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Lecture 1:
• Context 
• Probability traps 
• Binomial & Poisson Distribu1ons 
• Expecta1on and Variance 
• Es1mators 
• Gaussian Distribu1on



“The Card Game”



side 1      side 2 side 1      side 2side 1      side 2

I’ll bet you £10 
that the other 
side is blue.

side shown        other side

 1 (R,R,B)                 B

 2 (B,R,B)                R,B

Chance for the other 
side to be blue is 2/3 ! 

“The Card Game”



“Prisoner’s Paradox”
         One of you lucky boys   
    will only get life in prison. But  
I have instructed the guard not to 
inform you whether or not you will  
hang until I announce to the press 
       tomorrow morning as a  
          last minute surprise!

Jake Lenny Dave

Not good! 

Survival  
probability

= 1/3 !!



Dave

I know you can’t tell  
me whether or not I’ll be spared, 

but we both know that at least one  
of the others will hang. So you can 

give me their name, right? 

Sure... poor old 
Jake is going to 
buy the farm! 

“Prisoner’s Paradox”



Dave

So now it’s either 
me or Lenny... 

Great! My odds have  
improved to 1/2 !!

Jake     Lenny    Dave

Jake     Lenny    Dave

Jake     Lenny    Dave

“Prisoner’s Paradox”



1/6  x  1/6  x  1/6  x  1/6  x  1/6  x  1/6  =
    1        
46656

What’s the chance probability of getting exactly this sequence?

1/6  x  1/6  x  5/6  x  1/6  x  5/6  x  1/6  =
   25        
46656

What’s the chance probability of getting four 3’s in this order?

or more generally:     pk (1-p)n-k 

where p is the probability of successes (gekng a 3), 
k is the number of successes and n is the total number  
in the sequence.

S                  S                   F                  S                   F                   S “Bernoulli Trials”

If not loaded (test to reject H0),

Loaded 
Dice?



(1/6  x  1/6  x  5/6  x  1/6  x  5/6  x  1/6)(any 4 of 6)

What’s the chance probability of getting four 3’s in any order?

= 15( ) =6 

4
 6!      
4!2!(any 4 of 6) =

re-ordering  
of failures is  
not dis1nct

re-ordered of  
successes is 
not dis1nct

dis1nct ways to  
order 6 things

or more generally:  Binomial Distribu1on 
(“two terms”)

 ( )  pk (1-p)n-kn 
k

  375        
46656

S                  S                   F                  S                   F                   S 



 ( )  (1/6)4 (1-1/6)26 
4

so we really want 6 x

  2250     
46656=

S                  S                   F                  S                   F                   S 

What’s the chance probability of getting four of anything in any order?

what 
about 
this?



S                   S                 S                     F                 S                   S 

S                   S                 S                    S                   S                  S 

6x( )  pj (1-p)n-j            k=4, n=6n 
jΣ

j=k

n
so, in this case  
we want

  2250      
46656

    180       
46656

    6     
46656

  2436      
46656

+              +            = =  5.2%

What’s the chance probability of getting 
four or more of any number in any order?

But these 
would draw at 
least as much 
suspicion!



Statistical probability is basically the frequency with 
which a given “equivalent” outcome occurs if we were 
to repeat the same experiment over and over again.

What is the source of this 
statistical behaviour??

1) Hidden variations in initial conditions

2)   Fundamental uncertainty (quantum mechanics)



Assume terrible aim, but only count 
throws that hit dart board. . .

What’s the chance of hitting the 
bullseye given 100 throws?

ps = (0.5in/17.75in)2 = 7.93⇥ 10�4

= 1� Pbin(0 successes)

= 1� (1� ps)
100

= 7.63% ⇠ 100⇥ ps

Ptot =
100X

k=1

Pbin(k successes)

✓
100!

k!(100� k)!

◆
pks(1� ps)

100�k



What’s the chance of hitting the 
20 given 100 throws?

ps ⇠ 1/20 = 0.05

Ptot = 1� (1� 0.05)100

= 99.4% 6= 100⇥ 0.05 !!!

Assume terrible aim, but only count 
throws that hit dart board. . .



Binomial Distribu1on:

P (k successes in n attempts) =

✓
n!

k!(n� k)!

◆
pks(1� ps)

n�k

prob of each 
success



Now consider the case where the expected number of 
successes depends on the size of a continuous variable 
(e.g. length or time interval), which can be arbitrarily small.

So, the expected (average) number of successes after 
summing over n identical Bernoulli trials is:                                    

μ = np

The number of successes expected over a continuous 
interval of finite size can be viewed as resulting from the 
sum of an infinite number of Bernoulli trials carried out for 
arbitrarily small intervals such that:

μ = lim
n→∞

np



P (k) = lim
n!1

n!

k!(n� k)!

⇣µ
n

⌘k ⇣
1� µ

n

⌘n�k

lim
n!1

n!

(n� k)!

✓
1

n

◆k

= lim
n!1

n(n� 1)(n� 2)...(n� k)(n� k � 1)...(1)

(n� k)(n� k � 1)...(1)

✓
1

n

◆k

= lim
n!1

n(n� 1)(n� 2)...(n� k + 1)

nk

=

✓
µk

k!

◆
lim
n!1

n!

(n� k)!

✓
1

n

◆k ⇣
1� µ

n

⌘n ⇣
1� µ

n

⌘�k

= lim
n!1

⇣n
n

⌘✓
n� 1

n

◆✓
n� 2

n

◆
...

✓
n� k + 1

n

◆

= 1

So, set p= μ/n and evaluate



So, set p= μ/n and evaluate

P (k) = lim
n!1

n!

k!(n� k)!

⇣µ
n

⌘k ⇣
1� µ

n

⌘n�k

lim
n!1

⇣
1� µ

n

⌘n
= lim

n!1
exp

h
log

⇣
1� µ

n

⌘ni

= lim
n!1

exp
h
n log

⇣
1� µ

n

⌘i

= exp
h
n
⇣
�µ

n

⌘i

=

✓
µk

k!

◆
lim
n!1

n!

(n� k)!

✓
1

n

◆k ⇣
1� µ

n

⌘n ⇣
1� µ

n

⌘�k



lim
n!1

⇣
1� µ

n

⌘�k
= 1

So, set p= μ/n and evaluate

P (k) = lim
n!1

n!

k!(n� k)!

⇣µ
n

⌘k ⇣
1� µ

n

⌘n�k

=

✓
µk

k!

◆
lim
n!1

n!

(n� k)!

✓
1

n

◆k ⇣
1� µ

n

⌘n ⇣
1� µ

n

⌘�k



So, set p= μ/n and evaluate

Poisson 
Distribution

P (k) = lim
n!1

n!

k!(n� k)!

⇣µ
n

⌘k ⇣
1� µ

n

⌘n�k

=

✓
µk

k!

◆
lim
n!1

n!

(n� k)!

✓
1

n

◆k ⇣
1� µ

n

⌘n ⇣
1� µ

n

⌘�k

=
µke�µ

k!
Counting statistics, decay processes…              continuous variable is time

                             Interaction lengths                    continuous variable is distance



Radioactive Decay:

τ = average time for a decay to occur (mean lifetime)
µ =   average # decays in time t, which must be  t/τ

Probability for no decays (n=0) within time t

P0 = ( μne−μ

n! ) ⟶ e−t/τ

Pdecay = 1 − e−t/τ (integrated over 
the time interval)

P′ (t) = 1
τ

e−t/τDifferential Probability:
Note that this is 
now a probability 
for a continuous 
quantity!

What’s the probability of detecting a decay 
from a radioactive source after some time t ?

1 or more!



Poisson distribution: the probability of success depends on 
continuous variable ( ), but the observation is a discreet 
number of successes (n).

μ

But observations are not always of a discreet variable. For 
continuous random variables (i.e. time, length, etc.), the 
probability of obtaining a particular exact value is generally 
vanishingly small (no phase space!). But the relative 
probability of getting a value in this vicinity versus that vicinity 
is meaningful. That’s when you talk about “probability 
densities”.

But the terms “probability distribution” and “probability density 
function” are sometimes informally used interchangeably.



expectation
(mean)

width



Variance: “Average Squared Deviation from Mean”

note:

for Poisson:

hn2i =
1X

n=0

n2µ
n

n!
e�µ = e�µ

1X

n=1

n
µn

(n� 1)!

= e�µ
1X

n=1


(n� 1)

µn

(n� 1)!
+

µn

(n� 1)!

�
= e�µ

" 1X

n=2

µn

(n� 2)!
+

1X

n=1

µn

(n� 1)!

#

= e�µ

"
µ2

1X

n=2

µn�2

(n� 2)!
+ µ

1X

n=1

µn�1

(n� 1)!

#
= e�µ

⇥
µ2(eµ) + µ(eµ)

⇤



�2 =
⌦
x2

↵
� µ2variance =

Units of σ are 
same as units 

of x (or μ)

But, for Poisson, �2 = µ How do units work?
Here, μ refers to the expected number of 
successes, which is unit-less (special case)



� =
p
h(x� µ)2i =

p
hx2i � µ2

= “RMS (Root Mean Squared) deviation”
universal

“Standard deviation”
when interpreted in the context of 
a Normal (Gaussian) distribution



Some Useful Consequences:

• The RMS deviation on a measured number of counts 
due to statistical fluctuations is the square root of the 
expected mean number of counts (sqrt of the measured 
number is often not a bad approximation)

• For a large numbers of events, the expected sensitivity 
for detecting a signal in a counting experiment in terms 
of the number of standard deviations above background 
fluctuations is  ~  S/√B 

• In a counting experiment, the number of signal and 
background events detected are proportional to the 
counting time. Thus, the signal sensitivity goes like √T in 
the large n limit



Variance in the Estimated Mean

Note that: var(αx) = ⟨(αx)2⟩ − ⟨αx⟩2 = α2 (⟨x2⟩ − ⟨x⟩2)
= α2var(x)

So, consider: σ2
m = var ( 1

n

n

∑
i=1

xi)

= 1
n2 (nσ2) = σ2

n
σm = σ

n
or

= 1
n2

n

∑
i=1

var (xi) For independent variables
(as will be shown in lecture 4)

= 1
n2 var (

n

∑
i=1

xi)



μ

Assume μ and n large, with n ~ μ

n = µ(1 + �)
� << 1

Define n in terms of a 
perturba1on about μ

n ! 1n! ⇠
p
2⇡n

⇣n
e

⌘n
asS1rling’s Approxima1on:

Gaussian (Normal) Distribu=on as  
a Limi=ng Case of Poisson Sta=s=cs

=
µµ(1+�)e�µ

p
2⇡µ(1 + �)

⇣
µ(1+�)

e

⌘µ(1+�)
So, ~p(n |μ) = μne−μ

n!



=
µµ(1+�)e�µ

p
2⇡µ(1 + �)

⇣
µ(1+�)

e

⌘µ(1+�)

=
eµ�

p
2⇡µ(1 + �)µ(1+�)+ 1

2
⌘ eµ�p

2⇡µ

1

g

f 00 =
µ

1 + �
+

µ

1 + �
� µ(1 + �) + 1/2

(1 + �)2

f(0) = 0 f 00(0) = µ� 1

2
' µf 0(0) = µ+

1

2
' µ

f ⇠ f(0) + f 0(0)� +
f 00(0)

2
�2 = µ� +

µ�2

2

f = ln g = [µ(1 + �) + 1/2] ln (1 + �)Define:

= μμ(1+δ)e−μ

2πμ [μμ(1+δ)] [(1 + δ)μ(1+δ)+ 1
2 ] [e−μ(1+δ)]

= µ� +
µ�2

2

f 0 = µ ln (1 + �) + [µ(1 + �) + 1/2]/(1 + �)Taylor Expand:
(δ ≪ 1, μ ≫ 1)



⇠ 1p
2⇡µ

eµ��µ��µ�2/2

=
1p
2⇡µ

e�µ�2/2

=
1p
2⇡µ

e�(µ�)2/2µ

=
1p
2⇡µ

e�(n�µ)2/2µ

= μ + μδ

μ ⟶ σ2
(Poisson)

f ⇠ f(0) + f 0(0)� +
f 00(0)

2
�2= µ� +

µ�2

2
g ⇠ eµ�+µ�2/2

p(n, µ) =
eµ�p
2⇡µ

1

g
p(n |μ)

n = µ(1 + �)
recall:

p(x, µ) =
1p
2⇡�

e�(x�µ)2/2�2

p(n |μ)



Central Limit Theorem

Pick N random numbers from an arbitrary distribution and define:

S =
N

∑
i=1

xi X̄ = S
N

and

What is the probability distribution of S (or, equivalently, X ) ?



Sir Francis Galton

“N” peg interactions 
(samples) get added to 
form the total deflection

ball has 50:50 chance
of going right or left 
at each peg 
(underlying distribution)

Galton Machine


