QCD@LHC 2019 Buffalo, New York 15 – 19 July 2019

Determination of proton parton distribution functions using ATLAS data

Claire Gwenlan, Oxford

on behalf of the ATLAS collaboration

LHC and proton pdfs

the LHC has unprecedented kinematic coverage

wealth of SM measurements from ATLAS, sensitive to proton structure (pdfs)

this talk, pdf constraints from ATLAS:

- W,Z inclusive (a reminder of <u>ATLASepWZ16</u>)
- W+Jets (<u>ATL-PHYS-PUB-2019-016</u>)
- top quark pairs (<u>ATL-PHYS-PUB-2018-017</u>)

$$d\sigma_X = \sum_{i,j} \int dx_1 \int dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \times \hat{\sigma}_{ij \to X}(x_1, x_2, \mu_R^2)$$
pdfs hard subprocess (calculable in pQCD)

(extraction of precision pdfs requires both precise data, and precise theory calculations)

proton pdfs – why do they matter?

ATLAS, EPJ C78 (2018) 110

Channel	$\frac{m_{W^+} - m_{W^-}}{[\text{MeV}]}$	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.
$\begin{array}{l} W \to e\nu \\ W \to \mu\nu \end{array}$	-29.7 -28.6	17.5 16.3	0.0 11.7	4.9 0.0	0.9 1.1	5.4 5.0	0.5 0.4	0.0 0.0	24.1 26.0	30.7 33.2
Combined	-29.2	12.8	3.3	4.1	1.0	4.5	0.4	0.0	23.9	28.0

crucial for SM and BSM physics at hadron colliders

(other questions: validity of factorisation in pp, intrinsic charm/beauty in proton, small x dynamics, ...)

pdf information from HERA

ATLAS inclusive W, Z

- sensitivity to light quarks (u, d, s)
- different quark combinations contribute to each process; flavour separation

experimentally very precise; state-of-the-art theory available (NNLO QCD + NLO EW) (accurate modelling of contribution from second-generation quarks essential for precision physics)

a strange story

impact on modern global pdfs

new ATLAS QCD fits

Regge theory inspired

$$\int_{a}^{f(1)=0} f(1) = 0$$
$$f(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})e^{Fx}$$

(extra negative term for gluon $-A_g' x^{B_g'} (1-x)^{C_g'}$)

NNLO QCD pdfs using xFitter; theory calculations for LHC measurements interfaced to APPLGRID or fastNLO

constraints from: sum rules; ubar=dbar as x→0; s=sbar; Cg'=25; D,E,F only if X² favours **xuv, xdv, xubar, xdbar, xsbar, xg**

16 parameter central fit

Model: mc,b; start scale; Q² cut off Parameter: extra D,E,F; relaxed assumptions

new ATLAS QCD fits

Regge theory inspired

$$\int_{a}^{f(1)=0} f(1) = 0$$
$$f(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})e^{Fx}$$

(extra negative term for gluon $-A_g' x^{B_g'} (1-x)^{C_g'}$)

NNLO QCD pdfs using xFitter; theory calculations for LHC measurements interfaced to APPLGRID or fastNLO

constraints from: sum rules; ubar=dbar as x→0; s=sbar; Cg'=25; D,E,F only if X² favours **xuv, xdv, xubar, xdbar, xsbar, xg**

16 parameter central fit

Model: mc,b; start scale; Q² cut off Parameter: extra D,E,F; relaxed assumptions

start point: ATLASepWZ16, with following changes or improvements:

- 1. Q² cut off: 7.5 \rightarrow 10 GeV²; avoid small x resummation effects (arXiv:<u>1506.06042</u>, <u>1710.05935</u>)
- **2.** $x\bar{u} = A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}}(1+D_{\bar{u}}x)$; **1 extra free parameter**; plus more parameter variations as part of systematics
- 3. W+Jets fits: e and µ channels used uncombined for W,Z inclusive; more simply relates original sources of systematic uncertainty to aid full correlation with corresponding sources from W+Jets not a general recommendation!

importance of W+Jets

ATLAS NNLO QCD analysis: HERA I+II + ATLAS W,Z + ATLAS W+Jet differential cross sections @ 8TeV

NLO (MCFM interfaced to APPLGRID) plus k-factors from NJETTI

ATLASepWZWjet19: ATL-PHYS-PUB-2019-016

ATLAS W+Jet cross sections @ 8 TeV

JHEP 05 (2018) 077

 $W \rightarrow ev$ channel; multiple distributions available (pt^W , $pt^{leading-jet}$ used in the current fits) statistical correlations between different spectra not available \rightsquigarrow fit only single distributions

ATLAS pdf fits with W+Jets

main impact on d and s sea quark distributions; other pdfs not significantly affected

- changes compensate each other (sum of dbar+sbar tightly constrained by HERA)
- total uncertainty constrained

comparison of fits with W+Jet data

high pt^w ⇔ high x

large change in W+ spectrum, not so much in W-

W+ from uv-dbar or uv-sbar combination

 $\sigma \sim (0.97\bar{d} + 0.23\bar{s})^2$ with dbar+sbar well constrained from HERA

 \Rightarrow higher cross section from reduced sbar and higher dbar

more on the strange density

consistent picture from use of different spectra

Х

more on the strange density

consistent with previous ATLAS fits

slightly higher than current global pdfs

dbar – ubar

dbar – ubar now positive

both experimental and additional uncertainties constrained

while still retaining enhanced strange at low x

consistent with previous ATLAS fits

and more in line with global fits

summary of ATLAS pdfs with W+Jets

ATLASepWZWjet19 pdf: HERA I+II + ATLAS W,Z + ATLAS W+Jet (ptW) pdf set publicly available, at: <u>ATL-PHYS-PUB-2019-016</u>

ATLAS fits to ttbar differential cross sections

ATLAS NNLO QCD analysis:

ATL-PHYS-PUB-2018-017

HERA I+II + ATLAS W,Z +

ATLAS ttbar differential cross sections in lepton+jet (lj) and di-lepton (ll) final states @ 8TeV

Ij: multiple spectra considered **simultaneously**, taking into account statistical+syst. correlations

(statistial correlations for Ij, within and between spectra, made available in HEPDATA (1404878); in addition to systematic correlations for all Ij+II spectra)

NNLO QCD calc.: PRL 116 (2016), 082003; JHEP04 (2017) 071

IJ: NNLO QCD interfaced to fastNLO (arXiv:<u>1704.08551</u>)
II: NLO (MCFM interfaced to APPLGRID), plus k-factors from JHEP04 (2017) 071

ATLAS ttbar differential cross sections @ 8TeV

lj spectra: mtt, ytt, pTt, yt

ATLAS ttbar cross sections in lepton+jet (lj) and di-lepton (ll) final states

ATLAS measurements: EPJ C76 (2016) 538 (Ij) and Phys Rev D94 (2016) 092003 (II)

multiple studies, fitting spectra individually and in combination

ATLAS fits with individual ttbar spectra

mtt, pTt prefer harder gluon

ytt, yt prefer softer gluon; вит **poor** X² for **lj** more flexible parameterisation not found to help

lj	mtt	рTt	ytt	yt	II	mtt	ytt
partial X ² /NDP	3.4/7	7.9/8	19.7/5	18.3/5	partial X ² /NDP	2.6/6	4.5/5

(**II: mtt** vs **ytt** yield same trends in gluon shape as **Ij**, but can both be well fitted *\$*) impact of including bin-to-bin statistical correlations is small (included here throughout)

simultaneous fits to more than one lj spectrum

X² poor for lj mtt+pTt;

though good fits for each spectrum individually, and with compatible trends for gluon pdf

fit quality sensitive to treatment of two-point systematics (those evaluated from difference between two MCs), especially parton shower model

impact on fit quality only; NO significant impact on extracted pdfs

lj p⊤t+mtt	full syst. corrs.	two-point decorr.	PS only decorr.
partial X ² /NDP	45.0/15	11.5/15	14.1/15

(X^2 poor for any fits with Ij ytt or yt; cannot be resolved by decorrelating two-point systematics) $_{21}$

ATLAS fits to ttbar Ij and II spectra

NO tension with HERA and ATLAS inclusive W.Z

summary of ATLAS pdfs with ttbar

ATLASepWZtop18 pdf: HERA I+II + ATLAS W,Z + ATLAS ttbar (mtt + pTt (lj) + ytt (ll))

summary

ATLAS has extensive and growing portfolio of **pdf-sensitive** measurements

only a tiny subset presented here;

others include LM/HM DY; W+c; QCD jets; many more top measurements; Z+Jets; direct γ ; ... including measurements at **different CM energies**, and **ratio measurements** with partially cancelling systematics, which can provide **significant pdf constraints**

pdfs presented in this talk provide new constraints for $x \ge 0.05$

ATLASepWZWjet19 pdfs, supports unsuppressed strange at small $x \sim 0.02$, consistent with previous ATLAS results; dbar-ubar positive, consistent with results from neutrino scattering experiments

ATLASepWZtop18 pdfs, additional constraints on gluon at large x lj+ll channels; multiple spectra included, with full statistical correlations provided (lj);

still much to come from ATLAS from both Run 1 and Run 2 SM analyses

extras

ATLAS SM measurements

... providing insight into pQCD, proton structure (pdfs), non-pert. effects, and other SM parameters

ultimate precision W,Z differential cross sections

ATLAS incl. W,Z differential cross sections: W[±] |η|, Z |y|| (3 ml central, 2 ml forward)

4.6 fb⁻¹; extraordinary total experimental precision (< 1% uncertainty) light quark pdf constraints; enhanced from provision of both W,Z with full syst. correlations

27

ATLAS inclusive W, Z

impact of unsuppressed strange on W,Z inclusive cross sections

Phys Rev Lett 109 (2012) 012001

impact on modern global pdfs

EPJ C77 (2017) 367

 profiling exercise to study impact of ATLAS W, Z (4.6 pb⁻¹) differential cross sections on proton pdfs from global fitters

ATLAS W and Z cross section ratios @ 13 TeV

PLB 759 (2016) 601

sensitive to valence quarks at low x

constrains strange quark density

cross section ratio measurements: partial cancellation of systematics

sensitivity to pdf differences; W/Z ratio consistent with enhanced strange

ATLAS QCD fit technical details

with constraints:

16 free parameters

$$A_{\bar{u}} = A_{\bar{d}}$$
 ensuring ubar=dbar as x \rightarrow 0:

$$B_{\bar{s}} = B_{\bar{d}} = B_{\bar{u}}$$
 (momentum sum) $A_{u_v} A_{d_v}$ (number sum)

Г

ATLASepWZWjet19 additional uncertainties

$$\begin{aligned} xd_{v}(x) &= A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+D_{d_{v}}x+E_{d_{v}}x^{2})\exp F_{d_{v}}x\\ xu_{v}(x) &= A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}(1+D_{u_{v}}x+E_{u_{v}}x^{2})\exp F_{d_{v}}x\\ x\bar{d}(x) &= A_{\bar{d}}x^{B_{\bar{d}}}(1-x)^{C_{\bar{d}}}(1+D_{\bar{d}}x+E_{\bar{d}}x^{2})\\ x\bar{u}(x) &= A_{\bar{u}}x^{B_{\bar{u}}}(1-x)^{C_{\bar{u}}}(1+D_{\bar{u}}x+E_{\bar{u}}x^{2})\\ x\bar{s}(x) &= A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}}(1+D_{\bar{s}}x+E_{\bar{s}}x^{2})\\ xg(x) &= A_{g}x^{B_{g}}(1-x)^{C_{g}}(1+D_{g}x+E_{g}x^{2})+A_{g}'x^{B_{g}'}(1-x)^{C_{g}'}g_{g}' \end{aligned}$$

- greyed out parameters used as part of parameterization uncertainty systematics; plus other assumptions relaxed
- model variations: mc, mb, Q²0, Q²min, α s(Mz)

parameterisation variations

Change in parameterisation	p_{T}^W	$p_{\rm T}^{\rm leading}$
Nominal χ^2 /NDF	1354 / 1138	1365 / 1150
$A_{g}^{'} = 0$	1409 / 1140	1428 / 1152
$A_{\bar{u}} \neq A_{\bar{d}}$	1352 / 1137	1363 / 1149
$B_{\bar{u}} \neq B_{\bar{d}}$	1352 / 1137	1362 / 1149
$B_{\bar{s}} \neq B_{\bar{d}}$	1353 / 1137	1363 / 1149
$D_{\bar{u}} = 0$	1357 / 1139	1373 / 1151
$D_{ar{d}}$	1354 / 1137	1364 / 1149
$D_{ar{s}}$	1353 / 1137	1359 / 1149
$D_{u,.}$	1354 / 1137	1365 / 1149
$D_{d_{v}}^{V}$	1354 / 1137	1364 / 1149
D_{g}	1353 / 1137	- / 1149
$E_{ar{u}}^{\circ}$	1354 / 1137	1363 / 1149
$E_{ar{d}}$	1354 / 1137	1365 / 1149
$E_{\bar{s}}$	1354 / 1137	1362 / 1149
E_{g}	1352 / 1137	1365 / 1149
F_{u}	1351 / 1137	1363 / 1149
$F_{d_v}^{\nu}$	1354 / 1137	1365 / 1149

model variations

Change in model assumption	p_{T}^W	$p_{\mathrm{T}}^{\mathrm{leading}}$
Nominal χ^2 /NDF	1354 / 1140	1365 / 1152
$m_b = 4.25 \text{GeV}$	1352 / 1140	1364 / 1152
$m_b = 4.75 \text{GeV}$	1356 / 1140	1367 / 1152
$Q_{\min}^2 = 7.5 \text{GeV}^2$	1413 / 1180	1426 / 1192
$Q_{\rm min}^2 = 12.5 {\rm GeV}^2$	1283 / 1091	1296 / 1103
$Q_0^2 = 1.6 \text{GeV}^2$ and $m_c = 1.37 \text{GeV}$	1359 / 1140	1369 / 1152
$Q_0^2 = 2.0 \text{GeV}^2$ and $m_c = 1.49 \text{GeV}$	1353 / 1140	1366 / 1152
$\alpha_s(m_Z) = 0.116$	1352 / 1140	1366 / 1152
$\alpha_s(m_Z) = 0.120$	1357 / 1140	1366 / 1152

ATLASepWZWjet19 fit quality

Fit	ATLASepWZ19U	ATLASepWZ19U + $p_{\rm T}^W$	ATLASepWZ19U + $p_{\rm T}^{\rm leading}$
Total χ^2 /NDF	1310 / 1104	1354 / 1138	1365 / 1150
HERA partial χ^2 /NDF	1123 / 1016	1132 / 1016	1141 / 1016
HERA correlated χ^2	48	49	50
HERA log penalty χ^2	-18	-22	-25
ATLAS W, Z partial χ^2 /NDF	117 / 104	116 / 104	109 / 104
ATLAS W + jets partial χ^2 /NDF	-	18 / 34	43 / 46
ATLAS correlated χ^2	40	62	47

ATLASepWZ19 combined and uncombined fits

ATLAS fits with W+Jet cross sections

ATLAS fits with W+Jet cross sections

dbar – ubar

uncertainties

comparisons with global pdfs

40

ATLAS fits with individual ttbar spectra (lj)

ATLAS fits with individual ttbar spectra (II)

ATLAS fits with lj+ll spectra

		lepton+jets p_T^t , m_{tt} and dilepton y_{tt} spectra
total χ^2/NDF		1253.8 / 1061
Partial χ^2 /NDP	HERA	1149 / 1016
Partial χ^2 /NDP	ATLAS $W, Z/\gamma^*$	78.9 / 55
Partial χ^2 /NDP	ATLAS lepton+jets p_T^t , m_{tt}	16.0 / 15
Partial χ^2 /NDP	ATLAS dilepton y_{tt}	5.4 / 5

ATLAS ttbar differential cross sections (lj)

EPJ C76 (2016) 538

ATLAS ttbar differential cross sections (II)

ATLAS fits to ttbar differential cross sections

		lepton+jets spectra					
		p_T^t and y_t	p_T^t and y_t	p_T^t and m_{tt}	p_T^t and m_{tt}		
		with statistical	without statistical	with statistical	without statistical		
		correlations	correlations	correlations	correlations		
Total χ^2/NDF		1264 / 1068	1260 / 1068	1290 / 1070	1287 / 1070		
Partial χ^2/NDP	HERA	1148 / 1016	$1147 \ / \ 1016$	$1162 \ / \ 1016$	$1162 \ / \ 1016$		
Partial χ^2/NDP	ATLAS $W, Z/\gamma^*$	82.7 / 55	$83.5 \ / \ 55$	$83.2 \ / \ 55$	$83.1 \ / \ 55$		
Partial χ^2/NDP	ATLAS $t\bar{t}$	$33 \ / \ 13$	30 / 13	45 / 15	42 / 15		

		lepton+jets spectra				
		p_T^t and y_t	p_T^t and m_{tt}	p_T^t and m_{tt}		
		decorrelate	decorrelate	decorrelate		
		2-point uncertainties	2-point uncertainties	parton-shower model uncertainty		
Total χ^2/NDF		$1259 \ / \ 1068$	1247 / 1070	1248 / 1070		
Partial χ^2/NDP	HERA	1147 / 1016	$1154 \ / \ 1016$	1153 / 1016		
Partial χ^2/NDP	ATLAS $W, Z/\gamma^*$	$83.9 \ / \ 55$	$81.9 \ / \ 55$	$81.6 \ / \ 55$		
Partial χ^2/NDP	ATLAS $t\bar{t}$	$27.8 \ / \ 13$	11.5 / 15	14.1 / 15		

Systematic uncertainty source	rce lepton+jets spectrum			
	p_T^t	<i>y</i> t	Ytt	m _{tt}
Hard scattering model	$+0.74 \pm 0.31$	$+0.48 \pm 0.22$	$+0.92 \pm 0.37$	-0.43 ± 0.20
Parton shower model	-1.32 ± 0.43	-0.79 ± 0.26	-0.51 ± 0.17	$+0.39\pm0.13$
ISR/FSR model	-0.47 ± 0.18	-0.87 ± 0.30	-1.27 ± 0.38	$+0.33\pm0.10$

fitted values of nuisance parameters for fits to HERA+ATLAS W,Z + separate ttbar lj spectra

Determination of Statistical Correlation

The determination of statistical correlations within each spectrum and between different spectra of the lepton+jets $t\bar{t}$ data are evaluated using the Bootstrap Method

- Based on the extraction of *N* Bootstrap samples from the data sample
- Each sample is made by associating a Poissonian weight to each event in data
- The spectra from each Bootstrap sample is subject to the same full analysis chain used for the nominal results
- Since the weights are generated on an event-by-event basis, the replicated spectra are synchronised, thus allowing the determination of statistical correlations among different spectra

The statistical correlations are evaluated bin-by-bin as in:

$$C_{ij}^{AB} = \frac{\frac{1}{N} \cdot \sum_{k=1}^{N} (\mathcal{R}_i^{A,k} - \mu_i^A) (\mathcal{R}_i^{B,k} - \mu_j^B)}{\sigma_i^A \cdot \sigma_j^B}$$
(3)

where C_{ij}^{AB} is the element (i, j) of the statistical correlation matrix among spectra A and B, μ_i^A and σ_i^A are the mean and the standard deviation between the replicas in the *i*-th bin of spectrum A and $\mathcal{R}_i^{A,k}$ is the content of the *i*-th bin of the *k*-th replica for spectrum A

Francesco La Ruffa

Determination of proton PDFs using ATLAS data

with statistical correlations:

$$\begin{split} \chi^2 &= \sum_{ik} \left(D_i - T_i (1 - \sum_i \gamma_{ij} b_j) \right) C_{\text{stat},ik}^{-1} (D_i, D_k) \left(D_k - T_k (1 - \sum_j \gamma_{kj} b_j) \right) \\ &+ \sum_j b_j^2 + \sum_i \log \frac{\delta_{i,\text{uncor}}^2 T_i^2 + \delta_{i,\text{stat}}^2 D_i T_i}{\delta_{i,\text{uncor}}^2 D_i^2 + \delta_{i,\text{stat}}^2 D_i^2} \end{split}$$

without statistical correlations reduces to:

$$\chi^{2} = \sum_{i} \frac{\left[D_{i} - T_{i}(1 - \sum_{j} \gamma_{ij} b_{j})\right]^{2}}{\delta_{i,\text{uncor}}^{2} T_{i}^{2} + \delta_{i,\text{stat}}^{2} D_{i} T_{i}} + \sum_{j} b_{j}^{2} + \sum_{i} \log \frac{\delta_{i,\text{uncor}}^{2} T_{i}^{2} + \delta_{i,\text{stat}}^{2} D_{i} T_{i}}{\delta_{i,\text{uncor}}^{2} D_{i}^{2} + \delta_{i,\text{stat}}^{2} D_{i}^{2}}$$

where D_i represent the measured data, T_i the corresponding theoretical prediction, $\delta_{i,\text{uncor}}$ and $\delta_{i,\text{stat}}$ are the uncorrelated systematic and the statistical uncertainties on D_i , and correlated systematics, described by γ_{ij} , are accounted for using the nuisance parameters b_j . Summations over *i* and *k* run over all data points and summation over *j* runs over all sources of correlated systematics. For each data set, the first term gives a partial χ^2 and the second term gives a *correlated* χ^2 . The third term is a bias correction term, referred to as the *log penalty*, corresponding to a non-constant value of the covariance matrix, used as standard in HERA and ATLAS PDF fits

impact of LHC data on modern global pdf fits

global pdf fitters actively including LHC data from ATLAS, CMS and LHCb

measurements shown in this talk are yet to be included

much more still to come...

