower temperatures is the high-energy tail of the Maxwell-
Boltzmann velocity distribution.

In man-made fusion reactors, a duterium-tritium plasma is held within a toriodal
volume using magnetic confinement. In these Tokamaks, the plasma is heated to
temperature of 1.5 × 108 K. The best reaction rates and largest energy release is
found at the lowest temperatures by using the reaction

3
1T + 2

1D −→ 4He + n. (7.6)

Duterium fuel can be efficiently extracted from sea water. Tritium is unstable, with
a half-life of about 12 years, so must be artificially produced. The main waste
product is inert helium gas. The 14 MeV neutrons from the fusion reaction can be
used to produce extra tritium. We can place a ‘blanket’ of lithium in the wall of the
reactor vessel. Tritium is then generated within the blanket through the reactions

n+ 6
3Li→ 3

1T + 4
2He

and
n+ 7

3Li→ 3
1T + 4

2He + n.

The 6
3Li reaction is exothermic, so contributes to the energy that can be extracted

from the reactor. The 7
3Li reaction is endothermic, but has the advantage of recy-

cling the neutron. We require more than one triton to be produced per neutron to
maintain a continuous supply of tritium, since the fusion reaction (7.6) consumes a
triton for each neutron it produces. The 7

3Li reaction meets this need, and allows a
sufficient supply of tritium fuel to be maintained.

7.3 Solar reactions and nucleosynethesis

Nuclear reactions in stars are important not only because they generate light and
heat, but also because they are the only method by which nuclei heavier that lithium
can exist. All of the carbon, oxogen, nitrogen in our bodies is the result of nucleus
building within stars, in a series of processes called nucleosynthesis.

The sun predominantly burns hydrogen to form helium. We have argued that the
direct combination (7.5) of four protons to form 4He is very improbable, but the
reaction can occur via a series of steps as follows.

First two protons fuse to form a deuteron:

p+ p→ 2D + e+ + νe. (7.7)

This first pp fusion reaction involves the transmutation of a proton into a neutron,
and so must proceed via the four-fermion vertex of the Fermi beta-decay theory
(§2.3.2). It involves both tunnelling through a Coulomb barrier, and a Fermi matrix
element containing a factor of GF , so occurs at a fairly small rate — it is the rate
limiting step. Next is radiative capture of a proton on a deuteron:

p

n

e
+

νe
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Hydrostatic equilibrium and stellar temperatures

We can find the temperature and pressure inside a star of mass M and radius R
as follows. Consider an element of a stellar shell, at radius r, of thickness δr and
of area A. The gravitational force FG on that element is of size

FG =
Gmρ

r2
Aδr,

where m(r) is the mass contained with the sphere of radius r and ρ(r) is the local
density. For hydrostatic equilibrium the gravitational attraction must be balanced
by a repulsive force caused the pressure gradient of size

FP = A∆P = A
dP

dr
δr.

By equating these two forces we can find a bound on the pressure at the centre
of the star as follows. First we recognise that

dm

dr
= 4πr2ρ(r)

allowing us to re-express the equilibrium condition as

dP

dm
=

Gm

4πr4
.

The integral over the whole star

P (M)− P (0) = −
Z M

m=0

Gmdm

4πr4

cannot be exactly evaluated without knowing how the density varies with radius,
but nevertheless it must be larger than

−
Z M

m=0

Gmdm

4πR4
=
GM2

8πR4
.

where R is the radius of the star.

The calculation places a lower bound on the pressure at the centre of the sun of
4.4× 1013 Pa, which is equivalent to 450 million atmospheres. We may then use
the ideal gas law PV = nkBT to calculate a lower bound on the temperature of
the centre of the sun. The lower limit we obtain will be found to be somewhat
lower than the value (of about Tc = 1.6 × 107 K) that we would have obtained
from a more exact numerical calculation.
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D + p→ 3He + γ. (7.8)

Finally, two of these 3He nuclei may fuse, generating an alpha particle and recycling
two protons:

3He + 3He→ 4He + 2p. (7.9)

The net effect of the three reactions (7.7)-(7.9) is that of reaction (7.5) above. The
combined set of reactions (7.7)-(7.9) is known as the pp-I chain.

7.3.1 The pp-II and pp-III chains

Several other competing reactions also occur which have the net effect of turning
Hydrogen into Helium. At temperatures above that at which the pp-I chain oc-
curs, two helium isotopes (produced as described in §7.3 above) may fuse to form
Beryllium-7,

3
2He + 4

2He→ 7
4Be + γ.

At this point the reaction can take one of two branches.

In the pp-II branch the subsequent series of reactions is electron capture

7
4Be + e− → 7

3Li + ν,

followed by the lithium-7 absorbs a further proton

7
3Li + p→ 2 4

2He

generating two further Helium-4 nuclei.

In the pp-III chain a different series of reactions leads to the same end result. First
the Beryllium-7 absorbs a proton

7
4Be + p→ 8

5B + γ.

The resulting 8
5B is unstable to β+ decay

8
5B→ 8

4Be + e+ + νe

generating 8
4Be. Because of the particularly large binding energy of the Helium

nucleus, Beryllium-8 spontaneously splits in two

8
4Be→ 2 4

2He

generating two Helium nuclei.

In each of these two chains — pp-II and pp-III — the net reaction is

3
2He + 4

2He + 1
1p→ 4

2He + 4
2He + e+ + νe.

7.3.2 The CNO cycles

Protons are also burned to helium through carbon-nitrogen-oxygen catalysis. These
reactions are catalysed by 12C, which must therefore be formed within stars.
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Producing carbon – Helium burning

There are roadblocks in forming elements heavier than Helium caused by the
absence of any stable isotopes with mass numbers 5 or 8. Because Helium is
particularly tightly bound, the candidate isotopes with A = 5 and A = 8 decay
in the following manners:

5
3Li −→ 4

2He + p
5
2He −→ 4

2He + n
8
4Be −→ 2 4

2He

Fortunately, in thermal equilibrium there will exist a small but non-zero population
of 8

4Be through the equilibrium process

8
4Be 
 2 4

2He

A further 4
2He nucleus can react with the equilibrium population of 8

4Be to generate
12C. We are fortunate that there is an excited state of 12C

∗
at just the right

energy to cause resonant production via

8
4Be + 4

2He → 12C
∗ −→ 12C + γ

There are two important catalysis cycles. The first (CNO-I) is:

12
6C + p → 13

7N + γ
13
7N → 13

6C + e+ + νe

13
6C + p → 14

7N + γ
14
7N + p → 15

8O + γ
15
8O → 15

7N + e+ + νe

15
7N + p → 12

6C + 4
2He

which recycles the 12C, and has the same net effect of converting four protons to
4
2He plus two positrons and two neutrinos – i.e. the same reaction as shown in (7.5).

The second cycle of the CNO set of reactions shares several of the reactions of the
first:

14
7N + p → 15

8O + γ
15
8O → 15

7N + e+ + νe

but has a different way of recycling the 14
7N, via somewhat heavier elements.

15
7N + p → 16

8O + γ
16
8O + p → 17

9F + γ
17
9F → 17

8O + e+ + νe

17
8O + p → 14

7N + 4
2He

The net effect is that of conversion of four protons to 4
2He plus two positrons and

two neutrinos – i.e. the same reaction as shown in (7.5).
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These reactions are most important in stars more massive than the sun, in which
higher temperatures can be reached, and for which the large Coulomb barrier for
these larger-Z reactants is relatively less important.

7.3.3 Solar neutrinos

In the reactions above β+ decays and electron capture reactions lead to the emission
of electron-type neutrinos. In a three-body decay process, such as β+ decay, the
final energy is shared out between the electron and the neutrino, and so a continuum
spectrum of neutrino energies is produced (up to some maximum close to Q). For
a two-body decay process, such as electron capture, there energy and momentum
conservation constrain the size of the neutrino energy to a single value, equal to
the Q value of the reaction minus the recoil energy of the daughter nucleus.

There is a continuum distribution of low-energy neutrinos from the initial proton
fusion reaction

2 p→ 2
1D + e+ + νe.

This competes with the ‘pep’ reaction

p+ e− + p→ 2
1D + νe.

which has a smaller cross-section, but which has a two-body final state, so produces
a source of mono-energetic neutrinos.

We can see that there are also mono-energetic νe emissions from the pp-II chain
from the electron capture process

7
4Be + e− → 7

3Li + ν.

There is continuum of neutrino energies from the pp-III chain from the β+ decay
process

8
5B→ 8

4Be + e+ + νe.

In all cases the type of neutrino produced is an electron-flavour neutrino νe.

One can calculate the flux of neutrinos expected from these reactions at different
energies. Detecting the solar neutrinos on earth requires sensitive detectors. We
must also be careful to reduce the backgrounds from cosmic rays, radioactivity,
and other noise sources. Solar neutrino experiments provided the early evidence for
neutrino oscillations (§6.5.1).

7.3.4 Heavier elements

During the lifetime of a sun-like star, the temperature and the fuel change. When
the hydrogen fuel is exhausted, the core starts to collapse under its own gravity, and
it heats until the temperature is high eneough for helium to be effective as a fuel.
When the helium is expended the temperature rises again and the next fuel comes
into use, and so on.
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Beyond 12
6C further α particle addition can generate 16

8O and 20
10Ne. Fusion of two

12
6C isotopes can lead to production of 24

12Mg.

The Coulomb barrier prevents fusion of large nuclei. However in the late stages
of heavy stars, elements up to 56Fe can be produced through a process in which
neutrons are radiatively captured (n, γ). The neutrons themselves are bled off from
other reactions such as 13C(α, n)16O.

Supernovae and the heaviest elements

Stars larger than about nine solar masses finish their lives with a bang. Their inner
core collapses several times as it sequentially consumes different fuels, leading to
a onion-layered structure with Hydrogen burning in the outer layers, with inner
layers using He, C, Ne, O, and finally Si as fuels. Successive fuels require higher
temperatures to overcome the Coulomb barrier, but liberate smaller energies, so
burn increasingly rapidly. When all the silicon in the core burns to nickel and iron
a cataclysmic implosion takes place over several seconds. The shock wave from
this implosion detaches the outer layers of the star, and briefly provides the only
natural conditions under which elements heavier than iron are produced.

The mechanism starts with photo-disintegration of Fe by high-energy gamma rays
producing large fluxes of free neutrons. These neutrons bombard heavy nuclei,
and are accreted with successive beta decays bringing the resulting heavy nucleus
back to the valley of stability. Elements as heavy as 238U can be produced in this
way.

Supernovae are expected to lose a large fraction of their energy through neutrinos,
which pass through the outer layers relatively unimpeded. A total of 19 neutrinos
from SN1987A were observed by two detectors within a 13 s interval.

Key concepts

• Neutron-induced fission of 235U can be controlled in self-sustaining chain
reactions

• Cooling of the neutrons with a moderator to thermal temperatures allows a
chain reaction since

σfission ∝
1
vn

and because such cooling reduces the loss of neutrons via resonant radiative
capture 238U(n, γ).

• Fission of light elements is possible at high temperature through high-energy
tail of the Maxwell-Boltzmann distribution and tunnelling through the
Coulomb barrier.

• Nucleosynthesis in stars occurs via reactions including the pp-I, pp-II and
pp-III chains, and the CNO bi-cycle.

• Heavier elements are created via sequential burning of larger-Z fuels as lower-
Z fuels are expended.
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Further reading

• W. N. Cottingham and D. A. Greenwood, An Introduction to Nuclear Physics

• B. Martin, Nuclear and Particle Physics: An Introduction

• W. S. C. Williams, Nuclear and Particle Physics

• K.S. Krane Introductory Nuclear Physics

• M.G. Bowler Nuclear Physics

• N.A. Jelley Fundamentals of Nuclear Physics

• Ed. S. Esposito and O. Pisanti, Neutron Physics for Nuclear Reactors: Un-
published Writings by Enrico Fermi

• D.D. Clayton, Principles of Stellar Evolution and Nucleosynthesis (1968).
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Chapter 8

Accelerators and detectors

8.1 Basics

To understand the properties of an object we need to see how it interacts with
other objects. The typical experiment in nuclear or particle physics involves firing
a projectile (e.g. proton, neutron, electron, . . . ) at a target. The projectile and
target undergo an interaction (possibly creating a long-lived excited intermediate
state which then decays). The particles at the end may not be the same ones you
started with, but nevertheless we wish to detect them.

In some cases we don’t have to do the ‘firing’ ourselves. For example many of the
excited states of interest in nuclear physics – the unstable nuclei – were created long
ago by high-energy collisions within stars. We just have to wait for them to decay.

The topic of how to make, accelerate, detect and identify particles is an enormous
one. If you can answer the in-line questions marked marked with arrows (⇒) you
are doing well.

8.2 Accelerators

Scattering experiments are easiest to interpret if the initial state is a beam of par-
ticles with a known momentum p. To make such a beam particles must either be
accelerated to large p, or must come from the decay of a parent which itself had
large p.

To accelerate the beam of particles, they will need to have interactions with an
external field. The only forces which are active over macroscopic length scales are
the electromagnetic and gravitational forces. The gravitational forces on subatomic
particles are very much smaller than the electromagnetic ones, so we conclude that
we should use electromagnetic fields to change p. The particles to be accelerated
will then have to be charged. We can achieve this by (for example) pulling electrons
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Figure 8.1: A superconducting niobium cavity designed for a high-energy e+e−

linear collider. The cavities operate at radio frequencies and can support fields up
to 50 MV m−1.

dp

dt
= Q[E + v ×B]

The Lorentz force law. Q is the
particle’s charge, p its
momentum, v its velocity, and
E and B the electric and
magnetic fields, respectively.

The linear accelerator injector
to the CERN proton
synchrotron. c©CERN

off a hot cathode (e− beam) or using such an electron beam to strip electrons
from atoms to create positively-charged ions (e.g. protons beam from kicking the
electrons off Hydrogen).

Since the magnetic field changes only the direction of p, we have to use elec-
trical fields to increase the energy of the particles. How big an E field can be
achieved? From knowledge of atomic energy levels, we expect that the electric
strength is of order 0.1 V/10−10 m ∼ 108 V m−1. Fields stronger than this will pull
electrons from the metal surface, so cannot be sustained. To get energies of order
MeV can therefore be done in a small scale,1 whereas to get TeV-scale energies
from linear acceleration would require constant acceleration over distances of order
1012 V/(108 V m−1) ∼ 104 m.

Linear accelerators

The problem we encounter with a constant electric field is that to achieve high
energies we need an enormous potential difference. Large potential differences tend
to break down because of electrical discharge (sparking) to nearby objects.

We can get around this by realizing that only that only the local E field needs to
be aligned along v, and only while the particle is in that particular part of space.

We can use time-varying electric fields to achieve large energy without large static
potential differences. In the margin you can see a picture of a linear accelerator
or linac. In this device we have a series of cylindrical electrodes with holes through
the middle of each which allow the beam to pass through. Electrodes are attached
alternately to either pole of an alternating potential. The particles are accelerated
in bunches. As each bunch travels along we reverse the potential while the bunch is
inside electrode (where this is no field). We can then ensure that when the bunch
is in the gap between the electrodes the field is always in the correct direction to
keep the particle accelerating.

The oscillating potential on the electrodes may be created by connecting wires
directly from the electrodes to an oscillator. For radio frequency AC oscillations we
instead bathe the whole system in an electromagnetic standing wave, at the right

1An exception will be discussed in lectures.
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frequency and phase to provide continuous acceleration.

8.2.1 Bending, and circular accelerators

By bending our particle beams into a circle we can reuse the same accelerating
components many times over.

Beams are bent by magnetic fields, B, with a force given by

f = Qv ×B.

The acceleration is perpendicular to the velocity, so the Lorentz factor γ is un-
changed, and the Lorentz force law reduces to

Qv⊥B = γvma,

where a is the lab acceleration, and v⊥ is the velocity perpendicular to the magnetic
field. The particle’s motion will describe a circle (or a helix if we start it off with
non-zero momentum component p‖ in the direction parallel to B). The acceleration
in the lab frame must satisfy

a =
v2
⊥
R
,

where R is the radius of the circle. Combining this with the Lorentz force gives

Qv⊥B =
γmv2

⊥
R

.

For p‖ = 0 the particle describes a circle of radius

R =
p⊥
QB

,

where p⊥ = γvmv⊥ are the momentum components perpendicular to B.

If we have a particle with charge |e| and we express p⊥ in GeV, B in Tesla and R
in meters then we have the simple scaling law that

p⊥ = 0.3BR [GeV, Tesla, meters].

The maximum energy achievable for proton beams (currently E = 3.5 TeV for
protons at the LHC, CERN, Geneva) is limited by the product BR. Large scale
superconducting magnets can reach fields of order of a few Tesla, so for a TeV-
momentum beam we’ll need R ∼ km.2

The other effect one needs to worry about in circular accelerators is synchrotron
radiation. This is the electromagnetic radiation emitted when relativistic charges
accelerate, which they must do to describe a circle. The synchrotron energy loss
is proportional to γ4. Electrons have a much smaller mass than e.g. protons and
hence a larger γ for the same energy or momentum. Electron beam energies are

2Astronomical sources can have large magnetic fields over longer distances, and accelerate
particles to even higher energies. Cosmic rays impinging on the earth’s atmosphere from space
have been observed with energies above 1020 eV! [14]

To make a high-momentum
beam you might want one big
magnet. . .

. . . or perhaps lots of small ones.
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Cloud chamber photograph
showing a positively charged
particle with the same mass as
the electron – an anti-electron
or positron. This is how
anti-matter was discovered.
The lead plate in the middle of
the picture is used to slow the
positron so that the direction of
motion (and hence the charge)
can be inferred. From [3].

are usually limited by synchrotron losses 3. Electrons in circular colliders have have
been accelerated to energies of up to about 105 GeV at LEP (CERN, Geneva).

⇒ Find out what is meant by a cyclotron and a synchrotron. Explain the difference
to a friend.

8.3 Introduction to detectors

We want to study the properties of particles. For us to infer their presence they
have to undergo interactions with some material that then leads to a detectable
signal.

Historically a variety of techniques have been used to detect the presence of particles.
Geiger and Marsden worked with α particles. They bashed them off nuclei and then
into a phosphor screen. When the α hits the screen it partially ionized the atoms
there. When those atoms de-excite they can create visible light [8]. (Old cathode
ray tube televisions and monitors work on similar principles.) Cloud chambers
contain a super-saturated gas solutions. The gas is ready to form droplets, but
there is an energy barrier caused by surface tension which prevents the formation
of small droplets (and hence large ones). Charged particles depositing energy via
ionization allow droplets to form along their path, forming a visible track.

Bubble chambers are not so different. They use a super-heated liquid (e.g. liquid
Hydrogen), just ready to boil. When the particle passes through, it generates enough
energy for gas bubbles form, creating a trail of bubbles along the track.4

Both droplets and bubbles will scatter light, so can be photographed, producing
snazzy pictures that show the particle trajectories.

Most modern particle detectors are rather different. They are almost all designed
to produce electrical signals, rather than photographic ones. They need some
method of liberating charge — charge which is subsequently amplified and digitized.
By feeding the signals into a computer, very large numbers of interactions can be
analyzed. Computer analysis is easier on the eyes than scanning thousands of
photos.

8.4 Particle interactions with matter

If we are going to detect a particle then it had better interact with something.

The interactions of particles depend on their properties – particularly their masses,
charges, and couplings to other particles. We don’t need to know about them all,

3These losses are a pain if you want to get the beam to high energy. But they have their uses.
The intense x-rays emitted are just what you want if you are a materials scientists, crystallographer
or biologist.

4One of the few instances of a great physics idea being inspired by someone staring at a pint
of beer.
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but let’s consider some examples.

8.4.1 Photon interactions

When a photon strikes some material object the result depends on the energy of
that photon.

The dominant interactions of photons in some example materials are shown in
Figure 8.2 for a range of photon energies. At low energy the photon is usually
coherently absorbed by the atom, leading to the ejection of the electron in a process
known as photoelectric absorption. In the figure you can see the large cross-
section, with sharp spikes when the photon has enough energy to knock electrons
out of more tightly-bound shells.

Compton Scattering At higher energy the photon acts as if scattering elastically
from stationary ‘free’ electrons. This is known as Compton scattering:

γ + e− → γ + e−.

Let’s investigate the kinematics. Let the photon four-momentum be P and the
electron four-momentum be Q. We’ll use the same symbols but with primes after
the scatter. Then energy-momentum conservation is given by

P + Q = P′ + Q′.

To eliminate the components of Q′, recognize that we get rid of the energy and
momentum components of the electron by taking

Q′2 = (P + Q− P′)2 . (8.1)

The electron can be assumed to be at rest. Without loss of generality the four-
vectors can be expressed as

P =


E

E

0

0

 Q =


me

0

0

0

 P′ =


E′

E′ cos θ

E′ sin θ

0

 .

Expanding (8.1) we find that

EE′(1− cos θ) = me(E − E′).

which can be rewritten

E′ =
meE

E(1− cos θ) +me
.

But what do we observe? If the photon is scattered through sufficiently small
angles that all of its energy and all of the energy of the scattered electron end up
being absorbed in the detector then one gets a peak corresponding to E.

0.0 0.2 0.4 0.6 0.8 1.0
Eobs

0.2

0.4

0.6

0.8

1.0

1.2
Counts

Peak

Edge

Rate as a function of fraction of
the observed photon energy.
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Figure 8.2: Photon total cross sections as a function of energy in carbon and lead,
showing the contributions of different processes. Most important are:
(p.e.) Atomic photoelectric effect (electron ejection, photon absorption)
(Compton) Compton scattering from an electron: γ + e− → γ + e−

(nuc) γ → e+e− pair production in the nuclear electric field.
From [12].
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What if the photon scatters through a sufficiently large angle that it is not subse-
quently absorbed by the material? Then some of the energy will not be observed,
and the visible signal will be smaller. The energy lost depends on the angle through
which the photon is scattered.

Assuming the photon is lost, the minimum energy is lost when E′ is smallest, which
is when the photon back-scatters such that cos θ is close to −1. When an ensemble
of scattering events are observed (e.g. when detecting many individual gamma rays
one-by-one from an isotopic decay) the distribution of observed energies shows a
sharp drop corresponding to scattered photon energy

E′ =
meE

2E +me
.

The sharp drop at visible energy E − E′ is known as the Compton edge.

Pair creation At still higher energies, photons with E > 2me can create e+e− pairs
from interactions in the vicinity of an atomic nucleus,

γ + nucleus→ e+ + e− + nucleus.

The nucleus absorbs some of the momentum from the photon. The energy of the
incoming photon clearly has to be greater than twice the rest-mass-energy of the
electron for the reaction to proceed.
⇒ Why can the above reaction not happen in a vacuum?

8.4.2 Very high-energy electrons and photons

Very high energy electrons in the presence of a charged nucleus will accelerate
(electrons more so than e.g. protons). Accelerated charges emit electromagnetic
radiation – photons:

e± + nucleus→ e± + γ + nucleus.

The process above is known as Bremsstrahlung (from the German ‘braking radia-
tion’.)

As described above in §8.4.1, the photons produced — if they have enough energy
— can lead to pair-creation of further electrons and positrons in the nuclear electric
field

γ + nucleus→ e+ + e− + nucleus.

Those electrons and positrons can themselves undergo further Bremsstrahlung.
More electrons, positrons and photons are created through repeated cycles of Bremsstrahlung
and pair-creation until the energy of the photons is too small to generate electron-
positron pairs.

The net effect is to creates a cascade or shower of electrons, photons, and positrons.
As these come to rest they create a lot of subsequent ionization. The average
amount of ionization will be proportional to the energy of the incoming electron
or photon. A particle sensitive to this ionization — for example a crystal which
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Figure 8.3: Bubble chamber photograph showing the creation of electron-positron
pairs γ → e+ + e−, and photon creation from Bremsstrahlung.

produces light proportional to the energy deposited in it — then acts as an elec-
tromagnetic calorimeter.5

8.4.3 Very high-energy, strongly interacting particles

Particles which couple to the strong nuclear force – such as neutrons, protons,
kaons and pions can undergo strong-force reactions with atomic nuclei. For very
high-energy projectiles these mostly result in the creation of new strongly-interacting
particles, e.g.

n+ nucleus → n+ π0 + nucleus

p+ nucleus → n+ π+ + nucleus

π− + nucleus → n+ π− + π+ + π− + nucleus

π+ + nucleus → π+ + π0 + nucleus.

Rather like in the electromagnetic case, cascades of such interactions create large
numbers of charged pions — the lightest strongly interacting particles — and pho-
tons from the subsequent decay π0 → γγ. This is known as a ‘hadronic shower’, and
devices which exploit it to determine the energy of the original strongly-interacting
particle are imaginatively referred to as hadronic calorimeters.

5Calorimeter = device for measuring energy.
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8.4.4 Detecting neutrons

High energy neutrons will create hadronic showers (described above). If the neutron
energy is less than or even close to mπ ≈ 140 MeV they won’t be able to play that
game.

Low energy neutrons can be detected by inducing them to undergo nuclear reactions
which lead to ionizing particles. For example neutrons impinging on a gas of BF3

can undergo the reaction
n+ 10B→ α+ 7Li

which has a large cross-section. The α particle ionizes the gas which, in the presence
of an electric field, leads to a current.

8.4.5 Detecting neutrinos

Neutrinos have extremely small cross sections, so one needs very large fluxes – and
preferably very large detectors – to stand a chance of detecting them.

Though the cross-section is very small (see problem set 1), rare collision reactions
can be observed. For example when a neutrino strikes a neutron the following
reaction can occur

ν + n→ p+ e−. (8.2)

The interaction which allows this – the weak nuclear interaction – is the same one
that is responsible for nuclear beta decay:

n→ p+ e− + ν̄.

Neutrinos can undergo other interactions, for example elastic scattering from elec-
trons

ν + e− → ν + e−.

The moving electron from this reaction, or from the nucleon-changing scattering
reaction (8.2), can then be detected. We’ll talk more about the interactions of
neutrinos after we discuss the only force they couple to – the weak nuclear force.

8.4.6 Measuring properties

Momentum can be measured using the bending radius of the particle in an applied
magnetic field, p⊥ = QBR.

Speed can be measured from:

• Time of flight (to of order ps timing resolution).

• Energy deposited through ionization. Energy loss −dE
dx depends on v (see

the first problem sheet), so if you measure the amount of ionization you will
learn about the speed.
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• The electromagnetic equivalent to the sonic boom – the Čerenkov radiation
created when a particle passes through a medium faster than the local speed
of light in that medium.

⇒ Look up the meaning of Čerenkov radiation. Convince yourself that this sort of
radiation should be emitted at angle θ = cos−1 1

βη from the particle’s trajectory,

where β = v/c and η is the refractive index of the medium.

Energy can be measured by total absorption of the particle within some active
medium (a calorimeter).

Lifetime can be measured with a good clock for reasonably long-lived species. For
short-lived species we can infer the lifetime from from the distance travelled before
decaying — provided that the lifetime and speed are such that the mean distance
travelled βγctdecay is a measurable length. If the particle is very short-lived, we can
measure its Breit-Wigner width, Γ, and infer the lifetime τ = ~/Γ.
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Key ideas

• Charged particles can be accelerated according to the Lorenz force law

dp
dt

= Q[E + v ×B]

• Linear accelerators are limited by the strength of the electric field achievable.

• Circular accelerators are limited by the strength of the magnetic field for
protons, and by synchrotron radiation for electrons.

• The momentum of particles can be measured from their bending in magnetic
fields

• A useful formula relating bending radius, momentum, and magnetic field is

p⊥ = 0.3BR [GeV, Tesla, meters].

• For a particle to be detected it has to interact with some sensitive material.

• The energy of particles can be measured by absorbing them in a calorimeter.

• Modern particle detectors are designed to produce electrical signals that can
be amplified and digitised.

8.A Details of a linear acceleration

Non-examinable

Constant electric field

Let’s calculate how the speed and position of an particle will vary when it is accel-
erated from rest in a constant electrical field.

For a constant electric field E ‖ v, and starting at rest we can work in one dimen-
sion. Since the parallel component of the field stays the same under the Lorentz
transformation

E′‖ = E‖,

and since the Lorentz force law reduces to

f = EQ

the proper acceleration (i.e. the acceleration in the frame in which the particle is
instantaneously at rest) is

a0 =
EQ
m
. (8.3)
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If the motion is relativistic it’s convenient to work in terms of the rapidity ρ which
is defined by

tanh ρ = v/c (8.4)

The reason that rapidity is useful is that it is easy to add successive Lorentz trans-
formations if their relative rapidity is known. To show this, we rewrite the usual 1D
Lorentz transformation in terms of the rapidity,

Λa =

 γa −βaγa

−βaγa γa

 =

 cosh ρa − sinh ρa

− sinh ρa cosh ρa


showing only the ct and x components. Here Λa is the L.T. corresponding to a
boost by rapidity ρa or equivalently by a velocity va = c tanh ρa.

By multiplying a pair of such matrices together with different rapidities we can see
that the combined operation of two Lorentz transformations along the same axis is
given by

ΛbΛa = Λa+b.

This is a neat result. The Lorentz transformation for a combined boost has rapidity
given by the straight sum of the rapidities of the two individual transforms:

ρa+b = ρa + ρb. (8.5)

Remember that the same can not be said for the velocity. The resultant velocity is
not the direct sum of the two individual velocities (unless v � c):

va+b =
va + vb

1 + vavb/c2
6= va + vb.

By taking derivatives of (8.4) we can see that, close to the instantaneous rest frame
(IRF) of the particle,

dβ

dρ

∣∣∣∣
IRF

= 1.

This means that we can use the proper acceleration (in the series of instantaneous
rest frames) to calculate the rate of change of rapidity with respect to proper time

a0 =
dv

dt

∣∣∣∣
IRF

= c
dβ

dτ

∣∣∣∣
IRF

= c
dρ

dτ
.

The IRF subscript shows quantities calculated very close to the instantaneous rest
frame.

In the last expression all of the quantities (c, dτ, dρ) are unchanged by any boost
along the x-axis.6 So the expression a0 = cdρ

dt is valid in any x-boosted frame, not
just the IRF.

6This is clear for a0, c, and dτ all of which are invariants by definition. To see that dρ is
not changed by the boost let us show that differences in rapidity must be unmodified by the L.T.
along the x-axis. Consider a general difference of rapidity (ρa − ρb). If both a and b are boosted
by rapidity ρc, then from (8.5) the difference becomes (ρa + ρc)− (ρb + ρc) = ρa − ρb, i.e. the
rapidity difference is unchanged. This is true for any difference in rapidities (along the x-axis) so
it must be true for dρ.
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Since (8.5) implies that rapidities are additive, we can calculate the rapidity at any
proper time τ as the sum of lots of little boosts, each of rapidity dρ:

ρ =
∫
dρ =

∫
dρ

dτ
dτ =

a0τ

c
=

EQτ
mc

(8.6)

(substituting for a0 = c dρ/dτ from above).

It’s now easy to find a parametric equation for the motion. We just Lorentz trans-
form using the matrix Λρ to boost from the lab frame to the IRF, which we can do
for any proper time. For a particle initially at rest at X0 = (0, x0, 0, 0) (with x0 to
be determined later),

X = ΛρX0.

The components of the boosted vector can then be parametrized in terms of the
proper time,

x = x0 cosh(a0τ/c)
ct = x0 sinh(a0τ/c), (8.7)

since ρ = a0τ/c.

We can also find the speed in terms of the proper time using the definition of the
rapidity (8.4)

v = c tanh ρ = c tanh(a0τ/c).

We haven’t yet worked out the constant x0. Let’s do so. First we find the small ve-
locity at very early times when t is small and (since v is small) t ≈ τ . Differentiating
(8.7) at early times gives

v|v�c =
dx

dt

∣∣∣∣
v�c

=
dx

dτ

∣∣∣∣
v�c

=
x0a0

c
sinh

(a0τ

c

)
v�c
≈ x0a

2
0

c2
τ.

Comparing with this with v = a0t we see that our conveniently-chosen coordinates
were such that our previously undetermined initial position must have been x0 =
c2/a0.

To get the energy and momentum we recognize that the components P = (E, pc)
can be obtained from the energy-momentum four-vector of the initially stationary
particle P0 = (m, 0) by the same overall Lorentz transform as above,

P = ΛρP0.

Therefore the energy at any proper time is given by E = m cosh ρ and the momen-
tum is p = m sinh ρ where the rapidity ρ at proper time τ can again be found from
(8.6).

Where should the electrodes on a linac be placed? The bunches are accelerating so
will travel progressively longer distances during each period of the oscillator. Let’s
make the approximation that constant acceleration is very similar to lots of little
accelerations, and use the results of the previous section. Eliminating the proper
time from (8.7) we find the following relationship between lab-frame position and
time,

x2 − (ct)2 = x2
0 (8.8)
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Detail of the ATLAS
Semiconductor tracker barrel
during its assembly in Oxford.
The silicon detector elements
are approximately 60 mm wide
[2].

If the frequency of the applied AC voltage is f we want to change the field every
half cycle, i.e. at times tn = n/(2f). We should therefore place the nth gap at the
position the particles will be at that time, which is

xn =

√
x2

0 +
(
nc

2f

)2

.

Let’s check this answer for the non-relativistic case. For v � c we can Taylor
expand

xn = x0

√
1 +

(
nc

2fx0

)2

≈ x0 +
1
2
n2c2

4x0f2
.

Since we found above that x0 = c2/a0 we have xn = const + 1
2a0

n2

4f2 as expected

from the non-relativistic formula x = const + 1
2at

2.

8.B Charged particle ionization

Non-examinable

Charged particles e.g. protons will kick atomic electrons out of their ground states
as they pass through the material. In the first problem set we calculated the rate
at which energy is lost, assuming a ‘free electron gas’, and found that (in natural
units)

−
〈
dE

dx

〉
=

4πneα
2

mev2

∫ zmax

zmin

z dz

1 + z2

where z = bmev
2/α, b is the impact parameter, α is the electromagnetic fine

structure constant, and ne is the number density of electrons. in the material. A
relativistic variation of this result is known as the Bethe-Bloch formula.7

The limits of the integration are set by the energies at which the approximation
breaks down – which at the low-energy end is where Ee approaches the ionization
energy of the material.

8.C Detector technologies

Below are a few techniques we can exploit to turn an interaction of a particle with
a material into a recordable signal.

8.C.1 Semiconductor detectors

When a charged particle passes through a semiconductor it creates electron–hole
pairs – charge carriers – which can be accelerated by an applied electric field to
create currents.

7See [12] for the full relativistic version.
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To work well, the semiconductor must previously have been depleted of charge
carriers. This can be achieved by applying a voltage (a so-called reverse bias) to
a junction between what are known as ‘p-type’ doped and ‘n-type’ doped types of
silicon.

Low energy photons or electrons striking a semiconductor can deposit all of their
energy within the material, resulting in a signal peak that corresponds to the total
energy of the particle. The electrical signal is then a measure of the energy of the
incoming photon or electron.

Very thin layers of semiconductor (often less than 1 mm thick), suitably instru-
mented, are used to detect the passage of a charged particle while only very slightly
reducing that particle’s energy.

8.C.2 Gas and liquid ionization detectors

Charged particles traversing a gas or a noble liquid will create electron–ion pairs.
In the presence of an electric field, those ions will create an electrical current which
can be amplified (in the gas and/or electronically) and digitized.
⇒ How can we get amplification in the gas?

8.C.3 Scintillator detectors

Scintillators are materials which emit visible light when atomic electrons, excited
by the passage of an ionizing particle, fall back to their ground states. The visible
photons can be then be picked up by photomultiplier tubes, which converts that
light to an electrical signal proportional to the energy deposited in the scintillator.
⇒ How does a photomultiplier work?

Further Reading

Many of the books on nuclear and particle physics include chapters on experimental
techniques. Examples in some general texts include:

• “Introductory Nuclear Physics”, P.E. Hodgeson, E. Gadioli and E. Gadioli
Erba, OUP, 2003. Chapters 4 and 5 are good introductions to accelerators
and detectors respectively.

• “Particle Physics” B.R. Martin and G. Shaw. Chapter 3 gives a brief intro-
duction at about the right level.

• “Nuclear and Particle Physics” W.E. Burcham and M. Jobes. Chapter 2 has
lots of good stuff in it

More specialized books include. . .
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Figure 8.4: Diagram showing the major detector components of the ATLAS detector
for the CERN Large Hadron Collider. The detector is built in concentric layers
surrounding the beam-beam interaction point. LAr means liquid argon. The ‘tile’
hadronic calorimeter is made of alternating layers of iron and scintillator. From [1].
⇒ Muons have the same interactions as electrons but are about 200 times heavier.
Why are the muon detection chambers on the outer-most layers?

• An Introduction to Particle Accelerators, E.J.N. Wilson, OUP (2001)

• The Physics of Particle Detectors, Dan Green, CUP (2000)
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Figure 8.5: Event display of one of the first Ecm = 7 TeV proton-proton collisions
detected by the ATLAS experiment. Lots of particles and anti-particles have been
created in the collision. They stream away from the interaction point and are
detected by the various concentric layers of the detector. In the central region the
charged particle tracks, which curve in the solenoidal field, are constructed from hits
in layers of silicon detectors and gaseous ionization detectors. The lines represent
tracks found by pattern-recognition algorithms.

Top left (scale ∼ 10 m) Projection of the detectors perpendicular to the beam.

Bottom left (scale ∼ 10 m) Projection along the line of the beam. The beam pipe
would pass horizontally through the middle of this view.

Top right Energy deposited in the calorimeters, as a function of angle relative to
the beam direction and azimuthal angle.

Mid right Detail (scale ∼ 0.1mm) showing tracks pointing towards a secondary
vertex caused by the decay of a ‘long-lived’ particle, probably one containing a
b-quark.

Bottom right Detail (scale ∼ cm) showing that two independent proton-proton
collisions have coincided in time.

From http://atlas.web.cern.ch/
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9.1 Problems 1

Three vectors are written in bold e.g. x.
Four vectors are written sans-serif, e.g. P.
The metric is diag(1,−1,−1,−1) so that with X · X = c2t2 − x · x,
time-like intervals have positive signs, and propagating particles satisfy
P · P = +m2.

Core questions

1.1. a) What assumptions underlie the radioactivity law

dN

dt
= −ΓN ?

b) If some number N0 of nuclei are present at time t = 0 how many are present at
some later time t?

c) Calculate the mean life τ of the species.

d) Relate the half-life t 1
2

to τ .

e) How do things change when the particle moves relativistically?

1.2. A sample consists originally of nucleus A only, but subsequently decays
according to

A
ΓA−−→ B

ΓB−−→ C.

Write down differential expressions for dA
dt , dB

dt and dC
dt . Solve for, and then sketch,

the fractions of, A(t), B(t) and C(t). At what time is the decay rate of B maxi-
mum?

1.3. Consider Compton scattering γ + e− → γ + e− of a photon of energy Eγ

(∼ MeV) from a stationary electron.

a) Show that the energy of the scattered photon is

E′γ =
meEγ

me + Eγ(1− cos θ)
,

where θ is the angle through which the photon is scattered.

b) If an incoming photon is scattered through an angle ∼ 180◦ at the surface of
a material, how much of the original photon’s energy would you expect not to be
deposited in the material?
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1.4. Briefly explain the origin of each of the terms in the semi-empirical mass
formula (SEMF)

M(N,Z) = Zmp +Nmn − αA+ βA
2
3 + γ

(N − Z)2

A
+ ε

Z2

A
1
3

+ δ(N,Z)

and obtain a value for ε.

Show that we can include the gravitational interaction between the nucleons by
adding a term to the SEMF of the form

−ζA5/3

and find the value of ζ.

Use this modified SEMF to obtain a lower bound on the mass of a gravitationally-
bound ‘nucleus’ consisting only of neutrons (a neutron star).

1.5. An analysis of a chart showing all stable (t 1
2
> 109 years) nuclei shows that

there are 177 even-even, 121 even-odd and 8 odd-odd stable nuclei and, for each
A, only one, two or three stable isobars. Explain these observations qualitatively
using the SEMF. Energetically 106

48Cd could decay to 106
46Pd with an energy release

of greater than 2 MeV. Why does 106
48Cd occur naturally?

1.6. The radius r of a nucleus with mass number A is given by r = r0A
1
3 with

r0 = 1.2 fm. What does this tell us about the nuclear force?

a) Use the Fermi gas model (assuming N ≈ Z) to show that the energy εF of the
Fermi level is given by

εF =
~2

2mr20

(
9π
8

) 2
3

.

b) Estimate the total kinetic energy of the nucleons in an 16O nucleus.

c) For a nucleus with neutron number N and proton number Z the asymmetry term
in the semi-empirical mass formula is

γ(N − Z)2

A
.

Assuming that (N − Z) � A use the Fermi gas model to justify this form and to
estimate the value of γ. Comment on the value obtained.
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1.7. Alpha-decay rates are determined by the probability of tunnelling through
the Coulomb barrier. Draw a diagram of the potential energy V (r) as a function
of the distance r between the daughter nucleus and the α particle, and of the wave
function 〈r|ψ〉.

The decay rate can be expressed as Γ = fP , where f is the frequency of attempts
by the alpha particle to escape and P = exp (−2G) is the probability for the alpha
particle to escape on any given attempt.

By using a one-dimensional Hamiltonian

H =
p2

r

2m
+ V,

with a 1D momentum operator pr = −i~ ∂
∂r , and by representing the wave function

by
〈r|Ψ〉 = exp[η(r)],

with r = x show that

G =
√

2m
~

∫ b

a

√
V (r)−Q dr.

Integrate (a substitution r = rb cos2 θ helps) to give

G =
π

2
Zzα

√
2mc2

Q
F(ra/rb)

where the dimensionless function

F(r) =
2
π

(
cos−1

√
r −

√
r(1− r)

)
lies in the range between 0 and 1, and for small Q approaches 1.

[Hint: can you convince yourself that η′′ � (η′)2?]

1.8. a) What are the basic assumptions of the Fermi theory of beta decay?

b) The Fermi theory predicts that in a beta decay the rate of electrons emitted with
momentum between p and p+ dp is given by

dΓ
dpe

=
2π
~
G2|Mnuc

fi |2
1

4π4~6c3
(E −Q)2p2,

where E is the energy of the electron, and Q is the energy released in the reaction.
Justify the form of this result.

c) Show that for Q� mec
2 the total rate is proportional to Q5

d) What spin states are allowed for the combined system of the electron + neutrino?

e) ‡ Why are transitions between initial and final nuclei with angular momenta
differing by more than ~ suppressed?
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Optional questions

1.9. A high energy photon can create an electron-positron pair within the material.
When a positron comes to rest it will annihilate against an electron from the material

e+ + e− → γ + γ.

What will be the energy of these secondary photons?

The figure shows the energy spectrum from the gamma decay of 24Na as measured
in a small Ge(Li) detector. Suggest the origins of the peaks A, B, C and the edge
D. For such a detector describe the stages by which gamma ray energy is converted
into a measurable voltage pulse.

1.10. The figure shows the α-decay scheme of 244
96Cm and 240

94Pu.
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Show — either by (a) using a suitable approximation of F calculated in a previous
question or (b) by redoing the corresponding integral neglecting Q — that we would
expect the rates to satisfy and equation of the form

log Γ = A− BZ√
Q
.

The Q value for the ground state to ground state transition is 5.902 MeV and for
this transition A = 132.8 and B = 3.97( MeV)1/2 when Γ is in s−1. The branching
ratio for this transition is given in the figure. Calculate the mean life of 244Cm.

Estimate the transition rate from the ground state of 244Cm to the 6+ level of
240Pu using the same A and B and compare to the branching ratio given in the
figure.

Suggest a reason for any discrepancy.

[Hint: what form does the Schrödinger equation take for angular momentum quantum

number l 6= 0?]

1.11. Discuss the evidence for shell structure in the atomic nucleus. Indicate how
closed shells for proton and neutron numbers of 2, 8, 20, 28, 50 can be explained.
What are the other ‘magic numbers’?

Deduce from the shell model the spins and parities of the ground states of the
following nuclei, stating any assumptions you make: 7

3Li, 17
8O, 20

10Ne, 27
13Al, 14

7N,
39
19K, 41

21Sc.
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9.2 Problems 2

Core questions

2.1. What is meant by the ‘cross section’ and the ‘differential cross section’?

Consider classical Rutherford scattering of a particle with mass m and initial speed
v0 from a potential

V (r) =
α

r

a) Show from geometry that the change in momentum is given by

|∆p| = 2p sin(Θ/2).

b) Considering the symmetry of the problem, show that

bv0 = r2
dθ

dt

where b is the impact parameter, r is the location of the particle from the origin
and θ is the angle ∠(r, r∗) where r∗ is the point of closest approach.

c) Starting from Newton’s second law show that

|∆p| = 2α
v0b

cos
(

Θ
2

)
.

d) Show that the scattering angle Θ is given by

tan(Θ/2) =
α

2bT
(9.1)

where b is the impact parameter (the closest distance of the projectile to the nucleus

if it were to be undeflected) and T = p2

2m is the initial kinetic energy.

e) Calculate the Rutherford scattering cross section σ for scattering of projectiles
by angles greater than Θmin.

f) Show that the differential cross section

dσ

dΩ
=

1
16

(α
T

)2 1
sin4(Θ/2)

where T is the kinetic energy of the particle.

Why is it not possible to calculate the total cross section for this reaction?

2.2. The JP = 3
2

+
decuplet contains the following baryons:

∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−
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What is the quark content of each of these baryons?

The constituent quarks have no relative orbital angular momentum. How does the
Ω− baryon state behave under exchange of any pair of quarks? Explain how this is
achieved in terms of the space, spin, flavour and colour parts of the state vector.

Account for the absence of sss, ddd and uuu states in the JP = 1
2

+
octet.

What is meant by quark confinement?

2.3. Write down the valence quark content for each of the different particles in
the reactions below and check that the conservation laws of electric charge, flavour,
strangeness and baryon number are satisfied throught.

(1) π− + p → K0 + Λ

(2) K− + p → K0 + Ξ0

(3) Ξ− + p → Λ + Λ

(4) K− + p → K+ +K0 + Ω−

Draw a quark flow diagram for the last reaction.

2.4. Consider the decay of the ρ0 meson (JP = 1−) in the following decay modes:

a) ρ0 → π0 + γ

b) ρ0 → π+ + π−

c) ρ0 → π0 + π0

For case (b) and (c), draw a diagram to show the quark flow.

Consider the symmetry of the wave-function required for π0 + π0 and explain why
this decay mode is forbidden.

From consideration of the relative strength of the different fundamental forces,
determine which of the other two decay modes will dominate.

2.5. A wave function is modelled as the sum of the incoming plane wave and an
outgoing (scattered) spherical wave,

〈x|Ψ(+)〉 = A

[
eik·x +

eikr

r
f(k′,k)

]
.

Calculate the flux associated with the plane wave and the spherical wave separately.
Hence show that the cross section into solid angle dΩ is

dσ

dΩ
= |f(k′,k)|2 .
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justifying any assumptions you make.

[Hint: Remember that the flux is given by ~
2mi

(ψ∗∇ψ − ψ∇ψ∗).]

2.6. In the Born approximation, the scattering amplitude is given by

f (1)(k′,k) = − 1
4π

(2m)(2π)3〈k′|V |k〉

Explain the terms in this equation, and state the conditions for which it is valid.

b) The Yukawa potential is given by

V (r) =
g2

4π
e−µr

r
.

Show that for this potential

〈k′|V |k〉 =
g2

4π
1

(2π)3

∫
d3x e−i∆k·x e

−µr

r

where ∆k = k′ − k.

c) Hence show that

|〈k′|V |k〉| = g2

(2π)3
1

q2 + µ2

where q = |∆k|.

d) Show that within the Born approximation

dσ

dΩ
=

g4

(4π)2
4m2

[2k2(1− cos Θ) + µ2]2
(9.2)

where Θ is the scattering angle.

e) Find the total cross section for the case when µ 6= 0.

f) When µ → 0, V (r) ∝ 1/r. Compare the differential cross section (9.2) to the
classical Rutherford scattering cross section

dσ

dΩ
=

1
16

(α
T

)2 1
sin4(Θ/2)

.

What must be the relationship between g and α for Born approximation to reproduce
the classical Rutherford formula for electron–proton scattering?

2.7. Consider the scattering of an electron from a nucleus with extended spherical
charge density N(|x′′|) which is normalised such that

∫
d3x′′N(|x′′|) = 1. The

potential at any point is then

V (x′) = zZα

∫
d3x′′

N(|x′′|)
|x′ − x′′|

,

where Z and z are the charges of the nucleus and the projectile respectively.
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ã
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(ii)

(iii)

Figure 9.1: (LHS) Scattering cross section for K.E.= 17 MeV protons normalized
to the Rutherford scattering cross section (from [9]).
(RHS) Examples of nuclear form factors |F (|∆k|)|2 for different charge density
functions: (i) uniform unit sphere; (ii) Saxon-Woods ρ(r) ∝ [1+exp((r−R)/a)]−1

with R = 1, a = 0.2. The corresponding Saxon-Woods charge density [15] is shown
in (iii).
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a) By expanding in the position basis, and defining a new variable X = x′ − x′′,
show that the Born approximation to the scattering amplitude can be expressed in
the form

f(k′,k) = f(k′,k)point × Fnucl(∆k)

where f(k′,k)point is the scattering amplitude from a point charge,the nuclear form
factor

Fnucl(∆k) =
∫
d3x′ e−i∆k·x′N(|x′|)

is the 3D Fourier transform of the charge density distribution, and ∆k is the change
in momentum of the projectile.

Hence show that
dσ

dΩ
=
(
dσ

dΩ

)
Rutherford

|Fnucl(∆k)|2.

b) Consider the example form factors in Figure 9.1 (i) and (ii). How would these
form factors scale along the ∆k-axis if the radius r of the corresponding sphere of
charge was doubled? By relating the momentum transfer to the scattering angle,
use the data to estimate the size of the silver nucleus. Compare to the expectation
for an incompressible nucleus, r = r0A

1
3 with r0 = 1.25 fm.

c) How might one accelerate protons to kinetic energy of 17 MeV, and subsequently
detect the scattered protons experimentally?

2.8. The cross section for the production of γ-rays by neutrons incident on a
certain nucleus (N, Z) is dominated by a resonance and given by the Breit-Wigner
formula,

σ(n, γ) =
π

k2

ΓnΓγ

(E − E0)2 + Γ2/4
. (9.3)

a) Define the symbols in this formula and explain the physical principles that underlie
it, and the conditions under which it applies.

b) What are the mass and lifetime of the resonant state?

c) All spin effects have been ignored in (9.3). How would the formula differ if spins
are included?

d) On the same plot draw how the inelastic (n, γ) and elastic (n, n) cross sections
would behave close to the resonance, when Γγ = 4Γn, labeling important quantities
including the peak cross section values.

[In (d) you may assume that resonant scattering dominates both cross-sections, and that

decays other than to n and γ are negligible.]

2.9. The cross section for the reaction π−p → π0n shows a prominent peak
when measured as a function of the π− energy. The peak corresponds to the ∆
resonance which has a mass of 1232MeV, with Γ = 120 MeV. The partial widths for
the incoming and outgoing states are Γi = 40MeV, and Γf = 80MeV respectively
for this reaction.
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At what pion beam energy will the cross section be maximal for a stationary proton?

Describe and explain the similarities and differences you would expect between the
cross section for π−p → π0n and the one for π−p → π−p, for centre-of-mass
energies not far from 1.2GeV. Giving values for the variables in the Breit-Wigner
formula where possible. Use quark-flow diagrams to explain what is happening.

By considering the quark content of the intermediate states, discuss whether you
would expect similar peaks in the cross sections for the reactions (a) K−p →
products and (b) K+p→ products.

Optional questions

2.10. Consider the Hamiltonian H = H0 +V , where H0 is the free-particle Hamil-
tonian, and V is some localised potential. Let the ket |φ〉 represent an eigenstate
of H0, and the ket |ψ〉 represent an eigenstate of H which shares the same energy
eigenvalue as the |φ〉 in the limit ε→ 0.

Show that the Lippmann-Schwinger equation

|ψ(±)〉 = |φ〉+ 1
E −H0 ± iε

V |ψ(±)〉.

is consistent with the states defined above by multiplying it by the operator (E −
H0 ± iε) and taking the limit ε→ 0.

2.11. Show that the Green’s function

G±(x,x′) ≡ ~2

2m

〈
x
∣∣∣ 1
E −H0 ± iε

∣∣∣x′〉
can be written

G±(x,x′) =
i

4π2∆

∫ ∞

0

dq q
eiq∆ − e−iq∆

q2 − k2 ∓ iε
(9.4)

where E = ~2k2

2m and ∆ = |x− x′|.

[Hint: start by inserting identity operators
R
d3p′|p′〉〈p′| and

R
d3p′′|p′′〉〈p′′| on each side

of the operator, and changing Ĥ0→p̂2/2m.]

2.12. If you have done the course on functions of a complex variable, finish the
integral in (9.4) using appropriate contour integrals to obtain

G±(x,x′) = − 1
4π

e±ik∆

∆
.

2.13. The pions can be represented in an isospin triplet (I = 1) while the nucleons
form an isospin doublet (I = 1

2 ),
π+

π0

π−

 and

 p

n
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while the ∆ series of resonances have I = 3
2 .

By assuming that the isospin operators I, I3, I± obey the same alegbra as the
quantum mechanical angular momentum operators J , Jz, J±, explain why the
ratio of Γi/Γf ≈ 1

2 was found in a previous question.

[Hint: you will need the Clebsch-Gordon coefficients for 〈j1j2m1m2|j1j2JM〉 for J = 3
2
,

j1 = 1, j2 = 1
2
, M = − 1

2
.]

2.14. A proton is travelling through a material and scattering the electrons in the
material.

a) Express the scattering angle in terms of the impact parameter b, the reduced
mass µ, the relative speed v, and the scattering angle in the ZMF. Hence show that
the momentum transfer is

q =
2µv
√

1 + z2
.

where z = bµv2/α.

b) Write down the energy given to an electron for a collision for a given impact
parameter b. Integrate this up with area element 2πb db to show that the average
energy lost by the projectile per distance travelled is

−
〈
dE

dx

〉
=

4πneα
2

mev2

∫ zmax

zmin

z dz

1 + z2
,

where ne is the number density of electrons.

[Hint: recycle results from the Rutherford scattering question.]

2.15. a) A projectile travels through a medium of thickness x with n targets per
unit volume. Show that the fraction absorbed or deflected by the medium is

Pabsorb(x) = 1− e−nσx,

where σ is the absorption cross section.

b) Estimate, stating any assumptions you make, the thickness of lead that would
be required to have a 50% chance of stopping a 2.3 MeV neutrino coming from a
solar nuclear fusion reaction.

The cross section for the scattering of a neutrino from a stationary target is approx-
imately

σtot = 2πG2
F

4π p2
CM

(2π)3
dpCM

dECM

where ECM is the centre-of-mass energy of the system, and pCM is the momentum
of the neutrino in the centre-of-mass frame.

c) Justify the form of this expression.

d) Explain how Figure 9.2 supports a model in which the proton contains point-like
constituents.
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Figure 9.2: σtot/Eν for neutrino-nucleon νN (and anti-neutrino–nucleon ν̄N)
interactions as a function of neutrino energy. From [12].

[The density of lead is about 11.3 g cm−3. Some data for the cross section of neutrinos ν

scattering from nucleons – meaning protons or neutrons – are shown in Figure 9.2.]

2.16. The figure shows the fraction N/N0 transmitted when protons of kinetic
energy E = 140 MeV impinge as a collimated beam on sheets of copper of various
thicknesses x. By considering the 2-body kinematics of proton–electron collisions
and proton–nucleus collisions, account for the attenuation for values of x between 0
and 20mm, and for the sudden change in behaviour around the value of x marked
R(E).
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Results similar to the figure were obtained for protons of E = 100MeV, except that
in this case a value of R(E) = 14 mm was obtained. Offer a brief explanation for
the change in R(E). What is the relative size of the nuclear scattering cross section
σNucl in copper compared to the geometric cross section?

[The density of copper is 8.9 g cm−3, and it has relative atomic mass 63.5. You may

assume that the nuclear radius is given by r = r0A
1/3 with r0 = 1.25 fm ]
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9.3 Problems 3

Core questions

3.1. The Klein-Gordon equation,(
∂2

∂t2
−∇2 +m2

)
ϕ(r, t) = 0. (9.5)

is the relativistic wave equation for spin-0 particles.

a) Show that

ϕ =
e−µr

r

is a valid static-field solution.

b) Show that another possible solution to the Klein-Gordon equation is:

φ(X) = A exp [iP ·X]

Where P and X are the momentum and position four-vectors respectively. What
restrictions does (9.5) place on the components of P?

What are the physical interpretation of these solutions?

3.2. Draw all the lowest order electromagnetic Feynman diagram(s) for the following
processes:

a) e− + e+ −→ e− + e+

b) e− + e− −→ e− + e−

c) e− + e− −→ e− + e− + µ+ + µ−

d) γ −→ e+e− in the presence of matter
d) γ + γ −→ γ + γ

3.3. Why does the ratio

σ(e+ + e− → µ+ + µ−)
σ(e+ + e− → τ+ + τ−)

tend to unity at high energies? Would you expect the same to be true for

σ(e+ + e− → µ+ + µ−)
σ(e+ + e− → e+ + e−)

?

3.4. Draw leading order electromagnetic Feynman diagrams for the processes

e+ + e− → µ+ + µ− and e+ + e− → q + q̄.

How do the vertex and propagator factors compare?
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Figure 9.3: The cross section σ(e+e− → hadrons) and the ratio of cross sections

R = σ(e+e−→ hadrons)
σ(e+e−→µ+µ−) as a function of the center of mass energy

√
s.
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Figure 9.3 shows the ratio of the cross sections for the process of electron–positron
annihilation to hadrons, and the corresponding cross section to the muon–antimuon
final state as a function of

√
s, the centre-of-mass energy.

Considering the number of quarks that can be created at particular centre-of-mass
energy, what values of R would you expect for centre-of-mass energy in the range
2 GeV <

√
s < 20 GeV? How do your predictions match the data? How do these

measurements support the existence of quark colour?

What is causing the sharp peaks in σ and R at centre-of-mass energy of ≈ 3 GeV,
10 GeV, and 100GeV?

3.5. At the HERA collider 27 GeV positrons collided with 920 GeV protons. Why
can these collisions can be considered to be due to positrons scattering off the
quarks in the protons?

For these collisions draw one example of a Feynman diagram for each of the cases
of weak charged-current, weak neutral-current and electromagnetic interaction.

Calculate the center-of-mass energy of the quark–positron system assuming that
the 4-momentum of the quark Pq can be represented as a fixed fraction f of the
proton 4-momentum Pp, in the approximation where both particles are massless.

What is the highest-mass particle that can be produced in such a collision in the
approximation that a quark carries about 1

3 of the proton momentum?

How does the propagator for the weak charged current and electromagnetic inter-
actions vary with 4-momentum transfer P2? Hence explain the fact that at low
values of the momentum transfer it is found that the ratio of weak interactions to
electromagnetic interactions is very small whereas at very high values it is found
that the ratio is of the order of unity.

3.6. The J/Ψ has mass 3097 MeV, width 87 keV and equal branching ratios of 6%
to e+ + e− and µ+ + µ− final states. What would you expect for these branching
ratios if the J/Ψ decayed only electromagnetically? What does this tell you about
the “strength” of the strong interaction in this decay? For comparison, the Ψ′′ has
mass 3770 MeV, width 24MeV, but branching ratio to e+ + e− of 10−5.

Draw diagrams for the decays D0 → K− + π+ and D0 → K− + e+ + νe. Disre-
garding the differences in the 2-body and 3-body density of states factors, what do
you expect for the relative rates of these decays?

Optional questions

3.7. By conserving momentum at each vertex in the centre-of-mass frame (or
otherwise) determine whether the propagator momentum is space-like (P2 < m2)
or time-like (P2 > m2) for (i) e−+µ− → e−+µ− and for (ii) e+e− → µ+ +µ−.

3.8. Draw Feynman diagrams showing a significant decay mode of each of the
following particles:
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a) π0 meson
b) π+ meson
c) µ−

d) τ− to a final state containing hadrons
e) K0

f) top quark
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9.4 Problems 4

Core questions

4.1. a) Draw Feynman diagrams for the the production of W± bosons being
produced in a pp̄ collider. If the W+ boson is close to its Breit-Wigner peak, what
possible decays may it have? (Which final states are kinematically accessible?)

b) What fraction of W+ decays would you expect to produce positrons?

c) Suggest why the W was discovered in the leptonic rather than hadronic decay
channels.

d) How could the outgoing (anti-)electron momentum be determined? How might
the components of the neutrino momentum perpendicular to the beam be deter-
mined?

4.2. Write down Feynman diagrams for the decays of the muon and the tau
lepton. Are hadronic decays possible? By considering the propagator factor in each
case explain why one might expect on dimensional grounds that lifetimes should be
in the ratio

Γ(τ− → e− + ν + ν̄)
Γ(µ− → e− + ν + ν̄)

=
(
mτ

mµ

)5

.

Using the following data

mτ = 1777.0 MeV ττ = 2.91× 10−13 s

mµ = 105.66 MeV τµ = 2.197× 10−6 s

BR(τ− → e−ν + +̄ν) = 17.8%

test this prediction.

4.3. Which of the Standard Model fermions couple to the Z0 boson? To which
final states may a Z0 boson decay?

Explain why for the Z0 the sum of the partial widths to the observed states (e+e−,
µ+µ−, τ+τ−, hadrons) does not equal the FWHM of the Breit-Wigner.

By referring to the properties of the Breit-Wigner forumla, suggest how the LEP
e+e− collider operating at centre-of-mass energies in the range 80 GeV to 100 GeV
could have inferred that there are three neutrino species with mν < mZ/2, even
though the detectors were unable to detect those neutrinos.

4.4. Consider a model with two neutrino mass eigenstates ν2 and ν3 with masses
m2 and m3 and energies E2 and E3, mixed so that

|νµ〉 = |ν2〉 cos θ + |ν3〉 sin θ
|ντ 〉 = −|ν2〉 sin θ + |ν3〉 cos θ.
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Consider a beam of neutrinos created from from π− → µ−ν decays. Show that the
observed flux of muon neutrinos observed at a distance L from such a source is

J(L) = J(L = 0)×
[
1− sin2(2θ) sin2

{(
E3 − E2

2~

)
L

c

}]
.

If m2 and m3 are much less than the neutrino momentum, |p|, show that

|νµ(L)|2 ≈ |νµ(0)|2 ×
[
1− sin2(2θ) sin2

{
A
(
m2

2 −m2
3

) L
|p|

}]
.

What is the first length L∗ at which the νµ detection rate is at a minimum?

If a range of neutrino energies are present what will be the ratio of the rate (per
neutrino) of ν + n→ µ− + p for L� L∗ and L� L∗.

What would be the corresponding ratio for neutral-current scattering?

Solar neutrinos emitted in p–p fusion have been detected via the processes

νe + d → p+ p+ e− and,

νx + d → p+ n+ νx.

Suggest why the charged-current reaction showed only a third of the neutrino flux
of the neutral-current reaction.

4.5. Draw all leading Feynman diagrams for the following processes:

a) νµ + n→ p+ µ−

b) νµ + e− → νµ + e−

c) ν̄e + e− → ν̄e + e−

d) ν̄e + p→ e+ + n

For d) the cross section takes the form

σ =
2π
~

1
c
G2

F

4π
(2π~)3

E2
ν

c3

Justify this expression in terms of the Golden rule and the Fermi four-fermion theory.

Antineutrinos are incident on a stationary proton target. At what ν̄e energy would
you expect the above formula to break down?

4.6. Write brief notes on:
a) The evidence that there are three and only three families of quarks and leptons.
b) The Cabibbo angle and quark mixing.
c) The evidence for confinement of quarks in hadrons.

4.7. How does helicity of a state change on application of the parity operator

(which reverses the coordinate axes: x P7→ −x)?
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If |Φ〉 is an eigenstate of the parity operator, what can be said about the parity of
the state (1 + aS · p)|Φ〉?

60Co nuclei (JP = 5+) are polarised by immersing them at low temperature in
a magnetic field. When these nuclei β decay to 60Ni (4+) more electrons are
emitted opposite to the aligning B field than along it1. Explain carefully why this
demonstrates parity violation in the weak interaction.

Justify the direction of the parity-violating effect.

4.8. Neutrino and anti-neutrino states have only ever been observed with the
following eigenvalues of the helicity operator respectively:

ν : − 1
2~ ν̄ : +1

2~

What values of the projection operators

P± =
1
2

(
1± σ · p

|p|

)
must be present in weak processes for (anti-)neutrinos reactions?

What is the implication for parity in the weak interaction?

4.9. Write down Feynman diagrams and for the processes π+ → e+νe and
π+ → µ+νµ. By considering the helicities of the final state particles, suggest why
the π+ (JP = 0−) decays dominantly to µ+νµ.

Optional questions

4.10. The Large Hadron Collider has been designed to accelerate counter-rotating
beams of protons to energies of 7 TeV, and to collide those beams at a small number
of interaction points.

a) Use dimensional analysis to estimate the smallest length scale which this machine
could be used to resolve. How does this compare to the size of e.g. atoms, nuclei
and protons?

b) The LHC beam pipe is evacuated to reduce loss of beam from collisions with gas
moleceules. If less than 5% of the beam protons are to be lost from collisions with
gas nuclei over a ten hour run, estimate the maximum permissible number density
of H gas atoms in the beam pipe.

c) The machine collides counter-rotating bunches of protons, each bunch having
circular cross section with radius 17µm (in the direction perpendicular to travel).
How many protons are required in a bunch to have an average of ten interactions
per bunch crossing?

1Reported in [16].
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d) If such bunches collide every 25 ns, what is the luminosity of the machine?
(Express your answer in units of cm−2 s−1.)

e) If the cross section for producing a Higgs Boson is 50 pb, how many will be made
each second?

f) What is the kinetic energy of each bunch of protons in the LHC?

[Some data for proton-proton cross sections can be found in Figure 9.4.]
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Figure 9.4: Proton–proton scattering cross section data as a function of laboratory
momentum (upper scale) and of the centre-of-mass energy (lower scale). From [12].
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9.5 Problems 5

Core questions

5.1. a) Why does 235U fission with thermal neutrons whereas 238U requires
neutrons with energies of order MeV?

b) The fission of 235U by thermal neutrons is asymmetric, the most probable mass
numbers of fission fragments being 93 and 140. Use the semi-empirical mass
formula to estimate the energy released in fission of 235

92U and hence the mass of
235
92U consumed each second in a 1 GW reactor.

c) In almost all uranium ores, the proportion of 235U to 238U is 0.0072. However,
in certain samples from Oklo in the Gabon the proportion is 0.0044. Assuming that
a natural fission reactor operated in the Gabon 2×109 years ago, estimate the total
energy released from 1 kg of the then naturally occurring uranium. How might the
hypothesis that 235U was depleted by fission be tested?

[t1/2(
238U) = 4.5× 109 years, t1/2(

235U) = 7.0× 108 years.]

5.2. Write down the semi empirical mass formula. Which terms are responsible for
the existence of a viable chain reaction of thermal-neutron-induced uranium fission?
What distinguishes the isotopes of uranium that support such a reaction?

In the construction of a nuclear fission reactor an important role is often played
by water, heavy water or graphite. Describe this role and explain why are these
materials are suitable.

Why is the fissile material not completely mixed up with the moderator?

5.3. A neutron produced in a fission reaction is emitted with considerable energy.
Discuss how the design of the reactor determines the competition between i) neutron
absorption by sharp resonances; ii) neutron decay; iii) neutron energy transfer to
the reactor media (and thence to turbines); iv) neutron absorption by resonances
with high branching ratios to further fission. Most of these processes happen very
fast indeed. How is it possible to control the reactor flux with a response time of
seconds to minutes, or even longer?

5.4. a) Draw a diagram showing how the fusion process

p+ p→ d+ e+ + ν

is related to the Fermi theory of beta decay.

b) Find the approximate height B of the Coulomb barrier for pp fusion. To ap-
proximately what temperature would one need to heat hydrogen for pp fusion to
overcome the Coulomb barrier?

c) If plasma at this temperature is to be magnetically confined what will be a typical
Larmor radius (gyro-radius) for the duterium ions in the magnetic field?
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d) Given the following reactions and energy release (in MeV)

d+ d→ 3He + n Q = 3.27,

d+ d→ t+ p Q = 4.04,

d+ t→ 4He + n Q = 17.6,

suggest two reasons why the artificial fusion reactors depend largely on the d + t
reaction.

e) Tritium has a half-life of about 12 years, and must be generated through reactions
with both 6Li and 7Li. Write down the form of these reactions, and explain why
the 7Li reaction is helpful even though it is endothermic.

[d means 2H and t means 3H. You may assume the magnetic field strength is 13.5Tesla,

which is what has been proposed for the ITER Tokamak.]

5.5. Show that for a star in a state of hydrostatic equilibrium (with pressure
balancing gravity), the pressure gradient is given by

dP

dr
= −ρGm

r2

where m is the mass contained within the sphere of radius r. Hence show that the
pressure at the center of a star satisfies

Pc =
∫ M

0

Gmdm

4πr4
>

∫ M

0

Gmdm

4πR4
,

where R is the radius of the star.

Estimate the pressure and temperature at the the center of the sun.

5.6. The rate of thermonuclear fusion reactions is approximately proportional to

exp
(
−2πZ1Z2αc

v

)
exp

(
−mv

2

2kT

)
.

Sketch the form of this curve and explain the origin of these two terms.

Find the value of v at which the rate is maximal. At what temperature should one
run a Tokamak?

5.7. a) Assuming that the energy for the sun’s luminosity is provided by the
conversion of 4H → 4He, and that the neutrinos carry off only about 3 percent of
the energy liberated how many neutrinos are liberated each second from the sun?

b) What neutrino flux would you expect to find at the Earth?

c) By what sequence of reactions do the above conversions dominantly proceed?
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d) Why might the alternative rare process

p+ e− + p→ d+ νe

be of interest when studying solar neutrinos from the earth?

[4M(1H)−M(4He) = 26.73 MeV. The earth is on average about 1.50× 1011 m from the

sun, and is subject to a radiation flux of about 1.3 kW m−2.]

5.8. Give brief accounts of the methods of synthesis of:

a) 12C

b) 28Si

c) 56Fe

d) 238U

Optional questions

5.9. The two figures show properties of the ‘valley of stability’ of nuclei in the
N -Z plane and the binding energy per nucleon versus mass number A, for nuclei
with lifetimes greater than 108 years.
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Using the data in the figures, estimate the energy released in the thermal-neutron
induced fission of 235U, given that the daughter nuclei tend to cluster asymmetrically
around A = 140 and 94. Where are the daughter nuclei in relation to the valley
of stability and what happens to them subsequently? Compare this with the 238U
decay chain, which comprises eight α decays and six β decays to 206Pb with a total
release of 48.6 MeV and a lifetime of 2× 1017 s.

There is a flow of heat from the Earth’s interior amounting to a total of the order
of 35 TW. Much of this may be accounted for by decay of radioactive elements.
Using the model above for a typical fission, estimate the rate of fissions needed to
produce such a heat flow and the associated flux of neutrinos.

In a certain model of the Earth it is postulated that there is a self-sustaining fission
reactor at the Earth’s centre, fuelled by 235U, contributing as much as 5 TW to the
overall heat flow. If the ‘geo-neutrino’ flux could be measured, how might the ‘core
reactor’ model be tested?

5.10. The CNO cycle proceeds in the following steps

Q/MeV rate lifetime
12C + p → 13N + γ 1.944 r12

13N → 13C + e+ + ν 2.221 τN
13C + p → 14N + γ 7.550 r13
14N + p → 15O + γ 7.293 r14

15O → 15N + e+ + ν 2.761 τO
15N + p → 12C + 4He 4.965 ‘fast’

How much energy is released per cycle? Estimate the fraction of that energy in
neutrinos.

The beta decay time constants are of the order of minutes. The shortest proton
capture time is for 15N which is of the order of years, whereas the other capture
timescales are significantly longer. Write the coupled linear differential equations of
(12C, 13C, 14N) in the form

d

dt
U = MU

where M depends on the rx but not the τx.

Show that this set of coupled differential equations admits a solution

U(t) =
∑

i=1,3

aie
λitui

with

λ1 = 0 λ2,3 =
1
2
(−Σ±∆)

and find Σ and ∆. Why must the elements of u2,3 sum to zero?

163



Express the relative equilibrium abundances of 12C, 13C and 14N in terms of the
rx, and show that the equilibrium fractions of the beta decaying isotopes satisfy
equations of the form

B = τBrAA.
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Syllabus

Prerequisites You should make sure you are familiar with relativistic notation in-
cluding four-vectors, and the Dirac formulation of quantum mechanics, including
the Fermi Golden Rule.

Concept of a scattering cross section
§2.4.1, Quantum mechanical scattering
§4.1; The Born approximation §4.1.2.
Feynman rules in quantum mechanics §5,
Yukawa potential §4.3, propagator, vir-
tual particle exchange §5.2.4. Resonance
scattering, Breit-Wigner; decay widths
§2.4.2. Fermi’s golden rule §2.B.1. Use
of invariants in relativistic particle decay
and formation §5.

Elastic and inelastic scattering §2.3; form
factors §2.4.3. Structure of the nucleus:
nuclear mass & binding energies §2.2;
stability, radioactivity §2.2.1, α §2.3.1
and β decay §2.3.2; measurement of ra-
dioactivity with semiconductor detectors
§8.C.1; Fermi theory §2.3.2, the (A,Z)
plane §2.2.1.

Energy production through fission (nu-
clear reactors) §7.1, fusion (p − p and
D − T ) in the Sun and Tokamaks §7.2.
The p−p & CNO cycles §7.3. Solar neu-
trinos §7.3,§6.5. Stellar structure §7.3;
formation of heavier elements §7.3.4.

Quark model of hadrons §3: the light
meson §3.3.2 and baryon §3.3.1 mul-
tiplets; nucleons as bound states of
quarks; §3.1 quarkonium §3.6; the ratio
of cross-sections (e++e− to hadrons) to
(e++e− to muons) §6.3.2; phenomenol-
ogy of deep inelastic scattering §6.3.1.

The Standard Model: quark and lepton
families §6.1, fundamental interactions
and flavour mixing §6.3,§6.4. The strong
interaction and qualitative discussion of
confinement §3.4,§6.3. Weak interaction
§6.4; decay of the neutron §6.4 and par-
ity violation §6.4.3. Production, exper-
imental detection, and decay of the W
and Z bosons §6.4.2; the width of the Z
and the number of neutrino types §6.4.2;
neutrino oscillation §6.5.
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