Interna

- Alabama
- Argonne
- Cal Tech
- **Berkeley** \checkmark
- Chicago
- Columbia
- Fermilab
- **Kansas State**

A New Nuclear Reactor v Experiment to Measure θ_{13} January 2004

International Reactor 013 Working Group

oup

Munich TUM MPI-Heidelberg **MPI-Munich** SISSA College de France **CEA/Saclay** INFN Bologna

- **INFN** Trieste
- **Brasileiro** Campinas **CBPF-Rio**

Status from Angra dos Reis, Brazil

David Reyna Argonne National Lab

Systematics of Reactor Flux

Experimental Luminosity

Spectral Measurement is Hard

- Near/Far detectors may be different

 OK for shape analysis since each bin is N_i/N_{tot}
- Backgrounds Matter
 - Energy dependence
 - Difference Near vs. Far
- Rate at Near
 - Deadtime?
- Calibration over full energy range?
- Bin-to-bin correlated errors?

But we are beginning to address these issues

Guiding Principles of Angra Design

- Attempt to Control Backgrounds
 - Significant overburden (>1700mwe at far site)
 - Single reactor allows off-time
- Utilize low civil construction costs
 - Horizontal tunnel
 - Lower labor costs
- Favorable reactor company

- Good connections to physics community

The Site: Angra dos Reis

Current Design at Angra

Overburden Far ~1700 mwe Near ~200 mwe

> Baseline Far ~1.5 km Near < 300m

Target Mass Far ~ 500 ton Near ~ 50 ton

Possible Spectrum Ratio

Expected Sensitivity at Angra

Schedule/Funding

- Current funding for Site development
 - Outside funding already provided for cost estimates
 - Just received a grant of \$100K for site development and design work
 - In process of getting UNESCO funding
- Complete designs and submit LOI to Brazilian government by end of summer
- Produce a complete proposal by middle of 2005
- Will host the next International Working Group Meeting at end of Feb. 2005