
Lecture 6:

• Asimov 

• Barlow-Beeston-Conway 

• Bayes



The Asimov Data Set

“Franchise” 
(1955)



ℒ =
Nbins

∏
i=1 [ mi(q)nie−mi(q)

ni! ]
log ℒ =

Nbins

∑
i=1

[ni log mi(q) − mi(q) − log ni!]

Assume that we have a set of multi-dimensional PDF defined by an 
arbitrary number of bins (Nbins) that can be combined under a particular 
model (m, defined by q parameters) to yield a predicted mean number of 
observed counts (n) in each bin (i) from a given data set. The likelihood 
can then be expressed as:

log ℒ
ℒ0

≡ log ℒR

=
Nbins

∑
i=1

[ni log mi(q) − mi(q) − ni log mi(q0) + mi(q0)]

The log-likelihood ratio with respect to some nominal model, m(q0), is 
then given by:

q0 might, for example, represent the null hypothesis or 
could just be the point where the likelihood is maximum



⟨log ℒR⟩ = ⟨
Nbins

∑
i=1

[ni log mi(q) − mi(q) − ni log mi(q0) + mi(q0)]⟩

=
Nbins

∑
i=1

⟨[ni log mi(q) − mi(q) − ni log mi(q0) + mi(q0)]⟩

=
Nbins

∑
i=1

[⟨ni⟩ log mi(q) − mi(q) − ⟨ni⟩ log mi(q0) + mi(q0)]

Say we’re interested in what to expect on average for the log-likelihood 
ratio as a function of ‘test’ parameter values:

So we just need to substitute in “perfect, un-fluctuated” expectation 
values for a representative data set. This could, for example, be taken 
from scaling the PDF model for some particular set of parameters to the 
size of a typical data set.



Can be used to find the expected sensitivity for discovering a 
particular phenomenon, or the expected power to discriminate 
between different model, or the expected accuracy in 
constraining model parameters.

Incredibly useful! Also an excellent way to check if your code 
is doing the right thing and understanding basic characteristics 
without having to run the full analysis chain thousands of times!

Expected ability to 
constrain oscillation 
parameters after 5 years 
of reactor anti-neutrino 
data from SNO+

(thanks to Iwan Morton-Blake)

input modelPerfect data ought to 
give perfect results if 
you’re doing things right!



Let’s say you create a set of PDFs for some 
parameters by running lots of simulations, 
binning the resulting distributions of 
parameter values and then normalising the 
areas of each histogram to one.

parameter 2

parameter 1

How do you deal with the statistical uncertainties in the constructed PDFs?

Could smooth PDFs, but can be tricky in multiple dimensions and has the 
potential to produce artefacts

Accounting for Statistical Uncertainties in PDFs

P(Data |Model) P(Data |PDF Histograms)

P(Data, PDF Histograms |Model)



First analysed by Barlow and Beeston (Comp. Phys. Comm. 77, 219, 1993)

A much more practical approximation by Conway (PHYSTAT 2011, 
arXiv:1103.0354), which is what we’ll follow here.

ℒ =
Nbins

∏
i=1 [ (αiμi)nie−αiμi

ni! ] [ μNi
i e−μi

Ni! ]
data PDF

PDF scaling 
to data set

“true” PDF mean 
for this bin

Complicated by model correlations between bins and multi-component models

Want to maximise 
overall likelihood, 
so maximise here 
over the set of 
“true” PDF means



For the ith bin in the data and PDF histogram, the contribution to the 
extended likelihood is: −ln ℒi = − ni ln μi + μi
where ni = number observed and µi = model prediction based on the PDFs

We can then drop the bin subscript for simplicity incorporate the Gaussian 
uncertainty scaling into the likelihood for that bin as follows:

−ln ℒ = − n ln βμ + βμ + (β − 1)2

2σ2
We want to maximise the likelihood (minimise -lnL), which can be explicitly 
done bin-by-bin in the parameter β by differentiation:

β2 + (μσ2 − 1)β − nσ2 = 0
Solve for β in each bin and calculate the likelihood…

Make Two Simplifying Assumptions: 
1) Take model systematics to be uncorrelated between bins to allow bin-

by-bin error propagation (conservative);
2) Assume the uncertainty in µ due to statistical fluctuations in the 

contributing PDFs can be approximated by a single Gaussian scaling.



What is σ for the bin?

Assume we are using k PDFs to model the 
total number of events predicted in this bin:

μ =
k

∑
j=1

μj

σj ≡
Δμj

μj
≃

Δmj

mj
≃ 1

mj
=

fj
μjNj

σ2 =
k

∑
j=1

σ2
j

So just need to 
remember this

Still issues for mj ~ 0,
(hard to get around)

μj = fj (
mj

Nj )where

PDF 
normalisation

# simulated events 
for this PDF that 

fall in this bin

total # simulated 
events for this PDF



Pa
ra

m
et

er
 1

Parameter 2

68.3% CL

90% CL

99% CL

A

B

C

Consider a single experiment in which 2 parameters are 
measured (  ) and compared with predictions from 3 
different theoretical models (A, B, C) 



Bayesian: 
Degree of belief. Given a single measurement, ascribe “betting odds” to 
the phase space of possible models. Requires an assumed context for the 
comparison of these models (prior). There is no relevance to the 
“statistical coverage of a confidence interval,” because there is only one 
measurement (which is not repeated over and over again).

Frequentist: 
Frequency of occurrence given a hypothetical ensemble of ‘identical’ 
experiments. Individual measurements are not used to assess the validity 
of a model. There is no such thing as a “probability” for a model 
parameter to lie within derived bounds - either it does or it doesn’t. 
However, if everyone played the same game, the correct model would be 
bounded a known fraction of the time. 

Different Definitions of Probability in relation to models:



Bayes’ Theorem

P(A |B) = P(B |A)P(A)
P(B)

P(B) = ∑
j

P(B |Aj)P(Aj)

P(Ai |B) = P(B |Ai)P(Ai)
∑j P(B |Aj)P(Aj)

If there are multiple versions 
of A to choose from, then

P(A |B) ≠ P(B |A)
note:



posterior
probability

YOUR confidence that a particular 
hypothesis is true given the data and 
any prior understanding

YOUR understanding of whether any 
one hypothesis is favoured more than 
any other prior to looking at the data

P (Hi|D) =
P (D|Hi)P (Hi)P

j
P (D|Hj)P (Hj)

“likelihood” of the data  
 given the hypothesis 
likelihood of the data 
given the hypothesis     prior 

probability 
prior

probabilityhypothesis

datadata



P (Hi|D)

P (Hk|D)
=

P (D|Hi)

P (D|Hk)

P (Hi)

P (Hk)

Relative probability 
ratio between two 
different hypothesis 
g iven the same 
observed data

likelihood ratio “odds” ratio



PRIORS

1. Informative:

Permits known, physical constraints to be 
imposed (e.g. energies and masses must be 
greater than zero; the position of observed 
events must be inside the detector, etc.) 
and allows known attributes of the 
physical system to be taken into account 
(e.g. energies are being sampled from 
some particular spectrum; the relative 
probabilities for different event classes are 
drawn from some given distribution, etc.).

2. Non-Informative: 
(A Case of Too Much History!)

When there is no clear a pr ior i 
preference, you must still choose a 
context to be used for comparing models.

The probabilities of different 
hypotheses are the same in 

what metric?
All 

values of 
A are 

equally 
likely

≠
All 

values of 
A2 are 
equally 
likely



Your brain inherently makes Bayesian inferences:

Context is necessary to relate data to model parameters
(visual observation) (optical properties of surface)

Prior: How are 
the squares likely 
being illuminated?

The model is of central importance to enable  predictions



Blue
and

Black

White
and

Gold



Charged particles produce light as they pass through plastic scintillators, which can 
be detected by photomultiplier tubes and used as an estimator for the energy 
deposition. Say that that you calibrate such an instrument using known gamma line 
energies from various radioactive sources and determine that the energy can be very 
well described by taking the mean number (N) of detected photons (drawn from a 
Gaussian distribution of width σ) and multiplying it a proportionality constant, α.

Now you measure emission from some continuous spectrum and detect No 
photons from an interaction. What is the best estimate of the gamma ray energy?

Relating data to model parameters requires a context (i.e a prior)!

Another example:

energy

ra
te

Fluctuations into the No region 
from higher and lower energies
are equal and unbiased:

E  ~ αNo

energy range 
sampled by 
±1σ interval

i.e. energy 
resolution

energy

ra
te

Fluctuations into the No region 
from lower energies are more 
likely (there are more chances):

E  < αNo

i.e. there are more low energy 
events in the resolution bin

energy

ra
te E  < αNoE  > αNo

E  ~ αNo

Different biases in the different 
regions of the spectrum



Any inference about models based on an observation 
is an inherently Bayesian undertaking as it requires 
an assessment of the posterior probability
and, thus, requires the choice of a prior!

P (Hi|D)

This is often not appreciated! The assumption that the 
relative likelihoods for two hypotheses alone is the 
same as the betting odds for which hypothesis is 
correct tacitly assumes an odds ratio of 1.

rarely



If there is an ambiguity in the choice of 
prior that can lead to notably different 
conclusions, you should show this!



Example:
As the result of a random blood test, you are diagnosed 
with “Saturday Night Fever,” a disease suffered by 0.5% of 
the population that results in convulsions when exposed to 
anything associated with John Travolta. The blood test 
reliably diagnoses the disease in 80% of cases and yields a 
false positive 5% of the time. Should you avoid listening to 
BeeGees albums?

What if the reason you went to your GP for a blood test was that you got 
splitting headaches whenever someone mentioned the word “Grease?”

= (0.8)(0.005)
(0.8)(0.005) + (0.05)(0.995) = 0.074

P(SNF |B) = P(B |SNF)P(SNF)
P(B |SNF)P(SNF) + P(B |no SNF)P(no SNF)



These are basically the same numbers as for COVID-19 (early Oct 2020).

What if you feel ill and get a positive test? 
Say the average person is typically ill 10 days per year, so the odds  
of currently being ill from the common cold is ~10/365 = 0.027. With 
social distancing, reduce this by a factor of ~10 to 0.0027. So, the 
fraction of people feeling ill that have COVID-19 is perhaps 
something like 0.005/(0.005+0.0027) = 0.65 (this, then, is the prior 
instead of 0.005).

= (0.8)(0.65)
(0.8)(0.65) + (0.05)(0.35)

P(CV19 | + T ) = P(+T |CV19)P(CV19)
P(+T |CV19)P(CV19) + P(+T |no CV19)P(no CV19)

= 0.97

Priors are important!



Example 2:
Atmospheric neutrinos result from the decay of charged pions produced 
by hadronic interactions in the atmosphere. The characteristic decay 
sequences are: 

You are detecting these neutrinos coming from directly overhead with an 
underground water Cherenkov detector. From the fuzziness of the ring 
pattern of observed light from a particular event, simulations tell you 
that 70% of νe’s will produce a ring at least this fuzzy, whereas only 50% 
of νμ’s will do this. What is the probability that this event is a νe ?

! e� + ⌫µ + ⌫e
⇡� ! µ� + ⌫µ ⇡+ ! µ+ + ⌫µ

! e+ + ⌫µ + ⌫e

P (⌫e|R) =
P (R|⌫e)P (⌫e)

P (R|⌫e)P (⌫e) + P (R|⌫µ)P (⌫µ)

=
(0.7)(1/3)

(0.7)(1/3) + (0.5)(2/3)



Bernstein – von Mises Theorem

In the limit of an infinitely large data set, the 
posterior probability is independent of the 
exact form of the prior probability.

(the likelihood function that multiplies the prior crushes 
it’s impact away from the region of interest)

For example, if you instead asked for the probability for a 
large number Cherenkov events to be νe out of a big data 
set, the information contained in the distribution of ring 
fuzziness within the data itself carries more weight than 
the form of any previously assumed prior. 

Priors carry greater weight for weaker data sets



http://xkcd.com/1132/

http://xkcd.com/1132/



