
Lecture 9:

• Blind Analysis 

• Bifurcated Side-Band Analysis 

• Data “Correc1on” 

• Sta1s1cal Op1misa1on 

• Redundancy



“Blind” Analysis Techniques

Goal: To remove the ability to unconsciously tune on  
statistical fluctuations and/or adjust analyses towards a 
particular outcome by hiding the final result until the full 
analysis (incl. assessment of uncertainties) is fixed.   

At which point you then
“open the box” and take 
what life brings you!

• Agree on an appropriate blindness 
 scheme in advance
• Make sure no one breaks it
• Agree on the criteria necessary
  to “open the box”
• State the blindness scheme up
  front in any publication
• Agree to show exactly what results
  from box-opening and then justify
  any alterations

Rules of the Game



Signal Box Method

CDMS results on search 

for Dark Ma"er (Dec, 2009)

Expected summed
background in both
detectors: 0.9 ± 0.2

1st detector

2nd detector

                RESULTS:
                       2 

(consistent with background fluctuations)



Divided Data Sample

NOMAD Search for  
νµ - ντ oscilla=ons 

     (Feb, 1999)

Used 20% of data to
confirm background
predictions and define
search window, then
impose signal box
method on remaining
80% of the data

Expected background 
in signal box: 6.5 ± 1.1

                RESULTS:
                       5 

(consistent with background fluctuations)



Hidden Parameters

SNO Measurement of 
total solar neutrino flux 

        (Sept, 2003)

Excluded a hidden fraction
of the final data set (unknown
flux normalisation), included
hidden admixture of tagged
background neutrons, scaled
simulation NC cross section
by hidden factor

                                              RESULTS: 

         Φν  = 5.21±0.27(stat)±0.38(sys) x106/cm2/s



Bifurcated Side-Band Analysis*

Assume we have a data set with a total number of signal S and a total 
number of background B. Further assume that we have two 
independent parameters (for example, energy and fiducial volume) that 
can be used to cut out some number of unknown background while 
maintaining high signal efficiency (based on simulations of the signal). 
We wish to estimate the background contamination in the signal region:

Generalisation of Adler et al., PRL 79, 12 1997 and Nix et al., NIM A615, 2, 2010 to account for signal efficiencies

C
ut

 1

Cut 2

A B

C D

(signal region)

(anti-signal region)

pass-pass

fail-fail

pass-fail

fail-pass



Take the efficiency of retaining signal from 
each cut in the signal region to be ε1 and ε2, 
respectively. Similarly, take the fractions of 
background rejected by each cut in this 
region to be r1 and r2, respectively.

NA = Sϵ1ϵ2 + Br1r2 ≡ s + b

NB = Sϵ1(1 − ϵ2) + Br1(1 − r2)

NC = Sϵ2(1 − ϵ1) + Br2(1 − r1)
ND = S(1 − ϵ1)(1 − ϵ2) + B(1 − r1)(1 − r2)

nA ≡ NA

ϵ1ϵ2
= S + B ( r1r2

ϵ1ϵ2 )
nB ≡ NB

ϵ1(1 − ϵ2) = S + B ( r1(1 − r2)
ϵ1(1 − ϵ2) )

nC ≡ NC

ϵ2(1 − ϵ1)
= S + B ( r2(1 − r1)

ϵ2(1 − ϵ1) )
nD ≡ ND

(1 − ϵ1)(1 − ϵ2) = S + B ( (1 − r1)(1 − r2)
(1 − ϵ1)(1 − ϵ2) )

To simplify the algebra a bit, let’s redefine variables:

C
ut

 1

Cut 2

A B

C D

(signal region)

(anti-signal region)

pass-pass

fail-fail

pass-fail

fail-pass



nA − S = B ( r1r2
ϵ1ϵ2 ) nB − S = B ( r1(1 − r2)

ϵ1(1 − ϵ2) ) nC − S = B ( r2(1 − r1)
ϵ2(1 − ϵ1) ) nD − S = B ( (1 − r1)(1 − r2)

(1 − ϵ1)(1 − ϵ2) )

(nC − S)(nB − S) = (nA − S)(nD − S)

nCnB − nCS − SnB + S2 = nAnD − nAS − SnD + S2

S = nAnD − nCnB

nA + nD − nC − nB

S = NAND − NCNB

NA(1 − ϵ1)(1 − ϵ2) + NDϵ1ϵ2 − NCϵ1(1 − ϵ2) − NBϵ2(1 − ϵ1)

b = NA − Sϵ1ϵ2s = Sϵ1ϵ2

re-expanding:

Do not need to look inside the signal region, 
nor necessarily know details about r1 and r2 !



S = NAND − NCNB

NA(1 − ϵ1)(1 − ϵ2) + NDϵ1ϵ2 − NCϵ1(1 − ϵ2) − NBϵ2(1 − ϵ1)

b = NA − Sϵ1ϵ2s = Sϵ1ϵ2

ϵ1, ϵ2 → 1 b → NBNC

ND
note:

σ2
var ≃ NB ( NC

ND )
2

+ NC ( NB

ND )
2

+ ND ( NBNC

N2
D )

2

So, for large efficiencies, the variance in the estimated 
background contamination, b, is approximately:

as



α

β

α/
(m
β 

+ 
b)

β

Remember, this assumes cut parameters are uncorrelated! 
Note that a mixed background model can inadvertently 
produce correlations if, for example, both r1 and r2 are notably 
different between background components: then a particular 
cut value could favour a particular background, which could 
then produce a correlated rejection for the second cut. 

In general, should look for possible correlations by plotting one 
cut parameter versus another, for example, in the anti-signal 
cut region (i.e. box D).

If a correlation is present, you may be able to redefine your 
parameters to remove this to first order. For example:



Alternatively, we can first define the background model as the sum of 
various components. Now assume that we can decompose these into a set 
of backgrounds that are well-modelled and potentially sub-dominant, 
plus a background with the highest uncertainty that we most wish to 
evaluate:

∑
i

Biri
1ri

2 + Br1r2
background we most 
want to evaluate

ηA ≡ 1
ϵ1ϵ2 (NA − ∑

i
Biri

1ri
2) = S + B ( r1r2

ϵ1ϵ2 )

ηB ≡ 1
ϵ1(1 − ϵ2) (NB − ∑

i
Biri

1(1 − ri
2)) = S + B ( r1(1 − r2)

ϵ1(1 − ϵ2) )
ηC ≡ 1

ϵ2(1 − ϵ1) (NC − ∑
i

Biri
2(1 − ri

1)) = S + B ( r2(1 − r1)
ϵ2(1 − ϵ1) )

ηD ≡ 1
(1 − ϵ1)(1 − ϵ2) (ND − ∑

i
Bi(1 − ri

1)(1 − ri
2)) = S + B ( (1 − r1)(1 − r2)

(1 − ϵ1)(1 − ϵ2) )

S = ηAηD − ηCηB

ηA + ηD − nC − nB

Then, similar to before, we can define the following quantities:



MINOS, 2009

  Correlation can be used
to correct model prediction



B = fS

Significance (�’s) =
Sp
B

=
↵MTp
f↵MT

/
p
MT

Assume that both the signal and background 
levels are proportional to the detector mass, M, 
and running time, T. Find an expression for the 
maximum background level that can be 
tolerated to achieve a 3σ detection as a 
fraction of the expected signal for a given 
model. How does the sensitivity change as a 
function of M and T ?

1� =
p
B =

p
fS

under H0

3
p

fS = S
Thus, for 
a 3σ signal:

f =
S

9

(able to tolerate 
more background 
for larger signal)

B =
S2

9
or



Example of Statistical Optimisation

“Radius”

“Radius”

~R3

~exp(αR)

Assume that we are in
the “large N” limit and 
expected the number of
counts to be dominated
by background events.

We wish to exclude the
worst of the background
by choosing a radius to 
define a “fiducial volume,” 
within which will look for
an excess of events as
evidence of a signal.

What choice of fiducial
radius will give the best
sensitivity for the search?

From the plot, it looks like backgrounds
fall by ~1/e when R changes by 10%
of the detector radius... so α ~10

Rf

Sp
B

⇠ R3

p
exp(↵R)

= R3e�↵R/2

3R2 =
↵

2
R3 R =

6

↵

3R2e�↵R/2 � ↵

2
R3e�↵R/2 = 0

maximise: maximise:

(~R2 differentially)



Sudbury Neutrino Observatory (SNO)

3 Different Operational Phases

Found that estimated systematic uncertainty
in possible position-dependent energy resolution
was larger for the 2nd phase, which should have
performance at least as good as 1st phase(?!)

If you don’t look, 
you don’t see!!

(Some groups seem to have elevated this 
 to a strategy for getting small errors!) 

Realised that fewer calibrations had been done
in 1st phase, so there was less data to compare!



Φ
to

ta
l

SSM

June 2001 
   (indirect)

April 2002 
    (direct)

       Sept 2003 
     (salt, unconstrained)

   May 2008 
(NCD measurement)

      Sept 2011 
   (Combined Phases)

3 Experimental Techniques, 
at Least 2 Analyses/Technique + Combined Cross-checks


