Lecture 12:

- Fisher Linear Discriminant
- Decision Trees
- Boosted Decision Trees (AdaBoost)

Fisher Linear Discriminant

Let's pick a new variable to act as a discriminant between the two classes that is some linear combination of x and y :

$$
u \equiv a x+b y
$$

We want to choose values for a and b to maximise the mean distance (or variance) between the classes, while minimising the variances within each class so as to give the cleanest separation. Fisher thus proposed maximising:

$$
\begin{aligned}
J & =\frac{\left[\left(a \overline{x_{1}}+b \overline{y_{1}}\right)-\left(a \overline{x_{2}}+b \overline{y_{2}}\right)\right]^{2}}{\left[\left(a s_{x_{1}}\right)^{2}+\left(b s_{y_{1}}\right)^{2}\right]+\left[\left(a s_{x_{2}}\right)^{2}+\left(b s_{y_{2}}\right)^{2}\right]} \\
J & =\frac{\left[\left(a\left(\overline{x_{1}}-\overline{x_{2}}\right)+b\left(\overline{y_{1}}-\overline{y_{2}}\right)\right]^{2}\right.}{\left[a^{2}\left(s_{x_{1}}^{2}+s_{x_{2}}^{2}\right)+b^{2}\left(s_{y_{1}}^{2}+s_{y_{2}}^{2}\right)\right]}
\end{aligned}
$$

$$
\begin{aligned}
J & =\frac{\left[\left(a\left(\overline{x_{1}}-\overline{x_{2}}\right)+b\left(\overline{y_{1}}-\overline{y_{2}}\right)\right]^{2}\right.}{\left[a^{2}\left(s_{x_{1}}^{2}+s_{x_{2}}^{2}\right)+b^{2}\left(s_{y_{1}}^{2}+s_{y_{2}}^{2}\right)\right]} \\
\frac{d J}{d a} & =\frac{2[\ldots]\left(\overline{x_{1}}-\overline{x_{2}}\right)}{[--]}-\frac{[\ldots]^{2}}{[--]^{2}} 2 a\left(s_{x_{1}}^{2}+s_{x_{2}}^{2}\right)=0 \\
\frac{d J}{d b} & =\frac{2[\ldots]\left(\overline{x_{1}}-\overline{x_{2}}\right)}{[--]}-\frac{[\ldots]^{2}}{[--]^{2}} 2 b\left(s_{y_{1}}^{2}+s_{y_{2}}^{2}\right)=0
\end{aligned}
$$

More Generally: $u=\vec{w}^{T} \vec{p}$

$$
\begin{aligned}
& \vec{w}=\left(\Sigma_{1}+\Sigma_{2}\right)^{-1}\left(\overrightarrow{\mu_{1}}-\overrightarrow{\mu_{2}}\right) \\
& \text { class covariance } \\
& \text { matrices } \\
& \text { vectors of } \\
& \text { class means }
\end{aligned}
$$

There is also a form that can be used for more than 2 classes, but the optimisation of this can be trickier

"Goodness of Split"

Purity of signal in the cut region:

$$
p_{s}=\frac{n_{s}}{n_{b}+n_{s}}
$$

Purity of background in the cut region:

$$
p_{b}=\frac{n_{b}}{n_{b}+n_{s}}=1-p_{s}
$$

parameter 1

Gini index (Corrado Gini): $I_{G}=p_{s} p_{b}=p_{s}\left(1-p_{s}\right)$
Note: equals zero for p_{s} or $p_{b}=1$ (perfect separation)

Best separation at minimum Gini

More generally, for n classes, where p_{i} is the purity of the $i^{t h}$ target class:

$$
\begin{aligned}
I_{G} & =\sum_{i=1}^{n} p_{i}\left(1-p_{i}\right)=\sum\left(p_{i}-p_{i}^{2}\right) \\
& =\sum p_{i}-\sum p_{i}^{2}=1-\sum p_{i}^{2}
\end{aligned}
$$

"Goodness of Split"

Weighted Gini index for test:

$$
I_{G}(T o t)=f_{P} I_{G}(P)+f_{F} I_{G}(F)
$$

What if the starting population is already unevenly split?

Use difference in Gini index (want to maximise):

$$
\Delta I_{G}=I_{G}(0)-\left[f_{P} I_{G}(P)+f_{F} I_{G}(F)\right]
$$

initial pre-split value for node

Other Examples of Measures:
Entropy: $\quad I_{E}=-\sum p_{i} \log p_{i}$
Misclassification
Index: $\quad I_{M}=\sum\left[1-\max \left(p_{i}, 1-p_{i}\right)\right]$
$\underset{\text { (maximise) }}{\text { Significance: }} I_{S}=\sum \frac{s_{i}^{2}}{b_{i}}$

Growing a Better Tree

Fiducial Volume:

$\Delta I_{G}\left(R_{1}\right)=0.24-\left[0.7\left(\frac{5}{7}\right)\left(\frac{2}{7}\right)+0.3\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\right]$

$$
\Delta I_{G}\left(R_{1}\right)=0.03
$$

Energy:

$\mathrm{N}=10000$	
$\mathrm{~S}: 6000$	$\mathrm{~B}: 4000$
$E_{1}^{\text {min }}<E<E_{1}^{\text {max }}$	

$\Delta I_{G}\left(E_{1}^{\min }, E_{1}^{\max }\right)$

$\mathrm{N}=10000$	
$\mathrm{~S}: 6000$	$\mathrm{~B}: 4000$
$E_{2}^{\text {min }}<E<E_{2}^{\max }$	

$\Delta I_{G}\left(E_{2}^{\min }, E_{2}^{\text {max }}\right)$
etc.
$\Delta I_{G}\left(E_{3}^{\min }, E_{3}^{\max }\right)$
etc.

Growing a Better Tree

$\Delta I_{G}\left(E_{1}^{\text {min }}, E_{1}^{\text {max }}\right)$	$\Delta I_{G}\left(E_{1}^{\text {min }}, E_{1}^{\text {max }}\right)$
$\Delta I_{G}\left(E^{\text {min }}, E_{2}^{\text {max }}\right)$	$\Delta I_{G}\left(E_{2}^{\text {min }}, E_{2}^{\text {max }}\right)$
$\Delta I_{G}\left(E_{3}^{\text {min }}, E_{3}^{\text {max }}\right)$	$\Delta I_{G}\left(E_{3}^{\text {min }}, E_{3}^{\text {max }}\right)$

$\Delta I_{G}\left(\tau_{1}\right)$
$\Delta I_{G}\left(\tau_{2}\right)$
$\Delta I_{G}\left(\tau_{3}\right)$
$\Delta I_{G}\left(\tau_{1}\right)$
$\Delta I_{G}\left(\tau_{2}\right)$
$\Delta I_{G}\left(\tau_{3}\right)$

Growing a Better Tree

Stats getting low

Growing a Better Tree

$N=10000$

Signal efficiency : $\quad \frac{3200}{6000}=53 \%$
Background efficiency: $\quad \frac{101}{4000}=2.5 \%$

Boosted Trees (AdaBoost)

Assume we have a data set with relevant parameter values for a given test: $\quad x_{1}, x_{2}, x_{3} \ldots x_{N}$ each of which corresponds to a given class: $q_{1}, q_{2}, q_{3} \ldots q_{N}$ where, for example, $q_{i}=1$ if it's signal \& $q_{i}=-1$ if background.

Further assume an exponential "loss function" to penalise incorrect classifications within an "error function":

$$
E=\sum_{i=1}^{N} e^{-q_{i} C\left(x_{i}\right)}
$$

Assume we have some arbitrary number of test results from a series of "weak learners":

$$
\delta_{1}\left(x_{i}\right), \delta_{2}\left(x_{i}\right), \delta_{3}\left(x_{i}\right) \ldots \delta_{L}
$$

and that we wish to find a strong classifier that is a linear combination of these:

$$
C_{L}\left(x_{i}\right)=\sum_{j=1}^{L} \alpha_{j} \delta_{j}\left(x_{i}\right)
$$

where the sign of C_{L} indicates the preferred class and the magnitude is related to the strength of the classification.

$$
E=\sum_{i=1}^{N} e^{-q_{i} C\left(x_{i}\right)} \quad C_{L}\left(x_{i}\right)=\sum_{j=1}^{L} \alpha_{j} \delta_{j}\left(x_{i}\right)
$$

Assume we have a classifier composed of $\mathrm{m}-1$ weak learners and we wish to add another: $C_{m}\left(x_{i}\right)=C_{m-1}\left(x_{i}\right)+\alpha_{m} \delta_{m}\left(x_{i}\right)$
What choice of α_{m} will minimise E ?

$$
\begin{aligned}
E & =\sum_{i=1}^{N} e^{-q_{i} C_{m-1}\left(x_{i}\right)} e^{-q_{i} \alpha_{m} \delta_{m}\left(x_{i}\right)}=\sum_{i=1}^{N} w_{i}^{m} e^{-q_{i} \alpha_{m} \delta_{m}\left(x_{i}\right)} \\
& =\sum_{q_{i}=\delta_{m}\left(x_{i}\right)} w_{i}^{m} e^{-\alpha_{m}}+\sum_{q_{i} \neq \delta_{m}\left(x_{i}\right)} w_{i}^{m} e^{\alpha_{m}}
\end{aligned}
$$

$$
\frac{d E}{d \alpha_{m}}=-\alpha_{m} e^{-\alpha_{m}} \sum_{q_{i}=\delta_{m}\left(x_{i}\right)} w_{i}^{m}+\alpha_{m} e^{-\alpha_{m}} \sum_{q_{i} \neq \delta_{m}\left(x_{i}\right)} w_{i}^{m}=0
$$

$$
\begin{aligned}
& \alpha_{m}=-\frac{1}{2} \ln \left(\frac{\sum_{q_{i} \neq \delta_{m}\left(x_{i}\right)} w_{i}^{m}}{\sum_{q_{i}=\delta_{m}\left(x_{i}\right)} w_{i}^{m}}\right)=\frac{1}{2} \ln \left(\frac{1-\epsilon_{m}}{\epsilon_{m}}\right) \\
& \epsilon_{m} \equiv \frac{\sum_{q_{i} \neq \delta_{m}(x, i} w_{i}^{m}}{\sum_{i}^{N} w_{i}^{m}} \\
& \text { weighted fractional error rate }
\end{aligned}
$$

AdaBoost Implementation

Assign initial normalised weights to each data point in a large training set to give equal overall weight to signal and background ($w_{i}^{1}=1 / N$ if equal numbers)

Find the test stump (δ) that gives the lowest weighted error rate and compute the value of α

Is the error rate only minimally changed or has significant overtraining likely to have occurred?

Some Observations:

- If the problem can be completely specified by PDFs that capture the relevant information, then you cannot do better than likelihood!
- The boost algorithm, loss function and classifier combination is arbitrary and not unique. There is no theorem that says which set of these is the best or produces the best possible discrimination.
- BDTs will overtrain! It is therefore important to pay attention to convergence criteria and verify the final efficiency with independent training sets.
- The use of too many extraneous or redundant parameters will make it more likely for BDTs to get distracted by fluctuations in multiple dimensions, resulting in a failure to converge on the relevant region and leading to a loss in efficiency. It's worth putting thought into the parameter choices and building elements one by one.
- You don't get the likelihood and all the benefits that brings.
- BDTs and other ML approaches are particularly useful if computational speed is an issue or it is difficult to couch the problem in terms of PDFs (i.e. simple hypotheses).

