
Lecture 10:

• Markov

• Metropolis, Has1ngs

• Gibbs, Gauss and Hamilton!

Markov Chain Monte Carlo (MCMC)

A method to numerically integrate over composite
functions by probabilistically sampling the function space
with a succession of linked iterations

Basis of Monte Carlo simulation

Deposited Energy Penetration Depth

Markov Chain: Each new step
only depends on the previous one

Launch Lots of Chains!

Can also use such an approach to map out the parameter
space of a function in the vicinity of its minimum/maximum.

• Irreducibility: From any initial state, there is non-zero probability of
reaching any other state. This prevents the chain getting stuck in
local minima.

• Aperiodicity: The chain must not be periodic. This means the chain
never gets stuck in a loop between the same states.

• Recurrence: All subsequent steps sample from the same stationary
distribution once it has been reached. This means once a stationary
state has been achieved, adding more steps gives a more accurate
approximation to the target distribution.

Convergence of chains requires:

Such chains are ‘ergodic’

Provides a robust approach for complex, multi-dimensional
parameter space with lots of local minima and maxima.
Computationally intensive, but chains can be run in parallel.

Say you’re at some position, q (a vector of fit parameters), in the function of
interest, such as the likelihood. Assume there is some proposed probability,
P(q’ | q), for jumping to another point, q’.

α(q′ |q) ≡ A(q′ |q)
A(q |q′) = P(q′ |D) g(q |q′)

P(q |D) g(q′ |q)

= [P(D |q′) P(q′)] g(q |q′)
[P(D |q) P(q)] g(q′ |q)

Likelihood Prior

P(q′ |q) = g(q′ |q) A(q′ |q)
proposal acceptance

Also apply “Principle of Detailed Balance” to ensure the chain direction is
reversible so that we will will reach an equilibrium “stationary” state:

ρ(q) P(q → q′) = ρ(q′) P(q′ → q)

P(q |D) P(q′ |q) = P(q′ |D) P(q |q′)
or

Bayesian
Posterior
probability

Metropolis-Hastings Algorithm

Probability to accept the proposed jump is given by:

i.e. always accept if the new point is better, but potentially accept if the new
point is worse based on the balance of relative probabilities (so that you
explore the parameter space around the best point).

So throw a random number between 0 and 1, and move to the new point if
the number is less than this probability.

Then generate a new proposed position to jump to, and go again…

The frequency of visiting a particular point in the parameter space will be
proportional to the overall posterior probability of that point as a solution

Hastings bit

Generating Proposals: Gibbs Sampling

q = (q1, q2, q3 . . .)
q′ 1 → P(q′ 1 |q1)
q′ 2 → P(q′ 2 |q2, q′ 1)
q′ 3 → P(q′ 3 |q3, q′ 1, q′ 2)
q′ n → P(q′ n |qn, q′ 1, q′ 2, . . . q′ n−1)

For independent, Gaussian
probabilities, this is simply:

etc.

Need to tune step sizes,
guided by any parameter
constraints: if too large,
acceptance will be low; if
too small, convergence
will be slow

Generating Proposals: Hamiltonian Sampling

Analogy with system of particles at some temperature T:
particles correspond to the model parameters being fit,
temperature allows their values to ‘jiggle about’ and
explore the phase space.

= e−(U(q)+KE)

U(q) ∝ − log[P(D |q)P(q)]

Boltzmann distribution:

units of kT

P(E) = e−E

= e−U(q)e−∑ p2
i

2mi

Average probability
to be where we are
without jiggling:

Probability for
where to move
next (proposal)

P(q |D) ∝ P(D |q)P(q)

−l
og

[P
(D

| x
)P

(x
)]

xjqj

P(E) = P(D |q)P(q)e−∑ p2
i

2mi

Sample momenta
from Gaussian,
tuning values of

…as before
σi = mi

However, the subsequent evolution is then defined by Hamiltonian dynamics:

For a
conservative
system

H = E = U(q) + KE = − log[P(D |q)P(q)] + ∑
p2

i

2mi
dq
dt

= ∂H
∂p

= p
m

dp
dt

= − ∂H
∂q

= − ∂U(q)
∂q

q → q + p
m

Δt

p → p − ∂U(q)
∂q

Δt

Tune
step
sizes

See “Leap Frog” algorithm for how to handle this better
(basically uses interleaved average of p to compute next q)

Hamiltonian-guided path is much more efficient for reaching the stationary
phase and dealing with discontinuities, but is more computationally intensive
for each step. Need to tune algorithm for the specific problem at hand.

 2 4 6 8 10 12 14 16 18 20 22
Steps in units of 1000

“Burn-In” “Stationary State”

MCMC applied to simulated
SNO+ data to determine
signal content, normalisations
to various backgrounds and
systematic uncertainties

 (thanks to Will Parker)

Autocorrelation as Test of Convergence

where k = “lag”

Hasn’t converged yet Isn’t converging quickly enough
(should probably change the step size)

Converging nicely!

Can also use the MCMC information around the stationary phase to
produce posterior density maps of the relevant model parameter space
(if using parameters with uniform priors, this is also the likelihood map)

(Thanks to Daniel Cookman)

