

12 - 16 April 2021

PROTON PDF DETERMINATION AT THE LHeC

Claire Gwenlan, Oxford

on behalf of the LHeC and FCC-eh study groups

with focus on results from LHeC CDR update, arXiv:2007.14491

pdfs: the situation today

BSM searches limited by (lack of) knowledge of large x gluon and quark pdfs

... plus precision MW, sin²8W (where small discrepancies may indicate BSM physics) and Higgs,

also limited by **pdf uncertainties** at medium x, where we know pdfs best!

LHeC and FCC-eh

Lepton—Proton Scattering Facilities

see also talks:

ERL facility PERLE, A Bogacz LHeC at CERN, C. Schwanenberger LHeC as part of HL-LHC, L. Aperio Bella

ESPPU: ERL is a high-priority future initiative for CERN

LHeC CDR update

CERN-ACC-Note-2020-0002 Version v2.0 Geneva, July 24, 2020

The Large Hadron-Electron Collider at the HL-LHC

LHeC Study Group

To be submitted to J.Phys. G

LHeC white paper: arXiv:2007.14491

accepted by J.Phys.G update to CDR, arXiV:<u>1206.2913</u> (600 citations)

compilation of new and updated studies over the past years, 400 pages, 300 authors, 156 institutions

this talk: QCD and proton structure – Ch. 3, 4

see also other talks in this conference:

BSM, O. Fischer HI, H. Mantysaari Top Quark, M. Kumar Higgs, U. Klein EW, D. Britzger small x, A. Stasto DIS and connections to the LHC, T. Hobbs (plenary)

physics with energy frontier DIS

opportunity for unprecedented increase in DIS kinematic reach; ×1000 increase in lumi. cf. HERA

no higher twist, no nuclear corrections, free of symmetry assumptions, N³LO theory possible,

precision pdfs up to x→1, and exploration of small x regime; plus extensive additional physics programme

×15/120 extension in Q²,1/x reach vs HERA

LHeC pdf programme

- completely resolve all proton
 pdfs, and αs to permille
 precision
- unprecedented kinematic (x,Q²) range and precision for NC and CC measurements; tagging of c,b with high efficiency

- LHeC projected timeline, several years concurrent HL-LHC operation, plus dedicated run, arXiv:1810.13022
- LHeC 1st 3 yrs (50 fb⁻¹ e⁻¹, concurrent with HL-LHC)
 LHeC 1 ab⁻¹ (1 ab⁻¹ e⁻¹, and additional P=+0.8, low energy, and e+ data)
- QCD analysis a la <u>HERAPDF2.0</u>, with greater flexibility
- 4+1 xuv, xdv, xUbar, xDbar and xg (14 params.), or 5+1 (including HQs) xuv, xdv, xUbar, xdbar, xsbar and xg (17 params.)

quarks

- precision determination, free from higher twist corrections and nuclear uncertainties
- large x crucial for HL/HE–LHC and FCC searches; also relevant for DY, MW etc.;
- can also resolve long-standing mystery of d/u ratio at large x

gluon

- exploration of small x QCD: DGLAP vs BFKL; non-linear evolution; saturation; with implications for UHE vs
- gluon at large x small and poorly known; crucial for BSM searches

strange, c, b

• strange pdf poorly known

 suppressed cf. other light quarks? strange valence? → LHeC: direct sensitivity via charm tagging in Ws→c (x,Q²) mapping of strange density for first time

- **c**, **b**: enormously extended range and much improved precision c.f. HERA
- δMc = 50 (HERA) to 3 MeV: impacts on αs, regulates ratio of charm to light, crucial for precision t, H
- **\deltaMb** to **10 MeV**; MSSM: Higgs produced dominantly via bb \rightarrow A

summary of LHeC pdfs

pdf luminosities @ 14TeV

⁽s,c,b) also included, with more flexible (5+1) fit

empowering the LHC

external, reliable, precise pdfs needed for

NNNLO pp-Higgs Cross Sections at 14 TeV

CONTACT INTERACTIONS:	$\mathcal{L}_{\rm CI} = \frac{g^2}{\Lambda^2} \eta_{ij} (\bar{q}_i \gamma_\mu q_i) (\bar{\ell}_i \gamma^\mu \ell_i)$
-----------------------	--

Model	$\operatorname{ATLAS}(\operatorname{Ref.}[702])$	HL-LHC	
	$\mathcal{L} = 36 \mathrm{fb}^{-1} (\mathrm{CT14nnlo})$	$\mathcal{L} = 3 \mathrm{ab}^{-1} \; (\mathrm{CT14nnlo})$	$\mathcal{L} = 3 \mathrm{ab}^{-1} (\mathrm{LHeC})$
LL (constr.)	$28{ m TeV}$	$58\mathrm{TeV}$	$96\mathrm{TeV}$
LL (destr.)	$21\mathrm{TeV}$	$49{ m TeV}$	$77{ m TeV}$
RR (constr.)	$26{ m TeV}$	$58{ m TeV}$	$84{ m TeV}$
RR (destr.)	$22{ m TeV}$	$61{ m TeV}$	$75\mathrm{TeV}$
LR (constr.)	$26{ m TeV}$	$49{ m TeV}$	$81\mathrm{TeV}$
LR (destr.)	$22{ m TeV}$	$45\mathrm{TeV}$	$62{ m TeV}$

more on small x QCD

- recent evidence for onset of BFKL dynamics in HERA inclusive data,
- arXiv:<u>1710.05935</u>; <u>1802.00064</u>

- mainly affects gluon pdf dramatic effect for x ≈ 10⁻³
- impact for LHC and FCC phenomenology
- NB, gluon pdf obtained with small x resummation grows more quickly **saturation** at some point!

impact on pp phenomenlogy

- effect of small x resummation on $gg \rightarrow H$ cross section for LHC, HE-LHC, FCC
- significant impact, especially at ultra low x values probed at FCC

(see also recent work on forward Higgs production, arXiv:2011.03193; other processes in progress)

LHeC sensitivity to small x

NC cross section:
$$\sigma_{r,NC} = F_2(x,Q^2) - \frac{y^2}{1+(1-y)^2}F_L(x,Q^2)$$
 $y = \frac{Q^2}{xs}$

- LHeC and FCC-eh have unprecedented kinematic reach to small x; very large sensitivity and discriminatory power to pin down details of small x QCD dynamics
- measurement of FL has a significant role to play, arXiv:<u>1802.04317</u>

FL from the LHeC

• expect significant additional discrimination from dedicated precision measurement of FL (not yet included in shown studies); incorrect small x treatment unlikely to accommodate both F2 and FL

non-linear QCD dynamics

 with the unprecedented small-x reach, gluon recombination / parton saturation may also be expected, manifesting as deviation from linear DGLAP

- QCD DGLAP cannot absorb all effects of saturation
- possible to identify saturation by distortions in pulls →
 DGLAP fits cannot absorb a non-DGLAP Q²
 dependence

strong coupling, α s

25.8 fine structure $\frac{1}{2}$ arXiv:1211.5102 25.6 Wear 25.4 1/α 25.2 **PDG** LHeC 25 stong 24.8 24.6 15.2 15.4 15.6 15.8 15 16 16.2 log₁₀(Q/GeV) Higgs theory uncertainties 12 10 $\delta_i/\delta_{\rm total} \times 100\%$ 8 $\delta(\text{PDF}+\alpha_s)$ 6 $\delta(1/m_t)$ *δ*(t,b,c) *δ*(EW) 4 δ (PDF–TH) 2 arXiv:1902.00134 δ (scale) 0 0 100 20 40 60 80 Collider Energy / TeV

- **αs** is least known coupling constant
- world av.: $\alpha_s(M_Z^2) = 0.1179 \pm 0.0010$
- current state-of-the-art: $\delta \alpha s / \alpha s = O(1\%)$

αs from the LHeC

• achievable precision $\mathcal{O}(0.1\%)$ at same level as α s from FCC-ee

summary

- energy frontier **electron-proton colliders** essential for full exploitation of current and future hadron colliders (Higgs, BSM, electroweak, ...)
- external precision pdf input; complete q,g unfolding, high luminosity x → 1, s, c, b, (t);
 N3LO; small x; strong coupling to permille precision; …
- LHeC CDR update (arXiv: 2007.14491) summarises wealth of new and updated studies
- enormously rich physics programme both in own right, and for transformation of protonproton machines into precision facilities
- all critical pdf information can be obtained early (~ 50 fb⁻¹ ≡ ×50 HERA), in parallel with HL-LHC operation
- **αs** to permille exp. precision also achievable early, with use of NC DIS jets
- unprecedented access to novel kinematic regime, with unique potential to explore novel small x phenomena

extras

quark and gluon pdfs

