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LHeC and FCC-eh

energy recovery LINAC (ERL) 
attached to HL-LHC (or FCC)
e beam: ⟶ 50 or 60 GeV
Lint ⟶ 1 ab-1  (1000× HERA ; per 10 yrs)

LHeC
● √s ~ 1.3 TeV 
● Polarisation up to Pe ~ 80%
● Up to 1 ab-1 integrated luminosity

Electron ring attached to HL-LHC
● Energy recovery linac (ERL): 
Ee = 60 GeV (or 50 GeV)

● ESPPU: ERL is a "high-priority future 
initiative" for CERN

Future electron-proton collider at CERN: LHeC

ERL "landscape"

ESPPU: ERL is a “high-priority future initiative” for CERN 

!)*+'"DEF'"*3);%)'

AC>'IK25$*88%)'

e3-%'ORSU'

'

:;0$';-830'()*+'

?KI3m*->'EKD-0>'

!KA//9>'hKE*9-%)'

F%L'%8'/-6'%?'"*77;6%)9'/)%'M%;-<'6%.%7*8%6''

%8J%?'

/79*''

-%/)''

b%;n;-<'

A/B'C7%;-'23++/)4'!""#$%':/9$;-<0*-'1"'OPKQKORST'

LHeC: √s= 1.2 – 1.3 TeV
×100–1000 HERA lumi.

EIC

“FCC-eh (A)”: √s= 2.2 TeV
(earlier operation with current magnet technology, Ep=20 TeV)

FCC-eh: 
√s= 3.5 TeV

Figure 10.52: 3D Schematic showing proposed underground structures of LHeC (shwon in yellow). The
HL-LHC structures are highlighted in blue.

The physical positioning of the LHeC has been developed based on the assumption that the7646

maximum underground volume should be placed within the molasse rock and should avoid as7647

much as possible any known geological faults or environmentally sensitive areas. Stable and dry,7648

the molasse is considered a suitable rock type for Tunnel Boring Machines (TBM) excavation.7649

In comparison, CERN has experienced significant issues with the underground construction of7650

sector 3-4 in the Jura limestone. There were major issues with water ingress at and behind the7651

tunnel face [846]. Another challenging factor for limestone is the presence of karsts. These are7652

formed by chemical weathering of the rock and often they are filled with water and sediment,7653

which can lead to water infiltration and instability of the excavation.7654

The ERL will be positioned inside the LHC layout, in order to ensure that new surface facilities7655

are located on existing CERN land. The proposed underground structures for the LHeC with7656

an electron beam energy of 60 GeV are shown in Fig. 10.52. The LHeC tunnel will be tilted7657

similarly to the LHC at a slope of 1.4% to follow a suitable layer of molasse rock.7658

10.8.2 Underground infrastructure7659

The underground structures proposed for LHeC option 1/3 LHC require a 9 km long tunnel7660

including two LINACs. The internal diameter of the tunnel is 5.5m. Parallel to the LINACs, at7661

10m distance apart, there are the RF galleries, each 1070m long. Waveguides of 1 m diameter7662

and four connection tunnels are connecting the RF galleries and LINACs. These structures are7663

listed in Tab. 10.30. Two additional caverns, 25 m wide and 50m long are required for cryogenics7664

and technical services. These are connected to the surface via two 9m diameter shafts, provided7665

with lifts to allow access for equipment and personnel. Additional caverns are needed to house7666

injection facilities and a beam dump. As shown in Tab. 10.30, the underground structures7667

proposed for LHeC options 1/5 LHC and 1/3 LHC are similar with the exception of the main7668

tunnel and the RF galleries which have di↵erent lengths.7669
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LHeC white paper: arXiv:2007.14491 
update to LHeC CDR, arXiV:1206.2913

compilation of new and updated         
studies over the past two years, 
from > 330 authors

this talk: 
QCD and proton structure – Ch. 3, 4

very wide-ranging additional physics programme:

BSM 

EW

Heavy Ions

Higgs

Top quark

see also FCC CDR, volume 1, EPJ C79 (2019), no.6, 474

https://arxiv.org/abs/2007.14491
https://arxiv.org/abs/1206.2913
https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-019-6904-3


kinematic coverage
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opportunity for 

unprecedented 
increase in DIS 

kinematic reach; 
×1000 increase in lumi. 

cf. HERA

no higher twist, 
no nuclear corrections, 

free of symmetry 
assumptions, 

N3LO theory possible, 
…

precision pdfs up 
to x→1, 

and exploration of 
small x regime; 
plus extensive 

additional physics 
programme

⨉15/120 extension in Q2,1/x reach vs HERA

Physics	with	Energy	Frontier	DIS	

Raison(s)	d’etre	of	the	LHeC	
	
	
Cleanest	High	Resolution		
Microscope:	QCD	Discovery	
	
Empowering	the	LHC		
Search	Programme	
	
Transformation	of	LHC	into	
high	precision	Higgs	facility	
	
Discovery	(top,	H,	heavy	ν’s..)		
Beyond	the	Standard	Model	
	
A	Unique		
Nuclear	Physics	Facility	
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Figure 1.1: Coverage of the kinematic plane in deep inelastic lepton-proton scattering by some initial
fixed target experiments, with electrons (SLAC) and muons (NMS, BCDMS), and by the ep colliders:
the EIC (green), HERA (yellow), the LHeC (blue) and the FCC-eh (brown). The low Q

2 region for the
colliders is here limited to about 0.2 GeV2, which is covered by the central detectors, roughly and perhaps
using low electron beam data. Electron taggers may extend this to even lower Q

2. The high Q
2 limit at

fixed x is given by the line of inelasticity y = 1. Approximate limitations of acceptance at medium x, low
Q

2 are illustrated using polar angle limits of ⌘ = � ln tan ✓/2 of 4, 5, 6 for the EIC, LHeC, and FCC-eh,
respectively. These lines are given by x = exp ⌘ ·

p
Q2/2Ep, and can be moved to larger x when Ep is

lowered below the nominal values.

.

o↵ers a unique potential to test the electroweak SM in the spacelike region with unprece-217

dented precision. The high ep cms energy leads to the copious production of top quarks,218

of about 2 · 106 single top and 5 · 104
tt̄ events. Top production could not be observed219

at HERA but will thus become a central theme of precision and discovery physics with220

the LHeC. In particular, the top momentum fraction, top couplings to the photon, the W221

boson and possible flavour changing neutral currents (FCNC) interactions can be studied222

in a uniquely clean environment (Chapter 5).223

• The LHeC extends the kinematic range in lepton-nucleus scattering by nearly four orders224

of magnitude. It thus will transform nuclear particle physics completely, by resolving the225

hitherto hidden parton dynamics and substructure in nuclei and clarifying the QCD base226

for the collective dynamics observed in QGP phenomena (Chapter 6).227

• The clean DIS final state in neutral and charged current scattering and the high integrated228
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BSM

top

non-linear QCD

s,c,b

High x 
gluon

sin2ϴ

precision 
QCD, 𝝰s, 
PDFs 
(p,𝝲,IP…)

Higgs



LHeC simulated data and QCD fits
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LHeC 1st Run
50 fb-1 e– only; 3 yrs; 
concurrent with HL-LHC

LHeC full incl.

full set of systematic 
uncertainties considered: 

elec. energy scale: 0.1% 
hadr. energy scale 0.5%

radiative corrs.: 0.3% 
𝝲p at high y: 1%

uncorrelated uncert.: 0.5%
CC syst.: 1.5%

luminosity: 0.5%

1000 fb-1 e– (Pe=–0.8) 
50 fb-1 e– (Pe=+0.8) 
1 fb-1 e+ 
1 fb-1 e– (Ep=1 TeV)

Ee: 50 GeV 
HE: Ep=7 TeV
LE: Ep=1 TeV

• QCD analysis a la HERAPDF2.0, except more flexible, notably in NO constraint
requiring dbar=ubar at small x; 

• 4+1 xuv, xdv, xUbar, xDbar and xg (14 free parameters, cf. 10 by default in CDR)
• 5+1 xuv, xdv, xUbar, xdbar, xsbar and xg (if strange and HQ included; 17 free parameters)

• LHeC projected timeline (several years concurrent operation, plus dedicated run), see arXiv:1810.13022

https://arxiv.org/abs/1810.13022
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valence quarks

• large x crucial for HL/HE–LHC and FCC searches; also relevant for DY, MW etc.;

uv

• precision determination, free from higher twist corrections and nuclear uncertainties
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d/u at large x

can resolve long-standing 
mystery of d/u ratio at large x

d/u essentially unknown at 
large x
no predictive power from current pdfs; 
conflicting theory pictures;
data inconclusive, large nuclear 
uncertainties
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The PDF ratio dV /uV at large x: F n
2 /F

p
2 at an EIC
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No predictive power from current PDF determinations, no discrimination among models

unless dV
uV

x!1
���! k is built in the parametrization (CT14, CJ16, ABM12)

The EIC may measure the ratio Fn
2 /F p

2 with high accuracy, provided neutron beams
expected to be less prone to nuclear and/or higher twist corrections than fixed-target DIS

Complementary measurements from the LHC (DY) and (particularly) the LHeC (DIS)

Emanuele R. Nocera (Oxford) Unpolarized and polarized PDFs at an EIC November 14, 2016 20 / 33

1

d/u at large x

resolve long-standing mystery of 
d/u ratio at large x

d/u essentially unknown at 
large x
no predictive power from current pdfs; 
conflicting theory pictures;
data inconclusive, large nuclear 
uncertainties
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Figure 3.10: Sea quark distributions at Q
2 = 1.9 GeV2 as a function of x, presented as the ratio to the

CT14 central values. The yellow band corresponds to the “LHeC 1st run” PDFs (D2), while the dark
blue shows the final “LHeC inclusive” PDFs (D4+D5+D6+D9), as described in the text. Both LHeC
PDFs shown are scaled to the central value of CT14.
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Figure 3.11: Sea quark distributions at Q
2 = 104 GeV2 as a function of x, presented as the ratio to the

CT14 central values. The yellow band corresponds to the “LHeC 1st run” PDFs (D2), while the dark
blue shows the final “LHeC inclusive” PDFs (D4+D5+D6+D9), as described in the text. Both LHeC
PDFs shown are scaled to the central value of CT14.

icant contribution to standard candle measurements at the HL-LHC, such as W/Z production,1490

and it imposes a significant uncertainty on the W mass measurements at the LHC. The question1491

of light-sea flavour ‘democracy’ is of principle relevance for QCD and the parton model. For the1492

first time, as has been presented in Sect. 3.2.2, xs̄(x, Q
2) can be accurately measured, namely1493

through the charm tagging Ws ! c reaction in CC e
�
p scattering at the LHeC. The inclusion1494

of the CC charm data in the PDF analysis will settle the question of how strange the strange1495

47

sea quarks
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Figure 3.10: Sea quark distributions at Q
2 = 1.9 GeV2 as a function of x, presented as the ratio to the

CT14 central values. The yellow band corresponds to the “LHeC 1st run” PDFs (D2), while the dark
blue shows the final “LHeC inclusive” PDFs (D4+D5+D6+D9), as described in the text. Both LHeC
PDFs shown are scaled to the central value of CT14.
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Figure 3.11: Sea quark distributions at Q
2 = 104 GeV2 as a function of x, presented as the ratio to the

CT14 central values. The yellow band corresponds to the “LHeC 1st run” PDFs (D2), while the dark
blue shows the final “LHeC inclusive” PDFs (D4+D5+D6+D9), as described in the text. Both LHeC
PDFs shown are scaled to the central value of CT14.

icant contribution to standard candle measurements at the HL-LHC, such as W/Z production,1490

and it imposes a significant uncertainty on the W mass measurements at the LHC. The question1491

of light-sea flavour ‘democracy’ is of principle relevance for QCD and the parton model. For the1492

first time, as has been presented in Sect. 3.2.2, xs̄(x, Q
2) can be accurately measured, namely1493

through the charm tagging Ws ! c reaction in CC e
�
p scattering at the LHeC. The inclusion1494

of the CC charm data in the PDF analysis will settle the question of how strange the strange1495

47
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exploration of small x QCD: DGLAP vs BFKL; 
non-linear evolution; gluon saturation; implications for 
ultra high energy neutrinos 10

gluon
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gluon at large x is small and currently 
poorly known; crucial for BSM 
searches
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strange, c, b
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Figure 3.5: Simulation of the measurement of the (anti)-strange quark distribution, xs̄(x, Q
2), in charged

current e
�

p scattering through the t-channel reaction W
�

s̄ ! c. The data are plotted with full systematic
and statistical errors added in quadrature, mostly non-visible. The covered x range extends from 10�4

(top left bin), determined by the CC trigger threshold conservatively assumed to be at Q
2 = 100 GeV2,

to x ' 0.2 (bottom right) determined by the forward tagging acceptance limits, which could be further
extended by lowering Ep.

3.3 Parton Distributions from the LHeC1347

3.3.1 Procedure and Assumptions1348

In this section, PDF constraints from the simulation of LHeC inclusive NC and CC cross section1349

measurements and heavy quark densities are investigated. The analysis closely follows the one1350

for HERA as presented above.1351

The expectations on PDFs for the “LHeC inclusive” dataset, corresponding to the combination1352

of datasets D4+D5+D6+D9, are presented, see Tab. 3.2. These datasets have the highest sen-1353

sitivity to general aspects of PDF phenomenology. Since the data are recorded concurrently to1354

the HL-LHC operation they will become available only after the end of the HL-LHC. There-1355

fore, these PDFs will be valuable for re-analysis or re-interpretation of (HL-)LHC data, and for1356

further future hadron colliders.1357

In order that LHeC will be useful already during the lifetime of the HL-LHC, it is of high rele-1358

vance that the LHeC can deliver PDFs of transformative precision already on a short timescale.1359

Therefore, in the present study particular attention is paid to PDF constraints that can be ex-1360

tracted from the first 50 fb�1 of electron-proton data, which corresponds to the first three years1361

of LHeC operation. The dataset is labelled D2 in Tab. 3.2 and also referred to as “LHeC 1st run”1362

in the following.1363

Already the data recorded during the initial weeks of data taking will be highly valuable and1364

impose new PDF constraints. This is because already the initial instantaneous luminosity will1365

be comparably high, and the kinematic range is largely extended in comparison to the HERA1366

41
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• strange pdf poorly known
• suppressed cf. other light quarks? 

strange valence?             

• c, b: enormously extended range and much 
improved precision c.f. HERA

➜ LHeC: direct sensitivity via charm tagging in Ws→c
(x,Q2) mapping of strange density for first time

• δMc = 50 (HERA) to 3 MeV: impacts on 𝝰s, regulates ratio of charm to light, 
crucial for precision t, H

• δMb to 10 MeV; MSSM: Higgs produced dominantly via bb → A  
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impact of s, c, b
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strange

gluon, small x gluon, large x

more flexible parameterisation (5+1): xuv, xdv, xU, xd, xs and xg

dbar
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strange

gluon, small x gluon, large x

more flexible parameterisation (5+1): xuv, xdv, xU, xd, xs and xg

dbar

• 5+1 xuv, xdv, xUbar, xdbar, xsbar + xg (17)  • 4+1 xuv, xdv, xUbar, xDbar + xg (14)  
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summary of LHeC pdfs
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LHeC 1st Run (expected)
50 fb-1 e–

situation today after 1st LHeC Run
with further improvements after full 
running period, plus HQs, (DIS jets, … )
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empowering the LHC
 NNNLO pp-Higgs Cross Sections at 14 TeV
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Figure 9.5: Cross sections of Higgs production calculated to N3LO using the iHix program [715] for existing
PDF parameterisation sets (left side) and for the LHeC PDFs (right side). The widths of the areas correspond
to the uncertainties as quoted by the various sets, having rescaled the CT14 uncertainties from 90 to 68% C.L.
Results (left) are included also for di↵erent values of the strong coupling constant ↵s(M

2
Z), from 0.114 to 0.120.

The inner LHeC uncertainty band (red) includes the expected systematic uncertainty due to the PDFs while the
outer box illustrates the expected uncertainty resulting from the determination of ↵s with the LHeC.

For a detailed description of the Higgs physics program at the LHeC we refer to Chapter 7. The5812

only information not included in the fit presented in this section is that of the determination5813

of the top Yukawa coupling, since projections from that study are performed assuming any5814

coupling other than t to be SM like. Comments in this regard will be made, when necessary,5815

below.5816

For the HL-LHC inputs of the combined fit we rely on the projections presented in Ref. [712],5817

as used in the comparative study in Ref. [718]. These HL-LHC inputs include projections for5818

the total rates in the main production (ggF, VBF, V H and ttH) and decay channels (H !5819

bb, ⌧⌧, µµ, ZZ
⇤
, WW

⇤
, ��, Z�). They are available both for ATLAS and CMS. Regarding5820

the theory systematics in these projections, we assume the scenario S2 described in [712], where5821

the SM theory uncertainties are reduced by roughly a factor of two with respect to their current5822

values, a reduction to which LHeC would contribute by eliminating the PDF and ↵s parts of5823

the uncertainty, see Fig. 9.5. Theory systematics are assumed to be fully correlated between5824

ATLAS and CMS. These projections are combined with LHeC ones, where, as in Ref. [718],5825

we use the future projections for the SM theory uncertainties in the di↵erent production cross5826

sections and decay widths. In the  fit performed here we assume: (1) no Higgs decays into5827

particles other than the SM ones; (2) heavy particles are allowed to modify the SM loops, so we5828

use e↵ective  parameters to describe the SM loop-induced processes, i.e. we use g, � , Z� as5829

213

Empowering	pp	Discoveries	

SUSY,	RPC,	RPV,	LQS..	

External,	reliable	input	(PDFs,	factorisation..)	is	crucial	for	range	extension	+	CI	interpretation			

GLUON	 QUARKS	

Exotic+	Extra	boson	searches	at	high	mass	

ATLAS	
today	

arXiv:1211.5102
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• external, reliable, precise pdfs needed 
for range extension and interpretation

• BSM, gluons and quarks at large x (SUSY, 
LQs, additional high mass bosons, …) 

• Higgs, theory uncert. dominated by pdfs+𝝰s
• SM parameters, EG. MW, sin2𝞋W (see white paper)

LHeC

LHeC
LHeC

(pdfs+𝝰s)

BSM, W’

SUSY

HIGGS

https://arxiv.org/abs/1211.5102
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effect of small x 
resummation

NNLO only

• evidence for onset of BFKL dynamics 
in HERA inclusive data, 

• arXiv:1710.05935; confirmed in xFitter study, 
arXiv:1802.00064
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FIG. 1. All-order e↵ects on the Higgs cross section computed at N3LO, as a function of
p
s. The plot of the left shows the

impact of small-x resummation, while the one of the right of large-x resummation. The bands represent PDF uncertainties.

small-x [89]. This opens up the possibility of achieving
fully consistent resummed results. While we presently
concentrate on the Higgs production cross section, our
technique is fully general and can be applied to other
important processes, such as the Drell-Yan process or
heavy-quark production. We leave further phenomeno-
logical analyses to future work.

Let us start our discussion by introducing the factor-
ized Higgs production cross section

�(⌧,m2
H
) = ⌧�0

�
m2

H
,↵s(µ

2
R
)
�

(1)

⇥

X

ij

Z 1

⌧

dx
x Lij

�
⌧
x , µ

2
F

�
Cij

⇣
x,↵s(µ

2
R
), m2

H

µ2

F

, m2

H

µ2

R

⌘
,

where �0 is the lowest-order partonic cross section, Lij

are parton luminosities (convolutions of PDFs), Cij are
the perturbative partonic coe�cient functions, ⌧ = m2

H
/s

is the squared ratio between the Higgs mass and the col-
lider center-of-mass energy, and the sum runs over all
parton flavors. Henceforth, we suppress the dependence
on renormalization and factorization scales µR, µF. More-
over, because the Higgs couples to the gluon via a heavy-
flavor loop, (1) also implicitly depends on any heavy vir-
tual particle mass.

The general method to consistently combine large-
and small-x resummation of partonic coe�cient functions
Cij(x,↵s) was developed in [85]. The basic principle is
the definition of each resummation such that they do
not interfere with each other. This statement can be
made more precise by considering Mellin (N) moments
of (1). The key observation is that while in momen-
tum (x) space coe�cient functions are distributions, their
Mellin moments are analytic functions of the complex
variable N and therefore, they are (in principle) fully de-
termined by the knowledge of their singularities. Thus,
high-energy and threshold resummations are consistently

combined if they mutually respect their singularity struc-
ture. In [85], where an approximate N3LO result for Cij

was obtained by expanding both resummations to O(↵3
s),

the definition of the large-x logarithms from threshold re-
summation was improved in order to satisfy the desired
behavior, and later this improvement was extended to
all orders in [45], leading to the so-called  -soft resum-
mation scheme. Thanks to these developments, double-
resummed partonic coe�cient functions can be simply
written as the sum of three terms [90]

Cij(x,↵s) = Cfo
ij (x,↵s)+�C lx

ij (x,↵s)+�Csx
ij (x,↵s), (2)

where the first term is the fixed-order calculation, the
second one is the threshold-resummed  -soft contribu-
tion minus its expansion (to avoid double counting with
the fixed-order), and the third one is the resummation of
small-x contributions, again minus its expansion. Note
that not all partonic channels contribute to all terms
in (2). For instance, the qg contribution is power-
suppressed at threshold but it does exhibit logarithmic
enhancement at small x.
Our result brings together the highest possible accu-

racy in all three contributions. The fixed-order piece is
N3LO [18–22], supplemented with the correct small-x be-
havior, as implemented in the public code ggHiggs [49,
85, 91]. Threshold-enhanced contributions are accounted
for to next-to-next-to-next-to-leading logarithmic accu-
racy (N3LL) in the  -soft scheme, as implemented in
the public code TROLL [45, 49]. Finally, for high-energy
resummation we consider the resummation of the lead-
ing non-vanishing tower of logarithms (here LLx) to the
coe�cient functions [62, 83], which we have now imple-
mented in the code HELL [86, 87]. The technical details of
the implementation will be presented elsewhere [92]. Our
calculation keeps finite top-mass e↵ects where possible.
In particular, in the fixed-order part they are included

• effect of small x resummation on ggH cross section for 
LHC, HE-LHC, FCC 

• impact for LHC, and most certainly at ultra 
low x values probed at FCC

arXiv:1802.07758

• LHeC and FCC-eh have unprecedented kinematic reach to explore small x phenomena

https://arxiv.org/abs/1710.05935
https://arxiv.org/abs/1802.00064
https://arxiv.org/abs/1802.07758
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• ep simulated data very precise – significant constraining power to discriminate 
between theoretical scenarios of small x dynamics, arXiv:1710.05935

F2 and FL predictions for simulated kinematics of LHeC and FCC-eh

• measurement of FL has a critical role to play

FL

F2

see, EG. arXiv:1802.04317

https://arxiv.org/abs/1710.05935
https://arxiv.org/abs/1802.04317
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• NNLO+NLLx resummed calculation used to produce LHeC and FCC-eh simulated 
inclusive NC and CC pseudo-data 

• then, fitted using NNLO (DGLAP only) vs. NNLO+NLLx

• X2 per DOF LHeC / FCC-eh
• NNLO: 1.71 / 2.72
• NNLO+NLLx 1.22 / 1.34  

• substantial difference in extracted 
gluon ( 10 (15)% at x=10-4 (10-5) )  

• much larger than precision with which gluon 
can be determined using LHeC or FCC-eh 
DIS data              

• large sensitivity and discriminatory power to pin down details of small x QCD dynamics

~15%
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• with the unprecedented small-x reach, gluon recombination /
parton saturation may also be expected, manifesting as 
deviation from linear DGLAP
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Figure 4.10: Upper plots: the distribution of pre-fit and post-fit values of �
2
/ndat for the Nexp = 500

sets of generated LHeC pseudodata. We compare the results of the profiling of the LHeC pseudodata
based on DGLAP calculations in the entire range of x (left) with those where the pseudodata is based
on the saturation model in the region x < 10�4 (right plot). Bottom plot: comparison of the post-fit
�

2
/ndat distributions between these two scenarios for the pseudodata generation.

From this comparison we can observe that for the case where the pseudodata is generated using2010

a consistent DGLAP framework (PDF4LHC15) as the one adopted for the theory calculations2011

used in the fit, as expected the agreement is already good at the pre-fit level, and it is further2012

improved at the post-fit level. However the situation is rather di↵erent in the case where a2013

subset of the LHeC pseudodata is generated using a saturation model: at the pre-fit level the2014

agreement between theory and pseudodata is poor, with �
2
/ndat ' 7. The situation markedly2015

improves at the post-fit level, where now the �
2
/ndat distributions peaks around 1.3. This result2016

implies that the DGLAP fit manages to absorb most of the di↵erences in theory present in2017

the saturation pseudodata. This said, the DGLAP fit cannot entirely fit away the non-linear2018

corrections: as shown in the lower plot of Fig. 4.10, even at the post-fit level one can still tell2019

apart the �
2
/ndat distributions between the two cases, with the DGLAP (saturation) pseudodata2020

peaking at around 0.9 (1.3). This comparison highlights that it is not possible for the DGLAP2021

fit to completely absorb the saturation e↵ects into a PDF redefinition.2022

In order to identify the origin of the worse agreement between theory predictions and LHeC2023

pseudodata in the saturation case, it is illustrative to take a closer look at the pulls defined as2024

P (x, Q
2) =

Ffit(x, Q
2) � Fdat(x, Q

2)

�expF(x, Q2)
, (4.5)

where Ffit is the central value of the profiled results for the observable F (in this case the reduced2025

neutral current DIS cross section), Fdat is the corresponding central value of the pseudodata,2026

and �expF represents the associated total experimental uncertainty. In Fig. 4.11 we display the2027

pulls between the post-fit prediction and the central value of the LHeC pseudodata for di↵erent2028

80

LHeC inclusive NC 
pseudo-data produced 
using DGLAP, and fitted 
with DGLAP

LHeC inclusive NC 
pseudo-data produced 
using (GBW) saturation 
model for x ≤ 10-4, and 
fitted with DGLAP

LHeC HE and LE incl. NC e–p;
(Nexp=500 independent sets of LHeC
pseudodata, each characterised by different 
random fluctuations)
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Figure 4.11: The pulls between the central value of the LHeC pseudodata and post-fit prediction,
Eq. (4.5), for four di↵erent bins in Q

2. We compare the results of the profiling where the LHeC pseudo-
data has been generated using a consistent DGLAP theory with that partially based on the saturation
calculations.

in Q
2 for the two cases. The lack of a su�ciently large lever arm in Q

2 at HERA at small x2543

could explain in part why both frameworks are able to describe the same structure function2544

measurements at the qualitative level. Furthermore, we find that amplifying the significance2545

of these subtle e↵ects can be achieved by monitoring the �
2 behaviour in the Q

2 bins more2546

a↵ected by the saturation corrections. The reason is that the total �
2, such as that reported2547

in Fig. 4.10, is somewhat less informative since the deviations at small-Q are washed out by2548

the good agreement between theory and pseudodata in the rest of the kinematical range of the2549

LHeC summarised in Figs. 3.4 and 4.9.2550

To conclude this analysis, in Fig. 4.12 we display the comparison between the PDF4LHC152551

baseline with the results of the PDF profiling of the LHeC pseudodata for the gluon (left) and2552

quark singlet (right) for Q = 10 GeV. We show the cases where the pseudodata is generated2553

using DGLAP calculations and where it is partially based on the GBW saturation model (for2554

x ⇠< 10�4). We find that the distortion induced by the mismatch between theory and pseudodata2555

in the saturation case is typically larger than the PDF uncertainties expected once the LHeC2556

constraints are taken into account. While of course in a realistic situation such a comparison2557

would not be possible, the results of Fig. 4.12 show that saturation-induced e↵ects are expected2558

to be larger than the typical PDF errors in the LHeC era, and thus that it should be possible to2559

tell them apart using for example tools such as the pull analysis of Fig. 4.11 or other statistical2560

methods.2561

Summary2562

Here we have assessed the feasibility of disentangling DGLAP evolution from non-linear e↵ects at2563

the LHeC. By means of a QCD analysis where LHeC pseudodata is generated using a saturation2564

model, we have demonstrated that the LHeC should be possible to identify non-linear e↵ects2565

with large statistical significance, provided their size is the one predicted by current calculations2566
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• inspect PULLS to highlight origin of worse agreement: in saturation case (fitted with DGLAP), 
theory wants to overshoot data at smallest x, and undershoot at higher x

• while a different x dependence might be absorbed into PDFs at scale Q0, this is not 

possible with a Q2 dependence – large Q2 lever arm crucial
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LHeC

H1

<H1>

FL

FL

FL

Figure 4.16: H1 measurement and LHeC simulation of data on the longitudinal structure function
FL(x, Q

2). Green: Data by H1, for selected Q
2 intervals from Ref. [249]; Blue: Weighted average of the

(green) data points at fixed Q
2; Red: Simulated data from an FL measurement at the LHeC with varying

beam energy, see text. The H1 error bars denote the total measurement uncertainty. The LHeC inner
error bars represent the data statistics, visible only for Q

2 � 200 GeV2, while the outer error bars are the
total uncertainty. Since the FL measurement is sensitive only at high values of inelasticity, y = Q

2
/sx,

each Q
2 value is sensitive only to a certain limited interval of x values which increase with Q

2. Thus each
panel has a di↵erent x axis. The covered x range similarly varies with s, i.e. H1 x values are roughly
twenty times larger at a given Q

2. There are no H1 data for high Q
2, beyond 1000 GeV2, see Ref. [249].

for FL = 0.064). One thus can perform the FL measurement at the LHeC, with a focus on only2234

small x, with much less luminosity than the 1 fb�1 here used. The relative size of the various2235

systematic error sources also varies considerably, which is due to the kinematic relations between2236

angles and energies and their dependence on x and Q
2. This is detailed in [55]. It implies, for ex-2237

ample, that the 0.2 mrad polar angle scale uncertainty becomes the dominant error at small Q
2,2238

which is the backward region where the electron is scattered near the beam axis in the direction2239

of the electron beam. For large Q
2, however, the electron is more centrally scattered and the2240

✓e calibration requirement may be more relaxed. The E
0
e scale uncertainty has a twice smaller2241

e↵ect than that due to the ✓e calibration at lowest Q
2 but becomes the dominant correlated2242

systematic error source at high Q
2. The here used overall assumptions on scale uncertainties2243

are therefore only rough first approximations and would be replaced by kinematics and detector2244

dependent requirements when this measurement may be pursued. These could also exploit the2245

cross calibration opportunities which result from the redundant determination of the inclusive2246

DIS scattering kinematics through both the electron and the hadronic final state. This had been2247

noted very early at HERA times, see Ref. [52,54,252] and was worked out in considerable detail2248
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• expect significant additional discrimination from dedicated precision measurement of FL
(not yet included in shown studies); incorrect small x treatment unlikely to accommodate both F2 and FL
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Figure 3: Precision electroweak and strong interaction coupling determinations with the LHeC. Left: Total experimental
uncertainty of the vector and axial-vector NC down-quark couplings from the LHeC (red ellipse) compared to present determi-
nations from HERA, Tevatron and LEP; Right: Extrapolation of the coupling constants (1/�) within SUSY (CMSSM40.2.5) [4]
to the Planck scale. The width of the red line is the uncertainty of the world average of �s, which is dominated by the lattice
QCD calculation chosen for the PDG average. The black band is the LHeC projected experimental uncertainty [1].

LHeC �s measurement is not just a single experiment but represents a whole programme, which renews
the physics of DIS and revisits the scale uncertainties in pQCD at the next-to-next-to-next-to leading order
level. The LHeC itself provides the necessary basis for such a programme, mainly with a complete set of
high precision PDF measurements, including for example the prospect to measure the charm mass to 3MeV
as compared to 30MeV at HERA (from F cc

2 ), and with the identification of the limits of applicability of
DGLAP QCD by discovering or rejecting saturation of the gluon density.

3.3 Low x Physics

The parton densities extracted from HERA data exhibit a strong rise towards low x at fixed Q2. The
low x regime of proton structure is a largely unexplored territory whose dynamics are those of a densely
packed, gluon dominated, partonic system. It o�ers unique insights into the gluon field which confines quarks
within hadrons and is responsible for the generation of most of the mass of hadrons. Understanding low x
proton structure is also important for the precision study of cosmic ray air showers and ultra-high energy
neutrinos and may be related to the string theory of gravity. The most pressing issue in low x physics is
the need for a mechanism to tame the growth of the partons, which, from very general considerations, is
expected to be modified in the region of LHeC sensitivity. There is a wide, though non-universal, consensus,
that non-linear contributions to parton evolution (for example via gluon recombinations gg � g) eventually
become relevant and the parton densities ‘saturate’. The LHeC o�ers the unique possibility of observing
these non-perturbative dynamics at su⇤ciently large Q2 values for weak coupling theoretical methods to
be applied, suggesting the exciting possibility of a parton-level understanding of the collective properties of
QCD. A two-pronged approach to mapping out the newly accessed LHeC low x region is proposed in [1].
On the one hand, the density of partons can be increased by overlapping many nucleons in eA scattering
(see next section). On the other hand, the density of a single nucleon source can be increased by probing at
lower x in ep scattering. Many observables are considered in [1], from which two illustrative examples are
chosen here.

10

PDG
LHeC

• 𝝰s is the least known coupling
• needed: for cross section predictions, including Higgs;                

to constrain GUT scenarios, etc.

• measurements not all consistent:– what is true central 
value, uncertainty? is 𝝰s(DIS) lower than world average?
role of lattice QCD?

36 9. Quantum Chromodynamics

world average, we first combine six pre-averages, excluding the lattice result, using a ‰
2 averaging

method. This gives
–s(M2

Z) = 0.1176 ± 0.0011 , (without lattice) . (9.24)

This result is fully compatible with the lattice pre-average Eq. (9.23) and has a comparable error.
In order to be conservative, we combine these two numbers using an unweighted average and take
as an uncertainty the average between these two uncertainties. This gives our final world average
value

–s(M2
Z) = 0.1179 ± 0.0010 . (9.25)

Figure 9.5: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

This world average value is in very good agreement with the last version of this Review, which
was –s(M2

Z
) = 0.1181 ± 0.0011, with only a slightly lower central value and decreased overall

6th December, 2019 11:50am

world 
ave.

arXiv:1211.5102

https://arxiv.org/abs/1211.5102
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𝝰s from LHeC inclusive NC/CC DIS
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Figure 4.5: Uncertainties of ↵s(MZ) from simultaneous fits of ↵s(MZ) and PDFs to inclusive NC/CC
DIS data as a function of the size of the uncorrelated uncertainty of the NC/CC DIS data. The full lines
indicate the uncertainties obtained with di↵erent assumptions on the data taking scenario and integrated
luminosity. The dashed lines indicate results where, additionally to the inclusive NC/CC DIS data,
inclusive jet cross section data are considered.

For this study, the double-di↵erential inclusive jet data as described above, and additionally2212

the inclusive NC/CC DIS data with Ee = 50GeV as introduced in Sec. 3.2, are employed.2213

Besides the normalisation uncertainty, all sources of systematic uncertainties are considered as2214

uncorrelated between the two processes. A fit of NNLO QCD predictions to these data sets is2215

then performed, and ↵s(MZ) and the parameters of the PDFs are determined. The methodology2216

follows closely the methodology sketched in Sect. 3. Using inclusive jet and inclusive DIS data2217

in a single analysis, the value of ↵s(MZ) is determined with an uncertainty of2218

�↵s(MZ)(incl. DIS & jets) = ±0.00018(exp+PDF) . (4.4)

This result will improve the world average value considerably. However, theoretical uncertainties2219

are not included and new mathematical tools and an improved understanding of QCD will2220

be needed in order to achieve small values similar to the experimental ones. The dominant2221

sensitivity in this study arises from the jet data. This can be seen from Fig. 4.5, where �↵s(MZ)2222

changes only moderately with di↵erent assumptions imposed on the inclusive NC/CC DIS data.2223

Assumptions made for the uncertainties of the inclusive jet data have been studied above, and2224

these results can be translated easily to this PDF+↵s fit.2225

The expected values for ↵s(MZ) obtained from inclusive jets or from inclusive NC/CC DIS data2226

are compared in Fig. 4.6 with present determinations from global fits based on DIS data (called2227

PDF fits) and the world average value [133]. It is observed that LHeC will have the potential2228

to improve considerably the world average value. Already after one year of data taking, the2229

experimental uncertainties of the NC/CC DIS data are competitive with the world average2230

value. The measurement of jet cross sections will further improve that value (not shown).2231

Furthermore, LHeC will be able to address a long standing puzzle. All ↵s determinations from2232

global fits based on NC/CC DIS data find a lower value of ↵s(MZ) than determinations in the2233

lattice QCD framework, from ⌧ decays or in a global electroweak fit. With the expected precision2234

from LHeC this discrepancy will be resolved.2235
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• 𝝰s from inclusive NC/CC DIS:
• simultaneous determination of pdfs

and 𝝰s in NNLO QCD fit

• 3 LHeC scenarios:
• LHeC 1st Run (50 fb-1 e-p)
• plus 1 fb-1 positron data
• full inclusive LHeC dataset (1 ab-1)

or top-quark physics or high-mass searches. This kinematic region of scales O(10 GeV) cannot2169

be accessed by (HL-)LHC experiments because of limitations due to pile-up and underlying2170

event [184].2171

Inclusive DIS cross sections are sensitive to ↵s(MZ) through higher-order QCD corrections,2172

contributions from the FL structure function and the scale dependence of the cross section at2173

high x (scaling violations). The value of ↵s(MZ) can then be determined in a combined fit2174

of the PDFs and ↵s(MZ) [169]. While a simultaneous determination of ↵s(MZ) and PDFs is2175

not possible with HERA inclusive DIS data alone due to its limited precision and kinematic2176

coverage [43,169], the large kinematic coverage, high precision and the integrated luminosity of2177

the LHeC data will allow for the first time such an ↵s analysis.2178

For the purpose of the determination of ↵s(MZ) from inclusive NC/CC DIS data, a combined2179

PDF+↵s fit to the simulated data is performed, similar to the studies presented above, in2180

Chapter 3. Other technical details are outlined in Ref. [169]. In this fit, however, the numbers2181

of free parameters of the gluon parameterisation is increased, since the gluon PDF and ↵s(MZ)2182

are highly correlated and LHeC data are sensitive to values down to x < 10�5, which requires2183

additional freedom for the gluon parameterisation. The inclusive data are restricted to Q
2 �2184

5 GeV2 in order to avoid a region where e↵ects beyond fixed-order perturbation theory may2185

become sizeable [43, 185].2186

Exploiting the full LHeC inclusive NC/CC DIS data with Ee = 50GeV, the value of ↵s(MZ) can2187

be determined with an uncertainty �↵s(MZ) = ±0.00038. With a more optimistic assumption2188

on the dominant uncorrelated uncertainty of ��(uncor.) = 0.25 %, an uncertainty as small as2189

�↵s(MZ)(incl. DIS) = ±0.00022(exp+PDF) (4.3)

is achieved. This would represent a considerable improvement over the present world average2190

value. Given these small uncertainties, theoretical uncertainties from missing higher orders or2191

heavy quark e↵ects have to be considered in addition. In a dedicated study, the fit is repeated2192

with a reduced data set which can be accumulated already during a single year of operation 2,2193

corresponding to about L ⇠ 50 fb�1. Already these data will be able to improve the world2194

average value. These studies are displayed in Fig. 4.5.2195

High sensitivity to ↵s(MZ) and an optimal treatment of the PDFs is obtained by using inclusive2196

jet data together with inclusive NC/CC DIS data in a combined determination of ↵s(MZ) and2197

the PDFs. The jet data will provide an enhanced sensitivity to ↵s(MZ), while inclusive DIS data2198

has the highest sensitivity to the determination of the PDFs. In such combined QCD analyses,2199

also heavy quark data may be further analysed to determine mc and mb. However, since jet2200

cross sections have su�ciently high scale (pT � mb) these are fairly insensitive to the actual2201

value of the heavy quark masses. Contrary, heavy quark data is predominantly sensitive to the2202

quark mass parameters rather than to ↵s(MZ), and their correlation is commonly found to be2203

small in such combined analyses, see e.g. Ref [51]. Infact, at LHeC the masses of charm and2204

bottom quarks can be determined with high precision and uncertainties of 3MeV and 10 MeV2205

are expected, respectively [1]. Therefore, for our sole purpose of estimating the uncertainty of2206

↵s(MZ) from LHeC data, we do not consider heavy quark data, nor free values of mc or mb2207

in the analysis, and we leave the outcome of such a complete QCD analysis to the time when2208

real data are available and the actual value of the parameters are of interest. At this time, also2209

better theoretical predictions will be used, including higher order corrections, heavy quark mass2210

e↵ects or higher-twist terms, as can be expected from steady progress [186–191].2211

2Two di↵erent assumptions are made. One fit is performed with only electron data corresponding to L ⇠
50 fb�1, and an alternative scenario considers further positron data corresponding to L ⇠ 1 fb�1.
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• 𝝰s to better than 2 permille experimental uncertainty!
• inclusion of jet cross sections yields further improvement, and stabilises against uncorrelated uncertainty scenario →
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Figure 4.2: Inclusive jet cross sections calculated in NNLO QCD as a function of the jet transverse
momentum in the Breit frame, pT. The shaded area indicates NNLO scale uncertainties and the yellow
band shows the estimated experimental jet energy scale uncertainty (JES) of 0.5%. The blue band shows
a very conservative assumption on the JES of 1 %.

Ee = 60GeV and include �/Z and Z exchange terms and account for the electron polarisation2082

Pe = �0.8. The NC DIS kinematic range is set to Q
2

> 4 GeV2. The calculations are performed2083

using the NNLOJET program [161] interfaced to the APPLfast library [162–164] which provides2084

a generic interface to the APPLgrid [165,166] and fastNLO [167,168] interpolation grid code.2085

The kinematically accessible range in jet-pT ranges over two orders of magnitude, 4 < pT .2086

400 GeV. The size of the cross section extends over many orders in magnitude, thus imposing2087

challenging demands on LHeC experimental conditions, triggers and DAQ bandwidth, calibra-2088

tion, and data processing capabilities. The scale uncertainty of the NNLO predictions is about2089

10 % at low values of pT and significantly decreases with increasing values of pT. Future improved2090

predictions will further reduce these theoretical uncertainties.2091

For the purpose of estimating the uncertainty of ↵s(MZ) in a determination from inclusive jet2092

cross sections at the LHeC, double-di↵erential cross sections as a function of Q
2 and pT with2093

a full set of experimental uncertainties are generated. Altogether 509 cross section values are2094

calculated in the kinematic range 8 < Q
2

< 500 000GeV2 and 4 < pT < 512 GeV, and the bin2095

grid is similar to the ones used by CMS, H1 or ZEUS [43,155,164,169]. The various error sources2096

considered are summarised in Tab. 4.1. The uncertainties related to the reconstruction of the2097

NC DIS kinematic variables, Q
2, y and xbj , are similar to the estimates for the inclusive NC DIS2098

cross sections (see section 3.2). For the reconstruction of hadronic final state particles which are2099

the input to the jet algorithm, jet energy scale uncertainty (JES), calorimetric noise and the polar2100

angle uncertainty are considered. The size of the uncertainties is gauged with achieved values by2101

H1, ZEUS, ATLAS and CMS [145,153,170,171]. The size of the dominant JES one is assumed2102

to be 0.5 % for reconstructed particles in the laboratory rest frame, yielding an uncertainty of2103

0.2–4.4 % on the cross section after the boost to the Breit frame. A JES uncertainty of 0.5%2104

is well justified by improved calorimeters, since already H1 and ZEUS reported uncertainties2105

of 1 % [145, 153, 172], and ATLAS and CMS achieved 1 % over a wide range in pT [170, 171],2106
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NC DIS jet production at the LHeC

11Snowmass2020 QCD D. Britzger– α
s
 with LHeC

Jet production in (NC) DIS – Breit frame

Jet cross sections in NC DIS
● Measured in Breit frame:    2 → 2 process:  Tp → jj

● Proportional to αs at leading-order

● NNLO predictions available (NNLOJET) for inclusive jet and dijet cross sections

• sensitive to 𝝰s at lowest order
• different dependencies on xg(x) and 𝝰s c.f. 

inclusive DIS; improved constraints on both, 
when used in simultaneous pdf+𝝰s fit

• NNLO QCD calculations for DIS jets available 
in NNLOJet (arXiv:1606.03991, 1703.05977),
and implemented in APPLfast
(arXiv:1906.05303)

albeit the presence of pile-up and the considerably more complicated definition of a reference2107

object for the in-situ calibration. The size of the JES uncertainty is also displayed in Fig. 4.2.2108

The calorimetric noise of ±20 MeV on every calorimeter cluster, as reported by H1, yields an2109

uncertainty of up to 0.7 % on the jet cross sections. A minimum size of the statistical uncertainty2110

of 0.15 % is imposed for each cross section bin. An overall normalisation uncertainty of 1.0%2111

is assumed, which will be mainly dominated by the luminosity uncertainty. In addition, an2112

uncorrelated uncertainty component of 0.6 % collects various smaller error sources, such as for2113

instance radiative corrections, unfolding or model uncertainties. Studies on the size and the2114

correlation model of these uncertainties are performed below.

Exp. uncertainty Shift Size on � [%]

Statistics with 1 ab�1 min. 0.15 % 0.15 –5
Electron energy 0.1 % 0.02 –0.62
Polar angle 2 mrad 0.02 –0.48
Calorimeter noise ±20 MeV 0.01 –0.74
Jet energy scale (JES) 0.5 % 0.2 –4.4
Uncorrelated uncert. 0.6 % 0.6
Normalisation uncert. 1.0 % 1.0

Table 4.1: Anticipated uncertainties of inclusive jet cross section measurements at the LHeC.

2115

The value and uncertainty of ↵s(MZ) is obtained in a �
2-fit of NNLO predictions [159, 160] to2116

the simulated data with ↵s(MZ) being a free fit parameter. The methodology follows closely2117

analyses of HERA jet data [164,169] and the �
2 quantity is calculated from relative uncertainties,2118

i.e. those of the right column of Tab. 4.1. The predictions for the cross section � account for2119

both ↵s-dependent terms in the NNLO calculations, i.e. in the DGLAP operator and the hard2120

matrix elements, by using2121

� = fµ0 ⌦ Pµ0!µF
(↵s(Mz)) ⌦ �̂(↵s(Mz), µ) , (4.1)

where fµ0 are the PDFs at a scale of µ0 = 30 GeV, and Pµ0!µF
denotes the DGLAP operator,2122

which is dependent on the value of ↵s(MZ). The ↵s uncertainty is obtained by linear error2123

propagation and is validated with a separate study of the ��
2 = 1 criterion.2124

In the fit of NNLO QCD predictions to the simulated double-di↵erential LHeC inclusive jet cross2125

sections an uncertainty of2126

�↵s(MZ)(jets) = ±0.00013(exp) ± 0.00010(PDF) (4.2)

is found. The PDF uncertainty is estimated from a PDF set obtained from LHeC inclusive DIS2127

data (see Sec. 3.3). These uncertainties promise a determination of ↵s(MZ) with the highest2128

precision and would represent a considerable reduction of the current world average value with2129

a present uncertainty of ±0.00110 [133].2130

The uncertainty of ↵s is studied for di↵erent values of the experimental uncertainties for the2131

inclusive jet cross section measurement and for di↵erent assumption on bin-to-bin correlations,2132

expressed by the correlation coe�cient ⇢, of individual uncertainty sources, as shown in Fig. 4.3.2133

It is observed that, even for quite conservative scenarios, ↵s(MZ) will be determined with an2134

uncertainty smaller than 2 ‰. For this, it is important to keep the size of the uncorrelated2135

uncertainty or the uncorrelated components of other systematic uncertainties under good con-2136

trol. This is also visible from Fig. 4.3 (bottom right), where the contributions of the individual2137

uncertainty sources to the total uncertainty of ↵s(MZ) are displayed, and it is seen that the2138
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• full set of systematic uncertainties considered; 
benchmarked with H1, ZEUS, ATLAS, CMS

https://arxiv.org/abs/1606.03991
https://arxiv.org/abs/1703.05977
https://arxiv.org/abs/1906.05303


• 𝝰s extracted in NNLO QCD fit to LHeC
simulated jet data only

• methodology as for arXiv:1709.07251, 1906.05303

• extraordinary experimental precision
• scale uncertainty dominates
• restricting to higher pt or Q2 can reduce to

• trade off with increased experimental uncertainties
• (N3LO by 2030s ?)

• 𝝰s running tested over two orders of 
magnitude in μR
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or ⌧ decay measurements [174], which are at low scales O(GeV), to the measurements at the1689

Z pole [175] and to the applications to scales which are relevant for the LHC, e.g. for Higgs1690

or top-quark physics or high-mass searches. This kinematic region of scales O(10 GeV) cannot1691

be accessed by (HL-)LHC experiments because of limitations due to pile-up and underlying1692

event [176].1693

Inclusive DIS cross sections are sensitive to ↵s(MZ) through higher-order QCD corrections,1694

contributions from the FL structure function and the scale dependence of the cross section at1695

high x (scaling violations). The value of ↵s(MZ) can then be determined in a combined fit1696

of the PDFs and ↵s(MZ) [161]. While a simultaneous determination of ↵s(MZ) and PDFs is1697

not possible with HERA inclusive DIS data alone due to its limited precision and kinematic1698

coverage [42,161], the large kinematic coverage, high precision and the integrated luminosity of1699

the LHeC data will allow for the first time such an ↵s analysis.1700

For the purpose of the determination of ↵s(MZ) from inclusive NC/CC DIS data, a combined1701

PDF+↵s fit to the simulated data is performed, similar to the studies presented above, in1702

Chapter 3. Other technical details are outlined in Ref. [161]. In this fit, however, the numbers1703

of free parameters of the gluon parameterisation is increased, since the gluon PDF and ↵s(MZ)1704

are highly correlated and LHeC data are sensitive to values down to x < 10�5, which requires1705

additional freedom for the gluon parameterisation. The inclusive data are restricted to Q
2 �1706

5 GeV2 in order to avoid a region where e↵ects beyond fixed-order perturbation theory may1707

become sizeable [42, 177].1708

Exploiting the full LHeC inclusive NC/CC DIS data with Ee = 50GeV, the value of ↵s(MZ) can1709

be determined with an uncertainty �↵s(MZ) = ±0.00038. With a more optimistic assumption1710
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albeit the presence of pile-up and the considerably more complicated definition of a reference2107

object for the in-situ calibration. The size of the JES uncertainty is also displayed in Fig. 4.2.2108

The calorimetric noise of ±20 MeV on every calorimeter cluster, as reported by H1, yields an2109

uncertainty of up to 0.7 % on the jet cross sections. A minimum size of the statistical uncertainty2110

of 0.15 % is imposed for each cross section bin. An overall normalisation uncertainty of 1.0%2111

is assumed, which will be mainly dominated by the luminosity uncertainty. In addition, an2112

uncorrelated uncertainty component of 0.6 % collects various smaller error sources, such as for2113

instance radiative corrections, unfolding or model uncertainties. Studies on the size and the2114

correlation model of these uncertainties are performed below.

Exp. uncertainty Shift Size on � [%]

Statistics with 1 ab�1 min. 0.15 % 0.15 –5
Electron energy 0.1 % 0.02 –0.62
Polar angle 2 mrad 0.02 –0.48
Calorimeter noise ±20 MeV 0.01 –0.74
Jet energy scale (JES) 0.5 % 0.2 –4.4
Uncorrelated uncert. 0.6 % 0.6
Normalisation uncert. 1.0 % 1.0

Table 4.1: Anticipated uncertainties of inclusive jet cross section measurements at the LHeC.

2115

The value and uncertainty of ↵s(MZ) is obtained in a �
2-fit of NNLO predictions [159, 160] to2116

the simulated data with ↵s(MZ) being a free fit parameter. The methodology follows closely2117

analyses of HERA jet data [164,169] and the �
2 quantity is calculated from relative uncertainties,2118

i.e. those of the right column of Tab. 4.1. The predictions for the cross section � account for2119

both ↵s-dependent terms in the NNLO calculations, i.e. in the DGLAP operator and the hard2120

matrix elements, by using2121

� = fµ0 ⌦ Pµ0!µF
(↵s(Mz)) ⌦ �̂(↵s(Mz), µ) , (4.1)

where fµ0 are the PDFs at a scale of µ0 = 30 GeV, and Pµ0!µF
denotes the DGLAP operator,2122

which is dependent on the value of ↵s(MZ). The ↵s uncertainty is obtained by linear error2123

propagation and is validated with a separate study of the ��
2 = 1 criterion.2124

In the fit of NNLO QCD predictions to the simulated double-di↵erential LHeC inclusive jet cross2125

sections an uncertainty of2126

�↵s(MZ)(jets) = ±0.00013(exp) ± 0.00010(PDF) (4.2)

is found. The PDF uncertainty is estimated from a PDF set obtained from LHeC inclusive DIS2127

data (see Sec. 3.3). These uncertainties promise a determination of ↵s(MZ) with the highest2128

precision and would represent a considerable reduction of the current world average value with2129

a present uncertainty of ±0.00110 [133].2130

The uncertainty of ↵s is studied for di↵erent values of the experimental uncertainties for the2131

inclusive jet cross section measurement and for di↵erent assumption on bin-to-bin correlations,2132

expressed by the correlation coe�cient ⇢, of individual uncertainty sources, as shown in Fig. 4.3.2133

It is observed that, even for quite conservative scenarios, ↵s(MZ) will be determined with an2134

uncertainty smaller than 2 ‰. For this, it is important to keep the size of the uncorrelated2135

uncertainty or the uncorrelated components of other systematic uncertainties under good con-2136

trol. This is also visible from Fig. 4.3 (bottom right), where the contributions of the individual2137

uncertainty sources to the total uncertainty of ↵s(MZ) are displayed, and it is seen that the2138
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Figure 4.3: Studies of the size and correlations of experimental uncertainties impacting the uncertainty
of ↵s(MZ). Top left: Study of the value of the correlation coe�cient ⇢ for di↵erent systematic uncer-
tainties. Common systematic uncertainties are considered as fully correlated, ⇢ = 1. Top right: Size of
the JES uncertainty for three di↵erent values of ⇢JES. Bottom left: Impact of the uncorrelated and nor-
malisation uncertainties on �↵s(MZ). Bottom right: Contribution of individual sources of experimental
uncertainty to the total experimental uncertainty of ↵s(MZ).

uncorrelated and the normalisation uncertainty are the largest individual uncertainty compo-2139

nents. It is further observed, that the size of the statistical uncertainty (stat.) is non-negligible,2140

which is, however, strongly dependent on the ad hoc assumption on the minimum size of 0.15%.2141

The noise uncertainty contributes mainly to jets at low-pT, and since these have a particular2142

high sensitivity to ↵s(MZ), due to their low scale µR. It is of great importance to keep this2143

experimental uncertainty well under control, or make better use of track-based information for2144

the measurment of jets.2145

In the present formalism theoretical uncertainties from scale variations of the NNLO predictions2146

amount to about �↵s(MZ) = 0.0035 (NNLO). These can be reduced with suitable cuts in pT or2147

Q
2 to about �↵s(MZ) ⇡ 0.0010. However, it is expected that improved predictions, e.g. with2148

resummed contributions or N3LO predictions will significantly reduce these uncertainties in the2149

future. Uncertainties on non-perturbative hadronisation e↵ects will have to be considered as2150

well, but these will be under good control due to the measurements of charged particle spectra2151

at the LHeC and improved phenomenological models.2152
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Figure 4.3: Studies of the size and correlations of experimental uncertainties impacting the uncertainty
of ↵s(MZ). Top left: Study of the value of the correlation coe�cient ⇢ for di↵erent systematic uncer-
tainties. Common systematic uncertainties are considered as fully correlated, ⇢ = 1. Top right: Size of
the JES uncertainty for three di↵erent values of ⇢JES. Bottom left: Impact of the uncorrelated and nor-
malisation uncertainties on �↵s(MZ). Bottom right: Contribution of individual sources of experimental
uncertainty to the total experimental uncertainty of ↵s(MZ).

uncorrelated and the normalisation uncertainty are the largest individual uncertainty compo-2139

nents. It is further observed, that the size of the statistical uncertainty (stat.) is non-negligible,2140

which is, however, strongly dependent on the ad hoc assumption on the minimum size of 0.15%.2141

The noise uncertainty contributes mainly to jets at low-pT, and since these have a particular2142

high sensitivity to ↵s(MZ), due to their low scale µR. It is of great importance to keep this2143

experimental uncertainty well under control, or make better use of track-based information for2144

the measurment of jets.2145

In the present formalism theoretical uncertainties from scale variations of the NNLO predictions2146

amount to about �↵s(MZ) = 0.0035 (NNLO). These can be reduced with suitable cuts in pT or2147

Q
2 to about �↵s(MZ) ⇡ 0.0010. However, it is expected that improved predictions, e.g. with2148

resummed contributions or N3LO predictions will significantly reduce these uncertainties in the2149

future. Uncertainties on non-perturbative hadronisation e↵ects will have to be considered as2150

well, but these will be under good control due to the measurements of charged particle spectra2151

at the LHeC and improved phenomenological models.2152
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• enormous improvement over other jet-based measurements
• LHeC uniquely connects low O(GeV) scales with high O(MZ) scales

4.1.2 Pinning Down ↵s with Inclusive and Jet LHeC Data2153

The dependence of the coupling strength as a function of the renormalisation scale µR is predicted2154

by QCD, which is often called the running of the strong coupling. Its study with experimental2155

data represents an important consistency and validity test of QCD. Using inclusive jet cross2156

sections the running of the strong coupling can be tested by determining the value of ↵s at2157

di↵erent values of µR by grouping data points with similar values of µR and determining the2158

value of ↵s(µR) from these subsets of data points. The assumptions on the running of ↵s(µR)2159

are then imposed only for the limited range of the chosen interval, and not to the full measured2160

interval as in the previous study. Here we set µ
2
R = Q

2 + p
2
T

1. The experimental uncertainties2161

from the fits to subsets of the inclusive jet pseudodata are displayed in Fig. 4.4. These results
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Figure 4.4: Uncertainties of ↵s(MZ) and corresponding ↵s(µR) in a determination of ↵s using LHeC
inclusive jet cross sections at di↵erent values of µ

2
R

= Q
2+p

2
T
. Only experimental uncertainties are shown

for LHeC and are compared with a number of presently available measurements and the world average
value.

2162

demonstrate a high sensitivity to ↵s over two orders of magnitude in renormalisation scale up2163

to values of about µR ⇡ 500 GeV. In the range 6 < µR . 200 GeV the experimental uncertainty2164

is found to be smaller than the expectation from the world average value [180]. This region is of2165

particular interest since it connects the precision determinations from lattice calculations [181]2166

or ⌧ decay measurements [182], which are at low scales O(GeV), to the measurements at the2167

Z pole [183] and to the applications to scales which are relevant for the LHC, e.g. for Higgs2168

1The choice of the scales follows a conventional scale setting procedure and uncertainties for the scale choice
and for unknown higher order terms are estimated by varying the scales. Such variations are sensitive only to the
terms which govern the behaviour of the running coupling, and may become unreliable due to renormalons [173].
An alternative way to fix the scales is provided by the Principle of Maximum Conformality (PMC) [174–178].
The PMC method was recently applied to predictions of event shape observables in e

+
e

� ! hadrons [179]. When
applying the PMC method to observables in DIS, the alternative scale setting provides a profound alternative to
verify the running of ↵s(µR). Such a procedure could be particularly relevant for DIS event shape observables,
where the leading-order terms are insensitive to ↵s and conventional scale choices may not be adequately related
to the ↵s-sensitive higher order QCD corrections.
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• LHeC is an ideal QCD laboratory
• connects low-scale to Z-pole and beyond with 

high experimental precision

• inclusive NC/CC DIS only:

• inclusive jet cross sections only:

• inclusive DIS and jet cross sections:
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LHeC 𝝰s summary

This result will improve the world average value considerably. However, theoretical uncertainties1730

are not included and new mathematical tools and an improved understanding of QCD will1731

be needed in order to achieve small values similar to the experimental ones. The dominant1732

sensitivity in this study arises from the jet data. This can be seen from Fig. 4.5, where �↵s(MZ)1733

changes only moderately with di↵erent assumptions imposed on the inclusive NC/CC DIS data.1734

Assumptions made for the uncertainties of the inclusive jet data have been studied above, and1735

these results can be translated easily to this PDF+↵s fit.1736

The expected values for ↵s(MZ) obtained from inclusive jets or from inclusive NC/CC DIS data1737

are compared in Fig. 4.6 with present determinations from global fits based on DIS data (called1738

PDF fits) and the world average value [129]. It is observed that LHeC will have the potential
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Figure 4.6: Summary of ↵s(MZ) values in comparison with present values.

1739

to improve considerably the world average value. Already after one year of data taking, the1740

experimental uncertainties of the NC/CC DIS data are competitive with the world average1741

value. The measurement of jet cross sections will further improve that value (not shown).1742

Furthermore, LHeC will be able to address a long standing puzzle. All ↵s determinations from1743

global fits based on NC/CC DIS data find a lower value of ↵s(MZ) than determinations in the1744

lattice QCD framework, from ⌧ decays or in a global electroweak fit. With the expected precision1745

from LHeC this discrepancy will be resolved.1746

4.1.3 Strong coupling from other processes1747

A detailed study for the determination of ↵s(MZ) from NC/CC DIS and from inclusive jet data1748

was presented in the previous paragraphs. However, a large number of additional processes1749

and observables that are measured at the LHeC can also be considered for a determination of1750

↵s(MZ). Suitable observables or processes are di-jet and multi-jet production, heavy flavour1751

production, jets in photoproduction or event shape observables. These processes all exploit1752

the ↵s dependence of the hard interaction. Using suitable predictions, also softer processes1753

72

on the dominant uncorrelated uncertainty of ��(uncor.) = 0.25 %, an uncertainty as small as1711

�↵s(MZ)(incl. DIS) = ±0.00022(exp+PDF) (4.3)

is achieved. This would represent a considerable improvement over the present world average1712

value. Given these small uncertainties, theoretical uncertainties from missing higher orders or1713

heavy quark e↵ects have to be considered in addition. In a dedicated study, the fit is repeated
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Figure 4.5: Uncertainties of ↵s(MZ) from simultaneous fits of ↵s(MZ) and PDFs to inclusive NC/CC
DIS data as a function of the size of the uncorrelated uncertainty of the NC/CC DIS data. The full lines
indicate the uncertainties obtained with di↵erent assumptions on the data taking scenario and integrated
luminosity. The dashed lines indicate results where, additionally to the inclusive NC/CC DIS data,
inclusive jet cross section data are considered.

1714

with a reduced data set which can be accumulated already during a single year of operation 2,1715

corresponding to about L ⇠ 50 fb�1. Already these data will be able to improve the world1716

average value. These studies are displayed in Fig. 4.5.1717

The highest sensitivity to ↵s(MZ) and an optimal treatment of the PDFs is obtained by using1718

inclusive jet data together with inclusive NC/CC DIS data in a combined determination of1719

↵s(MZ) and the PDFs. Jet data will provide an enhanced sensitivity to ↵s(MZ), while inclusive1720

DIS data has the highest sensitivity to the determination of the PDFs. Furthermore, a consistent1721

theoretical QCD framework can be employed.1722

For this study, the double-di↵erential inclusive jet data as described above, and additionally1723

the inclusive NC/CC DIS data with Ee = 50GeV as introduced in Sec. 3.2, are employed.1724

Besides the normalisation uncertainty, all sources of systematic uncertainties are considered as1725

uncorrelated between the two processes. A fit of NNLO QCD predictions to these data sets is1726

then performed, and ↵s(MZ) and the parameters of the PDFs are determined. The methodology1727

follows closely the methodology sketched in Sect. 3. Using inclusive jet and inclusive DIS data1728

in a single analysis, the value of ↵s(MZ) is determined with an uncertainty of1729

�↵s(MZ)(incl. DIS & jets) = ±0.00018(exp+PDF) . (4.4)

2Two di↵erent assumptions are made. One fit is performed with only electron data corresponding to L ⇠
50 fb�1, and an alternative scenario considers further positron data corresponding to L ⇠ 1 fb�1.
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or top-quark physics or high-mass searches. This kinematic region of scales O(10 GeV) cannot2169

be accessed by (HL-)LHC experiments because of limitations due to pile-up and underlying2170

event [184].2171

Inclusive DIS cross sections are sensitive to ↵s(MZ) through higher-order QCD corrections,2172

contributions from the FL structure function and the scale dependence of the cross section at2173

high x (scaling violations). The value of ↵s(MZ) can then be determined in a combined fit2174

of the PDFs and ↵s(MZ) [169]. While a simultaneous determination of ↵s(MZ) and PDFs is2175

not possible with HERA inclusive DIS data alone due to its limited precision and kinematic2176

coverage [43,169], the large kinematic coverage, high precision and the integrated luminosity of2177

the LHeC data will allow for the first time such an ↵s analysis.2178

For the purpose of the determination of ↵s(MZ) from inclusive NC/CC DIS data, a combined2179

PDF+↵s fit to the simulated data is performed, similar to the studies presented above, in2180

Chapter 3. Other technical details are outlined in Ref. [169]. In this fit, however, the numbers2181

of free parameters of the gluon parameterisation is increased, since the gluon PDF and ↵s(MZ)2182

are highly correlated and LHeC data are sensitive to values down to x < 10�5, which requires2183

additional freedom for the gluon parameterisation. The inclusive data are restricted to Q
2 �2184

5 GeV2 in order to avoid a region where e↵ects beyond fixed-order perturbation theory may2185

become sizeable [43, 185].2186

Exploiting the full LHeC inclusive NC/CC DIS data with Ee = 50GeV, the value of ↵s(MZ) can2187

be determined with an uncertainty �↵s(MZ) = ±0.00038. With a more optimistic assumption2188

on the dominant uncorrelated uncertainty of ��(uncor.) = 0.25 %, an uncertainty as small as2189

�↵s(MZ)(incl. DIS) = ±0.00022(exp+PDF) (4.3)

is achieved. This would represent a considerable improvement over the present world average2190

value. Given these small uncertainties, theoretical uncertainties from missing higher orders or2191

heavy quark e↵ects have to be considered in addition. In a dedicated study, the fit is repeated2192

with a reduced data set which can be accumulated already during a single year of operation 2,2193

corresponding to about L ⇠ 50 fb�1. Already these data will be able to improve the world2194

average value. These studies are displayed in Fig. 4.5.2195

High sensitivity to ↵s(MZ) and an optimal treatment of the PDFs is obtained by using inclusive2196

jet data together with inclusive NC/CC DIS data in a combined determination of ↵s(MZ) and2197

the PDFs. The jet data will provide an enhanced sensitivity to ↵s(MZ), while inclusive DIS data2198

has the highest sensitivity to the determination of the PDFs. In such combined QCD analyses,2199

also heavy quark data may be further analysed to determine mc and mb. However, since jet2200

cross sections have su�ciently high scale (pT � mb) these are fairly insensitive to the actual2201

value of the heavy quark masses. Contrary, heavy quark data is predominantly sensitive to the2202

quark mass parameters rather than to ↵s(MZ), and their correlation is commonly found to be2203

small in such combined analyses, see e.g. Ref [51]. Infact, at LHeC the masses of charm and2204

bottom quarks can be determined with high precision and uncertainties of 3MeV and 10 MeV2205

are expected, respectively [1]. Therefore, for our sole purpose of estimating the uncertainty of2206

↵s(MZ) from LHeC data, we do not consider heavy quark data, nor free values of mc or mb2207

in the analysis, and we leave the outcome of such a complete QCD analysis to the time when2208

real data are available and the actual value of the parameters are of interest. At this time, also2209

better theoretical predictions will be used, including higher order corrections, heavy quark mass2210

e↵ects or higher-twist terms, as can be expected from steady progress [186–191].2211

2Two di↵erent assumptions are made. One fit is performed with only electron data corresponding to L ⇠
50 fb�1, and an alternative scenario considers further positron data corresponding to L ⇠ 1 fb�1.
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albeit the presence of pile-up and the considerably more complicated definition of a reference2107

object for the in-situ calibration. The size of the JES uncertainty is also displayed in Fig. 4.2.2108

The calorimetric noise of ±20 MeV on every calorimeter cluster, as reported by H1, yields an2109

uncertainty of up to 0.7 % on the jet cross sections. A minimum size of the statistical uncertainty2110

of 0.15 % is imposed for each cross section bin. An overall normalisation uncertainty of 1.0%2111

is assumed, which will be mainly dominated by the luminosity uncertainty. In addition, an2112

uncorrelated uncertainty component of 0.6 % collects various smaller error sources, such as for2113

instance radiative corrections, unfolding or model uncertainties. Studies on the size and the2114

correlation model of these uncertainties are performed below.

Exp. uncertainty Shift Size on � [%]

Statistics with 1 ab�1 min. 0.15 % 0.15 –5
Electron energy 0.1 % 0.02 –0.62
Polar angle 2 mrad 0.02 –0.48
Calorimeter noise ±20 MeV 0.01 –0.74
Jet energy scale (JES) 0.5 % 0.2 –4.4
Uncorrelated uncert. 0.6 % 0.6
Normalisation uncert. 1.0 % 1.0

Table 4.1: Anticipated uncertainties of inclusive jet cross section measurements at the LHeC.

2115

The value and uncertainty of ↵s(MZ) is obtained in a �
2-fit of NNLO predictions [159, 160] to2116

the simulated data with ↵s(MZ) being a free fit parameter. The methodology follows closely2117

analyses of HERA jet data [164,169] and the �
2 quantity is calculated from relative uncertainties,2118

i.e. those of the right column of Tab. 4.1. The predictions for the cross section � account for2119

both ↵s-dependent terms in the NNLO calculations, i.e. in the DGLAP operator and the hard2120

matrix elements, by using2121

� = fµ0 ⌦ Pµ0!µF
(↵s(Mz)) ⌦ �̂(↵s(Mz), µ) , (4.1)

where fµ0 are the PDFs at a scale of µ0 = 30 GeV, and Pµ0!µF
denotes the DGLAP operator,2122

which is dependent on the value of ↵s(MZ). The ↵s uncertainty is obtained by linear error2123

propagation and is validated with a separate study of the ��
2 = 1 criterion.2124

In the fit of NNLO QCD predictions to the simulated double-di↵erential LHeC inclusive jet cross2125

sections an uncertainty of2126

�↵s(MZ)(jets) = ±0.00013(exp) ± 0.00010(PDF) (4.2)

is found. The PDF uncertainty is estimated from a PDF set obtained from LHeC inclusive DIS2127

data (see Sec. 3.3). These uncertainties promise a determination of ↵s(MZ) with the highest2128

precision and would represent a considerable reduction of the current world average value with2129

a present uncertainty of ±0.00110 [133].2130

The uncertainty of ↵s is studied for di↵erent values of the experimental uncertainties for the2131

inclusive jet cross section measurement and for di↵erent assumption on bin-to-bin correlations,2132

expressed by the correlation coe�cient ⇢, of individual uncertainty sources, as shown in Fig. 4.3.2133

It is observed that, even for quite conservative scenarios, ↵s(MZ) will be determined with an2134

uncertainty smaller than 2 ‰. For this, it is important to keep the size of the uncorrelated2135

uncertainty or the uncorrelated components of other systematic uncertainties under good con-2136

trol. This is also visible from Fig. 4.3 (bottom right), where the contributions of the individual2137

uncertainty sources to the total uncertainty of ↵s(MZ) are displayed, and it is seen that the2138
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• achievable precision on same level as 𝝰s determination from FCC-ee
• QCD theory uncertainties will be limiting factor for ultimate precision

• other sensitive processes/measurements: dijets, multijets, HQs, jets in 𝝲p, event shapes, …

1st run
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summary
• energy frontier electron-proton colliders essential for full exploitation of 

current and future hadron colliders (Higgs, BSM, electroweak, …)
• external precision pdf input; complete q,g unfolding, high luminosity x ⟶ 1, s, c, b, (t); 

N3LO; small x; strong coupling to permille precision; …

• NEW LHeC white paper summarises wealth of new and updated studies, 
arXiv:2007.14491 

• enormously rich physics programme both in own right, and for transformation of 
proton-proton machines into precision facilities

• all critical pdf information can be obtained early (~ 50 fb-1 ≡ ×50 HERA), 
in parallel with HL-LHC operation

• 𝝰s to permille exp. precision also achievable early, with use of NC DIS jets

• unprecedented access to novel kinematic regime, with unique potential to 
explore novel small x phenomena

https://arxiv.org/abs/2007.14491

