Lecture 12:

e Fisher Linear Discriminant
e Decision Trees

o Boosted Decision Trees (AdaBoost)



Fisher Linear Discriminant

Let’s pick a new variable to act as a discriminant
between the two classes that is some linear
combination of x and y:

u=ax+ by

We want to choose values for a and b to maximise
the mean distance (or variance) between the
classes, while minimising the variances within
each class so as to give the cleanest separation.

Fisher thus proposed maximising:
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There is also a form that can be used for more
than 2 classes, but the optimisation of this can
be trickier
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“Goodness of Split”

Where is the best place to cut?

Purity of signal in the cut region: :
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Gini index (Corrado Gini): IG = PPp = ps(l _ps)

_ B : Best separation
Note: equals zero for ps or p» = 1 (perfect separation) =P at minimum Gini

More generally, for n classes, where
pi is the purity of the i» target class:
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“Goodness of Split”
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Growing a Better Tree
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Growing a Better Tree
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Growing a Better Tree
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Growing a Better Tree
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Boosted Trees (AdaBoost)

Assume we have a data set with
relevant parameter values for a
given test: X, Xy, X3...Xy

each of which corresponds to a
givenclass: {41,492, 93---4n

where, for example, g; = 1 ifit’s
signal & g; = — 1 if background.

Further assume an exponential
“loss function” to penalise
incorrect classifications within an
“error function”:

N
E — Z e_qz'c(xi)
i=1

Test
l for example
5(x) =1 if Pass

— — ] ifFall

Assume we have some arbitrary
number of test results from a
series of “weak learners”:

01(x;), 05(x;), 05(x;) . .. O

and that we wish to find a strong
classifier that is a linear
combination of these:

L
CL) = 2 a3x)
J=1
where the sign of C. indicates

the preferred class and the
magnitude is related to the
strength of the classification.)

*Other boost algorithms, loss functions and classifier combinations are available at specially selected stores!
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Assume we have a classifier composed of m-1 weak learners
and we wish to add another: C _(x;) = C, _,(x;) + &,,0,,(x;)

What choice of a;; will minimise £ ?
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AdaBoost Implementation

Assign initial normalised weights to
each data point in a large training set to
give equal overall weight to signal and
background (w; = 1/N if equal numbers)

l

Find the test stump () that gives the
lowest weighted error rate and compute

the value of

Is the error rate only minimally changed
or has significant overtraining likely to

YES

have occurred?
lNo

Multiple each weight by €~ % if the

categorisation is correct and by % if
it is not, then renormalise so )\ w/ =1

Verify with independent training set

'

Apply to data




Some Observations:

If the problem can be completely specified by PDFs that
capture the relevant information, then you cannot do better than
likelihood!

The boost algorithm, loss function and classifier combination is
arbitrary and not unique. There is no theorem that says which
set of these is the best or produces the best possible
discrimination.

BDTs will overtrain! It is therefore important to pay attention to
convergence criteria and verify the final efficiency with
independent training sets.

The use of too many extraneous or redundant parameters
will make it more likely for BDTs to get distracted by fluctuations
in multiple dimensions, resulting in a failure to converge on the
relevant region and leading to a loss in efficiency. It’s worth
putting thought into the parameter choices and building
elements one by one.

You don’t get the likelihood and all the benefits that brings.

BDTs and other ML approaches are particularly useful if
computational speed is an issue or it is difficult to couch the
problem in terms of PDFs (i.e. simple hypotheses).



