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Context

Probability traps
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Expectation and Variance
Estimators

Gaussian Distribution



“The Card Game”




- “The Card Game” -

side shown other side
I’'ll bet you £10 1 (R,RE) B
that the other . 2 ©RE R,B

side is blue. Chance for the other
side to be blue is 2/3 !




“Prisoner’s Paradox”

One of you lucky boys
will only get life in prison. But
I have instructed the guard not to
inform you whether or not you will

Not good!

Survival - 1/3 1
hang until I announce to the press probability
Tomorrow morning as a

ast minute surprisel




“Prisoner’s Paradox”

I know you can't tell
me whether or not T'll be spared,
but we both know that at least one
of the others will hang. So you can
give me their name, right?

Sure... poor ola
Jake is going to
buy the farm!



“Prisoner’s Paradox”

So now it's either
me or Lenny...
Great! My odds have\

improved to 1/2 !

e o
< X

Jake  Lenny Dave

® ®
=< <

Jake  Lenny Dave

e 9
< X
Jake  Lenny Dave




S S F S F S “Bernoulli Trials”

o o o) o0 0 T

If not loaded (test to reject HO), 1

1/6 x 1/6 x 1/6 x 1/6 x 1/6 x 1/6 = 46656

What’s the chance probability of getting exactly this sequence?

25
46656

1/6 x 1/6 x 5/6 x 1/6 x 5/6 x 1/6 =

or more generally: Pk (1-p)n-k

where p is the probability of successes (getting a 3),
k is the number of successes and n is the total number
in the sequence.

What’s the chance probability of getting four 3’s in this order?



e JJ R

(1/6 x 1/6 x 5/6 x 1/6 x 5/6 x 1/6)(any 4 of 6)

distinct ways to
order 6 things
375

6!
(any 4 of 6) = (i) = a0 =15 246656

re-ordered of re-ordering
successes is of failures is
not distinct not distinct

or more generally: (n) pk (]__p)n-k Binomial Distribution
: (“two terms”)

What'’s the chance probability of getting four 3’s in any order?



S S F S F S
@ ©6 © © @ ©6 © © ¢ ° what
e o °) 54 % 5d =
6
so we really want 6 X (4) (1/6)4 (1_1/6)2

2250
46656

What’s the chance probability of getting four of anything in any order?



But these
,’ 9 . 9 © ! 9 would draw at

S S S S S S least as much

so, in this case n\ | o
we want Z 6X(J ) pJ (1-p)n'J k=4, n=6

2250 . _180 , 6 - 2436 - § 90
46656 46656 46656 46656 '

What’s the chance probability of getting
four or more of any number in any order?




Statistical probability is basically the frequency with
which a given “equivalent” outcome occurs if we were
to repeat the same experiment over and over again.

What is the source of this
statistical behaviour??

1) Hidden variations in initial conditions

2) Fundamental uncertainty (quantum mechanics)



Assume terrible aim, but only count
throws that hit dart board. . .

What'’s the chance of hitting the
bullseye given 100 throws?

ps = (0.5in/17.75in)* = 7.93 x 10~*
100

P, = Z Pyin (k successes)

k=1
=1 — Py;» (0 successes)

—1— (1 _ps)loo

100' k 100—k
1 —
(k!(lOO—k)!)pS( Ps)

— 7.63% ~ 100 X pq



Assume terrible aim, but only count
throws that hit dart board. . .

What'’s the chance of hitting the
20 given 100 throws?

ps ~ 1/20 = 0.05

P.ot =1 —(1—0.05)'"

—99.4%  # 100 x 0.05 !



Binomial Distribution:

!
P(k successes in n attempts) = ( i ) pf(l _ ps)n—k

kKl(n —k)! v

prob of each
success



So, the expected (average) number of successes after
summing over n identical Bernoulli trials is:

H=np

Now consider the case where the expected number of
successes depends on the size of a continuous variable
(e.g. length or time interval), which can be arbitrarily small.

- —_— AT

The number of successes expected over a continuous
interval of finite size can be viewed as resulting from the
sum of an infinite number of Bernoulli trials carried out for
arbitrarily small intervals such that:

u = lim np

n—oo



So, set p= w/n and evaluate

P(k) = lim n! (ﬁ)k (1 - ﬁ)n_k

() el G Jo- 50




So, set p= w/n and evaluate

Plk) = o, k!(nni Al (%)k (1- %)”"“

R = e

v
e (1 - H) = lim exp |log (1 - ﬁ) }
n— 00 n am_ - .
— . i ILL
= lim exp [nlog (1 _ _)}
n— 00 ] -




So, set p= w/n and evaluate

Pk) = lim — " (ﬁ)k (1 _ ﬁ)n_k

n—oo kl(n — k)l \n n
BEY L —p py
= (F) . € Kl ) ]
|




So, set p= w/n and evaluate

P(k) = lim /.c!(nni o (%)k (1- %)H

k
AN —
_<k!>n15%o €

,uk 6_'u Poisson

Distribution

k!

Counting statistics, decay processes... * continuous variable is time

Interaction lengths * continuous variable is distance



Radioactive Decay: e

What’s the probability of detecting a decay
from a radioactive source after some time t ?

T = average time for a decay to occur (mean lifetime)
uw= average # decays in time t, which must be t/t

Probability for no decays (n=0) within time t

n,—H
e —tlt
n.
. —t/1 (integrated over
i Pa’ecay =1-e¢ the time interval)
Note that this is
i : A / _ -l now a probability
Differential Probability: P'(f) = —e for & contindous

T quantity!



Poisson distribution: the probability of success depends on
continuous variable (u), but the observation is a discreet

number of successes (n).

But observations are not always of a discreet variable. For
continuous random variables (i.e. time, length, efc.), the
probability of obtaining a particular exact value is generally
vanishingly small (no phase space!). But the relative
probability of getting a value in this vicinity versus that vicinity
iIs meaningful. That’s when you talk about “probability
densities”.

But the terms “probability distribution” and “probability density
function” are sometimes informally used interchangeably.



expectation
(mean)



Variance: “Average Squared Deviation from Mean”

note: [ (2= 1)) |= (@2) + i® = 2u() [ = (2%) — 4|

for Poisson:

) ©.@) QILLn o0 ILLn
— _— —H p— —H
) HZ_O” UL i e

n=1

RS % LA R L e ST S

n=1

- S S )~ ) )

’I’L2 n=1

02 =[((n—p? = 0* - u* =u




Units of o are
variance = ¢° = (z°) — p°  same as units
of x (or M)

2

But, for Poisson, 0“ = 1 How do units work?

lere, U refers to the expected number of
successes, which is unit-less (special case)



o= ({(z—p)?) = (a?) - p?

= “RMS (Root Mean Squared) deviation”
universal

“Standard deviation”

when interpreted in the context of
a Normal (Gaussian) distribution



Some Useful Consequences:

The RMS deviation on a measured number of counts
due to statistical fluctuations is the square root of the
expected mean number of counts (sqrt of the measured
number is often not a bad approximation)

For a large numbers of events, the expected sensitivity
for detecting a signal in a counting experiment in terms
of the number of standard deviations above background
fluctuations is ~ S/V/B

In a counting experiment, the number of signal and
background events detected are proportional to the
counting time. Thus, the signal sensitivity goes like VT in
the large n limit



Variance in the Estimated Mean

Note that: var(ax) = {(ax)*) — (ax)* = a’ <<x2> — (x)2>

= a?var(x)

n
So, consider: 0 = vVar ( 2 X) — —Var ( Z xi>
i=1

—_ Z var (.X) <+— For independent variables
o) l

(as will be shown in lecture 4)



Gaussian (Normal) Distribution as
a Limiting Case of Poisson Statistics

Assume L and n large, withn ~u  Defineninterms of a
perturbation about

/\ n = pu(l+0)

< > [t 0 << 1

mn
Stirling’s Approximation: n! ~ v27mn (E) as n — o0
e

ne_:u Iuru’(]-—i_é)e_,u

~yY

n! V2 6) (A0

0,  p(nfp) =

(&

)M(1+5)



MM(1+5)6—M ’u,u(1+5)e—,u

\/27T,LL(1 n 5) (M(1+5))u(1+5) B \/m [Mﬂ(1+5)] [(1 + 5)u(l+5)+%] [e—ﬂ(1+5)]

ero et 1

V2rp(l + §)rA+0)+s T /TWME

Define: f=Ing=[u(1+0)+1/2]In(1+4)

Taylor Expand: [/ =pln(1+6) + [w(1+9)+1/2]/(1 +9)

O<L,up>1 y M . Y _M(1—|—5)+1/2
1+0 149 (1+ 6)2
! 1 7 1
f(0)=0 f(O):u+§2u f(O)ZM—§2u

p16°
2

Fe 1)+ 75+ 25 = -



f~ ud Lk g ~ eltud”/2

—
2
7%
R S WP
V2T g 2T
1 2
_ —pud< /2
QWMB
1 : 5)2/ recall.
— e~ (1)~ /2p n = u(l+9)
% 217TM = U+ puo
V2T K
1

o~ (x—p)*/20°

pn|p)= N



‘ Central Limit Theorem

Pick N random numbers from an arbitrary distribution and define:

N
S — .xl and X —_ —
=1

What is the probability distribution of S (or, equivalently, X) ?



Galton Machine

FIG.7. FIG .8. FIG.9.
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Sir Francis Galton
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