
TT Revision Lectures on

ELECTROMAGNETISM (CP2)

•  Electrostatics
•  Magnetostatics
•  Induction
•  EM waves

… taken from previous years’ Prelims questions
1  with thanks to Profs Hans Kraus, Laura Hertz and Neville Harnew
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State Coulomb’s Law. Show how E field may be defined. 
What is meant by E is a conservative field?

Conservative field:                   and             is 
path-independent. Therefore, a potential can be 
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A thundercloud with charges +40As at 10 km height and 
−40As at 6 km. Find the E-field on the ground.

( ) ( ) ( ) ( )2 2 2 24 3 3 4
0

12 7 2 8 2

1 1 1 1
4 10 m 6 10 m 6 10 m 10 m

2 40As    Vm 1 1 V12,780
4 8.854 10 As 3.6 10 m 10 m m

QE
pe

p -

é ù
ê ú= - - - +
ê ú´ ´ë û

× é ù= - =ê ú× ´ ´ë û

Use method of image charges. Mirror the above to below 
the surface, with +40 As at depth 6 km and −40 As at 
depth 10 km.

Field points upwards. 3
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An array of localised charges qi experience potentials Vi as 
a result of their mutual interaction. Show that their mutual 
electrostatic energy, U,  is given by 1
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2.4 The Electrostatic Potential

Define electrostatic potential di↵erence

VAB = WAB
q = �

R B
A E · d` = Q

4⇡✏0
( 1
rB

� 1
rA

)

• The potential of a point charge Q at a general point r, with
respect to a reference position r0, is given by :
V (r) = �

R r
r0

E · d` = Q
4⇡✏0

(1
r � 1

r0
)

Here, the second term is a constant (which is often set to zero by

taking the appropriate reference position, here: V (r0 ! 1) = 0)

• Again, since E and V are linearly related, the Principle of
Superposition also holds for V .
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Potential at point P due to an assembly of charges

• V (r) = 1
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The field due to the assembly :

• E(r) = 1
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P
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where [r � ri = r�ri
|r�ri|
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Principle of Superposition
• Start with two charges qi and qj separated by rij

Fij is the force on qj due to qi

! Fij =
qiqj

4⇡✏0r2
ij

r̂ij where r̂ij = rij/|rij|

• Next go to three charges : total force on charge q0

F0 = F10 + F20

F0 = q0q1
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• Principle of Superposition also works

for : Ej =
Fj
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= 1
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This is a vector field that depends only
on the distribution of other charges :
electic field at position of qj generated by the other charges
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Alternative: Assemble Charge Configuration explicitally

No penalty for charge q0
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A sphere of radius a is located at a large distance from its 
surroundings which define the zero of potential. It carries 
a total charge q. Determine the potential on its surface and 
the electrostatic energy :  a) uniform q spread on surface.
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For part a), replace ρ with surface charge density σ and perform surface integral
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b) For uniformly distributed charged sphere:
Bring up successive shells thickness dr to radius 
r and potential V , and sum up all contributions to 
radius a 3d dW V q V rr= =ò ò
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Use Gauss’ Law:
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Electron cloud:
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Explain qualitatively what happens when such 
an atom is placed in a steady, uniform electric 
field, of strength E0.

Centres of gravity of the 
positive nucleus and the 
negative electron charge 
distribution shift.

Forces on charges due to E0 
balances the internal force 
of the dipole charges.

The atom exhibits an 
electric dipole moment. 12
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The inner sphere is raised to a potential V and then 
isolated, the outer sphere being earthed. The outer 
sphere is then removed.  Find the resulting potential of 
the remaining sphere.
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Now back to the original 
configuration:
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The electrostatic potential of a dipole:
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Charges +q at A and –q at A’
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The radial and tangential components of the E-field:
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Show that the torque exerted on a dipole by a 
uniform electric field E is p x E
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Find the angle q for which E(r, q) at point P is in a 
direction normal to the axis of the dipole.
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Take the dipole moment p to be along the z-axis :  
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Calculate the work done in bringing a dipole of equal 
magnitude from infinity to a distance r from the first                   

along the normal to its axis 
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E is the 
field 
due to 
the first 
dipole

[This is not the best 
worded question !]

Take the origin at dipole centre

When 1st dipole is at ¥, E=0 and 
UE=0, and is then brought up

+
Note the direction of E and definition of θ



Second dipole placed at 
q = 0 and then at q = π/2,         

free to rotate :

23
0

23
0

20 0   parallel
4

0   anti-parallel
2 4

r

r

pE E p
r

pE E p
r

q

q

q
pe

pq
pe

= = =

= = =
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11.4 Example : B-field of a circular current loop

Calculate the B-field due to a circular wire with current I, radius
a, at a distance z along its axis from the centre

• Field due to d` : dB = µ0 I d`⇥r̂
4⇡ r2

• |d` ⇥ r̂| = d` , since r ? d`

• Components of dB perpendicular to
z-axis cancel due to symmetry !
field is along the z-axis

! B =
R

dB sin ✓ =
R

a
r dB

• B =
R µ0 I

4⇡ r2
a
r d` along ẑ

• a and r both constant for given point.
R

d` = 2⇡ a

• Hence B = µ0 I a2

2(z2+a2)
3
2

• Or since sin ✓ = ap
(z2+a2)

, B = µ0 I
2a sin3 ✓
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0 3
d
4

I
r

µ
p
´

= ×
l rdB

State the Biot-Savart law :
0 3
d
4

I
r

µ
p
´

= ×
l rdB

Find the magnitude of B on axis            
for a coil of n turns. Symmetry:

dB has z-component only.
Perp. components cancel.

And also: dl is perp. to r

 ( )
3
2

2 2 2
0 0 0

2 3 2 2
0

d cos
4 4 2

z

aad r

nI nIa d nIaB B
r r r z a

p

j

µ µ j µq
p p

´
= = × × = =

+
ò ò

l r
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dB

= | dl | = 

z

U =
R
V (q0)dq0 =

R
V ⇢ d3r

U =
R q
0 V (q0)dq0 =

R q
0

q0dq0

4⇡✏0a
= q2

8⇡✏0a

R
V dq0

U = 1
2✏0

R
all spaceE

2 d3r

U = 1
2

R
⇢V d3r

r̂
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11.1 The Biot-Savart Law for calculating magnetic
fields

The Biot-Savart is here taken as an empirical starting point for

calculation of magnetic fields, but can be derived from Maxwell’s

equations and the magnetic vector potential (see later)

• The Biot-Savart Law states the field at
point P :

dB = µ0 I d`⇥r̂
4⇡ r2

• µ0 = 4⇡ ⇥ 10�7 N A�2 permeability of free space

• dB is the magnetic flux density contribution at P

• I is the current flowing through element d`

• r is the vector connecting d` and P

• dB is oriented perpendicular to r and the current

Then integrate dB to get total field from a circuit that is carrying

current, i.e. Principle of Superposition applies
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State the Biot-Savart law :
0 3
d
4

I
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µ
p
´

= ×
l rdB

Find the magnitude of B on axis            
for a coil of n turns.
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for a coil of n turns. Symmetry:

dB has z-component only.
Perp. components cancel.

And also: dl is perp. to r
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dB

= | dl | = 

z

U =
R
V (q0)dq0 =

R
V ⇢ d3r

U =
R q
0 V (q0)dq0 =

R q
0

q0dq0

4⇡✏0a
= q2

8⇡✏0a

R
V dq0

U = 1
2✏0

R
all spaceE

2 d3r

U = 1
2

R
⇢V d3r

r̂
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Symmetry:
dB has z-component only.

Perp. components cancel.

And also: dl is perp. to r

Induced e.m.f. emfV = −
d
dt

B•dS∫ = B cosθ dA
dt

where A=d l

emfV = −Bcosθ d dl
dt

=B cos θ d v

Induced current: I=Vemf /R

Equation of Motion - consider magnetic (Lorentz) force on 
current-carrying bar: dF=I dl × B

Fpara= I d B cos θ  = Vemf /R  d B cos θ  =  B2 d2 cos2θ v / R

d
dt

m     v = mg sinθ – B2 d2 cos2θ v / R  Equation of Motion:

d
dt

v + B2 d2 cos2θ /(mR) v  = g sinθ

k

gravitational magnetic

45



Two such coils are placed a 
distance d apart on the same 
axis. Find B as function of x.

( )
( )( ) ( )( )

3 3
2 2

2
0

2 22 2
2 2

1 1'
2 d d

nIaB x
a x a x

µ
é ù
ê ú= × +ê ú

+ + + -ê úë û
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Two such coils are placed a 
distance d apart on the same 
axis. Find B as function of x.
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( )( ) ( )( )

3 3
2 2

2
0

2 22 2
2 2

1 1'
2 d d

nIaB x
a x a x

µ
é ù
ê ú= × +ê ú

+ + + -ê úë û

Show that the derivative of B’ is 0 for x=0

( )( ) ( )( ) ( ) ( )
3 5

2 22 22 2
2 2 2

3 2 1
2

'which is  the same, when 0, hence:          (0) 0

d
d d ddxa x a x x

dBx
dx

- -

+ ± ¾¾®- + ± × ± × ±

± = =
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Find the value of d for which the second 
derivative of B’(0) is 0.

( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )
( )( )

( )( ) ( )

( )

5 5
2 2

5 7
2 2

5 7
2 2

7
2

2 22 2
2 2 2 2

2 2 22 2 2
2 2 2

2 2 22 2
2 2 2

2 22 2
2 222

2

22
2

' 3 3

' 3    15

3    15

2' 0 3 5

4 0                     

d d d d
x

d d d
x

d d d

d d
x

d

d

B a x x a x x

B a x a x x

a x a x x

B a
a

a d a

- -

- -

- -

¶ µ - + + + + + - -

¶ µ - + + + + + +

- + - + + - -

é ù¶ µ - × × + -
ë û+

- = =
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x x
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B B B B
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µ µ
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Show that the variation of B between the coils is <6% 

5.57%B
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Two such coils are placed a 
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axis. Find B as function of x. 
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Show that the derivative of B’ is 0 for x=0 
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When a = d, show that the variation of B between the 
coils is <6%

5.57%B
B
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Two such coils are placed a 
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axis. Find B as function of x. 

 
     

3 3
2 2

2
0

2 22 2
2 2

1 1
'

2 d d

nIa
B x

a x a x


 
    

     

Show that the derivative of B’ is 0 for x=0 

         
3 5

2 22 22 2
2 2 2

3
2 1

2
'

which is  the same, when 0, hence:          (0) 0

d
d d ddxa x a x x

dB
x

dx

 

        

  

Two such coils are placed a 
distance d apart on the same 
axis. Find B as function of x. 

 
     

3 3
2 2

2
0

2 22 2
2 2

1 1
'

2 d d

nIa
B x

a x a x


 
    

     

Show that the derivative of B’ is 0 for x=0 

         
3 5

2 22 22 2
2 2 2

3
2 1

2
'

which is  the same, when 0, hence:          (0) 0

d
d d ddxa x a x x

dB
x

dx

 

        

  

When a = d, show that the variation of B’                  
between x=0 and x=d/2 is <6%
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Sketch of the field of a pair of Helmholtz coils

                     B in units of 0

2
nI
a

µ

x
d

B
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Ampere's law in its integral form: 0d  

 (  enclosed)

I

I

µ× =ò B l—

0 0       with   ,   thus  NB N I N B N Iµ µ
¢

¢× = × × = = × ×


For infinite solenoid, B constant within it (and zero outside)  
→ radially uniform field; symmetry means no azimuthal dependence

N turns of wire per unit length. 
Winding carries a current I.
Find B and show it is radially uniform inside the coil.
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0d  

 (  enclosed)

I

I

µ× =ò B l—

Calculate the self-inductance:

0 0

0

d  ln
2 2

ln
2

b

a

I I bdr
r a

bL
I a

µ µ
p p

µ
p

æ öF = × = × = ×ç ÷
è ø

F æ ö= = ×ç ÷
è ø

ò òB S  
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(surface  dS= r.dl ) 14.2 Example : B-field of a long solenoid

• Infinitely long solenoid carrying current I , with n turns per unit length

• B-field is uniform and parallel to principal axis inside solenoid , and
zero outside (if “infinitely” long)

• Amperian path is a rectangle spanning inside and outside of solenoid

• Side 3 does not contribute (B = 0; easily seen

by taking ! 1); sides 2 and 4 also contribute
nothing (B ? d` , or B is zero)

• Contribution from side 1 only :
H

B · d` = B · ` = µ0 N I = µ0 (n `) I

where N = (n `) is the number of turns enclosed

within the Amperian loop

l

4 2

3

1 B
⊗⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

! B = µ0
N
` I = µ0 n I same as from Biot-Savart Law (⇤)

(*) Note that if coil is not “infinite”, end e↵ects must be taken into account and here

the field will not be uniform, i.e. Ampere’s Law not as useful as presented here
131



Calculate the self-inductance per unit length.
2

2 20
0

2 2
0

   

                       ... and per length:  

tot B area NI RL turns N N R
I I I

L R N

µ p µ p

µ p

F × ×
= = × = × =

=

 



Calculate the magnetic induction and the energy stored.
1

7
0

2 2 2 2 61 1
02 2

0.5m,   7m,   1000     142.86m
Vs 14 10 142.86 5000A 0.897T
Am m

1.76 10 JM

R N N

B NI

U LI N R I

µ p

µ p

-

-

¢= = = Þ =

= = × × × =

= = × = ×




30



Ampere’s Law: 0d d Iµ× = × =ò òòB l J A—

( )
0

0

:   2
: 2
: 2 0

b r a rB I
r b rB I I
r a rB

q

q

q

p µ
p µ
p

> > =
> = -
< =

0     only for    
2
IB b r a
rq

µ
p

= > >
31

Calculate magnetic field inside a pair of co-axial 
cylinders due to current I flowing as shown.

= 0 

(direction azimuthal : cf. RH screw)

0d  

 (  enclosed)

I

I

µ× =ò B l—

Calculate the self-inductance:
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(surface  dS= r.dl ) 



Calculate the self-inductance:
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(surface  dS= r.dl ) 

Alternatively, use: UM = 1
2µ0

R
all spaceB

2 dV ⌘ 1
2µ0

R b
a

⇣
µ0I
2⇡r

⌘2
2⇡r dr · ` = 1

2
µ0I2
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�
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�
· `
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�
b
a

�
· `
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Calculate the self-inductance:
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(surface  dS= r.dl ) 
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Also, since:
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32

(surface  dS= r.dl ) 

⇒



Sketch the magnitude of B when the inner 
cylinder is replaced by a solid wire
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