1 Thomas precession

1.1 As in the notes

As in section 5.7.1, let frame $S^{\prime \prime}$ be aligned with S^{\prime} and move horizontally relative to S^{\prime} at speed v, and let frame S^{\prime} be aligned with S move vertically relative to S at speed u. Let point B be at the origin of $S^{\prime \prime}$. Let A be at the origin of S.

The components of velocity of B in S are given by the velocity addition formulae:

$$
\begin{gathered}
v_{B x}=v_{B \perp}=\frac{v}{\gamma_{u}(1+0)}=v / \gamma_{u} \\
v_{B y}=v_{B \|}=\frac{0+u}{1+0}=u
\end{gathered}
$$

The angle θ of v_{B} relative to the x axis is given by

$$
\begin{equation*}
\tan \theta=\frac{v_{B y}}{v_{B x}}=\frac{u \gamma_{u}}{v} \tag{1}
\end{equation*}
$$

The components of velocity of A in $S^{\prime \prime}$ are given by

$$
\begin{gathered}
v_{A x}=v_{A \|}=\frac{0-v}{1+0}=-v \\
v_{A y}=v_{A \perp}=\frac{-u}{\gamma_{v}(1+0)}=-u / \gamma_{v}
\end{gathered}
$$

So the angle $\theta^{\prime \prime}$ of v_{A} relative to the $x^{\prime \prime}$ axis is given by

$$
\begin{align*}
\tan \theta^{\prime \prime} & =\frac{v_{A y}}{v_{A x}}=\frac{u}{v \gamma_{v}} \tag{2}\\
& \neq \tan \theta
\end{align*}
$$

1.2 Perhaps clearer?

We can set up Thomas precession by making S the lab frame, S^{\prime} the instantaneous rest frame of the particle at proper time τ and $S^{\prime \prime}$ the instantaneous rest frame at $\tau+\delta \tau$. The acceleration in the instantaneous rest frame gives that $\delta V_{0}=a_{0} \delta \tau$. Then the speed of the particle \vec{V}_{0} is vertical in S and $d \vec{V}_{0}$ is horizontal in S^{\prime}. We can use the results (1) and (2) provided we see that

- the angles we want are the angles relative to the vertical (rather than the horizontal as above)
- we make the substitutions $v \rightarrow d \vec{V}_{0}$ and $u \rightarrow \vec{V}_{0}$

Now the angle of the relative velocity to the vertical in S is

$$
\begin{equation*}
\delta \theta=\frac{\delta V_{0}}{V_{0} \gamma} \tag{3}
\end{equation*}
$$

and the angle of that relative velocity to the vertical in $S^{\prime \prime}$ is (to leading order in δV_{0})

$$
\delta \theta^{\prime \prime}=\frac{\delta V_{0} \gamma_{\delta V_{0}}}{V_{0}}=\frac{\delta V_{0}}{V_{0}}
$$

so

$$
\delta \theta^{\prime \prime}=\gamma \delta \theta
$$

Let us define $\Delta \theta=\theta^{\prime \prime}-\theta$, then the Thomas frequency is

$$
\begin{equation*}
\omega_{T}=\frac{\Delta \theta}{d t}=\frac{d \Delta \theta}{d \theta} \frac{d \theta}{d \tau} \frac{d \tau}{d t}=(\gamma-1) \frac{a_{0}}{\gamma V_{0}} \frac{1}{\gamma} \tag{4}
\end{equation*}
$$

Where we have used (3) and $a_{0}=d V_{0} / d \tau$ to get $\frac{d \theta}{d \tau}$.
We want to translate a_{0} into acceleration in the lab frame, which we can do by looking at the 4 -vector for acceleration

$$
\mathrm{A}=\left(\gamma \dot{\gamma} c, \gamma \dot{\gamma} \vec{u}+\gamma^{2} \vec{a}\right)
$$

which shows that for \vec{a} perpendicular to \vec{v}, the proper acceleration is related to the lab acceleration by

$$
a_{0}=\gamma^{2} a
$$

Substituting this into (4) we have that

$$
\left|\omega_{T}\right|=\left(\gamma_{V}-1\right) \frac{a}{v}
$$

which we can also write as

$$
\vec{\omega}_{T}=\frac{\gamma^{2}}{1+\gamma} \frac{\vec{a}_{\times} \vec{v}}{c^{2}}
$$

provided that we think carefully about the directions (as is done around Fig 5.7 of the notes).

