
Lecture 8:

• Loose ends: Real ensembles, Constant 

priors, Robust data comparisons 

• ‘Binsmanship’ and Dodgy Error Bars 

• More Things to Avoid 

• Ways to Display Uncertain1es 

• Visualising Mul1-Dimensional Data 

• Boxes, Whiskers and Violins



But what if lots of people do experiments and each defines 
frequentist bounds, so that you start to have a real ensemble. 
How do you then use this to set bounds on models?

Still Bayesian! Make use of the likelihoods for all these data 
sets together (not their frequentist bounds!) and choose your 
prior etc. There is no other way! As the ensemble becomes 
larger and larger, the prior becomes less and less important, 
and the distinction between frequentist and Bayesian bounds 
goes away.

As previously stated, frequentist bounds are all about the 
distribution of the ensemble of hypothetical experiments and 
not about ascribing meaning to your particular interval.

Pragmatism: You can use frequentist bounds for models when 
it gives the same answer as Bayesian bounds.



The Point of Frequentism:

Want to display the results of analyses in a model-independent 
way that has the most general possible applicability

Absolutely!! Always do this! For example, try to provide 
sufficient views of the data to allow others to roughly reproduce 
your results, and show the likelihood distribution, which gives 
the full frequentist information content of the data.

But, if you then want to use this to constrain models, that’s 
Bayesian!

Both of these are important aspects of data presentation.



This refers to using a constant prior for a particular model 
parameter. For example, priors uniform in signal rate mean that 
you ascribe equal weight to all signal rates.

But is that really realistic? That would allow the possibility of an 
infinitely large signal and results in a probability distribution that 
cannot be normalised!!

The Use of “Uniform” Priors

prior

likelihood

assumed model signal rate

what happens outside the ROI, stays outside the ROI!

What we actually mean is that the prior is roughly constant in 
the vicinity of the region of interest, and then tails off in some 
way that does not need to be specified because the likelihood 
crushes its impact as soon as you get much outside the ROI

ROI



Robustness of Upper Bounds

The numerical values of Bayesian bounds have notably less variance than 
frequentist methodologies - more robust for comparison of experimental results!



The RMS deviation between 90% CL/CI upper interval bounds from two experiments with the same 
expected background level. Cases for uniform-prior Bayesian (circles) and Feldman-Cousins (crosses) 
constructions are shown for the zero signal hypothesis as a function of expected background level. 
Notably larger fluctuations in the derived bounds are seen for the Feldman-Cousins case.





bin width=1 bin width=3 bin width=6

bin width=10 bin width=15 bin width=20

bin width=30 bin width=40 bin width=60

100 uniform ‘background’ events generated with values between 0-120, 
plus 18 ‘signal’ events with values between 30-45:

Optimal bin-size for visual inspection is comparable 
to the resolution and/or scale of the relevant features



3σ ?

4.4σ ?

Expected in Signal Bin
18 excess compared to 
average 12.5 background:     

18/√12.5 ~ 5σ

Poisson rms ‘uncertainties’ 
are based on the true mean, 
not the fluctuated value!

So the common practise of 
plotting Poisson rms values 
on individual data points, 
independent of a model, is 
formally incorrect! 

PPois(28 |12.5) = 1.1 × 10−4 = 3.7σPPois(30 |12.5) = 2 × 10−5 = 4.1σ

But is this even really correct?

consistent 
with 0.6σ 
downward 
fluctuation

(consistent with 0.4σ downward fluctuation)



What about ascribing notional statistical ‘uncertainties’ 
to data points independent of a specific model?

Tricky… let’s try taking a Bayesian approach, where we 
assume a uniform (constant) prior for the true rate in the 
vicinity of the measured number of counts in a particular bin. 
Then take the region of most probable rates with an integral 
that spans 68.26% for ±1σ, 95.44% for ±2σ, etc. and 
compare with the common practise of using √n :



So ±√n isn’t terrible as a way to represent approximate ‘1σ’ 
Bayesian intervals for an indeterminate model, especially if you 
ascribe an error bar of 0-1 for zero counts, as is often done.

But at ±2σ, problems start to become more obvious, and this 
will become worse at higher significance levels. This can lead 
to biases in fit results and misinterpretations of significance.

Be careful how you use these!



3.3σ !!

bin width=1 bin width=2 bin width=3

bin width=4 bin width=5

Same data set without any signal (i.e. just uniform ‘background’):

Poisson probability = 0.0073 (2.44σ) rather than 0.0005 (3.3σ)
Trials: taking best of 60 bins and then the best of 5 different binnings
     (binnings not entirely independent… assume effective factor of ~2.5)

Ppost trial = 1 − (1 − 0.0073)(2.5×60) = 0.67



• For visual presentation/inspection of data, choose a binning 
based on the amount of statistics (to avoid bins with low 
numbers) and the anticipated scale of possible features.

• Chi-squared tests (and minimisation) using √n errors in bins with 
a reasonable number of counts are generally ok: it will still get 
you near to the right minimum and, in the vicinity of the right 
model, the behaviour is typically dominated by the cumulative 
effect of small (~1σ) fluctuations, where the approximation isn’t 
bad. But beware of how you interpret large fluctuations, setting 
confidence intervals at high significance levels, or generally 
setting any confidence intervals when the model does not look 
like a good fit!

• Fitting and significance tests should be done using the correct 
probability distributions where appropriate.

• Whenever possible, try to use un-binned tests. Otherwise, it’s 
advisable idea to explicitly check the dependence of your 
conclusions on the chosen binning.



Try to avoid 
suppressed 

zeros!

Show detail with residual plotGive full scale whenever possible
(can be linear and/or log scale)



Avoid artificial 
smoothing (like 

running averages) 
where possible, 
which produce 
correlated error 

bars that are hard 
to interpret and 
can lead to false 

conclusions

Much better to 
use appropriate 
binning to keep 

data points 
uncorrelated, 
and use un-

binned tests of 
significance



Phys.Rev.C81:055504,2010 Phys.Rev.C75:045502,2007

Ways to Display Uncertainties



Phys.Rev.D90:072008,2014

Phys. Rev. C 104, 045204 (2021)



Visualising Multi-Dimensional Data



Parallel Coordinate Plot:



Ways to display information about data point distributions 
when you’re not simply dominated by Poisson statistics:

Box and Whisker:

upper extreme

lower extreme

outliers

median

upper quartile

lower quartile



Violin Plot:

Ways to display information about data point distributions 
when you’re not simply dominated by Poisson statistics:


