
Lecture 4:

• Student’s t 

• Correla1on test 

• Non-parametric tests 

• What is ‘Normal?’ 

• Robust parameter es1ma1on



Student’s t
Often misinterpreted as referring to being from or for “a student,” rather 
than the fact that the name of the author happens to be “Student”( )
Except this was actually a pseudonym used by William Sealy Gosset in 
his 1908 paper, who was couching himself as “a student”!( )

Recall that the rms deviation in the estimated 
mean from a set of n samples is given by :

σm = σ
n

But what if we don’t know σ a priori and all 
we have are the sampled estimators?

rms of the full 
distribution.

x̄ = 1
n

n

∑
i=1

xi

s2 = 1
(n − 1)

n

∑
i=1

(xi − x̄)2

wheret ≡ x̄ − μ

(s/ n)
Want to find the distribution of t



t ≡ x̄ − μ

(s/ n)
ν = # degrees of freedom

As you would expect, this 
approaches the shape of 
a Gaussian distribution as 
the sample size grows:



Pearson Correlation Coefficient
A test of linear correlation between two sets of data

This is just the covariance normalised by the sample rms deviations.

The value of this quantity runs from 1 (completely correlated) to -1 
(completely anti-correlated), with zero indicating no correlation.

rxy = 1
n − 1

n

∑
i=1 ( xi − x̄

sx ) ( yi − ȳ
sy )



σr = 1 − r2

n − 2 DoF for 2 free 
parameters in 

linear fit

IF x and y are uncorrelated and each drawn from a normal 
distribution (such that, jointly, they can be described by a 2-D 
Gaussian), then:

From which it is possible to define a t statistic for r:

tr = r
n − 2
1 − r2

The statistics provides a relative measure of linear correlation but, in 
general, the probability distribution for r will depend on the 
distributions of x and y.



Spearman Rank-Order Correlation Coefficient
A non-parametric test of correlation between two sets of data (i.e. linearity is not assumed)

Define Ri as the ‘rank’ of xi (i.e. the numerical position in an ordered 
list of the n data points from lowest to highest x value).

Define Si as the ‘rank’ of yi (i.e. the numerical position in an ordered 
list of the n data points from lowest to highest y value).

Then define the rank coefficient as:

r = 1
n − 1

n

∑
i=1 ( Ri − R̄

sR ) ( Si − S̄
sS )

tr = r
n − 2
1 − r2

Similarly, the probability distribution can be approximated by the t statistic:

Generally pretty good and 
no longer depends on the 
actual distributions of x & y



Kolmogorov-Smirnov (and the like)
A non-parametric test of distributions

Plot the cumulative fraction of events less than or equal to a particular value 
of x as a function of x, along with the cumulative distribution for some model:
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For example: Is this data Normally distributed?

data

integral Gaussian for 
mean=x and σ=sx



Equivalently:
A more clearly defined 
span on the x-axis with 
a visually simple model 
expectat ion that is 
independent of the test 
distribution

There are several statistics that can be used to assess the level of agreement:

D+ = maximum positive deviation from the model line
D- = maximum negative deviation from the model line

V = D+ + D-

K-S statistics Cramer-von Mises

D = max(D+ , D-)

W2 =
n

∑
i=1

(yi − 2i − 1
2n )

2
+ 1

12n

U2 = W2 − n (ȳ − 1
2 )

2

D+ = 0.2

D- = 0.13 yi = integral of model 
probability distribution 
below the value of xi

(Clustering) (Variance)



In general, the probability distributions for these statistics need to be 
determined by Monte Carlo calculations. However, for continuous variables 
tested against a well-defined model distribution under the null hypothesis, 
tables and approximate parameterisations exist to obtain p-values:

Test Statistic
(T)

Modified
Test Statistic

(T*)

“High Tail”
Approximate 

Parameterisation 
for P(T* > z)

M.A. Stephens, Journal of the Royal Statistical Society. Series B (Methodological), Vol. 32, No. 1. (1970), pp. 115-122 

trial factor for 
choosing best!





Is That Normal?

We frequently encounter vague statements about the assumption 
that distributions are “sufficiently Normal,” but exactly what does 
that mean and how do you check that things are Normal enough?



It depends on what you’re trying to do:
• For example, if you’re fitting a function to a set of data, so long as the 

probability distributions for the data points are reasonably symmetric and tails 
are not very large, the derived central values for the fit parameters will 
generally be pretty good.

• If you want to make a precise measurement and quote Gaussian error bars, 
the probability distribution for the parameters should be Normal to at least ~2σ 
or more, as this is a tacit assumption by the reader when you quote ±1σ error 
bars. If this is not the case, the details should be given.

• If you want to exclude models at high confidence based on Gaussian error 
bars, the relevant distribution should obviously be Normal to at least that 
confidence level.

Note: the requirement on the precise Gaussian nature of individual data points may be less 
restrictive, since the variance of fit parameters generally arises from the accumulation of 
smaller deviations from the data points.

So the nature of Gaussian requirements is necessarily 
pragmatic, but is generally logically straight-forward.



The real issue is about:
 
1) Notably asymmetric distributions 
that can lead to systematic biases

2) Long distribution tails, whereby 
large deviations from the expected 
mean (“outliers”) occur much more 
frequently than assumed, which can 
skew fits and lead to misinterpretation.

Goodness of fit parameters, such as chi-squared, can be useful indicators 
of issues, but these don’t catch everything and won’t diagnose the issue

It is always advisable to look at the distributions!



But how do you deal with very large and complex data sets, 
where visually inspecting every distribution is not very practical?

• If distributions are symmetric, then mean = median = peak (mode)

• Different ways to compute the standard deviation:
1) Perform an explicit Gaussian fit
2) Compute the sampled RMS deviation
3) Find the peak and then the FWHM = 2.35σ for Gaussian
4) The central ±1σ should contain 68% of the events

Building some of these checks into your analysis 
is an extremely useful way to flag potential issues 
that warrant further investigation



Robust Parameter Estimation

The idea is to minimise the effect of distribution tails and asymmetries 
on the determination of derived parameters

For example, the median (or 50th percentile) is much more robust in 
this regard than the mean:

xmed = x(n+1)/2

xmed = xn/2 + xn/2+1
2

n odd →

n even →

In general, distribution percentiles are robust. So, for example, one 
could define an equivalent distribution “width” by the 84th percentile 
(i.e. the value below which contains 84% of the distribution) minus the 
16th percentile to give a region containing 68% of the distribution 
(roughly ±1σ for a Gaussian distribution) centred on the median.



d
dα

n

∑
i=1

(xi − α)2 = 0 = − 2
n

∑
i=1

(xi − α) = − 2 [
n

∑
i=1

xi − nα]
α = 1

n

n

∑
i=1

xi

A fit to parameters based on minimising the sum of RMS deviations 
provides an unbiased estimator for the mean:

To instead provide an unbiased estimator for the median, minimise 
with respect to the sum of the absolute deviations:

ε

these are all ε closer these are all ε further
plus this 

additional ε

So the minimum 
sum of absolute 
deviations finds 
the median! 



In general, the function to be minimised in order to find 
the best set of parameters is called the “Loss Function”

An alternative loss function suggested by Huber* provides smooth 
convergence in the vicinity of the minimum, while maintaining 
robustness from the distribution tails:

where δ is a tuneable parameter that 
would equal σ for a Gaussian distribution

A “Pseudo Huber Loss Function” provides a more convenient form 
that has continuous derivatives at all degrees:

Lδ = 1
n

n

∑
i=1

1
2 (yi − f (xi))2

Lδ = 1
n

n

∑
i=1

δ ( |yi − f (xi) | − δ
2 )

|yi − f (xi) | ≤ δ

|yi − f (xi) | > δ

Lδ = 1
n

n

∑
i=1

δ2 1 + ( yi − f (xi)
δ )

2
− 1

*P. Huber, “Robust Estimation of a Local Parameter,” Ann. Math. Statist. 35(1): 73-101 (1964)


