Studies of Gd-LS at BNL for Reactor Neutrino θ_{13} Measurement

Minfang Yeh

Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973

US/UK Reactor θ_{13} Workshop, Oxford, UK, June 21-22, 2004

BNL Neutrino/Nuclear Chemistry Group

Richard Hahn Minfang Yeh Zheng Chang Alex Garnov Claude Musikas Students... Leader, Senior Scientist Associate Scientist Research Associate Research Associate Consultant

BNL Chemistry and Neutrinos

- **HOMESTAKE** Radiochemical Detector 615 tons of C_2Cl_4 ; ${}^{37}Cl + n_e \otimes {}^{37}Ar + e^{-1}$
- GALLEX Radiochemical Detector
 30 tons of Ga; ⁷¹Ga + n_e ® ⁷¹Ge + e⁻
- SNO Water Cerenkov Detector

1000 metric tons of ultra-pure D₂O

Ray Davis Wins Nobel Prize

Member of BNL's Chemistry Department for more than 35 years has won the Nobel Prize in Physics for pioneering contributions to astrophysics, in particular for the detection of solar neutrinos. Davis shares the prize with Massitabi Kashiba of Japan, d Riccardo Giacconi of the U.S

• **LENS** Real-time Radiochemical Detector (R&D)

¹¹⁵In in Liquid Scintillator

BNL-AGS NEUTRINO FACTORY

Very Long-Baseline Experiment- Neutrino Beam from BNL

Characteristics of Bell Labs-BNL In-loaded Scintillator for LENS-Sol

Stability: The UV-VIS absorbance (430 nm) with time over six months (BNL#115, In%=6.77)

Light yield with time over six months (BNL#115, 3g PBD/L, 15mg bis-MSB/L)

BL/BNL developed a very consistent In-LS chemical synthesis method for LENS.

This In-LS has:

□ high In content (~7%)

□ good light yield (~40% of PC)

□ long attenuation length (L(1/e) ~9 m without shifter)

Chemical stability for over 6 months since synthesis (top figures).

The BNL dual-beam, 1-meter optical measurement using blue laser (442nm) confirmed the result from 10-cm UV spectrometer (bottom figure).

Overview of Gd-LS

Needs of Gd-LS

- long attenuation length
- good light yield
- long-term stability
- **Synthesis of Gd-LS**
 - pH
 - complexing agent
 - equilibrium time
 - purification of chemicals

Purification of HMVA by Distillation

Purification of Pseudocumene, PC

Purification of Phenyl Cyclohexane, PCH

1 (nm)

NATIONAL LABORA

Gd-LS Synthesis and Characterization

1,2,4-Trimethylbenzene (PC) (Org.) (Aqu.) $Gd^{3+}(Cl^{-})_{3} + 3RCOO^{-} \rightarrow Gd(RCOO)_{3}$ $NH_{3} + RCOOH \rightarrow NH_{4}^{+} + RCOO^{-}$

Filtration/Separation

Gd-LS

Chemical Analysis

- L_{1/e} by UV-Vis and blue laser.
- Light Yield (S%)
- [Gd³⁺] by colorimetric method
- [RCOOH]_{total} by acid-base titration
- [RCOOH]_{free} by IR
- [Gd species]_{PC} by IR
- [H₂O] by
 Karl-Fischer titrator
- [Cl⁻] by electrochem
 BROOKHAVEN
 NATIONAL LABORATORY

Chemical Composition of BNL 3.24% Gd-LS

Q.	Gd(3+)	MVA	CI ¹	H ₂ O	ТОРО	PC ²
wt.%	3.24	6.39	0.23	0.22	1.90	88.07
Number/Gd	1	2.69	0.33	0.59	0.24	35.56

¹ Chlorine content is estimated from the charge balance of the Gd molecule.

² PC% is estimated from the percentage of other components.

Analytical formula of Gd in LS:

Gd(MVA) 2.7Cl0.3-xOHx(TOPO)0.3

Infrared

[HMVA]_{free} Estimation

Chemical Species from IR

UV Spectra of BNL Gd-LS Samples

Attenuation Length from UV-Vis

$$L = \frac{\log(e)L}{A(L)}$$

- ✤ L is attenuation length
- ✤ L is path length = 10 cm at BNL
- ✤ A(L) is absolute absorption at 430 nm
- ✤ L = (0.434 * 10 cm)/(0.008) = 542 cm = 5.4 m

Attenuation Lengths of BNLGd-LS Samples

Dual-beam long-path Optic System

For In-LS, 1-m laser measurement confirmed the
 extrapolation from 10-cm UV results.
 S1 - Reference beam for S2 → (S1-S2)

Light Yields of the BNLGd-LS Samples

BNL can produce high quality, Gd-LS sample with good light yield and appropriate attenuation length with adjustable Gd wt% up to ~8%, *but so do others, such as Bicron*...

UV Attenuation of BNL Gd-LS Samples vs Commercials

Light Yield of BNL Gd-LS Samples vs Commercials

Stability Test: UV Attenuation of BNL Gd-LS after 2 months

Laser Electron Accelerator Facility

Brookhaven National Laboratory Center for Radiation Chemistry Research

Decay Constant of Gd-LS

	(Gd %) _w	W-Shifters	t _d (ns)
BNL	1.0	PBD/bis-MSB	3.64
BC-521	1.0	Yes; N/A	2.81

BNL vs BC-521

BNL vs BC-521									
Lepp		BNL Gd-LS	BC-521						
	Measured by	BNL	BNL	Bicron					
	Gd %	1%	1%	1%					
	Attenuation Length (m)	723	255	> 400					
	Light Yield (s%)	82.9% PC	85.0% PC	57.0% anthracene					
	Stability	2 months 1	N/A	long term					
	Decay Constant (ns)	3.64	2.81	3.6					

Ongoing and Future R&D at BNL

- □ Vary Synthesis Parameters, e.g., pH, Gd/MVA ratio.
- □ Improve Purification Procedures.
- □ Replace PC with Other LS Solvents, such as PCH.
- Quality Control of Long-term Stability: Chemical, Optical, Light Output; Temperature-dependency ("rate approximately doubles per D10° C").
- Long-Pathlength Optical Measurements.

