
Lecture 7:

• Confidence and Credibility
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Consider a single experiment in which 2 parameters are 
measured (  ) and compared with predictions from 3 
different theoretical models (A, B, C) 
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Frequentist 
Confidence Intervals



Construction of Frequentist Confidence 
Intervals via Wilks’ Theorem

We’ve been here before…

Because this is an approximation, perfect statistical coverage is 
not guaranteed… but is is usually pretty close for most cases you 
will encounter, and actually works pretty well for counting statistics 
even for small numbers. For more unusual cases, the validity can 
often be “spot-checked” with Monte Carlo calculations.



... etc.CL = 1- a - b
(where “Confidence Level” refers 
to the frequency of hypothetical 
measurements landing in the 
defined region for a given model)

Neyman Construction of Frequentist Confidence Intervals
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Hhypothesis H′ hypothesis H′ ′ hypothesis
(for example, assuming 
some particular value of 
the true mean µ) 

x is an “ordering parameter,” which can be a direct measurable (such as the 
number of counts) or can be a derived quantity (such as a likelihood ratio)



Note that the fraction of models to be included in a particular CL interval 
can be chosen in a number of different of ways to yield, for example: 
upper bounds, lower bounds, central intervals, most compact interval, 
or intervals containing the highest probability densities

useful for more complicated cases, 
such as multi-modal distributions
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In the example here, 
let’s assume that the 
measurement x is an 
unbiased estimator for 
the model parameter μ
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The range of model parameter 
values for which the measurement 
is “likely” (i.e. would be contained 
within a CL frequency interval)
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In the example here, 
let’s assume that the 
measurement x is an 
unbiased estimator for 
the model parameter μ
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For a given model of signal 
strength, S, the observable number 
of counts would follow a Poisson 
distribution. Given a fixed observed 
value of n, we then want to find the 
range of models, from S=0 to Smax, 
that would be contained in a CL 
fraction of repeated experiments:

∫
Smax

0

(S + B)ne−(S+B)

n! = CL

Example:  Find the standard frequentist CL upper bound on the mean signal 
strength, S,  for a counting experiment where the expected background level 
is B and a total of n events are observed.

n

∑
m=0

(Smax + B)me−(Smax+B)

m! = 1 − CLIt can be shown, from repeated 
integration by parts, that this is 
equivalent to:

Then solve numerically for Smax

Note that there is no constraint to restrict the background from being greater than 
the observed number of counts!! This is because we are interested in the average 
background over an ensemble of experiments, not the particular background for 
this measurement. Frequentists only care about the ensemble, not about you!



When using likelihoods for CL intervals, you can often appeal to 
Wilks’ Theorem: for each true value of µ, the quantity x = -2log of 
the likelihood ratio between observed and expected quantities will 
be asymptotically distributed as a χ2 distribution for nested 
hypotheses. Then, for a given observed measure of x, the integral 
χ2 distribution for µ can be use to define the CL intervals.

Where this approximation breaks down, you can always resort to 
Monte Carlo methods to verify/derive the correct interval coverage.

Note: It’s a little weird that coverage here is no longer concerned 
with the frequency of physically observed quantities, but rather with 
the frequency of arbitrarily constructed mathematical quantities… 
but the construction is perfectly valid.

Always a good thing to check: Do my derived contours seem to 
behave in the correct manner if I repeat the measurement with 
multiple MC data sets?
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What if the model parameter is a 
quantity like number of counts or 
‘mass’ and your measurement is 
subject to a large statistical 
fluctuation?

What’s 
gone 

wrong?

statistical 
fluctuation
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Say, for example, 
that x = total counts 
minus expected 
background, and 
the background 
fluctuated high



Nothing! 
Frequentists 
don’t care 
about you, 
only about 
the ensemble 
of many 
experiments
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Frequent Statement About Frequentist Intervals

“There is a 68% chance (for a ±1σ CL interval) that the model 
parameter lies in this range.”

“There is a 68% chance that my interval happens to bound the one, 
true value of the model parameter.”

“If someone else were to repeat the experiment, there is a 68% 
chance that they would land in this range.”

No! There is not a probability distribution associated with the 
model parameter, that’s a Bayesian concept. Either it lies in your 
interval or not, but your one measurement does not constrain it.

No! This is just an attempt to say the same thing with a wording 
that sounds more frequentist. Either it lies in your interval or it 
doesn’t. However, there is a 68% probability that you would have 
been dealt a set of data that would have lead to an interval (not 
necessarily this particular one) containing the true parameter.

No! Your particular data set could have been a 3σ fluctuation, in 
which case there is very little chance that the next measurement 
would land in your interval.



Fre.quent.ist  [free-kwuh nt-ist] noun  

Qualifier:  
This is a generalisation and just a personal opinion. 

But check it out - it’s really true!

One who espouses the principles of the 
frequency definition of probability, and 
then misapplies them to answer the 
Bayesian question that they actually 
have in mind.



Many physicists don’t like the fact that statistical fluctuations can result 
in a bound extending into an “unphysical” region, or can result in a 
“null” interval if the unphysical region is rejected. 

(but frequentist intervals do not bound physical models, so there really 
is nothing at all wrong with this!! The concern suggests that you might 
want to ask a different question form the one you are answering)

This is generally dealt with by either:
1) Truncating the allowed parameter space and renormalising the 

distributions to the “physical region.” 
2) Defining the ordering parameter in a way that cannot wander into 

the “non-physical” region in the first place

(which corrupts the stated coverage)

(which distorts the interval definitions 
often in a non-intuitive way)

Both are effectively trying to introduce a prior for the model parameter, 
which is not very frequentist!



In addition, Feldman and Cousins* were concerned about “flip-flopping:
If experimenters choose for themselves when to quote a given type of 
interval based on the result, this can lead to a small statistical bias in 
frequentist coverage.

Worst case (at borderline of CL): 
a 90% CL might only have 85% coverage; 
a 99% CL might only have 98.5% coverage

So, F-C intervals use an ordering parameter of the likelihood ratio wrt 
to the maximum likelihood for parameters in the “physical” regime, and 
use a highest probability density ordering for this ratio to specify either 
a one or two-sided interval, based on the CL value. Monte Carlo 
methods are used to determine intervals with the correct coverage.

*Unified Approach to the Classical Statistical Analysis of Small Signals (Phys.Rev.D 57:3873-3889,1998) 

A concern over tiny biases in unfiltered surveys of borderline results (!!)

In contrast, “Standard Frequentist Intervals” will be defined as those 
using physical observables as the ordering parameter, without 
parameter space truncation, with distinct 1-sided and 2-side bounds.



• Conflicts with scientifically well-motivated convention to quote 90% or 95% CL upper/lower 
bounds for results consistent with the null hypothesis, but only claim a 2-sided discovery 
interval when the null hypothesis is rejected at a considerably higher confidence level;

• Can’t easily cope with look-elsewhere effects: Search for gamma-ray emission from 1000 
different astrophysical sources results in no event excess above 3σ, consistent with statistical 
fluctuations. Most appropriate to quote upper bounds on the possible emission from each 
source, but unified approach forces 3σ detection interval;

• Even for a clear detection, it may still be relevant to also quote upper and lower bounds in 
the context of different models. Different interval constructions can be simultaneously 
valid and relevant for the same results, they simply address different questions!

• Intervals do not represent the frequency of physical observables, are asymmetric and can 
be non-intuitive: observations of physical observables that occur with the same frequency 
can be included or excluded from the intervals differently;

• Because the construction is designed to always return a value “in the physical region,” it 
fools people into thinking they are setting bounds on model parameters, which they are not! 
This has not dealt with the underlying issue and frequently leads to interpretation problems;

Issues with F-C In Particular

• Can be incredibly computationally expensive!

• All F-C concerns and methodologies are only relevant for borderline signals, otherwise you 
are just deriving “standard” parameter contours using likelihood… and it’s worth checking 
whether Wilks’ Theorem is good enough here (if you are dominated by Poisson statistics 
and Gaussian constraints, it probably is!).



Propagation of Systematic Uncertainties

There is no mathematically self-consistent way to 
propagate systematics in a frequentist paradigm!

Systematic uncertainties are exactly like model 
parameters: they have true fixed but unknown 
values. So, for a given assumed value of the 
model parameter and assumed values for the 
systematic uncertainties, you can define a 
frequentist confidence interval. That’s it!

There are a number of suggested propagation 
approaches (such as Highland-Cousins) that 
involve Bayesian integrations over systematic 
uncertainties, but the interpretation of the 
resulting bounds are unclear…

General Frequentist Issues:



The Problem With Zero:

Consider the case where zero events are observed in an 
experiment and we then wish to set a 90% CL/CI upper 
bound on the average signal strength.

Bayesian:

Frequentist:

We know that the number of background 
events here is exactly zero. The 90% CI 
upper bound on the average number of 
signal events is 2.3 (i.e. there is a 10% 
Poisson probability to fluctuate from this to 0)

It depends on the expected number of 
background events… even though the 
known number is zero! That’s because 
frequentists don’t care about you, it’s all 
about the ensemble.

If you don’t have a model for the background, 
you can’t set a bound… even when you 
know the background.



The Problem With Zero:

Consider the case where zero events are observed in an 
experiment and we then wish to set a 90% CL/CI upper 
bound on the average signal strength.

If you try to ‘propagate’ uncertainties in the background 
estimate for frequentist bounds using a hybrid approach 
such as H-C, the derived constraints get better as the 
uncertainty grows!

This is because there is now some chance that the 
expected background could be higher*, which makes your 
observation in the ensemble less likely.

*could also be lower, but the impact on the probability is asymmetric and the higher fluctuations have greater effect



90% CL upper bounds on a possible average 
signal level from a simple counting experiment

New analysis technique: 
suppresses backgrounds 
by a factor of 10 with no 
loss in signal efficiency!

(worse)

(worse)

(better)

Initial Test:

(prior uniform in rate)

Can appear to be overly 
strict bounds on the 
average signal strength



F-C: “Should always also quote expected sensitivity”

Consider the case where you look for a signal from 
1000 different astronomical objects and see one 
with an excess of 3σ. This is not significant given 
the context of the search, so you just want to set an 
upper bound on the possible flux from this object.

Not appropriate

Those constraints will be worse than the nominal 
expected sensitivity for this object because of the 
large excess, which is nonetheless still consistent 
with the null hypothesis because of the context



F-C automatically transitions from 1-sided to 2-sided bounds 
based on the p-value to avoid biases* due to “flip-flopping”

Consider the case where you look for a signal from 
1000 different astronomical objects and see one 
with an excess of 3σ. This is not significant given 
the context of the search, so you just want to set an 
upper bound on the possible flux from this object.

Not appropriate

* A purely frequentist issue, with the biases being very minor and 
only relevant for potential signals at the border of being significant.

2-sided bounds ONLY have meaning once 
you have rejected the null hypothesis!



Bayesian Credibility 
Intervals



CI = 1- a - b

Bayesian Credibility Intervals

Credibility Interval:

Note: This is not trying 
to represent the ‘actual 
distribution’ of the true 
model parameter (which 
wouldn’t make much 
sense). This shows how 
much you’d bet that a 
given value is true based 
on the data you have.Po
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Given the measured data set:



Example:   Find the Bayesian CI upper bound on the mean signal 
strength, S,  for a counting experiment where the expected 
background level is B and a total of n events are observed.

Likelihood Prior 

Normalisation

Posterior probability from signal from Bayes’ Theorem

We’ll assume there is no a priori reason why all values 
of S shouldn’t be considered equally likely, aside from 
the fact that it must be non-negative. So, take the 
prior to be zero for S<0 and constant otherwise.

Then just solve for Sup

Z Sup

�1

(S+B)ne�(S+B)

n! H(S)
R +1
�1

(S0+B)ne�(S0+B)

n! H(S0)dS0
dS = 0.98CI



Conveniently, this turns out to be 
mathematically identical to:

renormalises allowed 
range of background 
counts (which must be 
less than or equal to n) 

Pn
m=0

(Sup+B)me�(Sup+B)

m!Pn
m=0

Bme�B

m!

= 1� 0.98CI

Otherwise, same expression as for 
the “Standard” frequentist approach!



The CLs Method
Introduced by physicists at LEP to get around some of the apparent 
problems that arise when mis-interpreting frequentist upper bounds 
in the presence of background fluctuations. The idea is to 
renormalise the standard frequentist bounds to the range of 
background values that are consistent with the current data set.

Which is identical to a Bayesian bound with a constant non-zero prior!

But this is interpreted in a frequentist way… though it now does not 
guarantee frequentist coverage, so it isn’t really frequentist. It is 
defined without a prior, so it isn’t formally Bayesian. However, if 
used to bound the space of models, it is equivalent to a Bayesian 
bound with a constant and non-zero prior (without admitting to it!).

Pn
m=0

(Sup+B)me�(Sup+B)

m!Pn
m=0

Bme�B

m!

= 1� 0.98CL  For example: ≥



Bayesian Propagation of Systematic Uncertainties

Just integrate over the posterior probability 
distribution for the systematic in question.



• If using a more sensitive instrument to look for evidence of a signal 
that has not been seen before, this rules out priors with a probability 
that rises with the signal rate (because the higher the rate, the more 
likely it would have been seen before). So using a prior that is 
uniform in rate is conservative for setting an upper bound.

• Model parameter uncertainties generally tend to be either be about 
precision (i.e. I know the parameter is roughly in this range) or scale 
(i.e. I don’t really know what order of magnitude this is). So forms of 
priors that are uniform on either linear or logarithmic scales often 
provide reasonable bounds.

• Choose simple prior forms that are easy to understand and visualise 
(e.g. uniform) and try to use common parameter choices that will 
“make sense” for these priors.

• If there’s an ambiguity that leads to a non-conservative bound, show 
the sensitivity to the choice of prior!

What’s the way out??

Pragmatism!

There is no “correct” choice of prior!



Note: Displaying the likelihood as a function of variables 
for which the priors are uniform, automatically also then 
plots the Bayesian posterior probability.



Example of “Unified” Likelihood Map:  SNO salt phase solar ν data

(using publicly available data associated with Phys. Rev. Lett. 101, 111301, 2008)

Bayesian contours from 
integration of likelihood 
assuming priors uniform in 
θ and log(Δm2)

Approximate Δχ2 
value from Wilks

Form for fundamental 
angle accounts for 
quadrant ambiguity

Sensitivity 
to prior is 
indicated



Example 2:  Rare Event Search Counting Experiment (B=5, n=10)

Bayesian upper bounds 
from integration of 
l ike l ihood assuming 
priors uniform in S 
(‘conservative’)

Approximate 2-sided  
90% CL frequentist 
bound derived from 
W i l k s ’ t h e o r e m 
(comparable to FC)

 S < 10.4(15.2) 
at 90%(99%) CI



Example 3:  Rare Event Search Counting Experiment (B=9, n=5)

Bayesian upper bounds 
from integration of 
l ike l ihood assuming 
priors uniform in S 
(‘conservative’)

Approximate 2-sided  
90% CL frequentist 
bound derived from 
W i l k s ’ t h e o r e m 
(comparable to FC)

 S < 3.88(7.25) 
at 90%(99%) CI



“Should I then use the outcome of previous 
experiments as part of the prior?”

                            Careful!! 
Yes for other experiments that you have performed 
(e.g. calibrations) to assess certain aspects of detector 
performance, or related data that can be regarded as 
unimpeachable. Otherwise, generally not because 
the ability to properly assess systematic uncertainties 
associated with individual experiments is not generally 
under your control and can be difficult. This is why each 
experiment should stand on its own and be 
independently cross-checked by other experiments.



• Bayesian statistics is the only correct formalism that can address 
the question, “Given my measurement, what models do I constrain?” 
My experience is that this form of the question has been implicit in all 
discussions of the physical interpretation of experimental data I’ve seen.  

• The standard frequentist approach is a perfectly valid and self-
consistent formalism. However, it answers a different question, where 
the identification of a model only emerges for a “sufficiently large” 
ensemble of experiments. Unfortunately, this is often misinterpreted (or 
correctly interpreted but then misused).

• The Feldman-Cousins approach is a mathematically valid, if somewhat 
arbitrary, formulation of the frequentist method (though it may be even 
more prone to misinterpretation by not making the nature of these intervals 
appear quite so obvious).

Fortunately, for many cases (especially in the large n limit), these different 
approaches all give very similar results. However, this is not always the 
case, so be clear about exactly what your question you are asking!

Summary


