
Lecture 10:

• Markov 

• Metropolis, Has1ngs 

• Gibbs, Gauss and Hamilton!



Markov Chain Monte Carlo (MCMC)

A method to numerically integrate over composite 
functions by probabilistically sampling the function space 
with a succession of linked iterations

Basis of Monte Carlo simulation

Deposited Energy Penetration Depth

Markov Chain: Each new step 
only depends on the previous one

Launch Lots of Chains!



Can also use such an approach to map out the parameter 
space of a function in the vicinity of its minimum/maximum.

• Irreducibility: From any initial state, there is non-zero probability of 
reaching any other state. This prevents the chain getting stuck in 
local minima. 

• Aperiodicity: The chain must not be periodic. This means the chain 
never gets stuck in a loop between the same states. 

• Recurrence: All subsequent steps sample from the same stationary 
distribution once it has been reached. This means once a stationary 
state has been achieved, adding more steps gives a more accurate 
approximation to the target distribution. 

Convergence of chains requires:

Such chains are ‘ergodic’

Provides a robust approach for complex, multi-dimensional 
parameter space with lots of local minima and maxima.
Computationally intensive, but chains can be run in parallel.



Say you’re at some position, q (a vector of fit parameters), in the function of 
interest, such as the likelihood. Assume there is some proposed probability, 
P(q’ | q), for jumping to another point, q’.

α(q′ |q) ≡ A(q′ |q)
A(q |q′ ) = P(q′ |D) g(q |q′ )

P(q |D) g(q′ |q)

= [P(D |q′ ) P(q′ )] g(q |q′ )
[P(D |q) P(q)] g(q′ |q)

Likelihood Prior

P(q′ |q) = g(q′ |q) A(q′ |q)
proposal acceptance

Also apply “Principle of Detailed Balance” to ensure the chain direction is 
reversible so that we will will reach an equilibrium “stationary” state:

ρ(q) P(q → q′ ) = ρ(q′ ) P(q′ → q)

P(q |D) P(q′ |q) = P(q′ |D) P(q |q′ )
or

Bayesian 
Posterior 
probability



Metropolis-Hastings Algorithm

Probability to accept the proposed jump is given by:

i.e. always accept if the new point is better, but potentially accept if the new 
point is worse based on the balance of relative probabilities (so that you 
explore the parameter space around the best point).

So throw a random number between 0 and 1, and move to the new point if 
the number is less than this probability. 

Then generate a new proposed position to jump to, and go again…

The frequency of visiting a particular point in the parameter space will be 
proportional to the overall posterior probability of that point as a solution

Hastings bit



Generating Proposals: Gibbs Sampling

q = (q1, q2, q3 . . . )
q′ 1 → P(q′ 1 |q1)
q′ 2 → P(q′ 2 |q2, q′ 1)
q′ 3 → P(q′ 3 |q3, q′ 1, q′ 2)
q′ n → P(q′ n |qn, q′ 1, q′ 2, . . . q′ n−1)

For independent, Gaussian 
probabilities, this is simply:

etc.

Need to tune step sizes, 
guided by any parameter 
constraints: if too large, 
acceptance will be low; if 
too small, convergence 
will be slow



Generating Proposals: Hamiltonian Sampling

Analogy with system of particles at some temperature T:
particles correspond to the model parameters being fit, 
temperature allows their values to ‘jiggle about’ and 
explore the phase space.

= e−(U(q)+KE)

U(q) ∝ − log[P(D |q)P(q)]

Boltzmann distribution:

units of kT

P(E) = e−E

= e−U(q)e−∑ p2
i

2mi

Average probability 
to be where we are 
without jiggling:

Probability for 
where to move 
next (proposal)

P(q |D) ∝ P(D |q)P(q)

−l
og

[P
(D

| x
)P

(x
)]

xjqj



P(E) = P(D |q)P(q)e−∑ p2
i

2mi

Sample momenta 
from Gaussian, 
tuning values of

…as before
σi = mi

However, the subsequent evolution is then defined by Hamiltonian dynamics:

For a 
conservative 
system

H = E = U(q) + KE = − log[P(D |q)P(q)] + ∑
p2

i

2mi
dq
dt

= ∂H
∂p

= p
m

dp
dt

= − ∂H
∂q

= − ∂U(q)
∂q

q → q + p
m

Δt

p → p − ∂U(q)
∂q

Δt

Tune 
step 
sizes

See “Leap Frog” algorithm for how to handle this better
(basically uses interleaved average of p to compute next q)

Hamiltonian-guided path is much more efficient for reaching the stationary 
phase and dealing with discontinuities, but is more computationally intensive 
for each step. Need to tune algorithm for the specific problem at hand.
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“Burn-In” “Stationary State”

MCMC applied to simulated 
SNO+ data to determine 
signal content, normalisations 
to various backgrounds and 
systematic uncertainties

 (thanks to Will Parker)



Autocorrelation as Test of Convergence

where k = “lag”

Hasn’t converged yet Isn’t converging quickly enough
(should probably change the step size)

Converging nicely!



Can also use the MCMC information around the stationary phase to 
produce posterior density maps of the relevant model parameter space 
(if using parameters with uniform priors, this is also the likelihood map)

(Thanks to Daniel Cookman)


