Lecture 3:

e Uncertainties & Error Propagation
e Testing Models: chi-squared
e “Scientific Method”
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1)  We don’t necessarily know the full joint distribution of ¢
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2) Even if we did, it’'s cumbersome to deal with!
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Some simple examples:
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For a quadrature addition of uncertainties,
uncertainties that are half as big only carry
1/4 of the weight, and uncertainties that are
1/4 as big only carry 1/16 of the weight...
Only the dominant uncertainties matter!




More General Example: Measurement of Linear Thermal Expansion Coefficient
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Measure h by
timing the drop
of snowballs on
one particularly
cold day, then
compare with ho
to determine «
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Then, from the relation /1 = ho[l — OI(T— TO)]

estimate the expansion coefficient:
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Now we want to find the uncertainty in @ by

propagating the uncertainties in 7, and TM
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Approach 1: Evaluate Approximately Using the Data
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cov(t,T) = <(t -1, (T - Tﬂ)> ~

Drawback: Requires a large enough data set so that estimates are well determined
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Approach 2: Use Calibration Measurements and/or Physical Models
of = <(r - tﬂ)2> from calibration of timing accuracy

o7 = <(T— Tﬂ)2> from calibration of temperature reading accuracy

Temperature variations during the day are sufficiently small that the
correlation with time measurements is very weak, so cov(z,T) ~ 0

Drawback: Model could be wrong

The temperature variations might influence reaction times and this might
have a noticeable systematic impact on the stopwatch measurements
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Best Approach: Do both!

Check the consistency or your model and calibrations with the data
(If things don’t add up, dig around to understand it!)
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The Statistical Calculation That You Should Have Done at the Start!

Typical linear expansion coefficients for building materials ~5x10-6 per °C
Take (T-To) ~ 20°C

ho-h ~ (20m)(5x10-6)(20°C) = 0.002m

velocity at impact = 4/2gh, = \/2(9.8m/s2)(20m) ~ 20m/s
So, timing must be known to an accuracy of (0.002/20) = 0.0001s

Accuracy of any one timing timing measurement ~ 0.1s

o
But we improve by averaging lots of measurements accordingto o0,, = ——

n
How many measurements do we need?

2

o 0.1 ;

n=—~ =10 (ignoring systematic uncertainties!)
o2~ \0.0001



Statistical Uncertainties

Fundamental, calculable, random variations
due to an inherent limited sampling of the
underlying distribution (i.e. counting statistics).

Systematic Uncertainties

Incidental, estimated (bounded), systematic biases
Incurred as a result of limited measurement precision
(also always present).



There is no universally applicable method for estimating/bounding*
systematic uncertainties. A typical approach often relies on independent
cross-checks, accounting for possible statistical limitations of calibration
procedures, knowledge about the experimental design and general
consistency arguments.

* Systematic errors that are “determined” become corrections!

Because of their very different nature, there is no standard,
mathematically rigorous way to combine the 2 types of uncertainties.
The convention is thus to quote results in the form:

Result = Uncertainty (stat) = Uncertainty (sys)

quadrature

And error bars such as: ® o O _gys  ~—sum of sys
* and stat




How do you then make use of
such data points to fit a model?

It is often generally assumed that systematic uncertainties
can be treated in a similar way to statistical uncertainties,

with careful attention to correlations.

|deally, the best way to treat systematic uncertainties are as
free parameters in the model fit, constrained by the
separately determined bounds on their values.

quadrature

@ Or ® —sys ~—sum of sys
and stat




Consider:

x= Zn: 8/
=1

where g; are samples drawn
from a normal (i.e. Gaussian)
distribution of unit variance

Then the distribution of this quantity defines a )(2 (“chi-squared”)
distribution with NN degrees of freedom

effective number of independent
samples contributing to the variance




The %2 probability density 2
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(will come back to this)

And the integral probability is given by:
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Chi-Square for 1 Degres of Freedom
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Pearson’s 2 Test

So, for example, if we have a model, m, involving k free parameters
(determined by a fit to the data) that seeks to predict the values, x, of n
data points, each with normally distributed uncertainties, we can
construct the sum:

n 2 for binned data
X: — M.
S = z ( ! l) (Poisson statistics)
= > ;
i=1 Om, o = m;

/! i

normalises things to give
a Gaussian distribution
with unit variance

S will then be distributed as a %2 distribution with degrees of
freedom, and can thus be used as a statistic to rmine how well the
model matches the data.

For example, imagine fitting a straight line
(2 parameters: slope and intercept) to a set
of data. You can always force the line to go
through 2 of the data points exactly, so only
n-2 of the data points will contribute to the
variance around the model




S will then be distributed as a x2 distribution with n-k degrees of
freedom, and can thus be used as a statistic to determine how well the
model matches the data.

“If my model is correct, how often would a randomly drawn
sample of data yield a value of y2 at least as large as this?”

Determining the best values for the model parameters by choosing
them so as to minimise 2 is called the “Method of Least Squares.”

|

Note that, if you vary one of the model parameters from its best fit
value until 4% increases by 1, this therefore represents the change
in the model parameter associated with 1 unit of variance in the fit
quality (i.e. the “10 uncertainty” in the model parameter).




Example:

A newly: commrssroned underground neutnno
detector sees \a rate of\rnternal radroactrve-__'
|contamination decreasing-as/a funetron of time.|
|Measurements - of ‘the number of.such events| -
observed are taken: on- 90 consecuﬂ/e days "
/. Determine the best fit mean decay time in order{ .
|to. determine the source of the contamrnatron '

et | decay probability:
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Table of model predictions for different values of t0

-

ey
Centre of Measured xp(-(t-0.5)/t0) - exp(-(t+0.5)/t0 (Ntot/(1-exp(-10/t0))&(1/t0)*exp(-t/t0)
Time Bin (days) | # counts t0: 3 35 5 6 65 7 7/5—8—.85 9 95 10 105 11,115 12
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Histogram of measured Table of ((n-m)"2)/m for different values of t0
times: bin width =1 t0: 3 35 4 45 5 55 6 65 7 715 8 8
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“Chi by eye”
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NOTE: This doesn’t tell you which model is correct,
but it can tell you which models don’t fit well!
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Figure 1. (a) Light curve for Geminga obtained with EGRET. (b) The VHE ~-ray light
curve of Geminga plotted at the GeV +-ray phase, as derived from the COS-B ephemeris.
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DoF =20—-1 =19 (98.4% chance of getting something larger)




Scientific Method:

OCCAMS ) -
RAZOR, ¥ (@)

A Parsimonious
Shave Every
Time!

Simplest and
most predictive
A theory is judged not
W on what it can explain,
but on what it can
reproducibly predict!

Test for Rejected with
reproducible

high confidence
predictions éModel

. We don’t prove models
to disprove

correct; we reject those
models that are wrong!

Next simplest &

Not rejected with most predictive

high confidence

M@ﬂ

Rejected with
high confidence

Test for
reproducible

AMadel



Don’t state that data are “consistent’
with a given model, but rather that they
are ‘“not inconsistent.”
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