
Lecture 12:

• Fisher Linear Discriminant 

• Decision Trees 

• Boosted Decision Trees (AdaBoost)



Let’s pick a new variable to act as a discriminant 
between the two classes that is some linear 
combination of x and y:

u ≡ ax + by
We want to choose values for a and b to maximise 
the mean distance (or variance) between the 
classes, while minimising the variances within 
each class so as to give the cleanest separation. 

J = (μ1 − μ2)2

σ2
1 + σ2

2

Fisher thus proposed maximising:

J = [(ax1 + by1) − (ax2 + by2)]2

[(asx1)2 + (bsy1)2] + [(asx2)2 + (bsy2)2]

J = [(a(x1 − x2) + b(y1 − y2)]2

[a2(s2x1 + s2x2) + b2(s2y1 + s2y2)]

Fisher Linear Discriminant

≃ (u1 − u2)2

s2
1 + s2

2



J = [(a(x1 − x2) + b(y1 − y2)]2

[a2(s2x1 + s2x2) + b2(s2y1 + s2y2)]

dJ
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u = ax + by

a
b

=
(x1 − x2)(s2

y1
+ s2

y2
)

(y1 − y2)(s2x1 + s2x2)

take ratios:

a = x1 − x2
s2x1 + s2x2

b = y1 − y2
s2y1 + s2y2

so 
choose

“train” on data sets or simulation

u = ⃗w T ⃗p
vector of 

parameters
transpose 
vector of 
weights

⃗w = (Σ1 + Σ2)−1( ⃗μ1 − ⃗μ2)
vectors of 

class means
class covariance 

matrices

More Generally:

There is also a form that can be used for more 
than 2 classes, but the optimisation of this can 
be trickier



Is event 
inside the 

fiducial 
volume?

Background

yesno

Is 
Emin < E < Emax?

Background

no yes

Background

no

Signal

yes

Does the 
event pass 

PSD?

A Simple Binary 
Decision Tree

nodes

branches

leaves

isolated node + branches = “stump”
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Where is the best place to cut?
Purity of signal in the cut region:

ps = ns

nb + ns
Purity of background in the cut region:

pb = nb

nb + ns
= 1 − ps

Gini index (Corrado Gini): IG = pspb = ps(1 − ps)
Note: equals zero for ps or pb = 1 (perfect separation) Best separation 

at minimum Gini
More generally, for n classes, where 
pi is the purity of the ith target class:

IG =
n

∑
i=1

pi(1 − pi) = ∑ (pi − p2
i )

= ∑ pi − ∑ p2
i = 1 − ∑ p2

i

“Goodness of Split”



Weighted Gini index for test:
IG(Tot) = fPIG(P) + fFIG(F )

Test
Pass Fail

S, B S, B

parameter 1

pa
ra

m
et

er
 2

What if the starting population 
is already unevenly split?

IE = − ∑ pi log piEntropy:

Misclassification 
Index: IM = ∑ [1 − max(pi , 1 − pi)]

Other Examples of Measures:

IS = ∑
s2
i

bi
Significance:

(maximise)

“Goodness of Split”

Use difference in Gini index
(want to maximise):

ΔIG = IG(0) − [ fPIG(P) + fFIG(F )]

initial pre-split 
value for node



Growing a Better Tree N=10000
S: 6000 B: 4000

Fiducial 
Volume:

N=10000
S: 6000 B: 4000

R<R1

N=7000
S: 5000 B: 2000

N=3000
S: 1000 B: 2000

Pass Fail

N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Initial Simulated Data Set

IG = ( 6000
10000 ) ( 4000

10000 ) = 0.24

ΔIG(R2) = 0.041ΔIG(R1) = 0.03

N=10000
S: 6000 B: 4000

R<R3

N=1850
S: 1500 B: 350

N=8150
S: 4500 B: 3650

Pass Fail

ΔIG(R3) = 0.01

etc.

PSD:
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000

τ < τ1
etc.

ΔIG(τ1) ΔIG(τ2) ΔIG(τ3)
τ < τ2 τ < τ3

Energy:
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000
N=10000

S: 6000 B: 4000

Emin
1 < E < Emax

1 Emin
2 < E < Emax

2 Emin
3 < E < Emax

3
etc.

ΔIG(Emin
1 , Emax

1 ) ΔIG(Emin
2 , Emax

2 ) ΔIG(Emin
3 , Emax

3 )

ΔIG(R1) = 0.24 − [0.7 ( 5
7 ) ( 2

7 ) + 0.3 ( 1
3 ) ( 2

3 )]



Growing a Better Tree N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

ΔIG(R1)
ΔIG(R2)

ΔIG(Emin
1 , Emax

1 )
ΔIG(Emin

2 , Emax
2 )

ΔIG(Emin
3 , Emax

3 )

ΔIG(τ1)
ΔIG(τ2)
ΔIG(τ3)

ΔIG(R3)
.
.
.
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.

.

.
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ΔIG(R1)
ΔIG(R2)
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ΔIG(Emin
3 , Emax
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ΔIG(τ1)
ΔIG(τ2)
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.



Growing a Better Tree N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Emin
3 < E < Emax

3 τ < τ1
Fail

N=2720
S: 2000 B: 720

Pass

N=2550
S: 2500 B: 50

Pass

N=850
S: 500 B: 350

Fail

τ < τ1τ < τ2 R<R1
Fail

N=1860
S: 1500 B: 360

Pass

N=500
S: 400 B: 100

Pass

N=2015
S: 2000 B: 15

Pass

Fail Fail

Emin
3 < E < Emax

3
Fail

N=1036
S: 1000 B: 36

Pass

Emin
1 < E < Emax

1

N=250
S: 200 B: 50

Pass

Fail

Stats getting low

Not much 
change

“Pruning”



Growing a Better Tree N=10000
S: 6000 B: 4000

R<R2

N=3400
S: 3000 B: 400

Pass

N=6600
S: 3000 B: 3600

Fail

Emin
3 < E < Emax

3 τ < τ1
Fail

N=2720
S: 2000 B: 720

Pass

N=2550
S: 2500 B: 50

Pass

N=850
S: 500 B: 350

Fail

τ < τ1τ < τ2 R<R1
Fail

N=1860
S: 1500 B: 360

Pass

N=500
S: 400 B: 100

Pass

N=2015
S: 2000 B: 15

Pass

Fail Fail

Emin
3 < E < Emax

3
Fail

N=1036
S: 1000 B: 36

Pass

Emin
1 < E < Emax

1

N=250
S: 200 B: 50

Pass

Fail

PassPass

Pass

Signal efficiency :
3200
6000 = 53 %

Background efficiency :
101
4000 = 2.5 %



Test

{δ(x) = 1
= − 1

for example
if Pass

if Fail

Assume we have a data set with 
relevant parameter values for a 
given test: x1, x2, x3 . . . xN
each of which corresponds to a 
given class:  q1, q2, q3 . . . qN
where, for example,             if it’s 
signal &                 if background.

qi = 1
qi = − 1

Assume we have some arbitrary 
number of test results from a 
series of “weak learners”:

δ1(xi), δ2(xi), δ3(xi) . . . δL
and that we wish to find a strong 
c lass ifier that is a l inear 
combination of these:

CL(xi) =
L

∑
j=1

αjδj(xi)

where the sign of CL indicates 
the preferred class and the 
magnitude is related to the 
strength of the classification.

E =
N

∑
i=1

e−qiC(xi)

Further assume an exponential 
“loss function” to penalise 
incorrect classifications within an 
“error function”:

Boosted Trees (AdaBoost)

*Other boost algorithms, loss functions and classifier combinations are available at specially selected stores!



E =
N

∑
i=1

e−qiC(xi) CL(xi) =
L

∑
j=1

αjδj(xi)

Assume we have a classifier composed of m-1 weak learners 
and we wish to add another: Cm(xi) = Cm−1(xi) + αmδm(xi)
What choice of αm will minimise E ?

E =
N

∑
i=1

e−qiCm−1(xi) e−qiαmδm(xi) =
N

∑
i=1

wm
i e−qiαmδm(xi)

= ∑
qi=δm(xi)

wm
i e−αm + ∑

qi≠δm(xi)
wm

i eαm

dE
dαm

= − αme−αm ∑
qi=δm(xi)

wm
i + αme−αm ∑

qi≠δm(xi)
wm

i = 0

(w1
i ≡ 1)

relative weights

ϵm ≡
∑qi≠δm(xi)

wm
i

∑N
i wm

i
weighted fractional error rate



Assign initial normalised weights to 
each data point in a large training set to 
give equal overall weight to signal and 
background (               if equal numbers) w1

i = 1/N

Is the error rate only minimally changed 
or has significant overtraining likely to 
have occurred?

Find the test stump (  ) that gives the 
lowest weighted error rate and compute    
the value of    α

δ

Multiple each weight by    if the 
categorisation is correct and by          if 
it is not, then renormalise so 

e−α

eα

YES

NO

C =
mstop

∑
m=1

αmδm(xi)

Verify with independent training set

Apply to data

AdaBoost Implementation

∑ wm
i = 1



• If the problem can be completely specified by PDFs that 
capture the relevant information, then you cannot do better than 
likelihood!

• The boost algorithm, loss function and classifier combination is 
arbitrary and not unique. There is no theorem that says which 
set of these is the best or produces the best possible 
discrimination.

• BDTs will overtrain! It is therefore important to pay attention to 
convergence criteria and verify the final efficiency with 
independent training sets.

• The use of too many extraneous or redundant parameters 
will make it more likely for BDTs to get distracted by fluctuations 
in multiple dimensions, resulting in a failure to converge on the 
relevant region and leading to a loss in efficiency. It’s worth 
putting thought into the parameter choices and building 
elements one by one.

• You don’t get the likelihood and all the benefits that brings.
• BDTs and other ML approaches are particularly useful if 

computational speed is an issue or it is difficult to couch the 
problem in terms of PDFs (i.e. simple hypotheses).

Some Observations:


