
Lecture 5:

• p-values 

• Combined p-values as a Sta1s1c 

• Maximum Likelihood 

• Neyman-Pearson Lemma 

• Wilk’s Theorem 

• Extended Likelihood



p-value (“chance probability”):
The probability of obtaining a value 
of some parameter at least as 
extreme as that which is observed, 
assuming the null hypothesis is true.

“How much does this particular data set look 
like what is expected from the null hypothesis?”

A common quantity to compute when testing the null hypothesis:

But the p-value is NOT the 
probability of a particular 
hypothesis being true or false!



Example 1:

p-value for this test, but 
need to look at it in the 
context of all other tests



Example 2:

During his year of self-isolating, 
Dave peered out of his bunker 
on six random occasions and 
found that it was always dark.

Assuming that the earth goes 
around the sun, you would 
expect it to be dark about half 
the time, averaged over the 
year. So the chance probability 
for it to be dark outside on all 
six occasions is:

P(dark all 6 times) = (0.5)6 = 0.0156
“Gosh, That’s pretty small! Hey everyone, it 
looks like there’s a very good chance that 
we’re no longer going around the sun!!”

Hey guys… I think 
dad has totally lost it!

Importance 
of prior 

probabilities 
(more on 
this later)



Very small p-values, even after 
careful accounting of trials, confirmed 
by independent observations, which 
could be explained by plausible 
alternative hypotheses…

Reject H0

Pragmatism!

Look carefully at context:



Two identical experiments observe evidence of the brexiton 
(a particle now outside of the Standard Model that inevitably 
then decays to a less attractive state). The first experiment 
assess the odds that their observation is due to chance 
fluctuations as being 1%, while the second assesses their 
observation to have a chance probability of 10%. What is the 
combined chance probability that these two data sets are 
consistent with the null hypothesis (i.e. there is no brexiton)?

Combination of p-values

P1 × P2 = 0.001 ?
Need to look at properties of the product:

Define the statistic:

What is the chance probability for Γ 

to be at least as small as some value α ?

Γ ≡ P1 × P2



Integrated area
under the curve:
α ( 1 - ln α )

= P(α)
i.e. this is the chance 
that a background 
fluctuation would yield 
a value of Γ that is at 
least as small as α.0                                     0.5                                   1.0
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P1 × P2 = α

So, for the case here: α = (0.01)(0.1) = 0.001
P( ≤ α) = 0.001(1 − ln(0.001)) = 0.004



Fisher’s Method

F ≡ − 2 ln (
n

∏
i=1

pi( ≤ pobs)) =
n

∑
i=1

(−2 ln pi( ≤ pobs)) ≡
n

∑
i=1

fi

pi( ≤ pobs) = e− fi
2

pdiff
i (x) = 1

2 e− fi
2

Recall: P(χ2,2) = 1
2 e− χ2

2

so fi values are distributed like 
a χ2 distribution with 2 DoF

=
n

∑
i=1

(g2
2i−1 + g2

2i)χ2 =
k(≡2n)

∑
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g2
i

and we can express:

F is distributed like a χ2 
distribution with 2n DoF

pi( > pobs) = 1 − e− fi
2or

χ2
i P(χ2,2n) =

n

∑
i=1

P( ,2)χ2
i

More generally…



The EXO experiment uses liquid xenon to 
search for evidence of neutrinoless double 
beta decay, which produces 2 electrons with a 
total energy that is well defined. The 
interaction produces scintillation light in the 
liquid xenon target, and the ionisation tracks of 
charged particles are also drifted to a readout 
plane to record the time and position of 
charges. Backgrounds come from radioactivity 
in the xenon and, to a greater extent, from the 
walls of the detector.

Assume that an event is observed and the chance probability for it 
to be background is assessed using several independent measures:

Event energy estimated from the scintillation light:
Event energy estimated from the total charge:
The proximity of the event to the cavity walls:
The density of charge deposition (event topology):

Pscint = 0.14
Pcharge = 0.05
Pcharge = 0.32
Pcharge = 0.53

What is the overall 
chance probability  
(p-value) that this 
event is background?

−2 log(0.14 × 0.05 × 0.32 × 0.53) = 13.43
P(χ2 > 13.43, DoF = 2 × 4) = 0.10

Example:



We wish to express the 
likelihood for a given set 
of data to have resulted 
from a particular model of  
probability distributions:

for independent events

Likelihood

likelihood data 
set

conditional probability

assuming a particular 
hypothesis defined by 
a set of parameters q

L = P (D |H(q))

more practical 
to compute

log L =
n

∑
i=1

log [P (xi |H(q))]
More likely data sets for H(q) will have a 
higher combined probability (i.e. likelihood)



Note: When used in this way, L is referred 
to as the “Likelihood Function” rather than a 
probability, because it is used to describe 
the relative probability for different models 
given a fixed data set… however that 
dependence need not be normalised to 1 
over the models tested!

The game will then be to find the model for 
which the observed data set is “most likely”

(the normalisation is instead defined over 
all possible data sets for a fixed model)

log L =
n

∑
i=1

log [P (xi |H(q))]



Simple hypothesis: All parameters of the relevant distributions are specified.      
                       (i.e. PDFs can be used to completely characterise the problem)
Composite hypothesis: Where this is not the case and parameters span a           
                                        range of possibilities.

This is probably a university student, 
because they spend £20 per week on 
alcohol and the average student  spends 
more than £15 per week on this.

This is probably a university student, 
because they spend £20 per week on 
alcohol and the average student  spends 
£17 per week on this with a standard 
deviation of ~ £13.

This is probably a university student, 
because they spend £20 per week on 
alcohol and the average student  spends 
£17 per week on this with a standard 
deviation of ~ £13, whereas this is 
normally what is expected for the typical 
UK household with an average of 1.9 
adults.

SIMPLE

COMPOSITE
(exact distribution not defined)

COMPOSITE
(distribution of alternative not defined)

Tests of Simple vs Composite Hypotheses



Statistical Power
When comparing 2 hypotheses, H0 and H1, the 
“statistical power” is the fraction of times that H0 is 
correctly rejected when H1 is true if one were to 
repeat the test many times with “identical” ensembles 
of data subject only to statistical fluctuations

Bayesian Power
When comparing 2 hypotheses, H0 and H1, the 
“Bayesian power” is the confidence you have in 
correctly rejecting H0 given the assumed probability 
distributions of H0 and H1 for this particular set of data

“Frequentist”
That’s ridiculous… I only care whether I’VE made the right choice given THIS set of data!

That’s ridiculous… hypotheses don’t have probability distributions: they are true or false!



Λ ≡ L(D |H0)
L(D |H1)

Neyman-Pearson Lemma:

(The exact distribution of Λ will, in general, depend on the distributions of L)

sometimes defined 
as one over this(                )

“Uniformly Most Powerful”
discriminate between simple hypotheses

is

(in a frequentist sense)



Assume that the set of possible hypotheses that describe 
a particular data set are distinguished only by the values of 
some unknown set of model parameters (e.g. the number 
of signal events, or the slope and intercept of a line, etc.). 

Determining the best set of model parameters by 
comparing to find the Maximum Likelihood is therefore 
the UMP method of parameter estimation! 

Simple example:  You wait at a bus stop and no bus arrives for 
the first 10 minutes, but then 2 buses arrive in the next 10 minute 
interval. What is the best estimate of the mean number of buses 
per 10 minutes?

P(n |μ) = μne−μ

n!
assume 
Poisson 
process

L = P(0 |μ)P(2 |μ) = (e−μ)( 1
2 μ2e−μ) = 1

2 μ2e−2μ

→ μm = 1
(as expected)

maximise the likelihood:
∂L
∂μ

= μe−2μ − μ2e−2μ = 0



constant

Thus, maximising L = maximising logL = minimising -2logL 
is equivalent to the Method of Least Squares in this limit !!
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Consider the case where uncertainties on data points are normally distributed. 
Assume that the mean values and variances, µi and σi, are predicted at each 
data point by some model. Then we have:

logL =
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log
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log L

looks 
like χ2



Consider a single parameter, q, which maximises the likelihood at q=qm. 
Now Taylor expand around the maximum likelihood point:

ln L(q) = ln L(qm) + [ ∂ ln L
∂q ]

q=qm

(q − qm) + 1
2! [ ∂2 ln L

∂q2 ]
q=qm

(q − qm)2 + . . .

zero by 
definition

can be shown to 
be approximately

− 1
σ2qm

as
n → ∞

ln L(q) ∼ ln L(qm) − 1
2

(q − qm)2

σ2qm

ln L(qm ± σqm
) ∼ ln L(qm) − 1

2

Can we approximate the general shape of likelihood functions?

q → qm ± σqm

−2[ln L(qm ± σqm
) − ln L(qm)] ∼ 1or

looks 
like Δχ2



Wilks’ Theorem

−2[ln L(qo) − ln L(q)] = − 2 ln ( L(qo)
L(q) ) ≡ − 2 ln LR ∼ χ2

d

more generally:

where qo are the set of model parameters that define the default (null) hypothesis,
and the  d = DoF = the difference in the number of model parameters constrained

• For nes!d hypo"eses (i.e. a con$nuous 
%ansi$on &om one hypo"esis ' "e next)
• Away &om boundaries in likelihood space

• In "e limit of large amounts of data

Legal Sta!ment:

However, for example, in the case of Poisson distributions, this 
actually works pretty well even for small numbers of events and 
also near μ=0. But generally need to check. Can do this, for 
example, by generating simulated data sets under a given 
hypothesis to directly look at the distribution of likelihood estimates.

(i.e. how many extra degrees of freedom one model has compared to the other)



Example:

A newly commissioned underground neutrino 
detector sees a rate of internal radioactive 
contamination decreasing as a function of 
time. 10 events are observed over a period of 
15 consecutive days. Determine the best fit 
mean decay time in order to determine the 
source of the contamination.

P(t) = 1
to

e− t
to

decay probability:

to = mean decay lifetime



best fit 
value

~1σ ~1σ

No absolute goodness-of-fit,
just the “relative goodness” 

between different models



Numerical Optimisation
(Minimisation/Maximisation)

Simplest - “Grid Search”: Systematically step through 
possible parameter values on an n-dimensional grid 
of some pre-defined resolution to find the best values.

Pros:  Simple and robust
Cons: Inefficient

Other approaches usually require an initial guess 
for the parameter values (or “seed”) and then 
progress though parameter space in a direction and 
with a variable step size based on how successive 
function evaluations change. These typically make  
use numerical function derivatives to follow a 
gradient decent path. There is generally some 
convergence criteria to specify when sufficient 
accuracy has been achieved and/or when the 
function evaluations no longer seems to be 
changing very much (i.e. second derivatives are 
close to zero).



Depending on the nature of the problem, the function space can be irregular 
and may contain local minima, particularly when dealing with multiple 
dimensions and parameters have correlations or degeneracies (i.e. where 
different parameter combinations can produce similar solutions). Discontinuities 
such as “hard” physical boundaries can cause particular problems, as can 
binned PDFs created with limited statistics.

Numerous algorithms exist to sample parameter space, bounce out of local 
minima, smooth out irregularities, deal with hard boundaries, etc.  These may 
makes use of parallel processing, machine learning, Markov chains, simulated 
annealing… THIS IS A VAST AREA!

local 
minimum

global 
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Always important to look at your parameter space



−2 log L =
n

∑
i=1

− 2 log [P (xi |H(q))]

=
k

∑
i=1

− 2 log [P (xi |H(q))] +
n

∑
i=k+1

− 2 log [P (xi |H(q))]
Likelihood for the same hypothesis, but a 
different set of data. Could even be from a 
different experiment and assessed in a 
completely different way, so long as it is 
eventually turned into a probability.

Likelihood for one set of data under H(q).

Can jointly analyse multiple data sets from multiple experiments 
to determine the best overall parameter estimations by adding 
together their likelihoods over the same parameter space

It’s always good to show your likelihood space as part of the 
presentation of results both as an overall summary of the relevant 
information content of your data and to allow for such joint analyses

Joint Analysis of Multiple Data Sets



“Extended” Likelihood

The number of events, n, in a data set is often the result 
of Poisson fluctuations about the expected mean 
number of events. If the expected mean is itself a 
parameter of interest (e.g. the “true” flux of signal and/or 
background events), the associated Poisson fluctuation 
can then be included in the likelihood as follows:

L = ( μne−μ

n! )
n

∏
i=1

P(xi |H(q))

log L = n log μ − μ − log(n!) +
n

∑
i=1

log [P (xi |H(q))]
Can ignore this term, since this 
is a constant and we’re only 
concerned with derivatives and 
differences of the likelihood



Example of a 2-component model of signal and background:

An Experiment Searching 
for Rare Interactions

Reconstructed energy and position could 
be correlated (e.g. higher energy events 
could be easier to reconstruct accurately). 
So, form 2-D histograms to preserve these 
correlations and normalise these to one to 
produce PDFs for each type of event class: 

“Energy”“Radius”

“Radius” “Energy”

Simulation and/or Calibration Data

signal
(~ R3)

signal

background background



Consider a hypothesis, H, in which a certain fraction of 
the data is signal and remaining fraction is background:

log L = n log(μS + μB) − (μS + μB)

+
n

∑
i=1

log P(Ẽi, R̃i |S)( μS

μS + μB ) + P(Ẽi, R̃i |B)( μB

μS + μB )

P(Ẽi, R̃i |H ) = P(Ẽi, R̃i |S)( μS

μS + μB ) + P(Ẽi, R̃i |B)( μB

μS + μB )
μtotal = μS + μBwhere

Maximise log L (or minimise -2log L) over µS and µB 
in addition to any other parameters of the model

extended likelihood part



   best 
es=mate +1σ-1σ

1

significance

0        1      2       3       4       5       6       7       8       9       10

μS

−2 log Lmax

We’re particularly interested in the value and 
significance of the signal, so look at the 
projection where the likelihood is maximised over 
all other free model parameters as μS is varied: 

“nuisance 
parameters”

“Profile Likelihood”


