PDF4LHC IPPP, Durham 17 – 18 Sept. 2019

HERAPDF2.0Jets NNLO

completion of the HERAPDF2.0 family of PDFs and extraction of $\alpha_s(MZ)$

Claire Gwenlan, Oxford

on behalf of the H1, ZEUS, NNLOJet and APPLfast collaborations

overview

- completing the HERAPDF2.0 family of PDFs
- previously produced (arXiv:<u>1506.06042</u>): HERAPDF2.0LO, NLO and NNLO;
 HERAPDF2.0Jets were only at NLO
- HERAPDF2.0Jets updated here with NNLO jet predictions from NNLOJet, as implemented in APPLfast
- plus addition of new H1 low Q² jet data
- **NEW** PDFs at NNLO QCD for $\alpha_s(MZ)=0.118$ and 0.115
- **PLUS** free α s(MZ) fit, with preferred value significantly lower at NNLO than at NLO
- NNLO:

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1150 \pm 0.0008 \,({\rm exp})^{+0.0002}_{-0.0005} \,({\rm model/par.}) \pm 0.0006 \,({\rm had}) \pm 0.0027 \,({\rm scale})$

• NLO result, as published:

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1183 \pm 0.0009 \,({\rm exp}) \pm 0.0005 \,({\rm model/par.}) \pm 0.0012 \,({\rm had})^{+0.0037}_{-0.0030} \,({\rm scale})$

HERA and DIS

why jet data?

simultaneous fit of DIS inclusive and jet cross sections **allows determination of αs(MZ)**

different dependencies on gluon and α s gives improved constraints on both

е

 $\sigma \sim \alpha_{s} \cdot g$

р

previous result at NLO \rightarrow arXiv:<u>1506.06042</u>

NOW:

NNLO QCD calculations for DIS jets available in NNLOJet (arXiv:<u>1606.03991</u>, <u>1703.05977</u>), and implemented in APPLfast (arXiv:<u>1906.05303</u>)

jet data used in the current NNLO analysis

strong overlap with those used in previous NLO QCD analysis

Data Set	taken	Q^2 [GeV	^{/2}] range	L	e^{+}/e^{-}	\sqrt{s}	norma-	all	used
	from to	from	to	pb ⁻¹		GeV	lised	points	points
H1 HERA I normalised jets	1999 - 2000	150	15000	65.4	<i>e</i> ⁺ <i>p</i>	319	yes	24	24
H1 HERA I jets at low Q^2	1999 – 2000	5	100	43.5	e^+p	319	no	28	16
H1 normalised inclusive jets at high Q^2	2003 - 2007	150	15000	351	$e^+ p/e^- p$	319	yes	30	24
H1 normalised dijets at high Q^2	2003 - 2007	150	15000	351	$e^+ p/e^- p$	319	yes	24	24
H1 normalised inclusive jets at low Q^2	2005 - 2007	5.5	80	290	$e^+ p/e^- p$	319	yes	48	32
H1 normalised dijets at low Q^2	2005 - 2007	5.5	80	290	$e^+ p/e^- p$	319	yes	48	32
ZEUS inclusive jets	1996 – 1997	125	10000	38.6	e^+p	301	no	30	30
ZEUS dijets 1998 –2000 &	2004 - 2007	125	20000	374	$e^+ p/e^- p$	318	no	22	16

low Q² H1 datasets added (published 2016) that were not used in the previous NLO analysis

some other data sets removed cf. NLO analysis:

- trijet data, since no NNLO QCD calculations;
- 6 dijet data points at low pt, since predictions unreliable;
- low scale data $\mu = \sqrt{(Q^2 + pt^2)} < 13.5$ GeV, for which scale variations large

all systematic and statistical correlations implemented

scale choice for jet data

factorisation scale choice is $\mu F^2 = (Q^2 + pt^2)$

cf. $\mu F^2 = Q^2$ in previous NLO analysis; updated since not a good choice for low Q^2 jet data; change makes almost no difference for high Q^2 jet data

renormalisation scale choice is $\mu R^2 = (Q^2 + pt^2)$

cf. $\mu R^2 = (Q^2 + pt^2)/2$ in previous NLO analysis NB, optimal scale choice – where 'optimal' here means lower X² – is different for NLO vs NNLO; NNLO fit with $\mu R^2 = (Q^2 + pt^2)$ gives $\Delta X^2 = -15$ cf. $\mu R^2 = (Q^2 + pt^2)/2$ and vice versa for NLO fit

consequences of scale changes also explored

† pt denotes pt^{jet} in the case of inclusive jet cross sections and <pt> for dijets

HERA PDF approach

HERAPDF uses only HERA data

- combination of HERA data yields very precise and consistent dataset for 4 different processes: e+p and e-p neutral and charged current reactions; also, for e+p, neutral current at 4 beam energies
- single consistent dataset; conventional X^2 tolerance, $\Delta X^2 = 1$
- use of proton target means no need for heavy target/deuterium corrections
- d-valence extracted from CC e+p without assuming d in proton = u in neutron
- all data at W >15 GeV, so high-x higher twist effects negligible
- HERAPDF evaluates model and parameterisation uncertainties in addition to experimental uncertainties
- HERAPDF2.0 based on FINAL combination of HERA I and HERA II data, which supercedes the HERA I combination and all previous HERAPDFs
- HERAPDF2.0Jets add HERA jet data to this

HERAPDF parameterisation

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}, & A'_g x^{B'_g} (1-x)^{C'_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), & X'_g x^{D_v} (x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, & S'_g x^{D_v} (x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} (1+D_{\overline{U}} x), & X'_g x^{D_v} (x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}. & A'_g x^{B_{\overline{D}}} (x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}. & A'_g x^{B_{\overline{D}}} (x) &= A_{\overline{D}} x^{B_{\overline{D}}} (x)^{C_{\overline{D}}} x^{B_{\overline{D}}} (x)^{C_{\overline{D}}}. & A'_g x^{B_{\overline{D}}} (x)^{C_{\overline{D}}} x^{B_{\overline{D}}} x^{B_{\overline{D}}} (x)^{C_{\overline{D}}} x^{B_{\overline{D}}} x^{B_{\overline{D}$$

QCD sum rules constrain Ag, Auv, Adv $x\overline{s} = f_s x\overline{D}$, sets size of strange PDF constraints $B_{\overline{U}} = B_D$ and

 $A_{\overline{U}} = A_{\overline{D}}(1 - f_s)$ ensure $x\overline{u} \rightarrow x\overline{d}$ as $x \rightarrow 0$

- 14 free parameters in central fit, established by saturation of X²
- extra D, E parameters added to all PDF flavours for parameterisation uncertainties, Ag'=0 also checked
- QCDNUM used for QCD DGLAP evolution, within xFitter framework, and cross checked with independent code
- Thorne-Roberts Optimised Variable Flavour Number Scheme (RT-VFN)
- jet predictions from NNLOJet (arXiv:<u>1606.03991</u>, <u>1703.05977</u>) interfaced to APPLfast (arXiv:<u>1906.05303</u>)
- αs(MZ)=0.118, 0.115; plus free αs fit

HERAPDF sources of uncertainty

Xf experimental: Hessian uncertainties: 14 eigenvector pairs evaluated with $\Delta X^2 = 1$; cross checked 0.8 uncertainties: uncertainties using rms of MC replicas experimental model model: 0.6 variation of input assumptions; and c,b masses $fs = 0.4 \pm 0.1$ $Mc = 1.43 \pm 0.06 \text{ GeV}$ 0.4 $Mb = 4.5 \pm 0.25 \text{ GeV}$ xg (× 0.05) Q^2 min = 3.5 _ 1 + 1.5 GeV 0.2 parameterisation: xS (× 0.05)

variation of $Q^{2}0=1.9 \pm 0.3 \text{ GeV}^{2}$, plus addition of 15th parameter(s) (variations as for HERAPDF2.0 analysis)

NB, for jet cross sections, hadronisation uncertainties also included

HERAPDF2.0Jets NNLO

<mark>αs(MZ)=0.118</mark> <mark>fixed</mark>

10

HERAPDF2.0 vs HERAPDF2.0Jets NNLO

HERAPDF2.0Jets NNLO α_s fits

standard HERAPDF value is α s(MZ)=0.118 (shown on previous slides) fits also performed with free α s(MZ), compared here to X² scan over fixed α s(MZ) perfect agreement in minimum and uncertainty

HERAPDF2.0Jets NNLO α_s fits

and with full uncertainties:

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1150 \pm 0.0008 \,({\rm exp})_{-0.0005}^{+0.0002} \,({\rm model/par.}) \pm 0.0006 \,({\rm had}) \pm 0.0027 \,({\rm scale})$ [NB, scale uncertainty dominates; 7-point variation considered, with µR, µF varied by factor of 2]

sensitivity to minimum Q² cut

EG, arXiv:<u>1506.06042</u>, <u>1710.05935</u>

HERA data at low x, Q^2 may be subject to need for ln(1/x) resummation or higher twist effects; X² scans also performed with harder minimum Q² cuts

no significant change to extracted value of αs(MZ)

comparison to previous NLO result

NNLO scans using inclusive and jet data are compared to previously published scans at NLO, plus corresponding scans using only inclusive data

similar level of precision at NNLO and NLO

smaller value of $\alpha s(MZ)$ preferred at NNLO

NB, conclusion holds independent of updated scale choices; with old scales, NNLO result would be even lower at 0.1135

NNLO:

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1150 \pm 0.0008 \,({\rm exp})^{+0.0002}_{-0.0005} \,({\rm model/par.}) = \pm 0.0006 \,({\rm had}) \pm 0.0027 \,({\rm scale})$

cf. NLO: arXiv:1506.06042

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1183 \pm 0.0009 \,({\rm exp}) \pm 0.0005 \,({\rm model/par.})$ $\pm 0.0012 \,({\rm had})^{+0.0037}_{-0.0030} \,({\rm scale})$

HERAPDF2.0Jets NNLO

<mark>αs(MZ)=0.115</mark> <mark>fixed</mark>

comparison of $\alpha_s(Mz)=0.115$ and 0.118

comparison of $\alpha_s(Mz)=0.115$ and 0.118

HERAPDF2.0JetsNLO αs(MZ)=0.115

HERAPDF2.0JetsNLO αs(MZ)=0.115

HERAPDF2.0JetsNLO $\alpha_{s}(MZ)=0.115$

HERAPDF2.0JetsNLO αs(MZ)=0.115

cf. other NNLO determinations

impact at LHC

αs is least known coupling constant;

needed to constrain GUT scenarios; cross section predictions, including Higgs; ...

PDG18: αs = 0.1181 ± 0.0011

 $(\alpha s = 0.1174 \pm 0.0016; w/o lattice QCD)$

Gluon-Fusion Higgs production, LHC 13 TeV 31.5 MMHT14 **CT14** 31 NNPDF3.0 ABM12 Cross Section (pb) 30.5 HERAPDF2.0 JR14VF 30 29.5 29 28.5 arXiv:<u>1610.07922</u> 28 0.112 0.113 0.114 0.115 0.116 0.117 0.118 0.119 0.12 $\alpha_{s}(M_{7})$

 what is true central value and uncertainty? new precise determinations have important role to play

summary

HERAPDF2.0 family of PDFs completed by performing an NNLO fit including HERA DIS jet data

possible only due to recent **theoretical** and **grid technology** developments (NNLOJet, APPLfast)

TWO new PDF sets:

HERAPDF2.0JetsNNLO $\alpha_s(MZ)=0.118$ (the PDG value)

HERAPDF2.0JetsNNLO $\alpha_s(MZ)=0.115$ (value favoured by our new fits)

the jet data allows us to constrain α s(MZ); NNLO value:

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1150 \pm 0.0008 \,({\rm exp})^{+0.0002}_{-0.0005} \,({\rm model/par.}) \pm 0.0006 \,({\rm had}) \pm 0.0027 \,({\rm scale})$

cf. NLO value:

 $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1183 \pm 0.0009 \,({\rm exp}) \pm 0.0005 \,({\rm model/par.}) \pm 0.0012 \,({\rm had})^{+0.0037}_{-0.0030} \,({\rm scale})$

systematic shift downwards at NNLO even taking scale change into account

extras

cf. other NNLO results using HERA jets

H1, NNLOJet, APPLfast colls., <u>EPJ C77 (2017) 791</u>

NNLOJET+APPLfast, arXiv:1906.05303