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LHeC
● √s ~ 1.3 TeV 
● Polarisation up to Pe ~ 80%
● Up to 1 ab-1 integrated luminosity

Electron ring attached to HL-LHC
● Energy recovery linac (ERL): 
Ee = 60 GeV (or 50 GeV)

● ESPPU: ERL is a "high-priority future 
initiative" for CERN

Future electron-proton collider at CERN: LHeC

ERL "landscape"
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LHeC: √s= 1.2 – 1.3 TeV
×100–1000 HERA lumi.

EIC

“LE-FCC-eh”: √s= 2.1 TeV
(earlier operation with current magnet technology, Ep=19 TeV)

FCC-eh: 
√s= 3.5 TeV

Figure 10.52: 3D Schematic showing proposed underground structures of LHeC (shwon in yellow). The
HL-LHC structures are highlighted in blue.

The physical positioning of the LHeC has been developed based on the assumption that the7646

maximum underground volume should be placed within the molasse rock and should avoid as7647

much as possible any known geological faults or environmentally sensitive areas. Stable and dry,7648

the molasse is considered a suitable rock type for Tunnel Boring Machines (TBM) excavation.7649

In comparison, CERN has experienced significant issues with the underground construction of7650

sector 3-4 in the Jura limestone. There were major issues with water ingress at and behind the7651

tunnel face [846]. Another challenging factor for limestone is the presence of karsts. These are7652

formed by chemical weathering of the rock and often they are filled with water and sediment,7653

which can lead to water infiltration and instability of the excavation.7654

The ERL will be positioned inside the LHC layout, in order to ensure that new surface facilities7655

are located on existing CERN land. The proposed underground structures for the LHeC with7656

an electron beam energy of 60 GeV are shown in Fig. 10.52. The LHeC tunnel will be tilted7657

similarly to the LHC at a slope of 1.4% to follow a suitable layer of molasse rock.7658

10.8.2 Underground infrastructure7659

The underground structures proposed for LHeC option 1/3 LHC require a 9 km long tunnel7660

including two LINACs. The internal diameter of the tunnel is 5.5m. Parallel to the LINACs, at7661

10m distance apart, there are the RF galleries, each 1070m long. Waveguides of 1 m diameter7662

and four connection tunnels are connecting the RF galleries and LINACs. These structures are7663

listed in Tab. 10.30. Two additional caverns, 25 m wide and 50m long are required for cryogenics7664

and technical services. These are connected to the surface via two 9m diameter shafts, provided7665

with lifts to allow access for equipment and personnel. Additional caverns are needed to house7666

injection facilities and a beam dump. As shown in Tab. 10.30, the underground structures7667

proposed for LHeC options 1/5 LHC and 1/3 LHC are similar with the exception of the main7668

tunnel and the RF galleries which have di↵erent lengths.7669
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Figure 10.48: Left: Mechanical layout of the new half quadrupole for the proton beam. Right : Field
distribution in the half quadrupole for the proton beam.

10.8 Civil Engineering

Since the beginning of the LHeC study which proposes a electron-hadron collider, various shapes
and sizes of the eh collider were studied around CERN region. Two main options were initially
considered, namely the Ring-Ring and the Linac-Ring. For civil engineering, these options
were studied taking into account geology, construction risks, land features as well as technical
constraints and operations of the LHC. The Linac-Ring configuration was selected, favouring
a higher achievable luminosity. This chapter describes the civil engineering infrastructure re-
quired for an Energy Recovery Linac (ERL) injecting into the ALICE cavern at Point 2 LHC.
Fig. 10.49 shows three options for the ERL of di↵erent sizes, represented as fractions of the LHC
circumference, respectively 1/3, 1/4 and 1/5 of the LHC circumference.

Figure 10.49: Racetrack options proposed for LHeC at Point 2 of the LHC. The color coding illustrated
di↵erent options with 1/3, 1/4 and 1/5 of the LHC circumference, resulting in di↵erent electron beam
energies.
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LHeC

DC = lRF/2

7 MeV

7 MeV 

1 : 3 : 5

2 : 4 : 6

▪ 2 Linacs (Four 5-Cell 801.58 MHz SC cavities)
▪ 3 turns (160 MeV/turn)
▪ Max. beam energy 500 MeV

PERLE configuration:

Footprint: 24 x 5.5 x 0.8 m3

4Electrons for the LHC: LHeC, FCC-eh and PERLE Workshop- Chavannes de Bogis, 24-25 October 2019W. KAABI

energy recovery LINAC (ERL) 
attached to HL-LHC (or FCC)
e beam: ⟶ 50 or 60 GeV
e pol.: P= ±0.8
Lint ⟶ 1–2 ab-1  (1000× HERA!)

LHeC, FCC-eh and PERLE

PERLE: international collaboration built to realise 500 MeV energy 
facility at Orsay, for development of ERL with LHeC conditions

CERN future colliders: arXiv:1810.13022

ESPPU: ERL is a high-priority future initiative for CERN 

https://arxiv.org/abs/1810.13022
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see also FCC CDR, vols 1 and 3: physics EPJ C79 (2019), 6, 474 ; FCC with eh integrated EPJ ST 228 (2019), 4, 755
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arXiv:1206.2913 arXiv:2007.14491

CDR 2012: commissioned by  
CERN, ECFA, NuPECC 
200 authors, 69 institutions

CDR update 2020 
300 authors, 156 institutions

Further selected references: 

On the relation of the LHeC and the LHC 
arXiv:1211.5102 

The Large Hadron Electron Collider 
arXiv:1305.2090 

Dig Deeper  
Nature Physics 9 (2013) 448 

Future Deep Inelastic Scattering with the LHeC 
arXiv:1802.04317 

arXiv:2007.14491
arXiv:1206.2913

5 page summary: ECFA newsletter No. 5, August 2020
https://cds.cern.ch/record/2729018/files/ECFA-Newsletter-5-Summer2020.pdf

see also, FCC CDR, vols 1 and 3: 
physics, EPJ C79 (2019), 6, 474
FCC with eh integrated, EPJ ST 228 (2019), 4, 755

https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-019-6904-3
https://link.springer.com/article/10.1140%2Fepjst%2Fe2019-900087-0
https://arxiv.org/abs/2007.14491
https://arxiv.org/abs/1206.2913
https://cds.cern.ch/record/2729018/files/ECFA-Newsletter-5-Summer2020.pdf
https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-019-6904-3
https://link.springer.com/article/10.1140%2Fepjst%2Fe2019-900087-0
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opportunity for 

unprecedented 
increase in DIS 

kinematic reach; 
×1000 increase in lumi. 

cf. HERA

no higher twist, 
no nuclear corrections, 

free of symmetry 
assumptions, 

N3LO theory, …

completely resolve 
all proton pdfs, 

sensitivity to x→1, 
and exploration of 

small x regime;

⨉15/120 extension in Q2,1/x reach vs HERA

physics with energy frontier DIS

4

opportunity for 

unprecedented 
increase in DIS 

kinematic reach; 
×1000 increase in lumi. 

cf. HERA

no higher twist, 
no nuclear corrections, 

free of symmetry 
assumptions, 

N3LO theory possible, 
…

precision pdfs up 
to x→1, 

and exploration of 
small x regime; 
plus extensive 

additional physics 
programme

⨉15/120 extension in Q2,1/x reach vs HERA

Physics	with	Energy	Frontier	DIS	

Raison(s)	d’etre	of	the	LHeC	
	
	
Cleanest	High	Resolution		
Microscope:	QCD	Discovery	
	
Empowering	the	LHC		
Search	Programme	
	
Transformation	of	LHC	into	
high	precision	Higgs	facility	
	
Discovery	(top,	H,	heavy	ν’s..)		
Beyond	the	Standard	Model	
	
A	Unique		
Nuclear	Physics	Facility	

Max	Klein	Kobe	17.4.18		 x
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Figure 1.1: Coverage of the kinematic plane in deep inelastic lepton-proton scattering by some initial
fixed target experiments, with electrons (SLAC) and muons (NMS, BCDMS), and by the ep colliders:
the EIC (green), HERA (yellow), the LHeC (blue) and the FCC-eh (brown). The low Q

2 region for the
colliders is here limited to about 0.2 GeV2, which is covered by the central detectors, roughly and perhaps
using low electron beam data. Electron taggers may extend this to even lower Q

2. The high Q
2 limit at

fixed x is given by the line of inelasticity y = 1. Approximate limitations of acceptance at medium x, low
Q

2 are illustrated using polar angle limits of ⌘ = � ln tan ✓/2 of 4, 5, 6 for the EIC, LHeC, and FCC-eh,
respectively. These lines are given by x = exp ⌘ ·

p
Q2/2Ep, and can be moved to larger x when Ep is

lowered below the nominal values.

.

o↵ers a unique potential to test the electroweak SM in the spacelike region with unprece-217

dented precision. The high ep cms energy leads to the copious production of top quarks,218

of about 2 · 106 single top and 5 · 104
tt̄ events. Top production could not be observed219

at HERA but will thus become a central theme of precision and discovery physics with220

the LHeC. In particular, the top momentum fraction, top couplings to the photon, the W221

boson and possible flavour changing neutral currents (FCNC) interactions can be studied222

in a uniquely clean environment (Chapter 5).223

• The LHeC extends the kinematic range in lepton-nucleus scattering by nearly four orders224

of magnitude. It thus will transform nuclear particle physics completely, by resolving the225

hitherto hidden parton dynamics and substructure in nuclei and clarifying the QCD base226

for the collective dynamics observed in QGP phenomena (Chapter 6).227

• The clean DIS final state in neutral and charged current scattering and the high integrated228
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BSM

top

non-linear QCD

s,c,b

High x 
gluon

sin2ϴ

precision 
QCD, !s, 
PDFs 
(p,",IP…)

Higgs

see also, other LHeC /
FCC-eh contributions 
to this conference:

BSM, O. Fischer

eA, G. Milhano

Higgs, U. Klein

EW, and LHeC as part of
HL-LHC, D. Britzger

Top, S. Behera

LHeC status and plans,   
K. Andre (poster)

PERLE, B. Hounsell 
(poster)

(LHeC projected timeline, several years concurrent HL-LHC operation, plus dedicated run, arXiv:1810.13022 )

𝝰s to permille precision

https://arxiv.org/abs/1810.13022
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Quark and Gluon PDFs arXiv:2007.14491
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Strange, c, b
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anti-strange quark distribution

Figure 3.5: Simulation of the measurement of the (anti)-strange quark distribution, xs̄(x, Q
2), in charged

current e
�

p scattering through the t-channel reaction W
�

s̄ ! c. The data are plotted with full systematic
and statistical errors added in quadrature, mostly non-visible. The covered x range extends from 10�4

(top left bin), determined by the CC trigger threshold conservatively assumed to be at Q
2 = 100 GeV2,

to x ' 0.2 (bottom right) determined by the forward tagging acceptance limits, which could be further
extended by lowering Ep.

3.3 Parton Distributions from the LHeC1347

3.3.1 Procedure and Assumptions1348

In this section, PDF constraints from the simulation of LHeC inclusive NC and CC cross section1349

measurements and heavy quark densities are investigated. The analysis closely follows the one1350

for HERA as presented above.1351

The expectations on PDFs for the “LHeC inclusive” dataset, corresponding to the combination1352

of datasets D4+D5+D6+D9, are presented, see Tab. 3.2. These datasets have the highest sen-1353

sitivity to general aspects of PDF phenomenology. Since the data are recorded concurrently to1354

the HL-LHC operation they will become available only after the end of the HL-LHC. There-1355

fore, these PDFs will be valuable for re-analysis or re-interpretation of (HL-)LHC data, and for1356

further future hadron colliders.1357

In order that LHeC will be useful already during the lifetime of the HL-LHC, it is of high rele-1358

vance that the LHeC can deliver PDFs of transformative precision already on a short timescale.1359

Therefore, in the present study particular attention is paid to PDF constraints that can be ex-1360

tracted from the first 50 fb�1 of electron-proton data, which corresponds to the first three years1361

of LHeC operation. The dataset is labelled D2 in Tab. 3.2 and also referred to as “LHeC 1st run”1362

in the following.1363

Already the data recorded during the initial weeks of data taking will be highly valuable and1364

impose new PDF constraints. This is because already the initial instantaneous luminosity will1365

be comparably high, and the kinematic range is largely extended in comparison to the HERA1366

41
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• strange pdf poorly known
• suppressed cf. other light quarks? 

strange valence?             

• c, b: enormously extended range and much 
improved precision c.f. HERA

➜ LHeC: direct sensitivity via charm tagging in Ws→c
(x,Q2) mapping of strange density for first time

• δMc = 50 (HERA) to 3 MeV: impacts on 𝝰s, regulates ratio of charm to light, 
crucial for precision t, H

• δMb to 10 MeV; MSSM: Higgs produced dominantly via bb → A  
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Empowering the LHC

Empowering	pp	Discoveries	

SUSY,	RPC,	RPV,	LQS..	

External,	reliable	input	(PDFs,	factorisation..)	is	crucial	for	range	extension	+	CI	interpretation			

GLUON	 QUARKS	

Exotic+	Extra	boson	searches	at	high	mass	

ATLAS	
today	

arXiv:1211.5102

LHeC

SUSY

 NNNLO pp-Higgs Cross Sections at 14 TeV
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Figure 9.5: Cross sections of Higgs production calculated to N3LO using the iHix program [715] for existing
PDF parameterisation sets (left side) and for the LHeC PDFs (right side). The widths of the areas correspond
to the uncertainties as quoted by the various sets, having rescaled the CT14 uncertainties from 90 to 68% C.L.
Results (left) are included also for di↵erent values of the strong coupling constant ↵s(M

2
Z), from 0.114 to 0.120.

The inner LHeC uncertainty band (red) includes the expected systematic uncertainty due to the PDFs while the
outer box illustrates the expected uncertainty resulting from the determination of ↵s with the LHeC.

For a detailed description of the Higgs physics program at the LHeC we refer to Chapter 7. The5812

only information not included in the fit presented in this section is that of the determination5813

of the top Yukawa coupling, since projections from that study are performed assuming any5814

coupling other than t to be SM like. Comments in this regard will be made, when necessary,5815

below.5816

For the HL-LHC inputs of the combined fit we rely on the projections presented in Ref. [712],5817

as used in the comparative study in Ref. [718]. These HL-LHC inputs include projections for5818

the total rates in the main production (ggF, VBF, V H and ttH) and decay channels (H !5819

bb, ⌧⌧, µµ, ZZ
⇤
, WW

⇤
, ��, Z�). They are available both for ATLAS and CMS. Regarding5820

the theory systematics in these projections, we assume the scenario S2 described in [712], where5821

the SM theory uncertainties are reduced by roughly a factor of two with respect to their current5822

values, a reduction to which LHeC would contribute by eliminating the PDF and ↵s parts of5823

the uncertainty, see Fig. 9.5. Theory systematics are assumed to be fully correlated between5824

ATLAS and CMS. These projections are combined with LHeC ones, where, as in Ref. [718],5825

we use the future projections for the SM theory uncertainties in the di↵erent production cross5826

sections and decay widths. In the  fit performed here we assume: (1) no Higgs decays into5827

particles other than the SM ones; (2) heavy particles are allowed to modify the SM loops, so we5828

use e↵ective  parameters to describe the SM loop-induced processes, i.e. we use g, � , Z� as5829

213

LHeC
(pdfs+𝝰s)

HIGGS

can be parameterised as contact interactions (CI) between two initial-state quarks and two
final-state leptons of given chirality:

LCI =
g
2

⇤2
⌘ij(q̄i�µqi)(¯̀i�

µ
`i), (9.12)

where i, j = L or R (for left- or right-handed chirality), g is a coupling constant set to be 4⇡ by
convention, and ⇤ is the CI scale. The sign of ⌘ij determines whether the interference between
the SM Drell–Yan (DY) process, qq̄ ! Z/�

⇤ ! `
+
`
�, is constructive or destructive.

The size and sign of the observed deviation with respect to the SM probes the scale and in-
terference pattern of the interaction. The sensitivity of the search is limited by experimental
uncertainties (finite statistics and experimental systematic uncertainties) and by uncertainties
in the theoretical modelling of the DY background.

The most recent results of the ATLAS and CMS Collaborations [702, 703] are based on e
+
e
�

and µ
+
µ

� final states in 36 fb�1 of data, and probe CI’s up to a typical scale of 25 TeV, de-
pending on the chirality and sign of the interaction coupling parameter. The limits derived by
ATLAS, summarised in Tab. 9.6, accounted for theoretical uncertainties induced by the PDFs
and by ↵s. The dominant PDF uncertainty was estimated from the 90% CL uncertainty in
the CT14nnlo PDF set, adding an envelope from the comparison of the CT14nnlo, MMHT2014
and NNPDF3.0 [751] central sets. The strong coupling constant uncertainty was propagated
assuming ↵s = 0.118 ± 0.003, with a subleading e↵ect.

The present study evaluates the sensitivity of this search at the HL-LHC. The increase in
sensitivity is estimated using samples of Standard-Model like pseudo data, corresponding to the
integrated luminosity of 3 ab�1. In a first step, both the experimental and theoretical systematic
uncertainties are kept in the publication. In this regime, the extrapolated statistical uncertainty
is typically a factor 5 to 10 smaller than the theoretical uncertainty. Improvements from the
LHeC in ↵s and in the proton PDFs are incorporated in a second step. Assuming the prospects
described in Chapter 3, ↵s and PDF uncertainties are smaller than the statistical fluctuations
and can be neglected in a first approximation.

The results are summarised in Tab. 9.6. Everything else equal, increasing the sample size from
36 fb�1 to 3 ab�1 enhances the CI reach by a typical factor of two. Accounting for the improve-
ment in the theoretical modelling of the DY process brought by the LHeC brings another factor
of 1.5–1.8 in the limits. In the last case, the limits reach well into range directly accessible with
proton-proton collisions at

p
s = 100TeV, as envisioned at the FCC-hh.

Model ATLAS (Ref. [702]) HL-LHC

L = 36 fb�1 (CT14nnlo) L = 3ab�1 (CT14nnlo) L = 3ab�1 (LHeC)

LL (constr.) 28 TeV 58TeV 96 TeV
LL (destr.) 21 TeV 49TeV 77 TeV
RR (constr.) 26TeV 58 TeV 84 TeV
RR (destr.) 22TeV 61 TeV 75 TeV
LR (constr.) 26 TeV 49 TeV 81 TeV
LR (destr.) 22 TeV 45 TeV 62 TeV

Table 9.6: Contact interaction limits from ATLAS based on 36 fb�1 of data [702], and extrapolated
to the full HL-LHC dataset (3 ab�1). The extrapolation is performed assuming the same PDF and ↵s

uncertainties as in Ref. [702], and assuming the improved uncertainties as obtained from the LHeC.
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CONTACT INTERACTIONS:

can be parameterised as contact interactions (CI) between two initial-state quarks and two
final-state leptons of given chirality:

LCI =
g
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convention, and ⇤ is the CI scale. The sign of ⌘ij determines whether the interference between
the SM Drell–Yan (DY) process, qq̄ ! Z/�
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in the theoretical modelling of the DY background.
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e
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� final states in 36 fb�1 of data, and probe CI’s up to a typical scale of 25 TeV, de-
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ATLAS, summarised in Tab. 9.6, accounted for theoretical uncertainties induced by the PDFs
and by ↵s. The dominant PDF uncertainty was estimated from the 90% CL uncertainty in
the CT14nnlo PDF set, adding an envelope from the comparison of the CT14nnlo, MMHT2014
and NNPDF3.0 [751] central sets. The strong coupling constant uncertainty was propagated
assuming ↵s = 0.118 ± 0.003, with a subleading e↵ect.

The present study evaluates the sensitivity of this search at the HL-LHC. The increase in
sensitivity is estimated using samples of Standard-Model like pseudo data, corresponding to the
integrated luminosity of 3 ab�1. In a first step, both the experimental and theoretical systematic
uncertainties are kept in the publication. In this regime, the extrapolated statistical uncertainty
is typically a factor 5 to 10 smaller than the theoretical uncertainty. Improvements from the
LHeC in ↵s and in the proton PDFs are incorporated in a second step. Assuming the prospects
described in Chapter 3, ↵s and PDF uncertainties are smaller than the statistical fluctuations
and can be neglected in a first approximation.

The results are summarised in Tab. 9.6. Everything else equal, increasing the sample size from
36 fb�1 to 3 ab�1 enhances the CI reach by a typical factor of two. Accounting for the improve-
ment in the theoretical modelling of the DY process brought by the LHeC brings another factor
of 1.5–1.8 in the limits. In the last case, the limits reach well into range directly accessible with
proton-proton collisions at

p
s = 100TeV, as envisioned at the FCC-hh.

Model ATLAS (Ref. [702]) HL-LHC

L = 36 fb�1 (CT14nnlo) L = 3ab�1 (CT14nnlo) L = 3ab�1 (LHeC)

LL (constr.) 28 TeV 58TeV 96 TeV
LL (destr.) 21 TeV 49TeV 77 TeV
RR (constr.) 26TeV 58 TeV 84 TeV
RR (destr.) 22TeV 61 TeV 75 TeV
LR (constr.) 26 TeV 49 TeV 81 TeV
LR (destr.) 22 TeV 45 TeV 62 TeV

Table 9.6: Contact interaction limits from ATLAS based on 36 fb�1 of data [702], and extrapolated
to the full HL-LHC dataset (3 ab�1). The extrapolation is performed assuming the same PDF and ↵s

uncertainties as in Ref. [702], and assuming the improved uncertainties as obtained from the LHeC.
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external, reliable, precise pdfs needed for 
range extension and interpretationreduce the PDF uncertainty below 2 MeV, a factor 5–6 compared to present knowledge. Also5722

in this case the mW measurement will benefit from the large W boson samples collected at the5723

LHC, and from the combination of the central and forward categories. In this context, PDF5724

uncertainties would be sub-leading even with 1 fb�1 of low pile-up LHC data.5725

Parameter Unit ATLAS (Ref. [424]) HL-LHC projection

CT10 CT14 HL-LHC LHeC LHeC

Centre-of-mass energy,
p

s TeV 7 14 14 14 14
Int. luminosity, L fb�1 5 1 1 1 1
Acceptance |⌘| < 2.4 |⌘| < 2.4 |⌘| < 2.4 |⌘| < 2.4 |⌘| < 4

Statistical uncert. MeV ± 7 ± 5 ± 4.5 ± 4.5 ± 3.7
PDF uncert. MeV ± 9 ± 12 ± 5.8 ± 2.2 ± 1.6
Other syst. uncert. MeV ± 13 - - -

Total uncert. �mW MeV ± 19 13 7.3 5.0 4.1

Table 9.2: Measurement uncertainty of the W -boson mass at the HL-LHC for di↵erent PDF sets (CT14,
HL-LHC PDF and LHeC PDF) and lepton acceptance regions in comparison with a measurement by
ATLAS [424]. The HL-LHC projections are obtained from a combined fit to the simulated p

`

T and mT

distributions.
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Figure 9.2: Measurement uncertainty of mW at the HL-LHC with 200 pb�1 (dark blue) and 1 fb�1

(pink) of collected low pile-up data for di↵erent present and future PDF sets. The green area indicates
the PDF uncertainty from those sets alone. The projections are obtained from a combined fit to the
simulated p

`

T and mT distributions in the acceptance |⌘| < 4.

.

9.1.3 Impact on electroweak precision tests5726

The theoretical expressions for the electroweak parameters discussed above are functions of the5727

other fundamental constants of the theory. In the Standard Model, an approximate expression5728

for mW , valid at one loop for mH > mW , is [429]5729
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• small x – various phenomena may 
occur which go beyond standard 
DGLAP QCD evolution:

• BFKL, connected to small x resummation
of             terms

• gluon recombination ➙ non-linear 
evolution, parton saturation

Theory “problems” we expect at small x

Figure 1: MMHT2014 NNLO PDFs at Q2 = 10 GeV2 and Q2 = 104 GeV2, with associated 68%
confidence-level uncertainty bands. The corresponding plot of NLO PDFs is shown in Fig. 20.

2 Changes in the theoretical procedures

In this Section, we list the changes in our theoretical description of the data, from that used

in the MSTW analysis [1]. We also glance ahead to mention some of the main e�ects on the

resulting PDFs.

2.1 Input distributions

As is clear from the discussion in the Introduction, one improvement is to use parameterisations

for the input distributions based on Chebyshev polynomials. Following the detailed study in

[11], we take for most PDFs a parameterisation of the form

xf(x, Q2
0) = A(1 � x)�x�

�
1 +

n�

i=1

aiT
Ch
i (y(x))

�
, (1)

where Q2
0 = 1 GeV2 is the input scale, and TCh

i (y) are Chebyshev polynomials in y, with

y = 1 � 2xk where we take k = 0.5 and n = 4. The global fit determines the values of the

set of parameters A, �, �, ai for each PDF, namely for f = uV , dV , S, s+, where S is the

light-quark sea distribution

S � 2(ū + d̄) + s + s̄. (2)

For s+ � s + s̄ we set �+ = �S. As argued in [1] the sea quarks at very low x are governed

almost entirely by perturbative evolution, which is flavour independent, and any di�erence in

6
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Figure 83: The structure function F̃2 as extracted from the measured reduced cross sections for
four values of Q2 together with the predictions of HERAPDF2.0 NLO. The bands represent the
total uncertainty on the predictions.
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Gluon and sea-quark PDFs grow at small x ) DIS cross section grows

At su�ciently small x, the density of partons becomes too high for linear evolution to be
still valid ) saturation

Moreover, at small x the presence of log 1
x

contributions in perturbative coe�cients
make fixed-order results unreliable ) small-x resummation
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central rapidity ↑

• unprecedented opportunity to explore 
small x with LHeC/FCC-eh

• ×15/120 extension in 1/x cf. HERA

Anna Staśto, Small x physics at the LHeC and FCC-eh, DIS2021, April 15  2021

Novel dynamics at small x: saturation
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Figure 4.1: Schematic view of the di↵erent regions for the parton densities in the lnQ2
�

ln 1/x plane. See the text for comments.

and showed a slow convergence of the perturbative series in the high-energy, or small-x
regime. Therefore, generically one expects deviations from fixed-order DGLAP evolution in
the small-x and small-Q regime which call for a resummation of higher orders in perturbation
theory.

Extensive analyses have been performed in the last few years [224–229], which indeed
point to the importance of resummation to all orders. Resummation should embody impor-
tant constraints like kinematic e↵ects, momentum sum rules and running coupling e↵ects.

Several important questions arise here, such as the relation and interplay of the resum-
mation and the non-linear e↵ects, and possibly the role of resummation in the transition
between the perturbative and non-perturbative regimes in QCD. Precise experimental mea-
surements in extended kinematic regions are needed to explore the deviations from standard
DGLAP evolution and to quantify the role of the resummation at small x.

Saturation in perturbative QCD

The original approach to implement unitarity and rescattering e↵ects in high-energy hadron
scattering was developed by Gribov [56, 207, 230]. Models based on this non-perturbative
Regge-Gribov framework are quite successful in describing existing data on inclusive and
di↵ractive ep and eA scattering (see e.g. [231, 232] and references therein). However, they
lack solid theoretical foundations within QCD.

On the other hand, attempts have been going on for the last 30 years to implement
parton rescattering or recombination2 in perturbative QCD in order to describe its high-
energy behaviour. In the pioneering work in [210, 233], a non-linear evolution equation in
lnQ2 was proposed to provide the first correction to the linear equations. A non-linear term
appeared, which was proportional to the local density of colour charges seen by the probe
(the virtual photon).

An alternative, independent approach was developed in [234], where the amplitudes for

2Note that the rescattering and recombination concepts correspond to the same physical mechanism
viewed in the rest frame and the infinite momentum frame of the hadron, respectively.

105

Figure 4.9: The kinematic coverage of the NC e
�

p scattering pseudodata at the LHeC, where the blue
(red) points indicate those bins for which DGLAP (saturation) predictions are available.

Results and discussion

Using the analysis settings described above, we have carried out the profiling of PDF4LHC15
with the LHeC inclusive structure function pseudodata, which for x  10�4 (x > 10�4) has
been generated using the GBW saturation (DGLAP) calculations, and compare them with the
results of the profiling where the pseudodata follows the DGLAP prediction. We have generated
Nexp = 500 independent sets LHeC pseudodata, each one characterised by di↵erent random
fluctuations (determined by the experimental uncertainties) around the underlying central value.

To begin with, it is instructive to compare the data versus theory agreement, �
2
/ndat, between

the pre-fit and post-fit calculations, in order to assess the di↵erences between the DGLAP and
saturation cases. In the upper plots of Fig. 4.10 we show the distributions of pre-fit and post-fit
values of �

2
/ndat for the Nexp = 500 sets of generated LHeC pseudodata. We compare the results

of the profiling of the LHeC pseudodata based on DGLAP calculations in the entire range of
x with those where the pseudodata is based on the saturation model in the region x < 10�4.
Then in the bottom plot we compare of the post-fit �

2 distributions between the two scenarios.
Note that in these three plots the ranges in the x axes are di↵erent.

From this comparison we can observe that for the case where the pseudodata is generated using
a consistent DGLAP framework (PDF4LHC15) as the one adopted for the theory calculations
used in the fit, as expected the agreement is already good at the pre-fit level, and it is further
improved at the post-fit level. However the situation is rather di↵erent in the case where a
subset of the LHeC pseudodata is generated using a saturation model: at the pre-fit level the
agreement between theory and pseudodata is poor, with �

2
/ndat ' 7. The situation markedly

improves at the post-fit level, where now the �
2
/ndat distributions peaks around 1.3. This result

implies that the DGLAP fit manages to absorb most of the di↵erences in theory present in
the saturation pseudodata. This said, the DGLAP fit cannot entirely fit away the non-linear
corrections: as shown in the lower plot of Fig. 4.10, even at the post-fit level one can still tell
apart the �

2
/ndat distributions between the two cases, with the DGLAP (saturation) pseudodata

86

Test for saturation potential at LHeC: 

Simulated pseudodata with saturation at low x  

In the rest of kinematic range use DGLAP to simulate the data 

Perform the fits of DGLAP to these data and check the tension/agreement 



• small x resummation mainly affects 
gluon pdf – dramatic effect for x ≤ 10-3

• essential for LHeC and FCC-eh

• NB, gluon pdf obtained with small x resummation
grows more quickly – saturation at some point!

10

effect of small x 
resummation

NNLO only

• recent evidence for onset of BFKL 
dynamics in HERA inclusive data, 

• arXiv:1710.05935; 1802.00064

(see also, arXiv:1604.02299)

Novel small x dynamics: resummation

X2/NDF          LHeC / FCC-eh (NNLO+NLLx)
NNLO:            1.71 / 2.72
NNLO+NLLx: 1.22 / 1.34  

https://arxiv.org/abs/1710.05935
https://arxiv.org/abs/1802.00064
https://arxiv.org/abs/1604.02299


11

2

0.98

1

1.02

1.04

1.06

1.08

1.1

7 8 13 14 2710 10
0

f.o. PDFs: NNPDF31sx_nnlo_as_0118
res PDFs: NNPDF31sx_nnlonllx_as_0118

band: PDF uncertainty

mH = 125 GeV
µF = µR = mH/2

ra
tio

to
N
3 L
O

√s [TeV]

ggH production cross section --- effect of small-x resummation

N3LO, f.o. PDFs
N3LO, res PDFs

N3LO+LLx, res PDFs

0.98

1

1.02

1.04

1.06

1.08

1.1

7 8 13 14 2710 10
0

f.o. PDFs: NNPDF30_nnlo_disdytop
res PDFs: NNPDF30_nnll_disdytop

band: PDF uncertainty

mH = 125 GeV
µF = µR = mH/2

ra
tio

to
N
3 L
O

√s [TeV]

ggH production cross section --- effect of large-x resummation

N3LO, f.o. PDFs
N3LO, res PDFs

N3LO+N3LL, res PDFs

FIG. 1. All-order e↵ects on the Higgs cross section computed at N3LO, as a function of
p
s. The plot of the left shows the

impact of small-x resummation, while the one of the right of large-x resummation. The bands represent PDF uncertainties.

small-x [89]. This opens up the possibility of achieving
fully consistent resummed results. While we presently
concentrate on the Higgs production cross section, our
technique is fully general and can be applied to other
important processes, such as the Drell-Yan process or
heavy-quark production. We leave further phenomeno-
logical analyses to future work.

Let us start our discussion by introducing the factor-
ized Higgs production cross section

�(⌧,m2
H
) = ⌧�0

�
m2

H
,↵s(µ

2
R
)
�

(1)

⇥

X

ij

Z 1

⌧

dx
x Lij

�
⌧
x , µ

2
F

�
Cij

⇣
x,↵s(µ

2
R
), m2

H

µ2

F

, m2

H

µ2

R

⌘
,

where �0 is the lowest-order partonic cross section, Lij

are parton luminosities (convolutions of PDFs), Cij are
the perturbative partonic coe�cient functions, ⌧ = m2

H
/s

is the squared ratio between the Higgs mass and the col-
lider center-of-mass energy, and the sum runs over all
parton flavors. Henceforth, we suppress the dependence
on renormalization and factorization scales µR, µF. More-
over, because the Higgs couples to the gluon via a heavy-
flavor loop, (1) also implicitly depends on any heavy vir-
tual particle mass.

The general method to consistently combine large-
and small-x resummation of partonic coe�cient functions
Cij(x,↵s) was developed in [85]. The basic principle is
the definition of each resummation such that they do
not interfere with each other. This statement can be
made more precise by considering Mellin (N) moments
of (1). The key observation is that while in momen-
tum (x) space coe�cient functions are distributions, their
Mellin moments are analytic functions of the complex
variable N and therefore, they are (in principle) fully de-
termined by the knowledge of their singularities. Thus,
high-energy and threshold resummations are consistently

combined if they mutually respect their singularity struc-
ture. In [85], where an approximate N3LO result for Cij

was obtained by expanding both resummations to O(↵3
s),

the definition of the large-x logarithms from threshold re-
summation was improved in order to satisfy the desired
behavior, and later this improvement was extended to
all orders in [45], leading to the so-called  -soft resum-
mation scheme. Thanks to these developments, double-
resummed partonic coe�cient functions can be simply
written as the sum of three terms [90]

Cij(x,↵s) = Cfo
ij (x,↵s)+�C lx

ij (x,↵s)+�Csx
ij (x,↵s), (2)

where the first term is the fixed-order calculation, the
second one is the threshold-resummed  -soft contribu-
tion minus its expansion (to avoid double counting with
the fixed-order), and the third one is the resummation of
small-x contributions, again minus its expansion. Note
that not all partonic channels contribute to all terms
in (2). For instance, the qg contribution is power-
suppressed at threshold but it does exhibit logarithmic
enhancement at small x.
Our result brings together the highest possible accu-

racy in all three contributions. The fixed-order piece is
N3LO [18–22], supplemented with the correct small-x be-
havior, as implemented in the public code ggHiggs [49,
85, 91]. Threshold-enhanced contributions are accounted
for to next-to-next-to-next-to-leading logarithmic accu-
racy (N3LL) in the  -soft scheme, as implemented in
the public code TROLL [45, 49]. Finally, for high-energy
resummation we consider the resummation of the lead-
ing non-vanishing tower of logarithms (here LLx) to the
coe�cient functions [62, 83], which we have now imple-
mented in the code HELL [86, 87]. The technical details of
the implementation will be presented elsewhere [92]. Our
calculation keeps finite top-mass e↵ects where possible.
In particular, in the fixed-order part they are included

• effect of small x resummation on gg➙H cross section for LHC, HE-LHC, FCC 

• significant impact, especially at ultra low x values probed at FCC

arXiv:1802.07758, 1805.08785

Impact on pp phenomenlogy

(see also recent work on forward Higgs production, arXiv:2011.03193; other processes in progress)

https://arxiv.org/abs/1802.07758
https://arxiv.org/abs/1805.08785
https://arxiv.org/abs/2011.03193
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arXiv:1710.05935LHeC sensitivity to small x

FL

F2

• LHeC and FCC-eh have unprecedented kinematic reach to small x;      
very large sensitivity and discriminatory power to pin down details of 
small x QCD dynamics

• measurement of FL has a significant role to play, arXiv:1802.04317

The role of the longitudinal structure function

The HERA data are reduced cross sections, given by

�r,NC = F2(x, Q
2) �

y
2

1 + (1 � y)2
FL(x, Q

2) y =
Q

2

x s

in terms of the structure functions F2, FL

The turnover can be explained by a larger FL, contributing mostly at small x

The other option, a turnover in F2, seems unlikely (requires peculiar PDF shape)

Note that FL = O(↵s), and it is gluon dominated

It plays a key role in DIS at small x

) having good measurements of FL is very important!
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Figure 4.10: Upper plots: the distribution of pre-fit and post-fit values of �
2
/ndat for the Nexp = 500

sets of generated LHeC pseudodata. We compare the results of the profiling of the LHeC pseudodata
based on DGLAP calculations in the entire range of x (left) with those where the pseudodata is based
on the saturation model in the region x < 10�4 (right plot). Bottom plot: comparison of the post-fit
�

2
/ndat distributions between these two scenarios for the pseudodata generation.
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a consistent DGLAP framework (PDF4LHC15) as the one adopted for the theory calculations2011

used in the fit, as expected the agreement is already good at the pre-fit level, and it is further2012

improved at the post-fit level. However the situation is rather di↵erent in the case where a2013
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agreement between theory and pseudodata is poor, with �
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/ndat ' 7. The situation markedly2015
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/ndat distributions peaks around 1.3. This result2016

implies that the DGLAP fit manages to absorb most of the di↵erences in theory present in2017

the saturation pseudodata. This said, the DGLAP fit cannot entirely fit away the non-linear2018

corrections: as shown in the lower plot of Fig. 4.10, even at the post-fit level one can still tell2019

apart the �
2
/ndat distributions between the two cases, with the DGLAP (saturation) pseudodata2020

peaking at around 0.9 (1.3). This comparison highlights that it is not possible for the DGLAP2021

fit to completely absorb the saturation e↵ects into a PDF redefinition.2022

In order to identify the origin of the worse agreement between theory predictions and LHeC2023

pseudodata in the saturation case, it is illustrative to take a closer look at the pulls defined as2024

P (x, Q
2) =

Ffit(x, Q
2) � Fdat(x, Q

2)

�expF(x, Q2)
, (4.5)

where Ffit is the central value of the profiled results for the observable F (in this case the reduced2025

neutral current DIS cross section), Fdat is the corresponding central value of the pseudodata,2026

and �expF represents the associated total experimental uncertainty. In Fig. 4.11 we display the2027

pulls between the post-fit prediction and the central value of the LHeC pseudodata for di↵erent2028

80

pre- and post-fit X2

distributions consistent 
for DGLAP pseudo-data 
fitted with DGLAP

pre- and post-fit distributions 
very different for DGLAP fit to 
saturation-based (x ≤ 10-4 , GBW 

model) pseudo-data

DGLAP can not absorb all
saturation effects

Novel dynamics at small x: saturation
• with the unprecedented small-x reach, gluon recombination / parton saturation may 

also be expected, manifesting as deviation from linear DGLAP

13
LHeC can distinguish between DGLAP and saturation
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LHeC

H1

<H1>

FL

FL

FL

Figure 4.16: H1 measurement and LHeC simulation of data on the longitudinal structure function
FL(x, Q

2). Green: Data by H1, for selected Q
2 intervals from Ref. [249]; Blue: Weighted average of the

(green) data points at fixed Q
2; Red: Simulated data from an FL measurement at the LHeC with varying

beam energy, see text. The H1 error bars denote the total measurement uncertainty. The LHeC inner
error bars represent the data statistics, visible only for Q

2 � 200 GeV2, while the outer error bars are the
total uncertainty. Since the FL measurement is sensitive only at high values of inelasticity, y = Q

2
/sx,

each Q
2 value is sensitive only to a certain limited interval of x values which increase with Q

2. Thus each
panel has a di↵erent x axis. The covered x range similarly varies with s, i.e. H1 x values are roughly
twenty times larger at a given Q

2. There are no H1 data for high Q
2, beyond 1000 GeV2, see Ref. [249].

for FL = 0.064). One thus can perform the FL measurement at the LHeC, with a focus on only2234

small x, with much less luminosity than the 1 fb�1 here used. The relative size of the various2235

systematic error sources also varies considerably, which is due to the kinematic relations between2236

angles and energies and their dependence on x and Q
2. This is detailed in [55]. It implies, for ex-2237

ample, that the 0.2 mrad polar angle scale uncertainty becomes the dominant error at small Q
2,2238

which is the backward region where the electron is scattered near the beam axis in the direction2239

of the electron beam. For large Q
2, however, the electron is more centrally scattered and the2240

✓e calibration requirement may be more relaxed. The E
0
e scale uncertainty has a twice smaller2241

e↵ect than that due to the ✓e calibration at lowest Q
2 but becomes the dominant correlated2242

systematic error source at high Q
2. The here used overall assumptions on scale uncertainties2243

are therefore only rough first approximations and would be replaced by kinematics and detector2244

dependent requirements when this measurement may be pursued. These could also exploit the2245

cross calibration opportunities which result from the redundant determination of the inclusive2246

DIS scattering kinematics through both the electron and the hadronic final state. This had been2247

noted very early at HERA times, see Ref. [52,54,252] and was worked out in considerable detail2248

88

• simultaneous measurement of F2 and FL is clean way to pin down dynamics at small x

simulated for: 
Ep = 7 TeV and
Ee = 60, 30, 20 GeV

integrated luminosity: 
10, 1, 1 fb-1

measurement 
dominated by 
systematics
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• achievable precision at LHeC 𝓞(0.1%)

Strong Coupling

This result will improve the world average value considerably. However, theoretical uncertainties1730

are not included and new mathematical tools and an improved understanding of QCD will1731

be needed in order to achieve small values similar to the experimental ones. The dominant1732

sensitivity in this study arises from the jet data. This can be seen from Fig. 4.5, where �↵s(MZ)1733

changes only moderately with di↵erent assumptions imposed on the inclusive NC/CC DIS data.1734

Assumptions made for the uncertainties of the inclusive jet data have been studied above, and1735

these results can be translated easily to this PDF+↵s fit.1736

The expected values for ↵s(MZ) obtained from inclusive jets or from inclusive NC/CC DIS data1737

are compared in Fig. 4.6 with present determinations from global fits based on DIS data (called1738

PDF fits) and the world average value [129]. It is observed that LHeC will have the potential

0.11 0.115 0.12
)

Z
(Ms α

[2018] World average

 year)st(1LHeC incl. DIS 
LHeC DIS+jets
LHeC incl. jets

=50GeV)e (ELHeC incl. DIS 

HERA incl. jets
H1

MMHT
NNPDF
JR
BBG
ABMP
ABM

Figure 4.6: Summary of ↵s(MZ) values in comparison with present values.

1739

to improve considerably the world average value. Already after one year of data taking, the1740

experimental uncertainties of the NC/CC DIS data are competitive with the world average1741

value. The measurement of jet cross sections will further improve that value (not shown).1742

Furthermore, LHeC will be able to address a long standing puzzle. All ↵s determinations from1743

global fits based on NC/CC DIS data find a lower value of ↵s(MZ) than determinations in the1744

lattice QCD framework, from ⌧ decays or in a global electroweak fit. With the expected precision1745

from LHeC this discrepancy will be resolved.1746

4.1.3 Strong coupling from other processes1747

A detailed study for the determination of ↵s(MZ) from NC/CC DIS and from inclusive jet data1748

was presented in the previous paragraphs. However, a large number of additional processes1749

and observables that are measured at the LHeC can also be considered for a determination of1750

↵s(MZ). Suitable observables or processes are di-jet and multi-jet production, heavy flavour1751

production, jets in photoproduction or event shape observables. These processes all exploit1752

the ↵s dependence of the hard interaction. Using suitable predictions, also softer processes1753

72

𝝰s determinations at NNLO QCD:

1st run
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LHeC experimental uncertainties only
LHeC
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Figure 4.4: Uncertainties of ↵s(MZ) and corresponding ↵s(µR) in a determination of ↵s using LHeC
inclusive jet cross sections at di↵erent values of µ

2
R

= Q
2+p

2
T
. Only experimental uncertainties are shown

for LHeC and are compared with a number of presently available measurements and the world average
value.

or ⌧ decay measurements [174], which are at low scales O(GeV), to the measurements at the1689

Z pole [175] and to the applications to scales which are relevant for the LHC, e.g. for Higgs1690

or top-quark physics or high-mass searches. This kinematic region of scales O(10 GeV) cannot1691

be accessed by (HL-)LHC experiments because of limitations due to pile-up and underlying1692

event [176].1693

Inclusive DIS cross sections are sensitive to ↵s(MZ) through higher-order QCD corrections,1694

contributions from the FL structure function and the scale dependence of the cross section at1695

high x (scaling violations). The value of ↵s(MZ) can then be determined in a combined fit1696

of the PDFs and ↵s(MZ) [161]. While a simultaneous determination of ↵s(MZ) and PDFs is1697

not possible with HERA inclusive DIS data alone due to its limited precision and kinematic1698

coverage [42,161], the large kinematic coverage, high precision and the integrated luminosity of1699

the LHeC data will allow for the first time such an ↵s analysis.1700

For the purpose of the determination of ↵s(MZ) from inclusive NC/CC DIS data, a combined1701

PDF+↵s fit to the simulated data is performed, similar to the studies presented above, in1702

Chapter 3. Other technical details are outlined in Ref. [161]. In this fit, however, the numbers1703

of free parameters of the gluon parameterisation is increased, since the gluon PDF and ↵s(MZ)1704

are highly correlated and LHeC data are sensitive to values down to x < 10�5, which requires1705

additional freedom for the gluon parameterisation. The inclusive data are restricted to Q
2 �1706

5 GeV2 in order to avoid a region where e↵ects beyond fixed-order perturbation theory may1707

become sizeable [42, 177].1708

Exploiting the full LHeC inclusive NC/CC DIS data with Ee = 50GeV, the value of ↵s(MZ) can1709

be determined with an uncertainty �↵s(MZ) = ±0.00038. With a more optimistic assumption1710

70

fit to subsets of ep jet data

• 𝝰s is least known coupling constant
• current state-of-the-art: δ𝝰s/𝝰s = 𝓞(1%)

• 𝝰s running testable over two orders 
of magnitude in scale  
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Summary
• energy frontier electron-proton colliders essential for full exploitation of current 

and future hadron colliders (Higgs, BSM, electroweak, …)
• external precision pdf input; complete q,g unfolding, high luminosity x ⟶ 1, s, c, b, (t); 

N3LO; small x; strong coupling to permille precision; …

• LHeC CDR update (arXiv:2007.14491) summarises wealth of new and updated studies 

• enormously rich physics programme both in own right, and for transformation of proton-
proton machines into precision facilities

• all critical pdf information can be obtained early (~ 50 fb-1 ≡ ×50 HERA), in parallel 
with HL-LHC operation

• unprecedented access to novel kinematic regime, with unique potential to explore 
small x phenomena

• 𝝰s to permille experimental precision also achievable early, with use of inclusive DIS 
and/or jets

…  and much more in realm of QCD and small x physics; EG. no time to cover diffractive, 
vector meson, 𝝲p, … 

https://arxiv.org/abs/2007.14491
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come close to 1 ab�1.1280

The bulk of the data is assumed to be taken with electrons, possibly at large negative helicity1281

Pe, because this configuration maximises the number of Higgs bosons that one can produce at1282

the LHeC: e
� couples to W

� which interacts primarily with an up-quark and the CC cross1283

section is proportional to (1�Pe). However, for electroweak physics there is a strong interest to1284

vary the polarisation and charge 4. It was considered that the e
+
p luminosity may reach 1 fb�1

1285

while the tenfold has been simulated for sensitivity studies. A dataset has also been produced1286

with reduced proton beam energy as that enlarges the acceptance towards large x at smaller1287

Q
2. The full list of simulated sets is provided in Tab. 3.2.

Parameter Unit Data set

D1 D2 D3 D4 D5 D6 D7 D8 D9

Proton beam energy TeV 7 7 7 7 1 7 7 7 7
Lepton charge �1 �1 �1 �1 �1 +1 +1 �1 �1
Longitudinal lepton polarisation �0.8 �0.8 0 �0.8 0 0 0 +0.8 +0.8
Integrated luminosity fb�1 5 50 50 1000 1 1 10 10 50

Table 3.2: Summary of characteristic parameters of data sets used to simulate neutral and charged
current e

± cross section data, for a lepton beam energy of Ee = 50 GeV. Sets D1-D4 are for Ep =
7 TeV and e

�
p scattering, with varying assumptions on the integrated luminosity and the electron beam

polarisation. The data set D1 corresponds to possibly the first year of LHeC data taking with the tenfold
of luminosity which H1/ZEUS collected in their lifetime. Set D5 is a low Ep energy run, essential to
extend the acceptance at large x and medium Q

2. D6 and D7 are sets for smaller amounts of positron
data. Finally, D8 and D9 are for high energy e

�
p scattering with positive helicity as is important for

electroweak NC physics. These variations of data taking are subsequently studied for their e↵ect on PDF
determinations.

1288

The highest energies obviously give access to the smallest x at a given Q
2, and to the maximum1289

Q
2 at fixed x. This is illustrated with the kinematic plane and iso-energy and iso-angle lines,1290

see Fig. 3.2. It is instructive to see how the variation of the proton beam energy changes1291

the kinematics considerably and enables additional coverage of various regions. This is clear1292

from Fig. 3.3 which shows the kinematic plane choosing the approximate minimum energies1293

the LHeC could operate with. There are striking changes one may note which are related to1294

kinematics (c.f. Ref. [57]). For example, one can see that the line of ✓e = 179� now corresponds1295

to Q
2 ' 0.1 GeV2 which is due to lowering Ee as compared to 1 GeV2 in the maximum energy1296

case, cf. Fig. 3.2. Similarly, comparing the two figures one finds that the lower Q
2, larger1297

x region becomes more easily accessible with lower energies, in this case solely owing to the1298

reduction of Ep from 7 to 1 TeV. It is worthwhile to note that the LHeC, when operating at1299

these low energies, would permit a complete repetition of the HERA programme, within a short1300

period of special data taking.1301

The coverage of the kinematic plane is illustrated in the plot of the x, Q
2 bin centers of data1302

points used in simulations, see Fig. 3.4 [58]. The full coverage at highest Bjorken-x, i.e. very1303

close to x = 1, is enabled by the high luminosity of the LHeC. This was impossible to achieve for1304

HERA as the NC/CC DIS cross sections decrease proportional to some power of (1 � x) when1305

x approaches 1, as has long been established with Regge counting [59–61].1306

It has been a prime goal, leading beyond previous PDF studies, to understand the importance of1307

4With a linac source, the generation of an intense positron beam is very challenging and will not be able to
compete with the electron intensity. This is discussed in the accelerator chapter.

38

Source of uncertainty Uncertainty

Scattered electron energy scale �E
0
e
/E

0
e

0.1 %
Scattered electron polar angle 0.1mrad
Hadronic energy scale �Eh/Eh 0.5 %
Radiative corrections 0.3%
Photoproduction background (for y > 0.5) 1%
Global e�ciency error 0.5%

Table 3.1: Assumptions used in the simulation of the NC cross sections on the size of uncertainties from
various sources. The top three are uncertainties on the calibrations which are transported to provide
correlated systematic cross section errors. The lower three values are uncertainties of the cross section
caused by various sources.
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Figure 3.2: Kinematic plane covered with the maximum beam energies at the LHeC. Red dashed: Lines
of constant scattered electron polar angle. Note that low Q

2 is measured with electrons scattered into the
backward region, highest Q

2 is reached with Rutherford backscattering; Black dotted: lines of constant
angle of the hadronic final state; Black solid: Lines of constant inelasticity y = Q

2
/sx; Green dashed:

Lines of constant scattered electron energy E
0
e
. Most of the central region is covered by what is termed

the kinematic peak, where E
0
e

' Ee. The small x region is accessed with small energies E
0
e

below Ee while
the very forward, high Q

2 electrons carry TeV energies; Black dashed-dotted: lines of constant hadronic
final state energy Eh. Note that the very forward, large x region sees very high hadronic energy deposits
too.

during which the LHeC may collect 50 fb�1 of data. This may begin with a sample of 5 fb�1.1277

Such values are very high when compared with HERA, corresponding to the hundred(ten)-fold1278

of luminosity which H1 collected in its lifetime of about 15 years. The total luminosity may1279

37
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LHeC pdf parameterisation

• QCD fit ansatz based on HERAPDF2.0, with following differences:
• no requirement that ubar=dbar at small x
• no negative gluon term (only for the aesthetics of ratio plots – it has been checked 

that this does not impact size of projected uncertainties) 

• 4+1 pdf fit (above) has 14 free parameters
• 5+1 pdf fit for HQ studies parameterises dbar and sbar separately, 

17 free parameters
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Summary of LHeC pdfs
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Emanuele R. Nocera (Oxford) Unpolarized and polarized PDFs at an EIC November 14, 2016 20 / 33
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d/u at large x

can resolve long-standing 
mystery of d/u ratio at 
large x

d/u essentially unknown 
at large x
no predictive power from current pdfs; 
conflicting theory pictures;
data inconclusive, large nuclear 
uncertainties
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Figure 3.10: Sea quark distributions at Q
2 = 1.9 GeV2 as a function of x, presented as the ratio to the

CT14 central values. The yellow band corresponds to the “LHeC 1st run” PDFs (D2), while the dark
blue shows the final “LHeC inclusive” PDFs (D4+D5+D6+D9), as described in the text. Both LHeC
PDFs shown are scaled to the central value of CT14.
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Figure 3.11: Sea quark distributions at Q
2 = 104 GeV2 as a function of x, presented as the ratio to the

CT14 central values. The yellow band corresponds to the “LHeC 1st run” PDFs (D2), while the dark
blue shows the final “LHeC inclusive” PDFs (D4+D5+D6+D9), as described in the text. Both LHeC
PDFs shown are scaled to the central value of CT14.

icant contribution to standard candle measurements at the HL-LHC, such as W/Z production,1490

and it imposes a significant uncertainty on the W mass measurements at the LHC. The question1491

of light-sea flavour ‘democracy’ is of principle relevance for QCD and the parton model. For the1492

first time, as has been presented in Sect. 3.2.2, xs̄(x, Q
2) can be accurately measured, namely1493

through the charm tagging Ws ! c reaction in CC e
�
p scattering at the LHeC. The inclusion1494

of the CC charm data in the PDF analysis will settle the question of how strange the strange1495
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as well as forward and high–mass Drell-Yan and the Z boson p? distribution were included. It6039

was found that PDF uncertainties on LHC processes can be reduced by a factor between two6040

and five, depending on the specific flavour combination and on the optimistic assumptions about6041

the reduction of the (experimental) systematic uncertainties.6042

It is of interest to compare these constraints with those expected to come from the LHeC itself, as6043

well as potential improvements from a combined PDF fit to the HL-LHC and LHeC datasets; this6044

was studied in [58]. The basic procedure consists in generating HL-LHC and LHeC pseudodata6045

with the PDF4LHC15 set [251] and then applying Hessian PDF profiling [253, 744], in other6046

words a simplified version of a full refit, to this baseline to assess the expected impact of the6047

data. While the HL-LHC datasets are described above, the LHeC pseudodata correspond to6048

the most recent publicly available o�cial LHeC projections, see Section 3.2, for electron and6049

positron neutral-current (NC) and charged-current (CC) scattering. As well as inclusive data6050

at di↵erent beam energies (Ep = 1, 7 TeV), charm and bottom heavy quark NC and charm6051

production in e
�
p CC scattering are included.6052
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Figure 9.9: Impact of LHeC on the 1-� relative PDF uncertainties of the gluon, down quark, anti–up
quark and strangeness distributions, with respect to the PDF4LHC15 baseline set (green band). Results
for the LHeC (red), the HL-LHC (blue) and their combination (violet) are shown.

The expected impact of the HL-LHC, LHeC and their combination on the PDF uncertainties of6053

the gluon, down quark, anti–up quark and strangeness distributions are shown in Fig. 9.9. One6054

observes that at low x the LHeC data place in general by far the strongest constraint, in partic-6055

ular for the gluon, as expected from its greatly extended coverage at small x. At intermediate6056

x the impact of the HL-LHC and LHeC are more comparable in size, but nonetheless the LHeC6057

is generally expected to have a larger impact. At higher x the constraints are again comparable6058

in size, with the HL-LHC resulting in a somewhat larger reduction in the gluon and strangeness6059

uncertainty, while the LHeC has a somewhat larger impact for the down and anti–up quark6060

distributions. Thus, the combination of both HL-LHC and LHeC pseudodata nicely illustrate6061
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Figure 9.10: Impact of LHeC, HL-LHC and combined LHeC + HL-LHC pseudodata on the uncertain-
ties of the gluon-gluon, quark-gluon, quark-antiquark and quark-quark luminosities, with respect to the
PDF4LHC15 baseline set. In this comparison we display the relative reduction of the PDF uncertainty
in the luminosities compared to the baseline.

a clear and significant reduction in PDF uncertainties over a very wide range of x, improving6062

upon the constraints from the individual datasets in a non-negligible way.6063

9.5.2 Parton luminosities at the HL-LHC6064

In Fig. 9.10 we show the impact on the gluon-gluon, quark-gluon, quark-antiquark and quark-6065

quark partonic luminosities for a center-of-mass energy
p

s = 14 TeV. Some clear trends are6066

evident from this comparison, consistent with the results from the individual PDFs. We can6067

in particular observe that at low mass the LHeC places the dominant constraint, while at6068

intermediate masses the LHeC and HL-LHC constraints are comparable in size, and at high6069

mass the stronger constraint on the gluon-gluon and quark-gluon luminosities comes from the6070

HL-LHC, with the LHeC dominating for the quark-quark and quark-antiquark luminosities. As6071

in the case of the PDFs, for the partonic luminosities the combination of the HL-LHC and LHeC6072

constraints leads to a clear reduction in the PDF uncertainties in comparison to the individual6073

cases, by up to an order of magnitude over a wide range of invariant masses, MX , of the produced6074

final state.6075

In summary, these results demonstrate that while the HL-LHC alone is expected to have a size-6076

able impact on PDF constraints, the LHeC can improve our current precision on PDFs signifi-6077

cantly in comparison to this, in particular at low to intermediate x. Moreover, the combination6078

of both the LHeC and HL-LHC pseudodata leads to a significantly superior PDF error reduction6079

in comparison to the two facilities individually. Further details, including LHeC-only studies as6080

well as an investigation of the impact of the PDF baseline on the uncertainty projections, can6081

be found in Ref. [58].6082
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Figure 4.11: The pulls between the central value of the LHeC pseudodata and post-fit prediction,
Eq. (4.5), for four di↵erent bins in Q

2. We compare the results of the profiling where the LHeC pseudo-
data has been generated using a consistent DGLAP theory with that partially based on the saturation
calculations.

in Q
2 for the two cases. The lack of a su�ciently large lever arm in Q

2 at HERA at small x2543

could explain in part why both frameworks are able to describe the same structure function2544

measurements at the qualitative level. Furthermore, we find that amplifying the significance2545

of these subtle e↵ects can be achieved by monitoring the �
2 behaviour in the Q

2 bins more2546

a↵ected by the saturation corrections. The reason is that the total �
2, such as that reported2547

in Fig. 4.10, is somewhat less informative since the deviations at small-Q are washed out by2548

the good agreement between theory and pseudodata in the rest of the kinematical range of the2549

LHeC summarised in Figs. 3.4 and 4.9.2550

To conclude this analysis, in Fig. 4.12 we display the comparison between the PDF4LHC152551

baseline with the results of the PDF profiling of the LHeC pseudodata for the gluon (left) and2552

quark singlet (right) for Q = 10 GeV. We show the cases where the pseudodata is generated2553

using DGLAP calculations and where it is partially based on the GBW saturation model (for2554

x ⇠< 10�4). We find that the distortion induced by the mismatch between theory and pseudodata2555

in the saturation case is typically larger than the PDF uncertainties expected once the LHeC2556

constraints are taken into account. While of course in a realistic situation such a comparison2557

would not be possible, the results of Fig. 4.12 show that saturation-induced e↵ects are expected2558

to be larger than the typical PDF errors in the LHeC era, and thus that it should be possible to2559

tell them apart using for example tools such as the pull analysis of Fig. 4.11 or other statistical2560

methods.2561

Summary2562

Here we have assessed the feasibility of disentangling DGLAP evolution from non-linear e↵ects at2563

the LHeC. By means of a QCD analysis where LHeC pseudodata is generated using a saturation2564

model, we have demonstrated that the LHeC should be possible to identify non-linear e↵ects2565

with large statistical significance, provided their size is the one predicted by current calculations2566

86

• inspect PULLS to highlight origin of worse agreement: in saturation case (fitted with DGLAP), 
theory wants to overshoot data at smallest x, and undershoot at higher x

• while a different x dependence might be absorbed into PDFs at scale Q0, this is not 

possible with a Q2 dependence – large Q2 lever arm crucial
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Figure 1: A diagram of a di↵ractive NC event in DIS together with the corresponding variables,
in the one-photon exchange approximation. The large rapidity gap is between the system X
and the scattered proton Y (or its low mass excitation).

at both the LHeC and the FCC-eh with larger statistics and more extended kinematics, in this
first study we limit ourselves to neutral currents. The incoming electron or positron, with four
momentum k, scatters o↵ the proton, with incoming momentum p, and the interaction proceeds
through the exchange of a virtual photon with four-momentum q. The kinematic variables for
such an event include the standard deep inelastic variables

Q2 = �q2 , x =
�q2

2p · q
, y =

p · q

p · k
, (1)

where Q2 describes the photon virtuality, x is the Bjorken variable and y the inelasticity of the
process. In addition, the variables

s = (k + p)2 , W 2 = (q + p)2 , (2)

are the electron-proton centre-of-mass energy squared and the photon-proton centre-of-mass
energy squared, respectively. The distinguishing feature of the di↵ractive event ep ! eXY
is the presence of the large rapidity gap between the di↵ractive system, characterized by the
invariant mass MX and the final proton (or its low-mass excitation) Y with four momentum p0.
In addition to the standard DIS variables listed above, di↵ractive events are also characterized
by an additional set of variables defined as

t = (p� p0)2 , ⇠ =
Q2 +M2

X � t

Q2 +W 2
, � =

Q2

Q2 +M2
X � t

. (3)

In the above t is the squared four-momentum transfer at the proton vertex, ⇠ (alternatively
denoted by xIP ) can be interpreted as the momentum fraction of the ‘di↵ractive exchange’
with respect to the hadron, and � is the momentum fraction of the parton with respect to the
di↵ractive exchange. The two momentum fractions combine to give Bjorken-x, x = �⇠.

The physical picture suggested by Fig. 1 is that the initial proton splits into a final state Y
of momentum p0 ' (1 � ⇠)p and the object which is responsible for the di↵ractive exchange of
momentum ⇠p. The latter in turn undergoes a DIS-like process to produce the final state X (see
Sec. 3.1 for more details). The study presented in this paper concerns coherent di↵raction (i.e.
the non-dissociating case), where the final state Y is a proton. Experimentally, this requires
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Figure 1: A diagram of a di↵ractive NC event in DIS together with the corresponding variables,
in the one-photon exchange approximation. The large rapidity gap is between the system X
and the scattered proton Y (or its low mass excitation).

at both the LHeC and the FCC-eh with larger statistics and more extended kinematics, in this
first study we limit ourselves to neutral currents. The incoming electron or positron, with four
momentum k, scatters o↵ the proton, with incoming momentum p, and the interaction proceeds
through the exchange of a virtual photon with four-momentum q. The kinematic variables for
such an event include the standard deep inelastic variables

Q2 = �q2 , x =
�q2

2p · q
, y =

p · q

p · k
, (1)

where Q2 describes the photon virtuality, x is the Bjorken variable and y the inelasticity of the
process. In addition, the variables

s = (k + p)2 , W 2 = (q + p)2 , (2)

are the electron-proton centre-of-mass energy squared and the photon-proton centre-of-mass
energy squared, respectively. The distinguishing feature of the di↵ractive event ep ! eXY
is the presence of the large rapidity gap between the di↵ractive system, characterized by the
invariant mass MX and the final proton (or its low-mass excitation) Y with four momentum p0.
In addition to the standard DIS variables listed above, di↵ractive events are also characterized
by an additional set of variables defined as

t = (p� p0)2 , ⇠ =
Q2 +M2

X � t

Q2 +W 2
, � =

Q2

Q2 +M2
X � t

. (3)

In the above t is the squared four-momentum transfer at the proton vertex, ⇠ (alternatively
denoted by xIP ) can be interpreted as the momentum fraction of the ‘di↵ractive exchange’
with respect to the hadron, and � is the momentum fraction of the parton with respect to the
di↵ractive exchange. The two momentum fractions combine to give Bjorken-x, x = �⇠.

The physical picture suggested by Fig. 1 is that the initial proton splits into a final state Y
of momentum p0 ' (1 � ⇠)p and the object which is responsible for the di↵ractive exchange of
momentum ⇠p. The latter in turn undergoes a DIS-like process to produce the final state X (see
Sec. 3.1 for more details). The study presented in this paper concerns coherent di↵raction (i.e.
the non-dissociating case), where the final state Y is a proton. Experimentally, this requires
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Figure 1: A diagram of a di↵ractive NC event in DIS together with the corresponding variables,
in the one-photon exchange approximation. The large rapidity gap is between the system X
and the scattered proton Y (or its low mass excitation).

at both the LHeC and the FCC-eh with larger statistics and more extended kinematics, in this
first study we limit ourselves to neutral currents. The incoming electron or positron, with four
momentum k, scatters o↵ the proton, with incoming momentum p, and the interaction proceeds
through the exchange of a virtual photon with four-momentum q. The kinematic variables for
such an event include the standard deep inelastic variables

Q2 = �q2 , x =
�q2

2p · q
, y =

p · q

p · k
, (1)

where Q2 describes the photon virtuality, x is the Bjorken variable and y the inelasticity of the
process. In addition, the variables

s = (k + p)2 , W 2 = (q + p)2 , (2)

are the electron-proton centre-of-mass energy squared and the photon-proton centre-of-mass
energy squared, respectively. The distinguishing feature of the di↵ractive event ep ! eXY
is the presence of the large rapidity gap between the di↵ractive system, characterized by the
invariant mass MX and the final proton (or its low-mass excitation) Y with four momentum p0.
In addition to the standard DIS variables listed above, di↵ractive events are also characterized
by an additional set of variables defined as

t = (p� p0)2 , ⇠ =
Q2 +M2

X � t

Q2 +W 2
, � =

Q2

Q2 +M2
X � t

. (3)

In the above t is the squared four-momentum transfer at the proton vertex, ⇠ (alternatively
denoted by xIP ) can be interpreted as the momentum fraction of the ‘di↵ractive exchange’
with respect to the hadron, and � is the momentum fraction of the parton with respect to the
di↵ractive exchange. The two momentum fractions combine to give Bjorken-x, x = �⇠.

The physical picture suggested by Fig. 1 is that the initial proton splits into a final state Y
of momentum p0 ' (1 � ⇠)p and the object which is responsible for the di↵ractive exchange of
momentum ⇠p. The latter in turn undergoes a DIS-like process to produce the final state X (see
Sec. 3.1 for more details). The study presented in this paper concerns coherent di↵raction (i.e.
the non-dissociating case), where the final state Y is a proton. Experimentally, this requires
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Figure 6: Selected subset of the simulated data for the di↵ractive reduced cross section as a func-
tion of � in bins of ⇠ and Q2 for ep collisions at the LHeC. The curves for ⇠ = 0.01, 0.001, 0.0001
are shifted up by 0.04, 0.08, 0.12, respectively.

To evaluate the precision with which the DPDFs can be determined, several pseudodata sets,
corresponding to independent random error samples, were generated. Each pseudodata set was
fitted to the reduced cross-sections defined by Eqs. (5a) and (8) in the DPDF model of Sec. 3.1.

The minimal value of Q2 for the data considered in the fits was set to Q2
min = 5GeV2. The

reason for this cut-o↵ is to show the feasibility of the fits including just the range in which
standard twist-2 DGLAP evolution is expected to be trustable. At HERA, the Q2

min values
giving acceptable DGLAP (twist-2) fits were 8GeV2 [25] and 5GeV2 [26] for H1 and ZEUS,
respectively. It is expected that if there are any higher twist e↵ects, for example due to parton
saturation, they should become visible in the lower Q2 region. DGLAP fits to the di↵ractive data
are known to not describe the data very well in this region, which may point to the importance
of the higher order or higher twist corrections.

It is possible that a more flexible functional form would eventually be able to fit such data
from the new machines without resorting to dynamics beyond twist-2 DGLAP but, with the
amount and precision of HERA data, no evidence for this was found. Note that phenomenological
studies which include higher twist corrections indeed describe the HERA data in this region
better than the pure DGLAP evolution [43].

The maximum value of ⇠ was set by default to ⇠max = 0.1, above which the cross-section
starts to be dominated by the Reggeon exchange. The e↵ects of relaxing both limits Q2

min and
⇠max are described below. The region above the top threshold was not considered in the fits.
This point however should be addressed in future studies; the top contribution has a negligible
impact for the LHeC but some impact for the FCC-eh.
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Figure 7: Selected subset of the simulated data for the di↵ractive reduced cross section as
a function of � in bins of ⇠ and Q2 for ep collisions at the FCC-eh. The curves for ⇠ =
0.01, 0.001, 0.0001, 0.00001 are shifted up by 0.04, 0.08, 0.12, 0.16, respectively.

The binning adopted in this study corresponds roughly to 4 bins per order of magnitude in
each of ⇠,�, Q2. For Q2

min = 5GeV2, ⇠max = 0.1 and below the top threshold this results in 1229
and 1735 pseudodata points for the LHeC and FCC-eh, respectively. The top-quark region adds
17 points for the LHeC and 255 for FCC-eh. Lowering Q2

min down to 1.8GeV2 we get 1589 and
2171 pseudodata points, while increasing ⇠ up to 0.32 adds ca. 180 points for both machines.

The potential for determination of the gluon DPDF was investigated by fitting the inclusive
di↵ractive DIS pseudodata with two models, S and C of Sec. 3.1 with ↵IP ,IR(0) fixed, in order to
focus on the shape of the Pomeron’s PDFs. At HERA, both S and C fits provide equally good
descriptions of the data with �2/ndf = 1.19 and 1.18, respectively, despite di↵erent gluon DPDF
shapes. The LHeC pseudodata are much more sensitive to gluons, resulting in �2/ndf values
of 1.05 and 1.4 for the S and C fits, respectively. This motivates the use of the larger number
of parameters in the fit-S model, which we employ in the further studies. It also shows clearly
the potential of the LHeC and the FCC-eh to better constrain the low-x gluon and, therefore,
unravel eventual departures from standard linear evolution.

4.2 DPDFs uncertainties

In Fig. 8 and Fig. 9 the di↵ractive gluon and quark distributions are shown for the LHeC
and FCC-eh, respectively, as a function of z for fixed scales µ2 = 6, 20, 60, 200GeV2. The bands
labelled A,B,C denote fits to three statistically independent pseudodata replicas, obtained from
the same central values and statistic and systematic uncertainties. Hereafter the bands shown
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Figure 6: Selected subset of the simulated data for the di↵ractive reduced cross section as a func-
tion of � in bins of ⇠ and Q2 for ep collisions at the LHeC. The curves for ⇠ = 0.01, 0.001, 0.0001
are shifted up by 0.04, 0.08, 0.12, respectively.

To evaluate the precision with which the DPDFs can be determined, several pseudodata sets,
corresponding to independent random error samples, were generated. Each pseudodata set was
fitted to the reduced cross-sections defined by Eqs. (5a) and (8) in the DPDF model of Sec. 3.1.

The minimal value of Q2 for the data considered in the fits was set to Q2
min = 5GeV2. The

reason for this cut-o↵ is to show the feasibility of the fits including just the range in which
standard twist-2 DGLAP evolution is expected to be trustable. At HERA, the Q2

min values
giving acceptable DGLAP (twist-2) fits were 8GeV2 [25] and 5GeV2 [26] for H1 and ZEUS,
respectively. It is expected that if there are any higher twist e↵ects, for example due to parton
saturation, they should become visible in the lower Q2 region. DGLAP fits to the di↵ractive data
are known to not describe the data very well in this region, which may point to the importance
of the higher order or higher twist corrections.

It is possible that a more flexible functional form would eventually be able to fit such data
from the new machines without resorting to dynamics beyond twist-2 DGLAP but, with the
amount and precision of HERA data, no evidence for this was found. Note that phenomenological
studies which include higher twist corrections indeed describe the HERA data in this region
better than the pure DGLAP evolution [43].

The maximum value of ⇠ was set by default to ⇠max = 0.1, above which the cross-section
starts to be dominated by the Reggeon exchange. The e↵ects of relaxing both limits Q2

min and
⇠max are described below. The region above the top threshold was not considered in the fits.
This point however should be addressed in future studies; the top contribution has a negligible
impact for the LHeC but some impact for the FCC-eh.
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a function of � in bins of ⇠ and Q2 for ep collisions at the FCC-eh. The curves for ⇠ =
0.01, 0.001, 0.0001, 0.00001 are shifted up by 0.04, 0.08, 0.12, 0.16, respectively.

The binning adopted in this study corresponds roughly to 4 bins per order of magnitude in
each of ⇠,�, Q2. For Q2

min = 5GeV2, ⇠max = 0.1 and below the top threshold this results in 1229
and 1735 pseudodata points for the LHeC and FCC-eh, respectively. The top-quark region adds
17 points for the LHeC and 255 for FCC-eh. Lowering Q2

min down to 1.8GeV2 we get 1589 and
2171 pseudodata points, while increasing ⇠ up to 0.32 adds ca. 180 points for both machines.

The potential for determination of the gluon DPDF was investigated by fitting the inclusive
di↵ractive DIS pseudodata with two models, S and C of Sec. 3.1 with ↵IP ,IR(0) fixed, in order to
focus on the shape of the Pomeron’s PDFs. At HERA, both S and C fits provide equally good
descriptions of the data with �2/ndf = 1.19 and 1.18, respectively, despite di↵erent gluon DPDF
shapes. The LHeC pseudodata are much more sensitive to gluons, resulting in �2/ndf values
of 1.05 and 1.4 for the S and C fits, respectively. This motivates the use of the larger number
of parameters in the fit-S model, which we employ in the further studies. It also shows clearly
the potential of the LHeC and the FCC-eh to better constrain the low-x gluon and, therefore,
unravel eventual departures from standard linear evolution.

4.2 DPDFs uncertainties

In Fig. 8 and Fig. 9 the di↵ractive gluon and quark distributions are shown for the LHeC
and FCC-eh, respectively, as a function of z for fixed scales µ2 = 6, 20, 60, 200GeV2. The bands
labelled A,B,C denote fits to three statistically independent pseudodata replicas, obtained from
the same central values and statistic and systematic uncertainties. Hereafter the bands shown
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• prospects for precise extraction of diffractive pdfs, tests of factorisation breaking
(soft and collinear)
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Figure 8: Di↵ractive PDFs for gluon and quark in the LHeC kinematics as a function of momen-
tum fraction z for fixed values of scale µ2. Results of fits to three (A,B,C) pseudodata replicas
are shown together with the experimental error bands. For comparison, the extrapolated ZEUS-
SJ fit is also shown (black) with error bands marked with the hatched pattern. The vertical
dotted lines indicate the HERA kinematic limit. The bands indicate only the experimental
uncertainties, see the text.

Figure 9: Identical to Fig. 8, but in the FCC-eh kinematics. The bands indicate only the
experimental uncertainties, see the text.

correspond to ��2 = 2.7 uncertainty (90% CL). Also the extrapolated ZEUS-SJ DPDFs are
shown with error bands marked by the ‘/’ hatched area. Note that the depicted uncertainty
bands come solely from experimental errors, neglecting theoretical sources, such as fixed input
parameters and parametrization biases. The extrapolation beyond the reach of LHeC/FCC-eh
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Figure 12: Relative uncertainties on the di↵ractive PDFs for di↵erent numbers of free fit param-
eters, 7 and 9. Two di↵erent choices of scales are considered µ2 = 6 and 20GeV2. The green
and red bands correspond to the 9-parameter fits for the LHeC and FCC-eh scenarios, respec-
tively. The continuous lines delimit the 7-parameter fit uncertainty. The cross-hatched areas
show kinematically excluded regions. The bands indicate only the experimental uncertainties,
see the text.

the inelastic intermediate nucleon states [47]. There are two variants of the model, named H
and L, corresponding to di↵erent strengths of the colour fluctuations, giving rise to larger and
smaller probabilities for di↵raction in nuclei with respect to that in proton, respectively. To
illustrate the results of this model, in Fig. 13 we show the nuclear modification factor, Eq. (15),

for FD(3)
2 and FD(3)

L in 208Pb.
Pseudodata were generated using the same method, 5% uncorrelated systematic error and

luminosity 2 fb�1 as described for ep in Section 3.3. The results for the LHeC and FCC-eh
are shown in Figs. 14 and 15, respectively (for a selected subset of bins). The similarly large
coverage and small uncertainty (dominated by the assumed systematics) illustrated in these two
figures compared to Figs. 6 and 7 make it clear that an accurate extraction of nDPDFs in 208Pb
in an extended kinematic region, similar to that shown in Figs. 8, 9 and 10, will be possible. We
also include in Fig. 16 the corresponding results for eAu collisions at the EIC. Studies performed
for ep at those energies show that the expected accuracy for the extraction of DPDFs at the
EIC is comparable to that in existing DPDFs for the proton at HERA. Assuming, as we did for
the LHeC and FCC-eh, a similar experimental uncertainty, integrated luminosity and kinematic
coverage, the accuracy in the extraction of nDPDFs at the EIC would then be similar to that
of existing HERA fits.
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Figure 3.23: Di↵erential cross section for the elastic J/ production as a function of |t| within the
IP-Sat (saturation), b-CGC and 1-Pomeron models at a fixed W�p = 1TeV, which corresponds to the
LHeC kinematics, and for two di↵erent values of photon virtuality Q = 0 and Q

2 = 10 GeV2. The
thickness of points includes the uncertainties associated with the freedom to choose di↵erent values for
the charm quark mass within the range mc = 1.2 � 1.4 GeV.

slope parameters Bg and BCGC, which control the b -dependence in both models, were fitted to
obtain the best description of elastic di↵ractive J/ production, in particular its t-dependence,
at small values of t.

In Figs. 3.23 and 3.24 we show the simulated di↵erential cross section d�/dt as a function of |t|
and study its variation with energy and virtuality, and its model dependence. First, in Fig. 3.23
we show the di↵erential cross section as a function of t for fixed energy W = 1TeV, in the case of
the photoproduction of J/ (left plot) and for the case of DIS with Q

2 = 10 GeV2 (right plot).
The energy W corresponds to the LHeC kinematics. There are three di↵erent calculations in
each plot, using the IP-sat model, the b-CGC model and the 1-Pomeron approximation. The
last one is obtained by keeping just the first non-trivial term in the expansion of the eikonalised
formula of the IP-Sat amplitude (3.26). First, let us observe that all three models coincide
for very low values of t, where the dependence on t is exponential. This is because for low
|t|, relatively large values of impact parameter are probed in Eq. (3.24) where the amplitude
is small, and therefore the tail in impact parameter is Gaussian in all three cases. Since the
Fourier transform of the Gaussian in b is an exponential in t, the result at low t follows. On
the other hand, the three scenarios di↵er significantly for large values of |t|. In the case of the
1-Pomeron approximation the dependence is still exponential, without any dips, which is easily
understood since the impact parameter profile is perfectly Gaussian in this case. For the two
other scenarios, dips in d�/dt as a function in t emerge. They signal the departure from the
Gaussian profile in b for small values of b where the system is dense. A similar pattern can be
observed when performing the Fourier transform of the Wood-Saxon distribution, which is the
typical distribution used for the description of the matter density in nuclei. When Q

2 is increased
the pattern of dips also changes. This is illustrated in Fig. 3.23. It is seen that the dips move to
higher values of |t| for DIS than for photoproduction. This can be understood from the dipole
formula Eq. (3.24) which contains the integral over the dipole size. Larger values of Q
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