
Lecture 3:

• Uncertain1es & Error Propaga1on 

• Tes1ng Models: chi-squared 

• “Scien1fic Method”



Error Propagation

Want to use the distribution f  to propagate uncertainties in q, but 
1) We don’t necessarily know the full joint distribution of q        

(i.e. the probability distribution for all possible sets of values)
2)     Even if we did, it’s cumbersome to deal with!

So, instead, let’s approximate things to first order
and then estimate the variance of f

Uncertainty

f(q) = f(q1, q2, . . . qn)

Taylor expansion about the mean values for q
where f(μ) = f(μ1, μ2, . . . μn)µ

The th ing 
you want to 
measure

Dependent 
parameters 
(e.g. temperature, 
p o s i t i o n , t i m e , 
pressure…)
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So we get: σ2
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Some simple examples:
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For a quadrature addi1on of uncertain1es, 

uncertain1es that are half as big only carry 

1/4 of the weight, and uncertain1es that are 

1/4 as big only carry 1/16 of the weight... 

Only the dominant uncertain=es ma"er!



ho=20m
(@To=20oC)

h=ho[1+α(T-To)]

More General Example: Measurement of Linear Thermal Expansion Coefficient

Start!

Measure h by 
timing the drop 
of snowballs on 
one particularly 
cold day, then 
compare with h0 
to determine α



data 
point

Time 
(s)

Temp 
(oC)

1 2.02 -5.6

2 1.99 -4.8

3 2.05 -4.4

. . .

. . .
n 2.01 -5.3

tμ ∼ t̃μ = 1
n

n

∑
i=1

ti Tμ ∼ T̃μ = 1
n

n

∑
i=1

Ti

In this simple analysis, we’re interested in determining the 
average values of drop time and temperature for the day:

h = h0[1 − α(T − T0)]Then, from the relation

estimate the expansion coefficient: 

α̃ =
h̃μ

h0
− 1

T̃μ − T0
=

gt̃ 2
μ

2h0
− 1

T̃μ − T0

Now we want to find the uncertainty in       by 
propagating the uncertainties in        and

α̃
t̃μ T̃μ



data 
point

Time 
(s)

Temp 
(oC)

1 2.02 -5.6

2 1.99 -4.8

3 2.05 -4.4

. . .

. . .
n 2.01 -5.3

Approach 1: Evaluate Approximately Using the Data
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Drawback: Requires a large enough data set so that estimates are well determined
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Vij =

time

time

Temp
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Approach 2: Use Calibration Measurements and/or Physical Models

Drawback: Model could be wrong

σ2
t = ⟨(t − tμ)2⟩ from calibration of timing accuracy

σ2
T = ⟨(T − Tμ)2⟩ from calibration of temperature reading accuracy

Temperature variations during the day are sufficiently small that the 
correlation with time measurements is very weak, so cov(t, T ) ∼ 0

data 
point

Time 
(s)

Temp 
(oC)

1 2.02 -5.6

2 1.99 -4.8

3 2.05 -4.4

. . .

. . .
n 2.01 -5.3

The temperature variations might influence reaction times and this might 
have a noticeable systematic impact on the stopwatch measurements

σ2
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σ2
T

cov(t, T )
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Vij =

time

time

Temp

Temp

Best Approach: Do both!

Check the consistency or your model and calibrations with the data
(If things don’t add up, dig around to understand it!)

data 
point

Time 
(s)

Temp 
(oC)

1 2.02 -5.6

2 1.99 -4.8

3 2.05 -4.4

. . .

. . .
n 2.01 -5.3
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cov(t, T )
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Typical linear expansion coefficients for building materials ~5x10-6  per oC

Take (T-To) ~ 20oC

h0-h ~ (20m)(5x10-6)(20oC) = 0.002m

velocity at impact = 2gh0 = 2(9.8m /s2)(20m) ∼ 20m /s
So, timing must be known to an accuracy of  (0.002/20) =  0.0001s

Accuracy of any one timing timing measurement ~ 0.1s

But we improve by averaging lots of measurements according to σm = σ
n

How many measurements do we need?

n = σ2

σ2m
∼ ( 0.1

0.0001 )
2

= 106 (ignoring systematic uncertainties!)

The Statistical Calculation That You Should Have Done at the Start!



Statistical Uncertainties

Fundamental, calculable, random variations 
due to an inherent limited sampling of the 
underlying distribution (i.e. counting statistics).

Systematic Uncertainties

Incidental, estimated (bounded), systematic biases
incurred as a result of limited measurement precision
(also always present).



There is no universally applicable method for estimating/bounding* 
systematic uncertainties. A typical approach often relies on independent 
cross-checks, accounting for possible statistical limitations of calibration 
procedures, knowledge about the experimental design and general 
consistency arguments.

* Systematic errors that are “determined” become corrections!

Because of their very different nature, there is no standard, 
mathematically rigorous way to combine the 2 types of uncertainties. 
The convention is thus to quote results in the form:

Result ± Uncertainty (stat) ± Uncertainty  (sys)

And error bars such as: or sys
quadrature
sum of sys
and stat



or sys
quadrature
sum of sys
and stat

How do you then make use of 
such data points to fit a model?

It is often generally assumed that systematic uncertainties 
can be treated in a similar way to statistical uncertainties, 
with careful attention to correlations. 

Ideally, the best way to treat systematic uncertainties are as 
free parameters in the model fit, constrained by the 
separately determined bounds on their values.



χ2 ≡
n

∑
i=1

g2
i

σ = 1

where gi are samples drawn 
from a normal (i.e. Gaussian) 
distribution of unit variance

Then the distribution of this quantity defines a χ2 (“chi-squared”) 
distribution with n degrees of freedom

effective number of independent 
samples contributing to the variance

Consider:
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if k = positive integer
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(will come back to this)



Probability to be outside of √4 

= 2 standard devia1ons  

is 0.0455 

Probability to be outside of  

√1 = 1 standard devia1ons  

is 0.3173 





So, for example, if we have a model, m, involving k free parameters 
(determined by a fit to the data) that seeks to predict the values, x, of n 
data points, each with normally distributed uncertainties, we can 
construct the sum:

Pearson’s χ2 Test

  for binned data 

(Poisson sta1s1cs)S ≡
n

∑
i=1

(xi − mi)2

σ2mi

normalises things  to give 
a Gaussian distribution 
with unit variance

For example, imagine fitting a straight line 
(2 parameters: slope and intercept) to a set 
of data. You can always force the line to go 
through 2 of the data points exactly, so only 
n-2 of the data points will contribute to the 
variance around the model



“If my model is correct, how often would a randomly drawn 
sample of data yield a value of χ2 at least as large as this?”

Determining the best values for the model parameters by choosing 
them so as to minimise χ2 is called the “Method of Least Squares.”

Note that, if you vary one of the model parameters from its best fit 
value until χ2 increases by 1, this therefore represents the change 
in the model parameter associated with 1 unit of variance in the fit 
quality (i.e. the “1σ uncertainty” in the model parameter).



Example:

A newly commissioned underground neutrino 
detector sees a rate of internal radioactive 
contamination decreasing as a function of time. 
Measurements of the number of such events 
observed are taken on 10 consecutive days. 
Determine the best fit mean decay time in order 
to determine the source of the contamination.

P(t) = 1
to

e− t
to

decay probability:

to = mean decay lifetime



normalised to total 
number of events 
observed in 10 days

~1σ ~1σ

best fit 
value

How many degrees of freedom?
• 10 independent data points
• fit parameter to

• but normalisation is also based on 
observed data (for single bin, 
variance would be zero)

DoF = 10 - 2 = 8

P( χ2 > 11.34 |8 DoF ) = 0.18
How good is the fit?

   222Rn 
mean lifetime 
= 5.51 days

often approximate 
integral over bin with 
the average



Degrees of Freedom = 7 – 2 = 5

0         1         2         3         4         5         6        7         8         9         10  

100 

  80 

  60 

  40 

  30

NOTE: This doesn’t tell you which model is correct,
but it can tell you which models don’t fit well!

“Chi by eye”

χ2 ∼ (0.3)2 + (0.1)2 + (1.2)2 + (1.7)2 + (0.3)2 + (0.8)2 + (0.8)2 = 5.8



 _x_     
1705 
1712 
1693 
1715 
1778 
1756 
1681 
1707 
1712 
1710 
1721 
1717 
1731 
1710 
1777 
1693 
1747 
1690 
1692 
1722

Avg (m) = 1718.45

DoF = 20 – 1 = 19 (98.4% chance of getting something larger)

Quoted chance probability based 
 on correlation analysis: 6 x 10-4

Wuant ‘em Effect
χ2 =

20

∑
i=1

(xi − 1718.45)2

1718.45 = 8.22
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 Rejected with 

high confidence

Next simplest & 

most predic1ve

Model
Test for 

reproducible 

predic1ons 

to disprove

Scientific Method:

ORDER!!

 Rejected with 

high confidence Model
Test for 

reproducible 

predic1ons 

A theory is judged not  
on what it can explain,  
but on what it can  
reproducibly predict!

We don’t prove models 
correct; we reject those 
models that are wrong!



Don’t state that data are “consistent” 
with a given model, but rather that they 
are “not inconsistent.”


