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Preface 

This is a textbook on electricity and magnetism, designed for an undergradu­
ate course at the junior or senior level. It can be covered comfortably in two 
semesters, maybe even with room to spare for special topics (AC circuits, nu­
merical methods, plasma physics, transmission lines, antenna theory, etc.) A 
one-semester course could reasonably stop after Chapter 7. Unlike quantum me­
chanics or thermal physics (for example), there is a fairly general consensus with 
respect to the teaching of electrodynamics; the subjects to be included, and even 
their order of presentation, are not particularly controversial, and textbooks differ 
mainly in style and tone. My approach is perhaps less formal than most; I think 
this makes difficult ideas more interesting and accessible. 

For this new edition I have made a large number of small changes, in the in­
terests of clarity and grace. In a few places I have corrected serious errors. I have 
added some problems and examples (and removed a few that were not effective). 
And I have included more references to the accessible literature (particularly the 
American Journal of Physics). I realize, of course, that most readers will not have 
the time or inclination to consult these resources, but I think it is worthwhile 
anyway, if only to emphasize that electrodynamics, notwithstanding its venerable 
age, is very much alive, and intriguing new discoveries are being made all the 
time. I hope that occasionally a problem will pique your curiosity, and you will 
be inspired to look up the reference-some of them are real gems. 

I have maintained three items of unorthodox notation: 

• The Cartesian unit vectors are written x, y, and z (and, in general, all unit 
vectors inherit the letter of the corresponding coordinate). 

• The distance from the z axis in cylindrical coordinates is designated by s, to 
avoid confusion with r (the distance from the origin, and the radial coordi­
nate in spherical coordinates). 

• The script letter~ denotes the vector from a source point r' to the field point r 
(see Figure). Some authors prefer the more explicit (r- r'). But this makes 
many equations distractingly cumbersome, especially when the unit vector 
..£is involved. I realize that unwary readers are tempted to interpret~ as r-it 
certainly makes the integrals easier! Please take note:~ = (r - r'), which is 
not the same as r. I think it's good notation, but it does have to be handled 
with care.1 

1 In MS Word,~ is "Kaufmann font," but this is very difficult to install in TeX. TeX users can download 
a pretty good facsimile from my web site. 
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As in previous editions, I distinguish two kinds of problems. Some have a 
specific pedagogical purpose, and should be worked immediately after reading 
the section to which they pertain; these I have placed at the pertinent point within 
the chapter. (In a few cases the solution to a problem is used later in the text; 
these are indicated by a bullet ( •) in the left margin.) Longer problems, or those 
of a more general nature, will be found at the end of each chapter. When I teach 
the subject, I assign some of these, and work a few of them in class. Unusually 
challenging problems are flagged by an exclamation point (!) in the margin. Many 
readers have asked that the answers to problems be provided at the back of the 
book; unfortunately, just as many are strenuously opposed. I have compromised, 
supplying answers when this seems particularly appropriate. A complete solution 
manual is available (to instructors) from the publisher; go to the Pearson web site 
to order a copy. 

I have benefitted from the comments of many colleagues. I cannot list them 
all here, but I would like to thank the following people for especially useful con­
tributions to this edition: Burton Brody (Bard), Catherine Crouch (Swarthmore), 
Joel Franklin (Reed), Ted Jacobson (Maryland), Don Koks (Adelaide), Charles 
Lane (Berry), Kirk McDonald2 (Princeton), Jim McTavish (Liverpool), Rich 
Saenz (Cal Poly), Darrel Schroeter (Reed), Herschel Snodgrass (Lewis and 
Clark), and Larry Tankersley (Naval Academy). Practically everything I know 
about electrodynamics-certainly about teaching electrodynarnics-I owe to 
Edward Purcell. 

David J. Griffiths 

2Kirk's web site, http://www.hep.princeton.edu!~mcdonald/examples/, is a fantastic resource, with 
clever explanations, nifty problems, and useful references. 
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WHAT IS ELECTRODYNAMICS, AND HOW DOES IT FIT INTO THE 
GENERAL SCHEME OF PHYSICS? 

Four Realms of Mechanics 

In the diagram below, I have sketched out the four great realms of mechanics: 

Classical Mechanics Quantum Mechanics 
(Newton) (Bohr, Heisenberg, 

Schrodinger, et al.) 

Special Relativity Quantum Field Theory 
(Einstein) (Dirac, Pauli, Feynman, 

Schwinger, et al.) 

Newtonian mechanics is adequate for most purposes in "everyday life," but for 
objects moving at high speeds (near the speed of light) it is incorrect, and must 
be replaced by special relativity (introduced by Einstein in 1905); for objects that 
are extremely small (near the size of atoms) it fails for different reasons, and is 
superseded by quantum mechanics (developed by Bohr, Schrodinger, Heisenberg, 
and many others, in the 1920's, mostly). For objects that are both very fast and 
very small (as is common in modem particle physics), a mechanics that com­
bines relativity and quantum principles is in order; this relativistic quantum me­
chanics is known as quantum field theory-it was worked out in the thirties and 
forties, but even today it cannot claim to be a completely satisfactory system. 
In this book, save for the last chapter, we shall work exclusively in the domain 
of classical mechanics, although electrodynamics extends with unique simplic­
ity to the other three realms. (In fact, the theory is in most respects automat­
ically consistent with special relativity, for which it was, historically, the main 
stimulus.) 

Four Kinds of Forces 

Mechanics tells us how a system will behave when subjected to a given force. 
There are just four basic forces known (presently) to physics: I list them in the 
order of decreasing strength: 
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1. Strong 
2. Electromagnetic 
3. Weak 
4. Gravitational 

The brevity of this list may surprise you. Where is friction? Where is the "normal" 
force that keeps you from falling through the floor? Where are the chemical forces 
that bind molecules together? Where is the force of impact between two colliding 
billiard balls? The answer is that all these forces are electromagnetic. Indeed, 
it is scarcely an exaggeration to say that we live in an electromagnetic world­
virtually every force we experience in everyday life, with the exception of gravity, 
is electromagnetic in origin. 

The strong forces, which hold protons and neutrons together in the atomic nu­
cleus, have extremely short range, so we do not "feel" them, in spite of the fact that 
they are a hundred times more powerful than electrical forces. The weak forces, 
which account for certain kinds of radioactive decay, are also of short range, and 
they are far weaker than electromagnetic forces. As for gravity, it is so pitifully 
feeble (compared to all of the others) that it is only by virtue of huge mass con­
centrations (like the earth and the sun) that we ever notice it at all. The electrical 
repulsion between two electrons is 1042 times as large as their gravitational at­
traction, and if atoms were held together by gravitational (instead of electrical) 
forces, a single hydrogen atom would be much larger than the known universe. 

Not only are electromagnetic forces overwhelmingly dominant in everyday 
life, they are also, at present, the only ones that are completely understood. There 
is, of course, a classical theory of gravity (Newton's law of universal gravitation) 
and a relativistic one (Einstein's general relativity), but no entirely satisfactory 
quantum mechanical theory of gravity has been constructed (though many people 
are working on it). At the present time there is a very successful (if cumbersome) 
theory for the weak interactions, and a strikingly attractive candidate (called chro­
modynamics) for the strong interactions. All these theories draw their inspiration 
from electrodynamics; none can claim conclusive experimental verification at this 
stage. So electrodynamics, a beautifully complete and successful theory, has be­
come a kind of paradigm for physicists: an ideal model that other theories emulate. 

The laws of classical electrodynamics were discovered in bits and pieces by 
Franklin, Coulomb, Ampere, Faraday, and others, but the person who completed 
the job, and packaged it all in the compact and consistent form it has today, was 
James Clerk Maxwell. The theory is now about 150 years old. 

The Unification of Physical Theories 

In the beginning, electricity and magnetism were entirely separate subjects. The 
one dealt with glass rods and eat's fur, pith balls, batteries, currents, electrolysis, 
and lightning; the other with bar magnets, iron filings, compass needles, and the 
North Pole. But in 1820 Oersted noticed that an electric current could deflect 
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a magnetic compass needle. Soon afterward, Ampere correctly postulated that 
all magnetic phenomena are due to electric charges in motion. Then, in 1831, 
Faraday discovered that a moving magnet generates an electric current. By the 
time Maxwell and Lorentz put the finishing touches on the theory, electricity and 
magnetism were inextricably intertwined. They could no longer be regarded as 
separate subjects, but rather as two aspects of a single subject: electromagnetism. 

Faraday speculated that light, too, is electrical in nature. Maxwell's theory pro­
vided spectacular justification for this hypothesis, and soon optics-the study 
of lenses, mirrors, prisms, interference, and diffraction-was incorporated into 
electromagnetism. Hertz, who presented the decisive experimental confirmation 
for Maxwell's theory in 1888, put it this way: "The connection between light 
and electricity is now established . . . In every flame, in every luminous parti­
cle, we see an electrical process . . . Thus, the domain of electricity extends over 
the whole of nature. It even affects ourselves intimately: we perceive that we 
possess ... an electrical organ-the eye." By 1900, then, three great branches of 
physics-electricity, magnetism, and optics-had merged into a single unified the­
ory. (And it was soon apparent that visible light represents only a tiny "window" 
in the vast spectrum of electromagnetic radiation, from radio through microwaves, 
infrared and ultraviolet, to x-rays and gamma rays.) 

Einstein dreamed of a further unification, which would combine gravity and 
electrodynamics, in much the same way as electricity and magnetism had been 
combined a century earlier. His unified field theory was not particularly success­
ful, but in recent years the same impulse has spawned a hierarchy of increasingly 
ambitious (and speculative) unification schemes, beginning in the 1960s with the 
electroweak theory of Glashow, Weinberg, and Salam (which joins the weak and 
electromagnetic forces), and culminating in the 1980s with the superstring the­
ory (which, according to its proponents, incorporates all four forces in a single 
"theory of everything"). At each step in this hierarchy, the mathematical difficul­
ties mount, and the gap between inspired conjecture and experimental test widens; 
nevertheless, it is clear that the unification of forces initiated by electrodynamics 
has become a major theme in the progress of physics. 

The Field Formulation of Electrodynamics 

The fundamental problem a theory of electromagnetism hopes to solve is this: I 
hold up a bunch of electric charges here (and maybe shake them around); what 
happens to some other charge, over there? The classical solution takes the form 
of a field theory: We say that the space around an electric charge is permeated 
by electric and magnetic fields (the electromagnetic "odor," as it were, of the 
charge). A second charge, in the presence of these fields, experiences a force; the 
fields, then, transmit the influence from one charge to the other-they "mediate" 
the interaction. 

When a charge undergoes acceleration, a portion of the field "detaches" itself, 
in a sense, and travels off at the speed of light, carrying with it energy, momen­
tum, and angular momentum. We call this electromagnetic radiation. Its exis-
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tence invites (if not compels) us to regard the fields as independent dynamical 
entities in their own right, every bit as "real" as atoms or baseballs. Our interest 
accordingly shifts from the study of forces between charges to the theory of the 
fields themselves. But it takes a charge to produce an electromagnetic field, and it 
takes another charge to detect one, so we had best begin by reviewing the essential 
properties of electric charge. 

Electric Charge 

1. Charge comes in two varieties, which we call "plus" and "minus," because 
their effects tend to cancel (if you have +q and -q at the same point, electrically 
it is the same as having no charge there at all). This may seem too obvious to 
warrant comment, but I encourage you to contemplate other possibilities: what if 
there were 8 or 10 different species of charge? (In chromodynamics there are, in 
fact, three quantities analogous to electric charge, each of which may be positive 
or negative.) Or what if the two kinds did not tend to cancel? The extraordinary 
fact is that plus and minus charges occur in exactly equal amounts, to fantastic 
precision, in bulk matter, so that their effects are almost completely neutralized. 
Were it not for this, we would be subjected to enormous forces: a potato would 
explode violently if the cancellation were imperfect by as little as one part in 1010 . 

2. Charge is conserved: it cannot be created or destroyed-what there is now has 
always been. (A plus charge can "annihilate" an equal minus charge, but a plus 
charge cannot simply disappear by itself-something must pick up that electric 
charge.) So the total charge of the universe is fixed for all time. This is called 
global conservation of charge. Actually, I can say something much stronger: 
Global conservation would allow for a charge to disappear in New York and 
instantly reappear in San Francisco (that wouldn't affect the total), and yet we 
know this doesn't happen. If the charge was in New York and it went to San Fran­
cisco, then it must have passed along some continuous path from one to the other. 
This is called local conservation of charge. Later on we'll see how to formulate a 
precise mathematical law expressing local conservation of charge-it's called the 
continuity equation. 

3. Charge is quantized. Although nothing in classical electrodynamics requires 
that it be so, the fact is that electric charge comes only in discrete lumps-integer 
multiples of the basic unit of charge. If we call the charge on the proton +e, 
then the electron carries charge -e; the neutron charge zero; the pi mesons +e, 
0, and -e; the carbon nucleus +6e; and so on (never 7.392e, or even 1f2e).3 

This fundamental unit of charge is extremely small, so for practical purposes it 
is usually appropriate to ignore quantization altogether. Water, too, "really" con­
sists of discrete lumps (molecules); yet, if we are dealing with reasonably large 

3 Actually, protons and neutrons are composed of three quarks, which carry fractional charges (± ~e 
and ±~e). However, free quarks do not appear to exist in nature, and in any event, this does not alter 
the fact that charge is quantized; it merely reduces the size of the basic unit. 
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quantities of it we can treat it as a continuous fluid. This is in fact much closer to 
Maxwell's own view; he knew nothing of electrons and protons-he must have 
pictured charge as a kind of ''jelly" that could be divided up into portions of any 
size and smeared out at will. 

Units 

The subject of electrodynamics is plagued by competing systems of units, which 
sometimes render it difficult for physicists to communicate with one another. The 
problem is far worse than in mechanics, where Neanderthals still speak of pounds 
and feet; in mechanics, at least all equations look the same, regardless of the units 
used to measure quantities. Newton's second law remains F = ma, whether it is 
feet-pounds-seconds, kilograms-meters-seconds, or whatever. But this is not so in 
electromagnetism, where Coulomb's law may appear variously as 

F q1q2 " (G . ) F = _ l _ q1q2 ..£ (SI), or F = - 1 q1q2 ..£ (HL). 
= ~"" auss1an, or 4:n'Eo IJ,2 4n IJ,2 

Of the systems in common use, the two most popular are Gaussian (cgs) and SI 
(mks). Elementary particle theorists favor yet a third system: Heaviside-Lorentz. 
Although Gaussian units offer distinct theoretical advantages, most undergradu­
ate instructors seem to prefer SI, I suppose because they incorporate the familiar 
household units (volts, amperes, and watts). In this book, therefore, I have used 
SI units. Appendix C provides a "dictionary" for converting the main results into 
Gaussian units. 



CHAPTER 

1 Vector Analysis 

1.1 . VECTORALGEBRA 

1.1.1 • Vector Operations 

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you will have 
gone a total of 7 miles, but you're not 7 miles from where you set out-you're 
only 5. We need an arithmetic to describe quantities like this, which evidently do 
not add in the ordinary way. The reason they don't, of course, is that displace­
ments (straight line segments going from one point to another) have direction 
as well as magnitude (length), and it is essential to take both into account when 
you combine them. Such objects are called vectors: velocity, acceleration, force 
and momentum are other examples. By contrast, quantities that have magnitude 
but no direction are called scalars: examples include mass, charge, density, and 
temperature. 

I shall use boldface (A, B, and so on) for vectors and ordinary type for scalars. 
The magnitude of a vector A is written lA I or, more simply, A. In diagrams, vec­
tors are denoted by arrows: the length of the arrow is proportional to the magni­
tude of the vector, and the arrowhead indicates its direction. Minus A (-A) is a 
vector with the same magnitude as A but of opposite direction (Fig. 1.2). Note that 
vectors have magnitude and direction but not location: a displacement of 4 miles 
due north from Washington is represented by the same vector as a displacement 4 
miles north from Baltimore (neglecting, of course, the curvature of the earth). On 
a diagram, therefore, you can slide the arrow around at will, as long as you don't 
change its length or direction. 

We define four vector operations: addition and three kinds of multiplication. 

4 
mi 

3mi 

FIGURE 1.1 FIGURE 1.2 

1 
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B 

B 

FIGURE 1.3 FIGURE 1.4 

(i) Addition of two vectors. Place the tail of B at the head of A; the sum, 
A + B, is the vector from the tail of A to the head of B (Fig. 1.3). (This rule 
generalizes the obvious procedure for combining two displacements.) Addition is 
commutative: 

A+B=B+A; 

3 miles east followed by 4 miles north gets you to the same place as 4 miles north 
followed by 3 miles east. Addition is also associative: 

(A + B) + C = A + (B + C). 

To subtract a vector, add its opposite (Fig. 1.4): 

A-B=A+(-B). 

(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar 
a multiplies the magnitude but leaves the direction unchanged (Fig. 1.5). (If a is 
negative, the direction is reversed.) Scalar multiplication is distributive: 

a(A +B)= aA + aB. 

(iii) Dot product of two vectors. The dot product of two vectors is defined by 

A · B = AB cos 0, (1.1) 

where 0 is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A· B 
is itself a scalar (hence the alternative name scalar product). The dot product is 
commutative, 

A·B=B·A, 

and distributive, 

A · (B + C) = A · B +A · C. (1.2) 

Geometrically, A· B is the product of A times the projection of B along A (or 
the product of B times the projection of A along B). If the two vectors are parallel, 
then A· B = AB. In particular, for any vector A, 

(1.3) 

If A and Bare perpendicular, then A· B = 0. 
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I B 

FIGURE 1.5 FIGURE 1.6 

Example 1.1. Let C = A - B (Fig. 1.7), and calculate the dot product of C with 
itself. 

Solution 

C · C = (A - B) · (A - B) = A · A - A · B - B · A + B · B, 

or 

This is the law of cosines. 

(iv) Cross product of two vectors. The cross product of two vectors is de­
fined by 

A x B = AB sin 0 D., (1.4) 

where n is a unit vector (vector of magnitude 1) pointing perpendicular to the 
plane of A and B. (I shall use a hat C) to denote unit vectors.) Of course, there 
are two directions perpendicular to any plane: "in" and "out." The ambiguity is 
resolved by the right-hand rule: let your fingers point in the direction of the first 
vector and curl around (via the smaller angle) toward the second; then your thumb 
indicates the direction of n. (In Fig. 1.8, A x B points into the page; B x A points 
out of the page.) Note that A x B is itself a vector (hence the alternative name 
vector product). The cross product is distributive, 

A X (B +C)= (A X B)+ (A X C), (1.5) 

but not commutative. In fact, 

(B X A) = -(A X B). (1.6) 
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-------------, 

I 

B B 

FIGURE 1.7 FIGURE 1.8 

I 
I 

I 

I 

I 
I 

I 
I 

Geometrically, lA x B I is the area of the parallelogram generated by A and B 
(Fig. 1.8). If two vectors are parallel, their cross product is zero. In particular, 

for any vector A. (Here 0 is the zero vector, with magnitude 0.) 

Problem 1.1 Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, 
show that the dot product and cross product are distributive, 

a) when the three vectors are coplanar; 

b) in the general case. 

Problem 1.2 Is the cross product associative? 

(A X B) X c :!::. A X (B X C). 

If so, prove it; if not, provide a counterexample (the simpler the better). 

1.1.2 • Vector Algebra: Component Form 

In the previous section, I defined the four vector operations (addition, scalar mul­
tiplication, dot product, and cross product) in "abstract" form-that is, without 
reference to any particular coordinate system. In practice, it is often easier to set 
up Cartesian coordinates x, y, z and work with vector components. Let i, y, and 
z be unit vectors parallel to the x, y, and z axes, respectively (Fig. 1.9(a)). An 
arbitrary vector A can be expanded in terms ofthese basis vectors (Fig. 1.9(b)): 

z z 

i ~--------y y 

X (a) X (b) 

FIGURE 1.9 
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The numbers Ax, Ay, and Az, are the "components" of A; geometrically, they 
are the projections of A along the three coordinate axes (Ax =A· i, Ay =A· y, 
Az = A · z). We can now reformulate each of the four vector operations as a rule 
for manipulating components: 

A + B = (Axi + Ayy + Azz) + (Bxi + Byy + Bzz) 

= (Ax + Bx)i + (Ay + By)Y + (Az + Bz)z. (1.7) 

Rule (i): To add vectors, add like components. 

Rule (ii): To multiply by a scalar, multiply each component. 

Because i, y, and z are mutually perpendicular unit vectors, 

Accordingly, 

A · B = (Axi + Ayy + Azz) · (Bxi + Byy + Bzz) 

= AxBx + AyBy + AzBz. 

(1.8) 

(1.10) 

Rule (iii): To calculate the dot product, multiply like components, and add. 
In particular, 

so 

A = J A'i + A~ + A~. (1.11) 

(This is, if you like, the three-dimensional generalization of the Pythagorean 
theorem.) 

Similarly, 1 

X X X = y X y = Z X Z = 0, 

i X y = -y X i = Z, 

y X Z = -z X y = X, 

Z X X= -X X Z = y. (1.12) 

1These signs pertain to a right-handed coordinate system (x-axis out of the page, y-axis to the right, 
z-axis up, or any rotated version thereof). In a left-handed system (z-axis down), the signs would be 
reversed: i x y = -z, and so on. We shall use right-handed systems exclusively. 
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Therefore, 

= (AyBz- AzBy)i + (AzBx - AxBz)Y +(Ax By- AyBx)Z. 

This cumbersome expression can be written more neatly as a determinant: 

i y z 
Ax B = Ax Ay Az 

Bx By Bz 

(1.13) 

(1.14) 

Rule (iv): To calculate the cross product, form the determinant whose first row 
is i, y, z, whose second row is A (in component form), and whose third row is B. 

Example 1.2. Find the angle between the face diagonals of a cube. 

Solution 
We might as well use a cube of side 1, and place it as shown in Fig. 1.1 0, with 
one comer at the origin. The face diagonals A and B are 

A=1x+Oy+1z; B=Ox+1y+1Z. 

FIGURE 1.10 

So, in component form, 

A·B=1·0+0·1+1·1=1. 

On the other hand, in "abstract" form, 

A· B = AB cosO= ..fi..ficos() = 2cos0. 

Therefore, 

cos() = 1/2, or () = 60°. 

Of course, you can get the answer more easily by drawing in a diagonal across 
the top of the cube, completing the equilateral triangle. But in cases where the 
geometry is not so simple, this device of comparing the abstract and component 
forms of the dot product can be a very efficient means of finding angles. 
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Problem 1.3 Find the angle between the body diagonals of a cube. 

Problem 1.4 Use the cross product to find the components of the unit vector fi. 
perpendicular to the shaded plane in Fig. 1.11. 

1.1.3 • Triple Products 

Since the cross product of two vectors is itself a vector, it can be dotted or crossed 
with a third vector to form a triple product. 

(i) Scalar triple product: A· (B x C). Geometrically, lA · (B x C)l is the 
volume of the parallelepiped generated by A, B, and C, since IB x Cl is the area 
of the base, and IAcosOI is the altitude (Fig. 1.12). Evidently, 

A . (B X C) = B . (C X A) = c . (A X B)' (1.15) 

for they all correspond to the same figure. Note that "alphabetical" order is 
preserved-in view of Eq. 1.6, the "nonalphabetical" triple products, 

A · (C x B) = B · (A x C) = C · (B x A), 

have the opposite sign. In component form, 

Ax Ay Az 
A · (B x C) = Bx By Bz 

Cx Cy Cz 

Note that the dot and cross can be interchanged: 

A . (B X C) = (A X B) . c 

(1.16) 

(this follows immediately from Eq. 1.15); however, the placement ofthe parenthe­
ses is critical: (A· B) x Cis a meaningless expression-you can't make a cross 
product from a scalar and a vector. 

z 
3 

y 

B 

FIGURE 1.11 FIGURE 1.12 



8 Chapter 1 Vector Analysis 

(ii) Vector triple product: A x (B x C). The vector triple product can be 
simplified by the so-called BAC-CAB rule: 

Ax (B x C)= B(A ·C)- C(A ·B). (1.17) 

Notice that 

(A X B) X c = -C X (A X B) = -A(B . C) + B(A . C) 

is an entirely different vector (cross-products are not associative). All higher vec­
tor products can be similarly reduced, often by repeated application of Eq. 1.17, 
so it is never necessary for an expression to contain more than one cross product 
in any term. For instance, 

(Ax B)· (C x D) =(A· C)(B ·D)- (A· D)(B ·C); 

A X [B X (C X D)] = B[A. (C X D)]- (A. B)(C X D). (1.18) 

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component 
form. 

Problem 1.6 Prove that 

[A X (B X C)]+ [B X (C X A)]+ [C X (A X B)]= 0. 

Under what conditions does A x (B x C) = (A x B) x C? 

1.1.4 • Position, Displacement, and Separation Vectors 

The location of a point in three dimensions can be described by listing its 
Cartesian coordinates (x, y, z). The vector to that point from the origin (0) 
is called the position vector (Fig. 1.13): 

r=xx+yy+zi (1.19) 

z 
Source point 

t 

' Field point 
0 

X 

FIGURE 1.13 FIGURE 1.14 
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I will reserve the letter r for this purpose, throughout the book. Its magnitude, 

is the distance from the origin, and 

A r xi+yy+zz 
r - - - ---;::.====::======== 

- r - J x2 + y2 + z2 

(1.20) 

(1.21) 

is a unit vector pointing radially outward. The infinitesimal displacement vector, 
from (x, y, z) to (x + dx, y + dy, z + dz), is 

dl = dx i + dy y + dz Z. (1.22) 

(We could call this dr, since that's what it is, but it is useful to have a special 
notation for infinitesimal displacements.) 

In electrodynamics, one frequently encounters problems involving two 
points-typically, a source point, r', where an electric charge is located, and 
a field point, r, at which you are calculating the electric or magnetic field 
(Fig. 1.14). It pays to adopt right from the start some short-hand notation for 
the separation vector from the source point to the field point. I shall use for this 
purpose the script letter~: 

~=r-r'. (1.23) 

Its magnitude is 

1-= lr-r'l, (1.24) 

and a unit vector in the direction from r' to r is 

~ r- r' 
..£= - = ---. 

1- lr-r'l 
(1.25) 

In Cartesian coordinates, 

~ = (x - x')i + (y - y')y + (z - z')z, (1.26) 

1- = J(x- x'f + (y- y'f + (z- z')2 , (1.27) 

" (x - x')i + (y - y')y + (z - z')z 
~ = ---;::.======================7 

Jcx- x')2 + (y- y')2 + (z- z')2 
(1.28) 

(from which you can appreciate the economy of the script-4 notation). 

Problem 1.7 Find the separation vector~ from the source point (2,8,7) to the field 
point ( 4,6,8). Determine its magnitude (1-), and construct the unit vector..£. 
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1.1.5 • How Vectors Transform2 

The definition of a vector as "a quantity with a magnitude and direction" is not 
altogether satisfactory: What precisely does "direction" mean? This may seem a 
pedantic question, but we shall soon encounter a species of derivative that looks 
rather like a vector, and we'll want to know for sure whether it is one. 

You might be inclined to say that a vector is anything that has three components 
that combine properly under addition. Well, how about this: We have a barrel of 
fruit that contains Nx pears, Ny apples, and Nz bananas. Is N = Nxi + Nyy + 
Nzz a vector? It has three components, and when you add another barrel with 
Mx pears, My apples, and Mz bananas the result is (Nx + Mx) pears, (Ny +My) 
apples, (Nz + Mz) bananas. So it does add like a vector. Yet it's obviously not 
a vector, in the physicist's sense of the word, because it doesn't really have a 
direction. What exactly is wrong with it? 

The answer is that N does not transform properly when you change coordi­
nates. The coordinate frame we use to describe positions in space is of course 
entirely arbitrary, but there is a specific geometrical transformation law for con­
verting vector components from one frame to another. Suppose, for instance, the 
x, y, z system is rotated by angle¢, relative to x, y, z, about the common x = x 
axes. From Fig. 1.15, 

while 

Ay =A cosO, Az =A sinO, 

Ay =A cosO= Acos(O- ¢) = A(cosO cos¢+ sinO sin¢) 

= cos¢Ay + sin¢Az, 

Az =A sinO= A sin(O- ¢) = A(sinO cos¢- cosO sin¢) 

=-sin </JAy+ cos¢Az. 

z 

y 

FIGURE 1.15 

2This section can be skipped without loss of continuity. 
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We might express this conclusion in matrix notation: 

( 
~) = ( CO~QJ 
Az - smf/J 

sin fjJ ) ( Ay ) . 
COSQJ Az 

(1.29) 

More generally, for rotation about an arbitrary axis in three dimensions, the 
transformation law takes the form 

or, more compactly, 

3 

Aj = LRijAj, 
j=l 

(1.30) 

(1.31) 

where the index 1 stands for x, 2 for y, and 3 for z. The elements of the ma­
trix R can be ascertained, for a given rotation, by the same sort of trigonometric 
arguments as we used for a rotation about the x axis. 

Now: Do the components ofN transform in this way? Of course not-it doesn't 
matter what coordinates you use to represent positions in space; there are still just 
as many apples in the barrel. You can't convert a pear into a banana by choosing 
a different set of axes, but you can tum Ax into Ay. Formally, then, a vector is 
any set of three components that transforms in the same manner as a displace­
ment when you change coordinates. As always, displacement is the model for the 
behavior of all vectors. 3 

By the way, a (second-rank) tensor is a quantity with nine components, Txx• 
Txy• Txz• Tyx• ... , Tzz, which transform with two factors of R: 

or, more compactly, 

3 3 

Tij = L L RikRjtTkt· 
k=l l=l 

(1.32) 

3If you're a mathematician you might want to contemplate generalized vector spaces in which the 
"axes" have nothing to do with direction and the basis vectors are no longer i, y, and z (indeed, there 
may be more than three dimensions). This is the subject of linear algebra. But for our purposes all 
vectors live in ordinary 3-space (or, in Chapter 12, in 4-dimensional space-time.) 
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In general, an nth-rank tensor has n indices and 3n components, and transforms 
with n factors of R. In this hierarchy, a vector is a tensor of rank 1, and a scalar is 
a tensor of rank zero.4 

Problem 1.8 

(a) Prove that the two-dimensional rotation matrix (Eq. 1.29) preserves dot prod­
ucts. (That is, show that AyBy + AzBz = AyBy + AzBz.) 

(b) What constraints must the elements (Rij) of the three-dimensional rotation ma­
trix (Eq. 1.30) satisfy, in order to preserve the length of A (for all vectors A)? 

Problem 1.9 Find the transformation matrix R that describes a rotation by 120° 
about an axis from the origin through the point (1, 1, 1). The rotation is clockwise 
as you look down the axis toward the origin. 

Problem 1.10 

(a) How do the components of a vectoii transform under a translation of coordi­
nates (X= x, y = y- a, z = z, Fig. 1.16a)? 

(b) How do the components of a vector transform under an inversion of coordinates 
(X= -x, y = -y, z = -z, Fig. 1.16b)? 

(c) How do the components of a cross product (Eq. 1.13) transform under inver­
sion? [The cross-product of two vectors is properly called a pseudovector be­
cause of this "anomalous" behavior.] Is the cross product of two pseudovectors 
a vector, or a pseudovector? Name two pseudovector quantities in classical me­
chanics. 

(d) How does the scalar triple product of three vectors transform under inversions? 
(Such an object is called a pseudoscalar.) 

z 
z 

y y 

(a) (b) 

FIGURE 1.16 

4 A scalar does not change when you change coordinates. In particular, the components of a vector are 
not scalars, but the magnitude is. 
5 Beware: The vector r (Eq. 1.19) goes from a specific point in space (the origin, 0) to the point 
P = (x, y, z). Under translations the new origin (0) is at a different location, and the arrow from 6 
to P is a completely different vector. The original vector r still goes from 0 to P, regardless of the 
coordinates used to label these points. 
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1.2 • DIFFERENTIAL CALCULUS 

1.2.1 • "Ordinary" Derivatives 

Suppose we have a function of one variable: f(x). Question: What does the 
derivative, dffdx, do for us? Answer: It tells us how rapidly the function f(x) 
varies when we change the argument x by a tiny amount, dx: 

df = (~~) dx. (1.33) 

In words: If we increment x by an infinitesimal amount dx, then f changes 
by an amount df; the derivative is the proportionality factor. For example, in 
Fig. 1.17(a), the function varies slowly with x, and the derivative is correspond­
ingly small. In Fig. 1.17 (b), f increases rapidly with x, and the derivative is large, 
as you move away from x = 0. 

Geometrical Interpretation: The derivative dffdx is the slope of the graph of 
f versus x. 

1.2.2 • Gradient 

Suppose, now, that we have a function of three variables-say, the temperature 
T (x, y, z) in this room. (Start out in one comer, and set up a system of axes; then 
for each point (x, y, z) in the room, T gives the temperature at that spot.) We want 
to generalize the notion of "derivative" to functions like T, which depend not on 
one but on three variables. 

A derivative is supposed to tell us how fast the function varies, if we move a 
little distance. But this time the situation is more complicated, because it depends 
on what direction we move: If we go straight up, then the temperature will prob­
ably increase fairly rapidly, but if we move horizontally, it may not change much 
at all. In fact, the question "How fast does T vary?" has an infinite number of 
answers, one for each direction we might choose to explore. 

Fortunately, the problem is not as bad as it looks. A theorem on partial deriva­
tives states that 

dT = (~:) dx + (~~) dy + (~:) dz. (1.34) 

f 

(a) X (b) X 

FIGURE 1.17 
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This tells us how T changes when we alter all three variables by the infinites­
imal amounts dx, dy, dz. Notice that we do not require an infinite number of 
derivatives-three will suffice: the partial derivatives along each of the three co­
ordinate directions. 

Equation 1.34 is reminiscent of a dot product: 

(
aT A aT A aT A) A A A 

dT = - x+ - y+ - z · (dxx+dyy+dzz) 
ax ay az 

= (VT) · (dl), (1.35) 

where 

aT A aT A aT A 
VT= - x+ - y+ - z 

ax ay az 
(1.36) 

is the gradient ofT. Note that VT is a vector quantity, with three components; 
it is the generalized derivative we have been looking for. Equation 1.35 is the 
three-dimensional version ofEq. 1.33. 

Geometrical Interpretation of the Gradient: Like any vector, the gradient has 
magnitude and direction. To determine its geometrical meaning, let's rewrite the 
dot product (Eq. 1.35) using Eq. 1.1: 

dT = VT · dl = IVTIIdll cosO, (1.37) 

where 0 is the angle between V T and dl. Now, if we fix the magnitude ldll and 
search around in various directions (that is, vary 0), the maximum change in T 
evidentally occurs when 0 = 0 (for then cos 0 = 1). That is, for a fixed distance 
ldll, dT is greatest when I move in the same direction as VT. Thus: 

The gradient V T points in the direction of maximum increase of the 
function T. 

Moreover: 

The magnitude IVTI gives the slope (rate of increase) along this 
maximal direction. 

Imagine you are standing on a hillside. Look all around you, and find the di­
rection of steepest ascent. That is the direction of the gradient. Now measure the 
slope in that direction (rise over run). That is the magnitude of the gradient. (Here 
the function we're talking about is the height of the hill, and the coordinates it 
depends on are positions-latitude and longitude, say. This function depends on 
only two variables, not three, but the geometrical meaning of the gradient is easier 
to grasp in two dimensions.) Notice from Eq. 1.37 that the direction of maximum 
descent is opposite to the direction of maximum ascent, while at right angles 
(0 = 90°) the slope is zero (the gradient is perpendicular to the contour lines). 
You can conceive of surfaces that do not have these properties, but they always 
have "kinks" in them, and correspond to nondifferentiable functions. 

What would it mean for the gradient to vanish? If VT = 0 at (x, y, z), 
then dT = 0 for small displacements about the point (x, y, z). This is, then, a 
stationary point of the function T(x, y, z). It could be a maximum (a summit), 
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a minimum (a valley), a saddle point (a pass), or a "shoulder." This is analogous 
to the situation for functions of one variable, where a vanishing derivative signals 
a maximum, a minimum, or an inflection. In particular, if you want to locate the 
extrema of a function of three variables, set its gradient equal to zero. 

Example 1.3. Find the gradient of r = .jx2 + y2 + z2 (the magnitude of the 
position vector). 

Solution 

ar A ar A ar A 

Vr= - x+ - y+ - z 
ax ay az 

2x A 1 2y A 1 2z A 

--;:::~~=~ X+ y+ Z 
2 J x2 + y2 + z2 2 J x2 + y2 + z2 2 J x2 + y2 + z2 

xi+yy+zz r A 

---;::.::::;;==:o:===~ = - = r . 
.jx2 + y2 + z2 r 

Does this make sense? Well, it says that the distance from the origin increases 
most rapidly in the radial direction, and that its rate of increase in that direction 
is 1. .. just what you'd expect. 

Problem 1.11 Find the gradients of the following functions: 

(a) f(x, y, z) = x 2 + y3 + z4
• 

(b) f(x, y, z) = x 2 y3z4
• 

(c) f(x, y, z) =ex sin(y) ln(z). 

Problem 1.12 The height of a certain hill (in feet) is given by 

h(x, y) = 10(2xy- 3x2
- 4y2

- 18x + 28y + 12), 

where y is the distance (in miles) north, x the distance east of South Hadley. 

(a) Where is the top of the hill located? 

(b) How high is the hill? 

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile 
east of South Hadley? In what direction is the slope steepest, at that point? 

• Problem 1.13 Let 1£ be the separation vector from a fixed point (x', y', z') to the 
point (x, y, z), and let-'l- be its length. Show that 

(a) V (1-2) = 21£. 

(b) V(l/1-) = -li.j-'l-2. 

(c) What is the general formula for V (1-n)? 
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Problem 1.14 Suppose that f is a function of two variables (y and z) only. 
Show that the gradient V f = (ajjay)y + (ajjaz)z transforms as a vector un­
der rotations, Eq. 1.29. [Hint: (ajjaY) = (ajjay)(ayjaY) + (ajjaz)(azjaY), 
and the analogous formula for a f I az. We know that y = y cos¢ + z sin¢ and 
z= -ysin¢+zcos¢; "solve" these equations for y and z (as functions ofy 
and Z), and compute the needed derivatives ay jay, azjay, etc.] 

1.2.3 • The Del Operator 

The gradient has the formal appearance of a vector, V, "multiplying" a scalar T: 

(1.38) 

(For once, I write the unit vectors to the left, just so no one will think this means 
ax.; ax, and so on-which would be zero, since i is constant.) The term in paren­
theses is called del: 

A a A a A a 
V = x- +y- +z- . ax ay az (1.39) 

Of course, del is not a vector, in the usual sense. Indeed, it doesn't mean much 
until we provide it with a function to act upon. Furthermore, it does not "multiply" 
T; rather, it is an instruction to differentiate what follows. To be precise, then, we 
say that V is a vector operator that acts upon T, not a vector that multiplies T. 

With this qualification, though, V mimics the behavior of an ordinary vector in 
virtually every way; almost anything that can be done with other vectors can also 
be done with V, if we merely translate "multiply" by "act upon." So by all means 
take the vector appearance of V seriously: it is a marvelous piece of notational 
simplification, as you will appreciate if you ever consult Maxwell's original work 
on electromagnetism, written without the benefit of V. 

Now, an ordinary vector A can multiply in three ways: 

1. By a scalar a : Aa; 

2. By a vector B, via the dot product: A · B; 

3. By a vector B via the cross product: Ax B. 

Correspondingly, there are three ways the operator V can act: 

1. On a scalar function T : V T (the gradient); 

2. On a vector function v, via the dot product: V · v (the divergence); 

3. On a vector function v, via the cross product: V x v (the curl). 
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We have already discussed the gradient. In the following sections we examine the 
other two vector derivatives: divergence and curl. 

1.2.4 • The Divergence 

From the definition of V we construct the divergence: 

(1.40) 

Observe that the divergence of a vector function6 v is itself a scalar V · v. 
Geometrical Interpretation: The name divergence is well chosen, for V · v 

is a measure of how much the vector v spreads out (diverges) from the point in 
question. For example, the vector function in Fig. 1.18a has a large (positive) 
divergence (if the arrows pointed in, it would be a negative divergence), the func­
tion in Fig. 1.18b has zero divergence, and the function in Fig. 1.18c again has a 
positive divergence. (Please understand that v here is afttnction-there's a differ­
ent vector associated with every point in space. In the diagrams, of course, I can 
only draw the arrows at a few representative locations.) 

Imagine standing at the edge of a pond. Sprinkle some sawdust or pine needles 
on the surface. If the material spreads out, then you dropped it at a point of positive 
divergence; if it collects together, you dropped it at a point of negative divergence. 
(The vector function v in this model is the velocity of the water at the surface­
this is a two-dimensional example, but it helps give one a "feel" for what the 
divergence means. A point of positive divergence is a source, or "faucet"; a point 
of negative divergence is a sink, or "drain.") 

1 1 1 1 1 1 1 
t t t t t t t 
t t t t t t t 

(a) (b) (c) 

FIGURE 1.18 

6 A vector function v(x, y, z) = Vx (x, y, z) i + Vy (x, y, z) y + Vz (x, y, z) z is really three functions­
one for each component. There's no such thing as the divergence of a scalar. 
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Example 1.4. Suppose the functions in Fig. 1.18 are v a = r = x i + y y + z z, 
vb = z, and v c = z Z. Calculate their divergences. 

Solution 

a a a 
V · Va = - (x) + - (y) + - (z) = 1 + 1 + 1 = 3. ax ay az 

As anticipated, this function has a positive divergence. 

a a a 
V · Vb = - (0) + - (0) + - (1) = 0 + 0 + 0 = 0, ax ay az 

as expected. 

a a a 
V · Vc = - (0) + - (0) + - (z) = 0 + 0 + 1 = 1. ax ay az 

Problem 1.15 Calculate the divergence of the following vector functions: 

(a) Va = x 2 i + 3xz2 y- 2xz Z. 

(b) vb=xyi+2yzy+3zxZ. 

(c) Vc = y 2 x + (2xy + z2
) y + 2yzi. 

• Problem 1.16 Sketch the vector function 

r 
v = r2' 

and compute its divergence. The answer may surprise you ... can you explain it? 

Problem 1.17 In two dimensions, show that the divergence transforms as a scalar 
under rotations. [Hint: Use Eq. 1.29 to determine Vy and Vz, and the method of 
Prob. 1.14 to calculate the derivatives. Your aim is to show that avyjay + avzfaz = 
avyjay + avzfaz.] 

1.2.5 • The Curl 

From the definition of V we construct the curl: 

Vxv= 
i y 

a;ax a;ay 
z 

a;az 

=x(avz- avy) +y(avx- avz) +z(avy- avx). (1.41) 
ay az az ax ax ay 
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z 

y 

FIGURE 1.19 

Notice that the curl of a vector function7 vis, like any cross product, a vector. 
Geometrical Interpretation: The name curl is also well chosen, for V x v is 

a measure of how much the vector v swirls around the point in question. Thus 
the three functions in Fig. 1.18 all have zero curl (as you can easily check for 
yourself), whereas the functions in Fig. 1.19 have a substantial curl, pointing in the 
z direction, as the natural right-hand rule would suggest. Imagine (again) you are 
standing at the edge of a pond. Float a small paddlewheel (a cork with toothpicks 
pointing out radially would do); if it starts to rotate, then you placed it at a point 
of nonzero curl. A whirlpool would be a region of large curl. 

Example 1.5. Suppose the function sketched in Fig. 1.19a is Va = -yi + xy, 
and that in Fig. 1.19b is vb = xy. Calculate their curls. 

Solution 

i y z 
V X Va = ajax a jay ajaz = 2z, 

-y X 0 

and 

i y z 
V X Vb = ajax a jay ajaz = z. 

0 X 0 

As expected, these curls point in the + z direction. (Incidentally, they both have 
zero divergence, as you might guess from the pictures: nothing is "spreading 
out" ... it just "swirls around.") 

7There's no such thing as the curl of a scalar. 
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Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15. 

Problem 1.19 Draw a circle in the xy plane. At a few representative points draw 
the vector v tangent to the circle, pointing in the clockwise direction. By comparing 
adjacent vectors, determine the sign of avxfay and avyjax. According to Eq. 1.41, 
then, what is the direction of V x v? Explain how this example illustrates the geo­
metrical interpretation of the curl. 

Problem 1.20 Construct a vector function that has zero divergence and zero curl 
everywhere. (A constant will do the job, of course, but make it something a little 
more interesting than that!) 

1.2.6 • Product Rules 

The calculation of ordinary derivatives is facilitated by a number of rules, such as 
the sum rule: 

d df dg 
dx (f + g) = dx + dx ' 

the rule for multiplying by a constant: 

d df 
- (kf) =k- , 
dx dx 

the product rule: 

d dg df 
dx (f g) = f dx + g dx ' 

and the quotient rule: 

df dg 
a (I) gd;- fd; 

dx g = g2 · 

Similar relations hold for the vector derivatives. Thus, 

V(f+g)=Vf+Vg, V · (A+ B) = (V ·A) + (V ·B), 

v X (A + B) = (V X A) + (V X B)' 

and 

V(kf) = kV f, V · (kA) = k(V ·A), V x (kA) = k(V x A), 

as you can check for yourself. The product rules are not quite so simple. There 
are two ways to construct a scalar as the product of two functions: 

f g (product of two scalar functions), 

A· B (dot product of two vector functions), 



1.2 Differential Calculus 21 

and two ways to make a vector: 

fA (scalar times vector), 

Ax B (cross product of two vectors). 

Accordingly, there are six product rules, two for gradients: 

(i) V(fg) = fVg+gVJ, 

(ii) v (A . B) = A X (V X B) + B X (V X A) + (A . V)B + (B . V)A, 

two for divergences: 

(iii) V ·(fA)= f(V ·A)+ A· (V f), 

(iv) v. (A X B)= B. (V X A)- A. (V X B), 

and two for curls: 

(v) V x (fA)= f(V x A)- Ax (V f), 

(vi) V x (Ax B)= (B · V)A- (A· V)B + A(V ·B)- B(V ·A). 

You will be using these product rules so frequently that I have put them inside the 
front cover for easy reference. The proofs come straight from the product rule for 
ordinary derivatives. For instance, 

a a a 
V · (fA) = - (fAx) + - (fAy) + - (f Az) ax ay az 

=(ajAx+ 1 aAx) + (aj A + 1 aAy) + (aj Az + 1 aAz) 
ax ax ay y ay az az 

= (V f) · A + f (V · A). 

It is also possible to formulate three quotient rules: 

v(f)=gVJ~JVg' 

V. (~) _ g(V ·A)- A· (Vg) 
g - g2 ' 

v X (~) = g(V X A)+ A X (Vg). 
g g2 

However, since these can be obtained quickly from the corresponding product 
rules, there is no point in listing them separately. 
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Problem 1.21 Prove product rules (i), (iv), and (v). 

Problem 1.22 

(a) If A and B are two vector functions, what does the expression (A · V)B mean? 
(That is, what are its x, y, and z components, in terms of the Cartesian compo­
nents of A, B, and V?) 

(b) Compute (r · V)r, where r is the unit vector defined in Eq. 1.21. 

(c) For the functions in Prob. 1.15, evaluate (va · V)vb. 

Problem 1.23 (For masochists only.) Prove product rules (ii) and (vi). Refer to 
Prob. 1.22 for the definition of (A · V)B. 

Problem 1.24 Derive the three quotient rules. 

Problem 1.25 

(a) Check product rule (iv) (by calculating each term separately) for the functions 

A = Xi + 2y y + 3z z; 

(b) Do the same for product rule (ii). 

(c) Do the same for rule (vi). 

1.2.7 • Second Derivatives 

B = 3yi- 2xy. 

The gradient, the divergence, and the curl are the only first derivatives we can 
make with V; by applying V twice, we can construct five species of second deriva­
tives. The gradient VT is a vector, so we can take the divergence and curl of it: 

(1) Divergence of gradient: V · (VT). 

(2) Curl of gradient: V x (VT). 

The divergence V · v is a scalar-all we can do is take its gradient: 

(3) Gradient of divergence: V (V · v). 

The curl V x v is a vector, so we can take its divergence and curl: 

(4) Divergence of curl: V · (V x v). 

(5) Curl of curl: V x (V x v). 

This exhausts the possibilities, and in fact not all of them give anything new. 
Let's consider them one at a time: 

(1) 
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This object, which we write as V2T for short, is called the Laplacian ofT; we 
shall be studying it in great detail later on. Notice that the Laplacian of a scalar 
T is a scalar. Occasionally, we shall speak of the Laplacian of a vector, V2v. By 
this we mean a vector quantity whose x-component is the Laplacian of Vx, and 
so on:8 

This is nothing more than a convenient extension of the meaning of V2• 

(2) The curl of a gradient is always zero: 

v X (VT) = 0. 

(1.43) 

(1.44) 

This is an important fact, which we shall use repeatedly; you can easily prove it 
from the definition of V, Eq. 1.39. Beware: You might think Eq. 1.44 is "obvi­
ously" true-isn't it just (V x V)T, and isn't the cross product of any vector (in 
this case, V) with itself always zero? This reasoning is suggestive, but not quite 
conclusive, since V is an operator and does not "multiply" in the usual way. The 
proof of Eq. 1.44, in fact, hinges on the equality of cross derivatives: 

a (aT) a (aT) 
ax ay = ay ~ · (1.45) 

If you think I'm being fussy, test your intuition on this one: 

(VT) X (VS). 

Is that always zero? (It would be, of course, if you replaced the V's by an ordinary 
vector.) 

(3) V (V · v) seldom occurs in physical applications, and it has not been given 
any special name of its own-it's just the gradient of the divergence. Notice 
that V (V · v) is not the same as the Laplacian of a vector: V2v = (V · V)v f. 
V(V · v). 

(4) The divergence of a curl, like the curl of a gradient, is always zero: 

V · (V X v) = 0. (1.46) 

You can prove this for yourself. (Again, there is a fraudulent short-cut proof, using 
the vector identity A · (B x C) = (A x B) · C.) 

(5) As you can check from the definition of V: 

V x (V x v) = V(V · v)- V2v. (1.47) 

So curl-of-curl gives nothing new; the first term is just number (3), and the sec­
ond is the Laplacian (of a vector). (In fact, Eq. 1.47 is often used to define the 

8In curvilinear coordinates, where the unit vectors themselves depend on position, they too must be 
differentiated (see Sect. 1.4.1). 
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Laplacian of a vector, in preference to Eq. 1.43, which makes explicit reference 
to Cartesian coordinates.) 

Really, then, there are just two kinds of second derivatives: the Laplacian 
(which is of fundamental importance) and the gradient-of-divergence (which 
we seldom encounter). We could go through a similar ritual to work out third 
derivatives, but fortunately second derivatives suffice for practically all physical 
applications. 

A final word on vector differential calculus: It all flows from the operator V, 
and from taking seriously its vectorial character. Even if you remembered only 
the definition of V, you could easily reconstruct all the rest. 

Problem 1.26 Calculate the Laplacian of the following functions: 

(a) Ta = x 2 + 2xy + 3z + 4. 

(b) Tb = sinx siny sinz. 

(c) Tc = e-sx sin4y cos 3z. 

(d) v = x2 x + 3xz2 y- 2xzZ. 

Problem 1.27 Prove that the divergence of a curl is always zero. Check it for func­
tion Vain Prob. 1.15. 

Problem 1.28 Prove that the curl of a gradient is always zero. Check it for function 
(b) in Pro b. 1.11. 

1.3 • INTEGRAL CALCULUS 

1.3.1 • Line, Surface, and Volume Integrals 

In electrodynamics, we encounter several different kinds of integrals, among 
which the most important are line (or path) integrals, surface integrals (or 
flux), and volume integrals. 

(a) Line Integrals. A line integral is an expression of the form 

i\. dl, (1.48) 

where vis a vector function, dl is the infinitesimal displacement vector (Eq. 1.22), 
and the integral is to be carried out along a prescribed path P from point a to point 
b (Fig. 1.20). If the path in question forms a closed loop (that is, if b = a), I shall 
put a circle on the integral sign: 

f v. dl. (1.49) 

At each point on the path, we take the dot product of v (evaluated at that point) 
with the displacement dl to the next point on the path. To a physicist, the most 
familiar example of a line integral is the work done by a force F: W = J F · dl. 

Ordinarily, the value of a line integral depends critically on the path taken from 
a to b, but there is an important special class of vector functions for which the line 
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integral is independent of path and is determined entirely by the end points. It will 
be our business in due course to characterize this special class of vectors. (A force 
that has this property is called conservative.) 

Example 1.6. Calculate the line integral of the function v = y2 x + 2x (y + 1) y 
from the point a= (1, 1, 0) to the point b = (2, 2, 0), along the paths (1) and (2) 
in Fig. 1.21. What is f v · dl for the loop that goes from a to b along (1) and 
returns to a along (2)? 

Solution 
As always, dl = dx x + dy y + dz Z. Path (1) consists of two parts. Along the 
"horizontal" segment, dy = dz = 0, so 

(i) dl = dx x, y = 1, v · dl = y2 dx = dx, so J v · dl = J1
2 

dx = 1. 

On the "vertical" stretch, dx = dz = 0, so 

(ii) dl = dyy, x = 2, v · dl = 2x(y + 1)dy = 4(y + 1)dy, so 

f v . dl = 41
2 

(y + 1) dy = 10. 

By path (1), then, 

1 b v . dl = 1 + 10 = 11. 

Meanwhile, on path (2) x = y, dx = dy, and dz = 0, so 
dl = dx x + dx y, v · dl = x 2 dx + 2x (x + 1) dx = (3x 2 + 2x) dx, 
and 

lb v · dl = 1
2 

(3x 2 + 2x) dx = (x 3 + x2)1~ = 10. 

(The strategy here is to get everything in terms of one variable; I could just as well 
have eliminated x in favor of y.) 
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For the loop that goes out (1) and back (2), then, 

f v . dl = 11 - 10 = 1. 

(b) Surface Integrals. A surface integral is an expression of the form 

l v·da, (1.50) 

where v is again some vector function, and the integral is over a specified surface 
S. Here da is an infinitesimal patch of area, with direction perpendicular to the 
surface (Fig. 1.22). There are, of course, two directions perpendicular to any 
surface, so the sign of a surface integral is intrinsically ambiguous. If the surface 
is closed (forming a "balloon"), in which case I shall again put a circle on the 
integral sign 

fv·da, 

then tradition dictates that "outward" is positive, but for open surfaces it's arbi­
trary. If v describes the flow of a fluid (mass per unit area per unit time), then 
J v · da represents the total mass per unit time passing through the surface­
hence the alternative name, "flux." 

Ordinarily, the value of a surface integral depends on the particular surface 
chosen, but there is a special class of vector functions for which it is independent 
of the surface and is determined entirely by the boundary line. An important task 
will be to characterize this special class of functions. 

y y 

X 

FIGURE 1.22 FIGURE 1.23 

Example 1.7. Calculate the surface integral ofv = 2xz x + (x+2) y + y(z 2 -3) 
z over five sides (excluding the bottom) of the cubical box (side 2) in Fig. 1.23. 
Let "upward and outward" be the positive direction, as indicated by the arrows. 

Solution 
Taking the sides one at a time: 



1.3 Integral Calculus 

(i) x = 2, da = dy dz i, v · da = 2xz dy dz = 4z dy dz, so 

J v · da = 41
2 

dy 1
2 

z dz = 16. 

(ii) x = 0, da = -dydzi, v · da = -2xzdydz = 0, so 

J v-da=O. 

(iii) y = 2, da = dx dz y, v · da = (x + 2) dx dz, so 

J v · da = 1
2 

(x + 2) dx 1
2 

dz = 12. 

(iv) y = 0, da = -dx dz y, v · da = -(x + 2) dx dz, so 

J v · da = -1
2 

(x + 2) dx 1
2 

dz = -12. 

(v) z = 2, da = dx dy i, v · da = y(z2 - 3) dx dy = y dx dy, so 

J v · da = 1
2 

dx 1
2 

y dy = 4. 

The total flux is 

f v · da = 16 + 0 + 12- 12 + 4 = 20. 
}surface 

(c) Volume Integrals. A volume integral is an expression of the form 

fv T dr, 

27 

(1.51) 

where Tis a scalar function and dr is an infinitesimal volume element. In Carte-
sian coordinates, 

dr=dxdydz. (1.52) 

For example, if T is the density of a substance (which might vary from point to 
point), then the volume integral would give the total mass. Occasionally we shall 
encounter volume integrals of vector functions: 

J vdr = J (vx i + Vy y + Vz i)dr = i J Vxdr + y J Vydr + z J Vzdr; 

(1.53) 

because the unit vectors (i, y, and z) are constants, they come outside the integral. 
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Example 1.8. Calculate the volume integral of T = xyz2 over the prism in 
Fig. 1.24. 

Solution 
You can do the three integrals in any order. Let's do x first: it runs from 0 to 
(1 - y), then y (it goes from 0 to 1), and finally z (0 to 3): 

z 3 

y 

X 

FIGURE 1.24 

Problem 1.29 Calculate the line integral of the function v = x 2 i + 2yz y + y2 z 
from the origin to the point (1,1,1) by three different routes: 

(a) (0, 0, 0) ~ (1, 0, 0) ~ (1, 1, 0) ~ (1, 1, 1). 

(b) (0, 0, 0) ~ (0, 0, 1) ~ (0, 1, 1) ~ (1, 1, 1). 

(c) The direct straight line. 

(d) What is the line integral around the closed loop that goes out along path (a) and 
back along path (b)? 

Problem 1.30 Calculate the surface integral of the function in Ex. 1.7, over the bot­
tom of the box. For consistency, let "upward" be the positive direction. Does the 
surface integral depend only on the boundary line for this function? What is the 
total flux over the closed surface of the box (including the bottom)? [Note: For the 
closed surface, the positive direction is "outward," and hence "down," for the bottom 
face.] 

Problem 1.31 Calculate the volume integral of the function T = z2 over the tetra­
hedron with comers at (0,0,0), (1,0,0), (0,1,0), and (0,0,1). 
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1.3.2 • The Fundamental Theorem of Calculus 

Suppose f (x) is a function of one variable. The fundamental theorem of calcu­
lus says: 

ib (~~) dx = f(b)- f(a). 

In case this doesn't look familiar, I'll write it another way: 

ib F(x) dx = f(b)- f(a), 

(1.54) 

where dffdx = F(x). The fundamental theorem tells you how to integrate F(x): 
you think up a function f (x) whose derivative is equal to F. 

Geometrical Interpretation: According to Eq. 1.33, df = (df I dx )dx is the 
infinitesimal change in f when you go from (x) to (x + dx). The fundamental 
theorem (Eq. 1.54) says that if you chop the interval from a to b (Fig. 1.25) into 
many tiny pieces, dx, and add up the increments df from each little piece, the 
result is (not surprisingly) equal to the total change in f: f(b) - f(a). In other 
words, there are two ways to determine the total change in the function: either 
subtract the values at the ends or go step-by-step, adding up all the tiny increments 
as you go. You'll get the same answer either way. 

Notice the basic format of the fundamental theorem: the integral of a derivative 
over some region is given by the value of the function at the end points (bound­
aries). In vector calculus there are three species of derivative (gradient, diver­
gence, and curl), and each has its own "fundamental theorem," with essentially 
the same format. I don't plan to prove these theorems here; rather, I will explain 
what they mean, and try to make them plausible. Proofs are given in Appendix A. 

1.3.3 • The Fundamental Theorem for Gradients 

Suppose we have a scalar function of three variables T (x, y, z). Starting at point 
a, we move a small distance dl1 (Fig. 1.26). According to Eq. 1.37, the function 
T will change by an amount 

f(b) 

f(a) 

f(x) 

? 
I I 
I I 
I I 

a dx b x 

FIGURE 1.25 

dT = (VT) · dl1. 

z 

b 

y 

FIGURE 1.26 
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Now we move a little further, by an additional small displacement dh; the incre­
mental change in Twill be (VT) · dh. In this manner, proceeding by infinitesimal 
steps, we make the journey to point b. At each step we compute the gradient ofT 
(at that point) and dot it into the displacement dl. .. this gives us the change in T. 
Evidently the total change in Tin going from a to b (along the path selected) is 

1b (VT) · dl = T(b)- T(a). (1.55) 

This is the fundamental theorem for gradients; like the "ordinary" fundamental 
theorem, it says that the integral (here a line integral) of a derivative (here the 
gradient) is given by the value of the function at the boundaries (a and b). 

Geometrical Interpretation: Suppose you wanted to determine the height of 
the Eiffel Tower. You could climb the stairs, using a ruler to measure the rise at 
each step, and adding them all up (that's the left side of Eq. 1.55), or you could 
place altimeters at the top and the bottom, and subtract the two readings (that's 
the right side); you should get the same answer either way (that's the fundamental 
theorem). 

Incidentally, as we found in Ex. 1.6, line integrals ordinarily depend on the 
path taken from a to b. But the right side of Eq. 1.55 makes no reference to the 
path-only to the end points. Evidently, gradients have the special property that 
their line integrals are path independent: 

Corollary 1: J:(VT) · dl is independent of the path taken from a to b. 

Corollary 2: rf (VT) · dl = 0, since the beginning and end points 
are identical, and hence T(b)- T(a) = 0. 

Example 1.9. Let T = xy2 , and take point a to be the origin (0, 0, 0) and b the 
point (2, 1, 0). Check the fundamental theorem for gradients. 

Solution 
Although the integral is independent of path, we must pick a specific path 
in order to evaluate it. Let's go out along the x axis (step i) and then up 
(step ii) (Fig. 1.27). As always, dl = dx i + dy y + dz z; VT = y2 i + 2xy y. 

(i) y = 0; dl = dx i, VT · dl = y2 dx = 0, so 

1 VT ·dl = 0. 

(ii) x = 2; dl = dyy, VT · dl = 2xydy = 4ydy, so 

fvT·dl= t4ydy=2y2
1

1
=2. hi ~ 0 
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The total line integral is 2. Is this consistent with the fundamental theorem? Yes: 
T(b)- T(a) = 2-0 = 2. 

Now, just to convince you that the answer is independent of path, let me calcu­
late the same integral along path iii (the straight line from a to b): 

(iii) y = !x, dy = !dx, VT · dl = y2 dx + 2xydy = ~x2 dx, so 

1 VT · dl = {
2 

~x2 dx = -!x3
1

2 
= 2. 

m Jo o 

Problem 1.32 Check the fundamental theorem for gradients, using T = x2 + 
4xy + 2yz3 , the points a= (0, 0, 0), b = (1, 1, 1), and the three paths in Fig. 1.28: 

(a) (0, 0, 0) ~ (1, 0, 0) ~ (1, 1, 0) ~ (1, 1, 1); 

(b) (0, 0, 0) ~ (0, 0, 1) ~ (0, 1, 1) ~ (1, 1, 1); 

(c) the parabolic path z = x2 ; y = x. 

z 
z 

y y 

X (a) X (b) 

FIGURE 1.28 

1.3.4 • The Fundamental Theorem for Divergences 

The fundamental theorem for divergences states that: 

J (V · v) dr = f v · da. 

v s 

X 

' I 
'~ 

(c) 

(1.56) 
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In honor, I suppose, of its great importance, this theorem has at least three special 
names: Gauss's theorem, Green's theorem, or simply the divergence theorem. 
Like the other "fundamental theorems," it says that the integral of a derivative (in 
this case the divergence) over a region (in this case a volume, V) is equal to the 
value of the function at the boundary (in this case the surface S that bounds the 
volume). Notice that the boundary term is itself an integral (specifically, a surface 
integral). This is reasonable: the "boundary" of a line is just two end points, but 
the boundary of a volume is a (closed) surface. 

Geometrical Interpretation: If v represents the flow of an incompressible fluid, 
then the flux of v (the right side of Eq. 1.56) is the total amount of fluid passing out 
through the surface, per unit time. Now, the divergence measures the "spreading 
out" of the vectors from a point-a place of high divergence is like a "faucet," 
pouring out liquid. If we have a bunch of faucets in a region filled with incom­
pressible fluid, an equal amount of liquid will be forced out through the bound­
aries of the region. In fact, there are two ways we could determine how much is 
being produced: (a) we could count up all the faucets, recording how much each 
puts out, or (b) we could go around the boundary, measuring the flow at each 
point, and add it all up. You get the same answer either way: 

j (faucets within the volume)= f (flow out through the surface). 

This, in essence, is what the divergence theorem says. 

Example 1.10. Check the divergence theorem using the function 

v = y2 i + (2xy + z2
) y + (2yz) z 

and a unit cube at the origin (Fig. 1.29). 

Solution 
In this case 

V · v = 2(x + y), 

and 

j 2(x + y)dr = 2 t t t (x + y)dxdydz, v lo lo lo 

fo\x+y)dx=~+y, fo\~+y)dy=l, fo
1

ldz=l. 

Thus, 

J V ·vdr = 2. 
v 
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So much for the left side of the divergence theorem. To evaluate the surface 
integral we must consider separately the six faces of the cube: 

(i) 

(ii) 

(iii) 

(iv) 

(v) j v · da = 11 11 

2y dx dy = 1. 

(vi) J v · da = -1 111 

Odx dy = 0. 

So the total flux is: 

f v · da = t - t + 1 - t + 1 + 0 = 2, 
s 

as expected. 

Problem 1.33 Test the divergence theorem for the function v = (xy) x + (2yz) y + 
(3zx) Z. Take as your volume the cube shown in Fig. 1.30, with sides of length 2. 
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1.3.5 • The Fundamental Theorem for Curls 

The fundamental theorem for curls, which goes by the special name of Stokes' 
theorem, states that 

j (V x v) · da = f v . dl. (1.57) 

s 'P 

As always, the integral of a derivative (here, the curl) over a region (here, a patch 
of surface, S) is equal to the value of the function at the boundary (here, the 
perimeter of the patch, P). As in the case of the divergence theorem, the boundary 
term is itself an integral-specifically, a closed line integral. 

Geometrical Interpretation: Recall that the curl measures the "twist" of the 
vectors v; a region of high curl is a whirlpool-if you put a tiny paddle wheel 
there, it will rotate. Now, the integral of the curl over some surface (or, more 
precisely, the flux of the curl through that surface) represents the "total amount 
of swirl," and we can determine that just as well by going around the edge and 
finding how much the flow is following the boundary (Fig. 1.31). Indeed, :f v · dl 
is sometimes called the circulation of v. 

You may have noticed an apparent ambiguity in Stokes' theorem: concerning 
the boundary line integral, which way are we supposed to go around (clockwise 
or counterclockwise)? If we go the "wrong" way, we'll pick up an overall sign 
error. The answer is that it doesn't matter which way you go as long as you are 
consistent, for there is a compensating sign ambiguity in the surface integral: 
Which way does da point? For a closed surface (as in the divergence theorem), 
da points in the direction of the outward normal; but for an open surface, which 
way is "out"? Consistency in Stokes' theorem (as in all such matters) is given by 
the right-hand rule: if your fingers point in the direction of the line integral, then 
your thumb fixes the direction of da (Fig. 1.32). 

Now, there are plenty of surfaces (infinitely many) that share any given bound­
ary line. Twist a paper clip into a loop, and dip it in soapy water. The soap film 
constitutes a surface, with the wire loop as its boundary. If you blow on it, the soap 
film will expand, making a larger surface, with the same boundary. Ordinarily, a 
flux integral depends critically on what surface you integrate over, but evidently 
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FIGURE 1.31 FIGURE 1.32 

thisisnotthecasewithcurls.ForStokes' theoremsaysthatj(V x v) ·dais equal 
to the line integral of v around the boundary, and the latter makes no reference to 
the specific surface you choose. 

Corollary 1: j(V x v) · da depends only on the boundary line, not 
on the particular surface used. 

Corollary 2: :f (V x v) · da = 0 for any closed surface, since the 
boundary line, like the mouth of a balloon, shrinks 
down to a point, and hence the right side of Eq. 1.57 
vanishes. 

These corollaries are analogous to those for the gradient theorem. We will develop 
the parallel further in due course. 

Example 1.11. Suppose v = (2xz + 3y2)y + (4yz2)Z. Check Stokes' theorem 
for the square surface shown in Fig. 1.33. 

Solution 
Here 

V x v = (4z2
- 2x) i: + 2z z and da = dy dz :i. 

z (iii) 

(iv) (ii) 

X 
(i) y 

FIGURE 1.33 

(In saying that da points in the x direction, we are committing ourselves to a 
counterclockwise line integral. We could as well write da = -dy dz :i, but then 
we would be obliged to go clockwise.) Since x = 0 for this surface, 

jcvxv)·da= 1
1

1
1

4z2 dydz=~. 



36 Chapter 1 Vector Analysis 

Now, what about the line integral? We must break this up into four segments: 

(i) X =0, z = 0, v. dl = 3y2 dy, J v · dl = f0
1 

3y2 dy = 1, 

(ii) X= 0, y = 1, v · dl = 4z2 dz, J J/ 2 4 v·dl= 0 4z dz= 3, 

(iii) X= 0, z = 1, v. dl = 3y2 dy, Jv · dl = J1°3y2 dy = -1, 

(iv) X= 0, y = 0, v. dl = 0, J v · dl = f1° 0 dz = 0. 

So 

f 4 4 v. dl = 1 + 3- 1 + 0 = 3" 

It checks. 
A point of strategy: notice how I handled step (iii). There is a temptation to 

write dl = -dy y here, since the path goes to the left. You can get away with this, 
if you absolutely insist, by running the integral from 0 ---+ 1. But it is much safer 
to say dl = dx i + dy y + dz i always (never any minus signs) and let the limits 
of the integral take care of the direction. 

Problem 1.34 Test Stokes' theorem for the function v = (xy) i + (2yz) y + 
(3zx) z, using the triangular shaded area of Fig. 1.34. 

Problem 1.35 Check Corollary 1 by using the same function and boundary line as 
in Ex. 1.11, but integrating over the five faces of the cube in Fig. 1.35. The back of 
the cube is open. 

z 
2 

2 y y 
X 
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1.3.6 • Integration by Parts 

The technique known (awkwardly) as integration by parts exploits the product 
rule for derivatives: 

d (dg) (df) - (fg) = f - + g - . 
dx dx dx 



1.3 Integral Calculus 37 

Integrating both sides, and invoking the fundamental theorem: 

1b d b 1b (dg) 1b (df) a dx (fg) dx = fgla = a f dx dx + a g dx dx, 

or 

1b (dg) 1b (df) b a f dx dx =- a g dx dx + fgla· (1.58) 

That's integration by parts. It applies to the situation in which you are called upon 
to integrate the product of one function (f) and the derivative of another (g); it 
says you can transfer the derivative from g to f, at the cost of a minus sign and a 
boundary term. 

Example 1.12. Evaluate the integral 

Solution 
The exponential can be expressed as a derivative: 

d 
e-x = dx (-e-x) ; 

in this case, then, f(x) = x, g(x) =-e-x, and dfjdx = 1, so 

We can exploit the product rules of vector calculus, together with the appro­
priate fundamental theorems, in exactly the same way. For example, integrating 

V ·(fA) = f(V ·A)+ A· (V f) 

over a volume, and invoking the divergence theorem, yields 

f V ·(fA) dr = f f(V ·A) dr +fA· (V f) dr = f fA· da, 

or 

fv f(V ·A) dr = - fv A· (V f) dr + t fA· da. (1.59) 

Here again the integrand is the product of one function (f) and the derivative (in 
this case the divergence) of another (A), and integration by parts licenses us to 
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transfer the derivative from A to f (where it becomes a gradient), at the cost of a 
minus sign and a boundary term (in this case a surface integral). 

You might wonder how often one is likely to encounter an integral involving 
the product of one function and the derivative of another; the answer is surpris­
ingly often, and integration by parts turns out to be one of the most powerful tools 
in vector calculus. 

Problem 1.36 

(a) Show that 

l f(V x A)· da = l[A x (V f)]· da+ £fA· dl. (1.60) 

(b) Show that 

fv B · (V x A) dr: = fv A· (V x B) dr: + t (A x B) . da. (1.61) 

1.4 • CURVILINEAR COORDINATES 

1.4.1 • Spherical Coordinates 

You can label a point P by its Cartesian coordinates (x, y, z), but sometimes it 
is more convenient to use spherical coordinates (r, (), ¢); r is the distance from 
the origin (the magnitude of the position vector r), () (the angle down from the 
z axis) is called the polar angle, and ¢ (the angle around from the x axis) is the 
azimuthal angle. Their relation to Cartesian coordinates can be read from 
Fig. 1.36: 

x = r sin() cos¢, y = r sin() sin¢, z = r cosO. (1.62) 

Figure 1.36 also shows three unit vectors, r, 0, ~.pointing in the direction of 
increase of the corresponding coordinates. They constitute an orthogonal (mutu­
ally perpendicular) basis set (just like x, y, z), and any vector A can be expressed 
in terms of them, in the usual way: 

A = Ar r + Ae 0 + Aif> ~; (1.63) 

An A8 , and Aif> are the radial, polar, and azimuthal components of A. In terms of 
the Cartesian unit vectors, 

~ = sin() cos ¢ x + sin() sin¢ y + cos() i, } 
(J = cos () cos ¢ x + cos () sin¢ y - sin() i, 
~ = - sin¢ x + cos¢ y, 

(1.64) 

as you can check for yourself (Prob. 1.38). I have put these formulas inside the 
back cover, for easy reference. 
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But there is a poisonous snake lurking here that I'd better warn you about: 
r, 0, and~ are associated with a particular point P, and they change direction 
as P moves around. For example, r always points radially outward, but "radially 
outward" can be the x direction, the y direction, or any other direction, depend­
ing on where you are. In Fig. 1.37, A= y and B = -y, and yet both of them 
would be written as r in spherical coordinates. One could take account of this 
by explicitly indicating the point of reference: r(O, ¢), 0(0, ¢), ~(0, ¢),but this 
would be cumbersome, and as long as you are alert to the problem, I don't think it 
will cause difficulties. 9 In particular, do not naYvely combine the spherical compo­
nents of vectors associated with different points (in Fig. 1.37, A + B = 0, not 2r, 
and A· B = -1, not+ 1). Beware of differentiating a vector that is expressed in 
spherical coordinates, since the unit vectors themselves are functions of position 
(arjaO = 0, for example). And do not taker, 0, and~ outside an integral, as I 
did with i:, y, and z in Eq. 1.53. In general, if you're uncertain about the validity 
of an operation, rewrite the problem using Cartesian coordinates, for which this 
difficulty does not arise. 

An infinitesimal displacement in the r direction is simply dr (Fig. 1.38a), just 
as an infinitesimal element of length in the x direction is dx: 

dlr = dr. (1.65) 

z 

y 

FIGURE 1.37 

91 claimed back at the beginning that vectors have no location, and I'll stand by that. The vectors 
themselves live "out there," completely independent of our choice of coordinates. But the notation we 
use to represent them does depend on the point in question, in curvilinear coordinates. 
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FIGURE 1.38 

On the other hand, an infinitesimal element of length in the 0 direction (Fig. 1.38b) 
is not just dO (that's an angle-it doesn't even have the right units for a length); 
rather, 

dlo = r dO. (1.66) 

Similarly, an infinitesimal element of length in the~ direction (Fig. 1.38c) is 

dlt/J = r sinO dl/J. (1.67) 

Thus the general infinitesimal displacement dl is 

di = dr r + r dO 0 + r sin 0 dl/J ~. (1.68) 

This plays the role (in line integrals, for example) that dl = dx i + dy y + dz z 
played in Cartesian coordinates. 

The infinitesimal volume element dr, in spherical coordinates, is the product 
of the three infinitesimal displacements: 

dr = dlr dlo dlcp = r2 sin 0 dr dO dl/J. (1.69) 

I cannot give you a general expression for suiface elements da, since these depend 
on the orientation of the surface. You simply have to analyze the geometry for any 
given case (this goes for Cartesian and curvilinear coordinates alike). If you are 
integrating over the surface of a sphere, for instance, then r is constant, whereas 
0 and l/J change (Fig. 1.39), so 

da1 = dlo dlt/J r = r2 sinO dO dl/J r. 
On the other hand, if the surface lies in the xy plane, say, so that 0 is constant (to 
wit: n /2) while r and l/J vary, then 

da2 = dlr dlt/J 0 = r dr dl/J 0. 
Notice, finally, that r ranges from 0 to oo, l/J from 0 to 2n, and 0 from 0 ton 

(not 2n-that would count every point twice). 10 

10 Alternatively, you could run cfJ from 0 ton (the "eastern hemisphere") and cover the "western hemi­
sphere" by extending () from n up to 2n. But this is very bad notation, since, among other things, 
sin() will then run negative, and you'll have to put absolute value signs around that term in volume 
and surface elements (area and volume being intrinsically positive quantities). 
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FIGURE 1.39 

Example 1.13. Find the volume of a sphere of radius R. 

Solution 

V = J dr = 1R {rr fzrr r2 sinO dr d(} d¢ 
r=O Jo=O Jt/1=0 

= (foR r2 dr) (forr sin(} d(}) (fozrr d¢) 

= ( ~
3

) (2)(2n) = ~n R3 

(not a big surprise). 
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So far we have talked only about the geometry of spherical coordinates. Now 
I would like to "translate" the vector derivatives (gradient, divergence, curl, and 
Laplacian) into r, (}, ¢ notation. In principle, this is entirely straightforward: in 
the case of the gradient, 

aT A aT A aT A 

VT = - x+ - y+ - z, 
ax ay az 

for instance, we would first use the chain rule to expand the partials: 

The terms in parentheses could be worked out from Eq. 1.62---or rather, the in­
verse of those equations (Prob. 1.37). Then we'd do the same for aT jay and 
aT jaz. Finally, we'd substitute in the formulas fori, y, and z in terms of r, 0, 
and ~ (Prob. 1.38). It would take an hour to figure out the gradient in spherical 
coordinates by this brute-force method. I suppose this is how it was first done, but 
there is a much more efficient indirect approach, explained in Appendix A, which 
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has the extra advantage of treating all coordinate systems at once. I described the 
"straightforward" method only to show you that there is nothing subtle or mys­
terious about transforming to spherical coordinates: you're expressing the same 
quantity (gradient, divergence, or whatever) in different notation, that's all. 

Here, then, are the vector derivatives in spherical coordinates: 

Gradient: 

aT A 1 aT A 1 aT A 

VT = - r + --0 + - . ---l/1. 
ar r ao rsmO a¢ 

(1.70) 

Divergence: 

1 a 2 1 a . 1 avq, 
V · v = --(r Vr) + - .--(smOvo) + - .--. 

r2 ar rsmOaO rsmO a¢ 
(1.71) 

Curl: 

1 [ a 0 avo J A 1 [ 1 avr a J A V x v = - .- - (smOvq,)- - r + - -.-- - - (rvq,) 0 
r smO ao a¢ r smO a¢ ar 

+- - (rvo)- - q,. 1 [ a avr J A 

r ar ao 
(1.72) 

Laplacian: 

V2T = _.!_~ (r2aT) + _1_~ (sinO aT)+ 1 a2T (1.73) 
r2 ar ar r2 sinO ao ao r2 sin2 0 a¢2 . 

For reference, these formulas are listed inside the front cover. 

Problem 1.37 Find formulas for r, e, ¢ in terms of X, y, z (the inverse, in other 
words, ofEq. 1.62). 

• Problem 1.38 Express the unit vectors r, 8, ~ in terms of i, y, z (that is, derive 

Eq. 1.64). Check your answers several ways (r. r:!::. 1, 8. ~ :!::. 0, r X 8:!::. ~ •.. . ). 
Also work out the inverse formulas, giving i, y, z in terms ofr, 8, ~(and e, ¢). 

• Problem 1.39 

(a) Check the divergence theorem for the function v1 = r 2r, using as your volume 
the sphere of radius R, centered at the origin. 

(b) Do the same for v2 = (1jr2)r. (If the answer surprises you, look back at 
Prob. 1.16.) 

Problem 1.40 Compute the divergence of the function 

v = (r cosO) r + (r sinO) 8 + (r sine cos¢)~-

Check the divergence theorem for this function, using as your volume the inverted 
hemispherical bowl of radius R, resting on the xy plane and centered at the origin 
(Fig. 1.40). 
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Problem 1.41 Compute the gradient and Laplacian of the function T = r(cose + 
sine cos</>). Check the Laplacian by converting T to Cartesian coordinates and 
using Eq. 1.42. Test the gradient theorem for this function, using the path shown 
in Fig. 1.41, from (0, 0, 0) to (0, 0, 2). 

1.4.2 • Cylindrical Coordinates 

The cylindrical coordinates (s, l/J, z) of a point Pare defined in Fig. 1.42. Notice 
that ljJ has the same meaning as in spherical coordinates, and z is the same as 
Cartesian; s is the distance to P from the z axis, whereas the spherical coordinate 
r is the distance from the origin. The relation to Cartesian coordinates is 

x = scosljJ, y = s sinljJ, z = z. (1.74) 

The unit vectors (Prob. 1.42) are 

cosljJ i + sinljJ y, } 
- sin ljJ i + cos ljJ y, 
z. 

(1.75) 

The infinitesimal displacements are 

dis= ds, dlc/J = sdljJ, dlz = dz, (1.76) 

z 

: / y 
___ !_ ______ .:-.:::~.!./ 

X 

FIGURE 1.42 
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so 

dl = ds s + s d¢ ~ + dz z, (1.77) 

and the volume element is 

dr = sdsd¢dz. (1.78) 

The range of s is 0 --+ oo, ¢ goes from 0 --+ 2rr, and z from - oo to oo. 
The vector derivatives in cylindrical coordinates are: 

Gradient: 

aT A 1 aT A aT A 

VT = - s+ -- l/J+ - z. 
as s a¢ az 

(1.79) 

Divergence: 

1 a 1 avrp avz 
V · v = --(svs) + -- + - . 

s as s a¢ az 
(1.80) 

Curl: 

(
1avz avrp)A (avS avz)A 1[a avSJA V x v = -- - - s + - - - l/J + - - (svrp) - - z. 
s a¢ az az as s as a¢ 

(1.81) 

Laplacian: 

(1.82) 

These formulas are also listed inside the front cover. 

Problem 1.42 Express the cylindrical unit vectors s, ~. z in terms of i, y, z (that is, 
derive Eq. 1.75). "Invert" your formulas to get i, y, z in terms ofs, ~. z (and l/J). 

z 

y 

FIGURE 1.43 
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Problem 1.43 

(a) Find the divergence of the function 

v = s (2 + sin2 ¢) s + s sin¢ cos¢ ~ + 3z z. 

(b) Test the divergence theorem for this function, using the quarter-cylinder 
(radius 2, height 5) shown in Fig. 1.43. 

(c) Find the curl ofv. 

1.5 • THE DIRAC DELTA FUNCTION 

1.5.1 • The Divergence ofrjr2 

Consider the vector function 

1 A 

v= - r. 
r2 

(1.83) 

At every location, vis directed radially outward (Fig. 1.44); if ever there was a 
function that ought to have a large positive divergence, this is it. And yet, when 
you actually calculate the divergence (using Eq. 1.71), you get precisely zero: 

V · v = -- r - = --(1) = 0. 1a( 2 1) 1a 
r2 ar r 2 r 2 ar 

(1.84) 

(You will have encountered this paradox already, if you worked Prob. 1.16.) The 
plot thickens when we apply the divergence theorem to this function. Suppose 
we integrate over a sphere of radius R, centered at the origin (Prob. 1.38b); the 
surface integral is 

= (1~ sinO dO) (12

~ d¢) = 4n. 

~f/ 
~~ 
FIGURE 1.44 

(1.85) 
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But the volume integral, J V · v dr, is zero, if we are really to believe Eq. 1.84. 
Does this mean that the divergence theorem is false? What's going on here? 

The source of the problem is the point r = 0, where v blows up (and where, 
in Eq. 1.84, we have unwittingly divided by zero). It is quite true that V · v = 0 
everywhere except the origin, but right at the origin the situation is more com­
plicated. Notice that the surface integral (Eq. 1.85) is independent of R; if the 
divergence theorem is right (and it is), we should get j(V · v) dr = 4n for any 
sphere centered at the origin, no matter how small. Evidently the entire contribu­
tion must be coming from the point r = 0! Thus, V · v has the bizarre property 
that it vanishes everywhere except at one point, and yet its integral (over any 
volume containing that point) is 4n. No ordinary function behaves like that. (On 
the other hand, a physical example does come to mind: the density (mass per unit 
volume) of a point particle. It's zero except at the exact location of the particle, and 
yet its integral is finite-namely, the mass of the particle.) What we have stum­
bled on is a mathematical object known to physicists as the Dirac delta function. 
It arises in many branches of theoretical physics. Moreover, the specific problem 
at hand (the divergence of the function r j r 2) is not just some arcane curiosity-it 
is, in fact, central to the whole theory of electrodynamics. So it is worthwhile to 
pause here and study the Dirac delta function with some care. 

1.5.2 • The One-Dimensional Dirac Delta Function 

The one-dimensional Dirac delta function, o(x), can be pictured as an infinitely 
high, infinitesimally narrow "spike," with area 1 (Fig. 1.45). That is to say: 

o(x) = { 
0

• 
00, 

ifx-::f=O} 
ifx = 0 

i: o(x) dx = 1. 

o(x) 

.k"Area 1 

a 

FIGURE 1.45 

(1.86) 

(1.87) 

X 

11 Notice that the dimensions of~ (x) are one over the dimensions of its argument; if x is a length, ~ (x) 
carries the units m-1• 
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Technically, 8 (x) is not a function at all, since its value is not finite at x = 0; in the 
mathematical literature it is known as a generalized function, or distribution. It 
is, if you like, the limit of a sequence of functions, such as rectangles Rn(x), of 
height n and width 1/n, or isosceles triangles Tn(x), of height n and base 2/n 
(Fig. 1.46). 

If f(x) is some "ordinary" function (that is, not another delta function-in 
fact, just to be on the safe side, let's say that f (x) is continuous), then the product 
f(x)o(x) is zero everywhere except at x = O.lt follows that 

f(x)o(x) = f(O)o(x). (1.88) 

(This is the most important fact about the delta function, so make sure you under­
stand why it is true: since the product is zero anyway except at x = 0, we may as 
well replace f(x) by the value it assumes at the origin.) In particular 

/_: f(x)o(x) dx = f(O) /_: o(x) dx = f(O). (1.89) 

Under an integral, then, the delta function "picks out" the value off (x) at x = 0. 
(Here and below, the integral need not run from -oo to +oo; it is sufficient that 
the domain extend across the delta function, and -E to +E would do as well.) 

Of course, we can shift the spike from x = 0 to some other point, x = a 
(Fig. 1.47): 

o(x- a) 

__.-Area 1 

a X 

FIGURE 1.47 
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8(x- a)= { O, 
oo, 

if x :1 a } 100 

if x = a with -oo 8 (x - a) dx = 1. (1.90) 

Equation 1.88 becomes 

f(x)8(x- a) = f(a)8(x- a), (1.91) 

and Eq. 1.89 generalizes to 

i: f(x)8(x- a) dx = f(a). (1.92) 

Example 1.14. Evaluate the integral 

i 3 

x 38(x- 2) dx. 

Solution 
The delta function picks out the value of x 3 at the point x = 2, so the integral 
is 23 = 8. Notice, however, that if the upper limit had been 1 (instead of 3), the 
answer would be 0, because the spike would then be outside the domain of inte­
gration. 

Although 8 itself is not a legitimate function, integrals over 8 are perfectly 
acceptable. In fact, it's best to think of the delta function as something that is 
always intended for use under an integral sign. In particular, two expressions 
involving delta functions (say, D 1 (x) and D2 (x)) are considered equal if 12 

i: f(x)Dt(x) dx = i: j(x)D2(x) dx, (1.93) 

for all ("ordinary") functions f(x). 

Example 1.15. Show that 

1 
8(kx) = Tkl8(x), (1.94) 

where k is any (nonzero) constant. (In particular, 8( -x) = 8(x).) 

121 emphasize that the integrals must be equal for any f(x). Suppose D1(x) and Dz(x) actually 
differed, say, in the neighborhood of the point x = 17. Then we could pick a function f (x) that was 
sharply peaked about x = 17, and the integrals would not be equal. 
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Solution 
For an arbitrary test function f(x), consider the integral i: f(x)8(kx) dx. 

Changing variables, we let y = kx, so that x = yfk, and dx = 1/kdy. If k is 
positive, the integration still runs from -oo to +oo, but if k is negative, then 
x = oo implies y = -oo, and vice versa, so the order of the limits is reversed. 
Restoring the "proper" order costs a minus sign. Thus 

1
00 100 

dy 1 1 f(x)8(kx) dx = ± f(yf k)8(y) - = ± - f(O) = - f(O). 
-00 -00 k k lkl 

(The lower signs apply when k is negative, and we account for this neatly by 
putting absolute value bars around the final k, as indicated.) Under the integral 
sign, then, 8(kx) serves the same purpose as (1/lkl)8(x): 

1
00 

f(x)8(kx) dx = 100 

f(x) [+o(x)] dx. 
-oo -oo I I 

According to the criterion Eq. 1.93, therefore, 8(kx) and (1/lkl)8(x) are equal. 

Problem 1.44 Evaluate the following integrals: 

(a) I26
(3x2- 2x- 1) o(x- 3) dx. 

(b) I: COSX o(x- rr) dx. 

(c) I: x 38(x + 1)dx. 

(d) I~oo ln(x + 3) o(x + 2) dx. 

Problem 1.45 Evaluate the following integrals: 

(a) I~2 (2x + 3) 8(3x) dx. 

(b) I0\x
3 + 3x + 2) 8(1- x) dx. 

(c) I~ 1 9x28(3x + 1) dx. 

(d) I~oo o(x- b)dx. 

Problem 1.46 

(a) Show that 

d 
x dx (o(x)) = -o(x). 

[Hint: Use integration by parts.] 
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(b) Let () (x) be the step function: 

{ 

1, 
O(x) = 

0, 

Showthatd()jdx = o(x). 

1.5.3 • The Three-Dimensional Delta Function 

ifx>O }· 

ifx::::; 0 

It is easy to generalize the delta function to three dimensions: 

83 (r) = 8(x) 8(y) 8(z). 

(1.95) 

(1.96) 

(As always, r = x i + y y + z z is the position vector, extending from the origin 
to the point (x, y, z).) This three-dimensional delta function is zero everywhere 
except at (0, 0, 0), where it blows up. Its volume integral is 1: 

fall space 8
3
(r) dr = /_: /_: /_: 8(x) 8(y) 8(z) dx dy dz = 1. (1.97) 

And, generalizing Eq. 1.92, 

1 f(r)83(r- a) dr = f(a). 
all space 

(1.98) 

As in the one-dimensional case, integration with 8 picks out the value of the func­
tion f at the location of the spike. 

We are now in a position to resolve the paradox introduced in Sect. 1.5.1. 
As you will recall, we found that the divergence of rjr 2 is zero everywhere ex­
cept at the origin, and yet its integral over any volume containing the origin is a 
constant (to wit: 4n ). These are precisely the defining conditions for the Dirac 
delta function; evidently 

(1.99) 

More generally, 

(1.100) 

where, as always, 4 is the separation vector: 4 = r - r'. Note that differentiation 
here is with respect tor, while r' is held constant. Incidentally, since 

(1.101) 
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(Prob. 1.13b), it follows that 

Example 1.16. Evaluate the integral 

J = fv (r 2 + 2) V · ( : 2 ) d r:, 

where V is a sphere13 of radius R centered at the origin. 

Solution 1 
Use Eq. 1.99 to rewrite the divergence, and Eq. 1.98 to do the integral: 

J = fv (r2 + 2)4n83 (r) dr: = 4n(O + 2) = 8n. 

51 

(1.102) 

This one-line solution demonstrates something of the power and beauty of the 
delta function, but I would like to show you a second method, which is much 
more cumbersome but serves to illustrate the method of integration by parts 
(Sect. 1.3.6). 

Solution 2 
Using Eq. 1.59, we transfer the derivative from rjr 2 to (r 2 + 2): 

J = - { r
2 

· [V (r 2 + 2)] dr: + J. (r 2 + 2) ~ · da. hr rs r 
The gradient is 

V(r2 + 2) = 2rr, 

so the volume integral becomes 

J ~dr: = J ~r2 sin0drd0dcp = 8n 1R rdr = 4nR2
. 

Meanwhile, on the boundary of the sphere (where r = R), 

da = R2 sinO dO dcp r, 

so the surface integral is 

f (R 2 + 2) sinO dO dcp = 4n(R2 + 2). 

13In proper mathematical jargon, "sphere" denotes the surface, and "ball" the volume it encloses. 
But physicists are (as usual) sloppy about this sort of thing, and I use the word "sphere" for both 
the surface and the volume. Where the meaning is not clear from the context, I will write "spherical 
surface" or "spherical volume." The language police tell me that the former is redundant and the latter 
an oxymoron, but a poll of my physics colleagues reveals that this is (for us) the standard usage. 
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Putting it all together, 

J = -4n R2 + 4n(R2 + 2) = 8n, 

as before. 

Problem 1.47 

(a) Write an expression for the volume charge density p(r) of a point charge q at 
r'. Make sure that the volume integral of p equals q. 

(b) What is the volume charge density of an electric dipole, consisting of a point 
charge -q at the origin and a point charge +q at a? 

(c) What is the volume charge density (in spherical coordinates) of a uniform, in­
finitesimally thin spherical shell of radius Rand total charge Q, centered at the 
origin? [Beware: the integral over all space must equal Q.] 

Problem 1.48 Evaluate the following integrals: 

(a) j(r2 + r. a+ a2)o3(r- a) d-e, where a is a fixed vector, a is its magnitude, 
and the integral is over all space. 

(b) fv lr- bl283 (5r) d-e, where Vis a cube of side 2, centered on the origin, and 
b=4y+3Z. 

(c) fv [r4 + r 2(r. c)+ c4] o3(r- c) d-e, where Vis a sphere of radius 6 about the 
origin, c = 5 i: + 3 y + 2 z, and c is its magnitude. 

(d) fv r · (d- r)o3(e- r) d-e, where d = (1, 2, 3), e = (3, 2, 1), and Vis a sphere 
of radius 1.5 centered at (2, 2, 2). 

Problem 1.49 Evaluate the integral 

(where Vis a sphere of radius R, centered at the origin) by two different methods, 
as in Ex. 1.16. 

1.6 • THE THEORY OF VECTOR FIELDS 

1.6.1 • The Helmholtz Theorem 

Ever since Faraday, the laws of electricity and magnetism have been expressed 
in terms of electric and magnetic fields, E and B. Like many physical laws, 
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these are most compactly expressed as differential equations. Since E and B are 
vectors, the differential equations naturally involve vector derivatives: divergence 
and curl. Indeed, Maxwell reduced the entire theory to four equations, specifying 
respectively the divergence and the curl of E and B. 

Maxwell's formulation raises an important mathematical question: To what 
extent is a vector function determined by its divergence and curl? In other words, 
if I tell you that the divergence ofF (which stands forE orB, as the case may be) 
is a specified (scalar) function D, 

V·F=D, 

and the curl ofF is a specified (vector) function C, 

v X F= C, 

(for consistency, C must be divergenceless, 

V·C=O, 

because the divergence of a curl is always zero), can you then determine the 
function F? 

Well. .. not quite. For example, as you may have discovered in Pro b. 1.20, there 
are many functions whose divergence and curl are both zero everywhere-the triv­
ial case F = 0, of course, but also F = yz i + zx y + xy z, F = sinx cosh y i­
cos x sinh y y, etc. To solve a differential equation you must also be supplied with 
appropriate boundary conditions. In electrodynamics we typically require that 
the fields go to zero "at infinity" (far away from all charges).14 With that ex­
tra information, the Helmholtz theorem guarantees that the field is uniquely 
determined by its divergence and curl. (The Helmholtz theorem is discussed in 
Appendix B.) 

1.6.2 • Potentials 

If the curl of a vector field (F) vanishes (everywhere), then F can be written as the 
gradient of a scalar potential (V): 

v X F = 0 {:::::::} F = -VV. (1.103) 

(The minus sign is purely conventional.) That's the essential burden of the follow­
ing theorem: 

Theorem 1 
Curl-less (or "irrotational") fields. The following conditions are equivalent 
(that is, F satisfies one if and only if it satisfies all the others): 

14In some textbook problems the charge itself extends to infinity (we speak, for instance, of the electric 
field of an infinite plane, or the magnetic field of an infinite wire). In such cases the normal boundary 
conditions do not apply, and one must invoke symmetry arguments to determine the fields uniquely. 
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(a) V x F = 0 everywhere. 

(b) J: F · dl is independent of path, for any given end points. 

(c) j F · dl = 0 for any closed loop. 

(d) F is the gradient of some scalar function: F = - V V. 

The potential is not unique-any constant can be added to V with impunity, since 
this will not affect its gradient. 

If the divergence of a vector field (F) vanishes (everywhere), then F can be 
expressed as the curl of a vector potential (A): 

v . F = 0 {::::::::} F = v X A. (1.104) 

That's the main conclusion of the following theorem: 

Theorem2 
Divergence-less (or "solenoidal") fields. The following conditions are equivalent: 

(a) V · F = 0 everywhere. 

(b) f F · da is independent of surface, for any given boundary line. 

(c) j F · da = 0 for any closed surface. 

(d) F is the curl of some vector function: F = V x A. 

The vector potential is not unique-the gradient of any scalar function can be 
added to A without affecting the curl, since the curl of a gradient is zero. 

You should by now be able to prove all the connections in these theorems, save 
for the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will 
come later. Incidentally, in all cases (whatever its curl and divergence may be) a 
vector field F can be written as the gradient of a scalar plus the curl of a vector: 15 

F=-VV+VxA (always). (1.105) 

Problem 1.50 

(a) Let F1 = x2 z and F2 = x x + y y + z Z. Calculate the divergence and curl of 
F1 and F2• Which one can be written as the gradient of a scalar? Find a scalar 
potential that does the job. Which one can be written as the curl of a vector? 
Find a suitable vector potential. 

15In physics, the word field denotes generically any function of position (x, y, z) and time (t). But in 
electrodynamics two particular fields (E and B) are of such paramount importance as to preempt the 
term. Thus technically the potentials are also "fields," but we never call them that. 
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(b) Show that F3 = yz i + zx y + xy z can be written both as the gradient of a 
scalar and as the curl of a vector. Find scalar and vector potentials for this func­
tion. 

Problem 1.51 For Theorem 1, show that (d)::::} (a), (a)::::} (c), (c)::::} (b), (b)::::} (c), 
and (c)::::} (a). 

Problem 1.52 For Theorem 2, show that (d)::::} (a), (a)::::} (c), (c)::::} (b), (b)::::} (c), 
and (c)::::} (a). 

Problem 1.53 

(a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a 
scalar? Find a scalar function that does the job. 

(b) Which can be expressed as the curl of a vector? Find such a vector. 

More Problems on Chapter 1 

Problem 1.54 Check the divergence theorem for the function 

v = r 2 cos() r + r 2 cosf/J ii- r 2 cos() sinf/J ~. 

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make sure 
you include the entire surface. [Answer: 1r R 4 j4] 

Problem 1.55 Check Stokes' theorem using the function v = ay i + bx y (a and 
b are constants) and the circular path of radius R, centered at the origin in the xy 
plane. [Answer: 1r R 2(b- a)] 

Problem 1.56 Compute the line integral of 

v = 6i + yz2 y + (3y + z) z 
along the triangular path shown in Fig. 1.49. Check your answer using Stokes' 
theorem. [Answer: 8/3] 

Problem 1.57 Compute the line integral of 

v = (r cos2 
()) r- (r cos() sin()) ii + 3r ~ 

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coor­
dinates). Do it either in cylindrical or in spherical coordinates. Check your answer, 
using Stokes' theorem. [Answer: 3rr /2] 

z z z (0,1,2) 

2 

R (0,1,0) 
y y y 

X 

FIGURE 1.48 FIGURE 1.49 FIGURE 1.50 
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FIGURE 1.51 FIGURE 1.52 

Problem 1.58 Check Stokes' theorem for the function v = y i, using the triangular 
surface shown in Fig. 1.51. [Answer: a 2] 

Problem 1.59 Check the divergence theorem for the function 

v = r 2 sin() r + 4r2 cos() 8 + r 2 tan() ~. 

using the volume of the "ice-cream cone" shown in Fig. 1.52 (the top surface 
is spherical, with radius R and centered at the origin). [Answer: (rr R4J12)(2rr + 
3v'3)1 

Problem 1.60 Here are two cute checks of the fundamental theorems: 

(a) Combine Corollary 2 to the gradient theorem with Stokes' theorem (v = V T, in 
this case). Show that the result is consistent with what you already knew about 
second derivatives. 

(b) Combine Corollary 2 to Stokes' theorem with the divergence theorem. Show 
that the result is consistent with what you already knew. 

• Problem 1.61 Although the gradient, divergence, and curl theorems are the fun­
damental integral theorems of vector calculus, it is possible to derive a number of 
corollaries from them. Show that: 

(a) fv(VT) dr = Ps T da. [Hint: Let v = cT, where cis a constant, in the diver­
gence theorem; use the product rules.] 

(b) fv<V x v) dr = - Ps v x da. [Hint: Replace v by (v x c) in the divergence 
theorem.] 

(c) fv[T'V 2U + (VT) · (VU)]dr = p8 (TVU) · da. [Hint: Let v = TVU in the 
divergence theorem.] 

(d) fv(TV 2U- UV2 T) dr = p8 (TVU- UVT) · da. [Comment: This is some­
times called Green's second identity; it follows from (c), which is known as 
Green's identity.] 

(e) fs VT x da = - pP T dl. [Hint: Let v = cT in Stokes' theorem.] 
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• Problem 1.62 The integral 

a=£ da (1.106) 

is sometimes called the vector area of the surface S. If S happens to be flat, then 
lal is the ordinary (scalar) area, obviously. 

(a) Find the vector area of a hemispherical bowl of radius R. 

(b) Show that a= 0 for any closed surface. [Hint: Use Prob. 1.6la.] 

(c) Show that a is the same for all surfaces sharing the same boundary. 

(d) Show that 

a=~ f r x dl, (1.107) 

where the integral is around the boundary line. [Hint: One way to do it is to draw 
the cone subtended by the loop at the origin. Divide the conical surface up into 
infinitesimal triangular wedges, each with vertex at the origin and opposite side dl, 
and exploit the geometrical interpretation of the cross product (Fig. 1.8).] 

(e) Show that 

f (c · r) dl =ax c, 

for any constant vector c. [Hint: LetT = c · r in Prob. 1.61e.] 

• Problem 1.63 

(a) Find the divergence of the function 

r 
V= - . 

r 

(1.108) 

First compute it directly, as in Eq. 1.84. Test your result using the divergence theo­
rem, as in Eq. 1.85. Is there a delta function at the origin, as there was for rjr2? What 
is the general formula for the divergence of rni-? [Answer: V · (rnr) = (n + 2)rn-t, 
unless n = -2, in which case it is 41I' 83 (r); for n < -2, the divergence is ill-defined 
at the origin.] 

(b) Find the curl of rnr. Test your conclusion using Prob. 1.61b. [Answer: 
V x (rnr) = 0] 

Problem 1.64 In case you're not persuaded that V2(1/r) = -4Jro3 (r) (Eq. 1.102 
with r' = 0 for simplicity), try replacing r by J r 2 + E2, and watching what happens 
as E ---* 0.16 Specifically, let 

1 2 1 
D(r E)= - - V ----=== 

' - 4Jr Jr2+E2 

16This problem was suggested by Frederick Strauch. 
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To demonstrate that this goes to 83(r) as E ---+ 0: 

(a) Show that D(r, E)= (3E2 j4rr)(r2 + E2)-512. 

(b) Check that D(O, E) ---+ oo, as E ---+ 0. 

(c) Check that D(r, E) ---+ 0, as E ---+ 0, for all r ¥=- 0. 

(d) Check that the integral of D(r, E) over all space is 1. 



CHAPTER 

2 Electrostatics 

2.1 • THE ELECTRIC FIELD 

2.1.1 • Introduction 

The fundamental problem electrodynamics hopes to solve is this (Fig. 2.1): We 
have some electric charges, q1, q2 , q3 , ... (call them source charges); what force 
do they exert on another charge, Q (call it the test charge)? The positions of the 
source charges are given (as functions of time); the trajectory of the test particle 
is to be calculated. In general, both the source charges and the test charge are in 
motion. 

The solution to this problem is facilitated by the principle of superposition, 
which states that the interaction between any two charges is completely unaffected 
by the presence of others. This means that to determine the force on Q, we can first 
compute the force F1, due to q1 alone (ignoring all the others); then we compute 
the force F2, due to q2 alone; and so on. Finally, we take the vector sum of all 
these individual forces: F = F1 + F2 + F3 + ... Thus, if we can find the force 
on Q due to a single source charge q, we are, in principle, done (the rest is just a 
question of repeating the same operation over and over, and adding it all up ).1 

Well, at first sight this looks very easy: Why don't I just write down the formula 
for the force on Q due to q, and be done with it? I could, and in Chapter 10 I 
shall, but you would be shocked to see it at this stage, for not only does the force 
on Q depend on the separation distance 1z. between the charges (Fig. 2.2), it also 

• 

• • 

"Source" charges 

FIGURE2.1 

• Q 
"Test" charge 

FIGURE2.2 

1The principle of superposition may seem "obvious" to you, but it did not have to be so simple: if 
the electromagnetic force were proportional to the square of the total source charge, for instance, the 
principle of superposition would not hold, since (ql + qz)2 =/= qf + q~ (there would be "cross terms" 
to consider). Superposition is not a logical necessity, but an experimental fact. 

59 
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depends on both their velocities and on the acceleration of q. Moreover, it is not 
the position, velocity, and acceleration of q right now that matter: electromagnetic 
"news" travels at the speed of light, so what concerns Q is the position, velocity, 
and acceleration q had at some earlier time, when the message left. 

Therefore, in spite of the fact that the basic question ("What is the force on 
Q due to q?") is easy to state, it does not pay to confront it head on; rather, we 
shall go at it by stages. In the meantime, the theory we develop will allow for the 
solution of more subtle electromagnetic problems that do not present themselves 
in quite this simple format. To begin with, we shall consider the special case 
of electrostatics in which all the source charges are stationary (though the test 
charge may be moving). 

2.1.2 • Coulomb's Law 

What is the force on a test charge Q due to a single point charge q, that is at rest a 
distance 1- away? The answer (based on experiments) is given by Coulomb's law: 

F = _ 1_ qQ/i. 
4rrEo ~t-2 

(2.1) 

The constant Eo is called (ludicrously) the permittivity of free space. In SI units, 
where force is in newtons (N), distance in meters (m), and charge in coulombs (C), 

-12 c2 
Eo = 8.85 x 10 N. m2. 

In words, the force is proportional to the product of the charges and inversely 
proportional to the square of the separation distance. As always (Sect. 1.1.4 ), -t is 
the separation vector from r' (the location of q) tor (the location of Q): 

-t= r-r'; (2.2) 

1- is its magnitude, and /i, is its direction. The force points along the line from q to 
Q; it is repulsive if q and Q have the same sign, and attractive if their signs are 
opposite. 

Coulomb's law and the principle of superposition constitute the physical input 
for electrostatics-the rest, except for some special properties of matter, is math­
ematical elaboration of these fundamental rules. 

Problem 2.1 

(a) Twelve equal charges, q, are situated at the comers of a regular 12-sided poly­
gon (for instance, one on each numeral of a clock face). What is the net force 
on a test charge Q at the center? 

(b) Suppose one of the 12 q 'sis removed (the one at "6 o'clock"). What is the force 
on Q? Explain your reasoning carefully. 
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(c) Now 13 equal charges, q, are placed at the comers of a regular 13-sided 
polygon. What is the force on a test charge Q at the center? 

(d) If one of the 13 q's is removed, what is the force on Q? Explain your reasoning. 

2.1.3 • The Electric Field 

If we have several point charges q1, qz, ... , qn, at distances -2-1, -2-z, ... , -2-n from 
Q, the total force on Q is evidently 

or 

F= QE, (2.3) 

where 

(2.4) 

E is called the electric field of the source charges. Notice that it is a function of 
position (r), because the separation vectors 4i depend on the location of the field 
point P (Fig. 2.3). But it makes no reference to the test charge Q. The electric 
field is a vector quantity that varies from point to point and is determined by the 
configuration of source charges; physically, E(r) is the force per unit charge that 
would be exerted on a test charge, if you were to place one at P. 

What exactly is an electric field? I have deliberately begun with what you might 
call the "minimal" interpretation of E, as an intermediate step in the calculation 
of electric forces. But I encourage you to think of the field as a "real" physical 

Source point 
y 

z 

FIGURE2.3 

p 

Field 
point 

X 
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entity, filling the space around electric charges. Maxwell himself came to believe 
that electric and magnetic fields are stresses and strains in an invisible primordial 
jellylike "ether." Special relativity has forced us to abandon the notion of ether, 
and with it Maxwell's mechanical interpretation of electromagnetic fields. (It is 
even possible, though cumbersome, to formulate classical electrodynamics as an 
"action-at-a-distance" theory, and dispense with the field concept altogether.) I 
can't tell you, then, what a field is-only how to calculate it and what it can do 
for you once you've got it. 

Example 2.1. Find the electric field a distance z above the midpoint between 
two equal charges (q ), a distance d apart (Fig. 2.4a). 

Solution 
Let E1 be the field of the left charge alone, and E2 that of the right charge alone 
(Fig. 2.4b). Adding them (vectorially), the horizontal components cancel and the 
vertical components conspire: 

1 q 
Ez = 2--2 cos0. 

4nEo 1-

Here1. = ..jz2 + (d/2)2 and cosO= zj1-, so 

E = 1 2qz z. 
4nEo [z2 + (d/2)2f12 

Check: When z » d you're so far away that it just looks like a single charge 
2q, so the field should reduce to E = -4 

1 ~ Z. And it does Gust set d -+ 0 in the 
:Tr£o z 

formula). 

E 

z 
p 

z 

q d/2 d/2q X 

(a) (b) 

FIGURE2.4 

Problem 2.2 Find the electric field (magnitude and direction) a distance z above 
the midpoint between equal and opposite charges (±q ), a distanced apart (same as 
Example 2.1, except that the charge atx = +d/2 is -q). 
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~·p 

dq 

(a) Continuous 
distribution 

(c) Surface charge, cr 

FIGURE2.5 

2.1.4 • Continuous Charge Distributions 

63 

-L 
dl' 

(b) Line charge, A. 

(d) Volume charge, p 

Our definition of the electric field (Eq. 2.4) assumes that the source of the field 
is a collection of discrete point charges qi. If, instead, the charge is distributed 
continuously over some region, the sum becomes an integral (Fig. 2.5a): 

1 f 1 A E(r) = -- 2~£dq. 
4nEo It-

(2.5) 

If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length 
)., then dq = ). dl' (where dl' is an element of length along the line); if the 
charge is smeared out over a surface (Fig. 2.5c), with charge-per-unit-area a, then 
dq =ada' (where da' is an element of area on the surface); and if the charge fills 
a volume (Fig. 2.5d), with charge-per-unit-volume p, then dq = p dr' (where dr' 
is an element of volume): 

dq --+ ). dl' "' ada' "' p dr'. 

Thus the electric field of a line charge is 

for a surface charge, 

and for a volume charge, 

1 J ).(r') E(r) = -- --
2
- lidl'; 

4nEo ~t-

1 f a(r'L E(r) = -- --
2
- 1£da'; 

4nEo It-

(2.6) 

(2.7) 

(2.8) 
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Equation 2.8 itself is often referred to as "Coulomb's law," because it is such 
a short step from the original (2.1), and because a volume charge is in a sense the 
most general and realistic case. Please note carefully the meaning of ~ in these 
formulas. Originally, in Eq. 2.4, 4i stood for the vector from the source charge 
qi to the field point r. Correspondingly, in Eqs. 2.5-2.8, ~is the vector from dq 
(therefore from dl', da', or dr') to the field point r.2 

Example 2.2. Find the electric field a distance z above the midpoint of a straight 
line segment of length 2L that carries a uniform line charge ). (Fig. 2.6). 

z 

FIGURE2.6 

Solution 
The simplest method is to chop the line into symmetrically placed pairs (at ±x), 
quote the result of Ex. 2.1 (with d/2 ---1- x, q ---1-). dx), and integrate (x : 0 ---1- L). 
But here's a more general approach:3 

r = z z, r' =xi, dl' = dx; 

~ = r - r' = z z - x i, ~J- = J z2 + x2 , 
A ~ zz-xi 
~= - = . 

~J- -Jz2 + x2 

1 1L A Z Z - X X d E= -- X 
4nEo -L z2 + x 2 -Jz2 + x2 

= -- z z dx - i dx ). [ 1L 1 1L X J 
4nEo -L (z2 + x2)3/2 -L (z2 + x2)3/2 

2 Warning: The unit vector ..£ is not constant; its direction depends on the source point r', and hence 
it cannot be taken outside the integrals (Eqs. 2.5-2.8). In practice, you must work with Cartesian 
components (i, y, z are constant, and do come out), even if you use curvilinear coordinates to perform 
the integration. 
30rdinarily I'll put a prime on the source coordinates, but where no confusion can arise I'll remove 
the prime to simplify the notation. 
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For points far from the line (z » L), 

1 2A.L 
E~ ----

- 4nEo z2 • 

This makes sense: From far away the line looks like a point charge q = 2A.L. In 
the limit L --+ oo, on the other hand, we obtain the field of an infinite straight 
wire: 

tP 
I 
I 
IZ 
I 
I 

1 2A. 
E= ---. 

4nEo z 
(2.9) 

Problem 2.3 Find the electric field a distance z above one end of a straight line 
segment of length L (Fig. 2.7) that carries a uniform line charge A. Check that your 
formula is consistent with what you would expect for the case z » L. 

tP tP 
I I 
I lz IZ 
I 
I • G / 7 j-L--J 

f--a-J 
FIGURE2.7 FIGURE2.8 FIGURE2.9 

Problem 2.4 Find the electric field a distance z above the center of a square loop 
(side a) carrying uniform line charge A (Fig. 2.8). [Hint: Use the result of Ex. 2.2.] 

Problem 2.5 Find the electric field a distance z above the center of a circular loop 
of radius r (Fig. 2.9) that carries a uniform line charge A. 

Problem 2.6 Find the electric field a distance z above the center of a flat circular 
disk of radius R (Fig. 2.1 0) that carries a uniform surface charge a. What does your 
formula give in the limit R ~ oo? Also check the case z » R. 

Problem 2. 7 Find the electric field a distance z from the center of a spherical surface 
of radius R (Fig. 2.11) that carries a uniform charge density a. Treat the case z < R 
(inside) as well as z > R (outside). Express your answers in terms of the total charge 
q on the sphere. [Hint: Use the law of cosines to write 1- in terms of R and (). Be 
sure to take the positive square root: ../ R2 + z2 - 2Rz = (R - z) if R > z, but it's 
(z - R) if R < z.] 

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a solid 
sphere of radius R that carries a uniform volume charge density p. Express your 
answers in terms of the total charge of the sphere, q. Draw a graph of lEI as a 
function of the distance from the center. 



66 Chapter 2 Electrostatics 

TP 
I 
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IZ 

G 
FIGURE2.10 FIGURE2.11 

2.2 • DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS 

2.2.1 • Field Lines, Flux, and Gauss's Law 

y 

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us 
how to compute the field of a charge distribution, and Eq. 2.3 tells us what the 
force on a charge Q placed in this field will be. Unfortunately, as you may have 
discovered in working Prob. 2.7, the integrals involved in computing E can be 
formidable, even for reasonably simple charge distributions. Much of the rest of 
electrostatics is devoted to assembling a bag of tools and tricks for avoiding these 
integrals. It all begins with the divergence and curl of E. I shall calculate the 
divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show you 
a more qualitative, and perhaps more illuminating, intuitive approach. 

Let's begin with the simplest possible case: a single point charge q, situated at 
the origin: 

1 q A 

E(r) = ---r. 
4nEo r 2 

(2.10) 

To get a "feel" for this field, I might sketch a few representative vectors, as in 
Fig. 2.12a. Because the field falls off like 1 j r 2

, the vectors get shorter as you go 
farther away from the origin; they always point radially outward. But there is a 

(b) 

FIGURE2.12 
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nicer way to represent this field, and that's to connect up the arrows, to form field 
lines (Fig. 2.12b). You might think that I have thereby thrown away information 
about the strength of the field, which was contained in the length of the arrows. 
But actually I have not. The magnitude of the field is indicated by the density of 
the field lines: it's strong near the center where the field lines are close together, 
and weak farther out, where they are relatively far apart. 

In truth, the field-line diagram is deceptive, when I draw it on a two-dimensional 
surface, for the density of lines passing through a circle of radius r is the total 
number divided by the circumference (nj2rrr), which goes like (1/r), not (1/r2

). 

But if you imagine the model in three dimensions (a pincushion with needles 
sticking out in all directions), then the density of lines is the total number divided 
by the area of the sphere (nj4rrr2 ), which does go like (1jr2). 

Such diagrams are also convenient for representing more complicated fields. 
Of course, the number of lines you draw depends on how lazy you are (and how 
sharp your pencil is), though you ought to include enough to get an accurate sense 
of the field, and you must be consistent: If q gets 8lines, then 2q deserves 16. And 
you must space them fairly-they emanate from a point charge symmetrically in 
all directions. Field lines begin on positive charges and end on negative ones; 
they cannot simply terminate in midair,4 though they may extend out to infinity. 
Moreover, field lines can never cross-at the intersection, the field would have 
two different directions at once! With all this in mind, it is easy to sketch the field 
of any simple configuration of point charges: Begin by drawing the lines in the 
neighborhood of each charge, and then connect them up or extend them to infinity 
(Figs. 2.13 and 2.14). 

In this model, the flux of E through a surface S, 

<I>E = L E · da, (2.11) 

Opposite charges 

FIGURE2.13 

4If they did, the divergence of E would not be zero, and (as we shall soon see) that cannot happen in 
empty space. 
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Equal charges 

FIGURE2.14 

is a measure of the "number of field lines" passing through S. I put this in quotes 
because of course we can only draw a representative sample of the field lines-the 
total number would be infinite. But for a given sampling rate the flux is propor­
tional to the number of lines drawn, because the field strength, remember, is pro­
portional to the density of field lines (the number per unit area), and hence E · da 
is proportional to the number of lines passing through the infinitesimal area da. 
(The dot product picks out the component of da along the direction of E, as indi­
cated in Fig. 2.15. It is the area in the plane perpendicular toE that we have in 
mind when we say that the density of field lines is the number per unit area.) 

This suggests that the flux through any closed surface is a measure of the 
total charge inside. For the field lines that originate on a positive charge must 
either pass out through the surface or else terminate on a negative charge inside 
(Fig. 2.16a). On the other hand, a charge outside the surface will contribute 
nothing to the total flux, since its field lines pass in one side and out the other 
(Fig. 2.16b). This is the essence of Gauss's law. Now let's make it quantitative. 

In the case of a point charge q at the origin, the flux of E through a spherical 
surface of radius r is 

J E · da = f -1
- ( q

2
r) · (r 2 sinO dOd(/> r) = _!_q. r 4nEo r Eo 

(2.12) 

FIGURE2.15 
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q 

(a) (b) 

FIGURE2.16 

Notice that the radius of the sphere cancels out, for while the surface area goes 
up as r2 , the field goes down as 1 j r2 , so the product is constant. In terms of the 
field-line picture, this makes good sense, since the same number of field lines pass 
through any sphere centered at the origin, regardless of its size. In fact, it didn't 
have to be a sphere-any closed surface, whatever its shape, would be pierced by 
the same number of field lines. Evidently the flux through any surface enclosing 
the charge is q /Eo. 

Now suppose that instead of a single charge at the origin, we have a bunch of 
charges scattered about. According to the principle of superposition, the total field 
is the (vector) sum of all the individual fields: 

n 

The flux through a surface that encloses them all is 

f E · da = t (f Ei · da) = t ( :
0 
qi) 

z=l z=l 

For any closed surface, then, 

J. E · da = _!_Qenc• r Eo 
(2.13) 

where Qenc is the total charge enclosed within the surface. This is the quantita­
tive statement of Gauss's law. Although it contains no information that was not 
already present in Coulomb's law plus the principle of superposition, it is of al­
most magical power, as you will see in Sect. 2.2.3. Notice that it all hinges on 
the 1jr2 character of Coulomb's law; without that the crucial cancellation of the 
r's in Eq. 2.12 would not take place, and the total flux ofE would depend on the 
surface chosen, not merely on the total charge enclosed. Other 1jr2 forces (I am 
thinking particularly of Newton's law of universal gravitation) will obey "Gauss's 
laws" of their own, and the applications we develop here carry over directly. 



70 Chapter 2 Electrostatics 

As it stands, Gauss's law is an integral equation, but we can easily turn it into 
a differential one, by applying the divergence theorem: 

fE·da= jcv·E)dr. 
s v 

Rewriting Qenc in terms of the charge density p, we have 

So Gauss's law becomes 

Qenc = J pdr. 

v 

jcv ·E)dr = J (~) dr. 
v v 

And since this holds for any volume, the integrands must be equal: 

~ 
~ 

(2.14) 

Equation 2.14 carries the same message as Eq. 2.13; it is Gauss's law in differen­
tial form. The differential version is tidier, but the integral form has the advantage 
in that it accommodates point, line, and surface charges more naturally. 

Problem 2.9 Suppose the electric field in some region is found to be E = kr3r, in 
spherical coordinates (k is some constant). 

(a) Find the charge density p. 

(b) Find the total charge contained in a sphere of radius R, centered at the origin. 
(Do it two different ways.) 

Problem 2.10 A charge q sits at the back comer of a cube, as shown in Fig. 2.17. 
What is the flux of E through the shaded side? 

FIGURE2.17 
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2.2.2 • The Divergence of E 

Let's go back, now, and calculate the divergence of E directly from Eq. 2.8: 

E(r) = -- :p(r')dr1
• 1 f " 

4rrEo 1-
(2.15) 

ail space 

(Originally the integration was over the volume occupied by the charge, but I may 
as well extend it to all space, since p = 0 in the exterior region anyway.) Noting 
that the r-dependence is contained in 4 = r - r 1

, we have 

1 f (') 1 1 V · E = -- V · 2 p(r) dr. 
4rrEo 1-

This is precisely the divergence we calculated in Eq. 1.100: 

Thus 

V · E = -
1

- J 4rro\r- r1)p(r1
) dr 1 = _!_p(r), 

4rrEo Eo 
(2.16) 

which is Gauss's law in differential form (Eq. 2.14). To recover the integral form 
(Eq. 2.13), we run the previous argument in reverse-integrate over a volume and 
apply the divergence theorem: 

f V · Edr = 1 E · da = _!_ J p dr = _!_Qenc· 
j Eo Eo 

v s v 

2.2.3 • Applications of Gauss's Law 

I must interrupt the theoretical development at this point to show you the 
extraordinary power of Gauss's law, in integral form. When symmetry permits, 
it affords by far the quickest and easiest way of computing electric fields. I'll 
illustrate the method with a series of examples. 

Example 2.3. Find the field outside a uniformly charged solid sphere of radius 
R and total charge q. 

Solution 
Imagine a spherical surface at radius r > R (Fig. 2.18); this is called a Gaussian 
surface in the trade. Gauss's law says that 

1 E · da = _!_Qenc. 
j Eo 
s 
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and in this case Qenc = q. At first glance this doesn't seem to get us very far, 
because the quantity we want (E) is buried inside the surface integral. Luckily, 
symmetry allows us to extract E from under the integral sign: E certainly points 
radially outward,5 as does da, so we can drop the dot product, 

f E · da = f lEI da, 
s s 

Gaussian_... 
surface 

FIGURE2.18 

and the magnitude of E is constant over the Gaussian surface, so it comes outside 
the integral: 

Thus 

or 

f lEI da = lEI f da = IE14rrr2
. 

s s 

2 1 
IE14rrr = - q, 

Eo 

1 q A 

E= ---r. 
4rrEo r 2 

Notice a remarkable feature of this result: The field outside the sphere is exactly 
the same as it would have been if all the charge had been concentrated at the 
center. 

Gauss's law is always true, but it is not always useful. If p had not been uniform 
(or, at any rate, not spherically symmetrical), or ifl had chosen some other shape 
for my Gaussian surface, it would still have been true that the flux of E is q j Eo, but 
E would not have pointed in the same direction as da, and its magnitude would 
not have been constant over the surface, and without that I cannot get lEI outside 

5If you doubt that E is radial, consider the alternative. Suppose, say, that it points due east, at the 
"equator." But the orientation of the equator is perfectly arbitrary-nothing is spinning here, so there 
is no natural "north-south" axis-any argument purporting to show that E points east could just as 
well be used to show it points west, or north, or any other direction. The only unique direction on a 
sphere is radial. 
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\Gaussian surface 

FIGURE2.19 FIGURE2.20 

of the integral. Symmetry is crucial to this application of Gauss's law. As far as I 
know, there are only three kinds of symmetry that work: 

1. Spherical symmetry. Make your Gaussian surface a concentric sphere. 

2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder 
(Fig. 2.19). 

3. Plane symmetry. Use a Gaussian "pillbox" that straddles the surface 
(Fig. 2.20). 

Although (2) and (3) technically require infinitely long cylinders, and planes ex­
tending to infinity, we shall often use them to get approximate answers for "long" 
cylinders or "large" planes, at points far from the edges. 

Example 2.4. A long cylinder (Fig. 2.21) carries a charge density that is propor­
tional to the distance from the axis: p = ks, for some constant k. Find the electric 
field inside this cylinder. 

Solution 
Draw a Gaussian cylinder of length 1 and radius s. For this surface, Gauss's law 
states: 

J. E · da = _.!._ Qenc· 
j Eo 

The enclosed charge is 
s 

Qenc = J P dr = J (ks')(s' ds' d<!J dz) = 2n:kl 1s s'2 ds' = ~n:kls 3 • 

FIGURE2.21 

Gaussian 
surface 
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(I used the volume element appropriate to cylindrical coordinates, Eq. 1.78, and 
integrated¢ from 0 to 2n, dz from 0 to l. I put a prime on the integration variable 
s', to distinguish it from the radius s of the Gaussian surface.) 

Now, symmetry dictates that E must point radially outward, so for the curved 
portion of the Gaussian cylinder we have: 

f E ·da = f IEida =lEI fda= IE12nsl, 

while the two ends contribute nothing (here E is perpendicular to da). Thus, 
1 2 

IE12nsl = --nkls3
, 

or, finally, 
Eo 3 

1 2" E= - ks s. 
3Eo 

Example 2.5. An infinite plane carries a uniform surface charge a. Find its 
electric field. 

Solution 
Draw a "Gaussian pillbox," extending equal distances above and below the plane 
(Fig. 2.22). Apply Gauss's law to this surface: 

J. E · da = _!_ Qenc· 
j Eo 

In this case, Qenc = a A, where A is the area of the lid of the pillbox. By symme­
try, E points away from the plane (upward for points above, downward for points 
below). So the top and bottom surfaces yield 

f E·da=2AIEI, 

whereas the sides contribute nothing. Thus 
1 

2AIEI = - aA, 
Eo 

FIGURE2.22 
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or 
(}' A 

E= - n, 
2Eo 

75 

(2.17) 

where ii is a unit vector pointing away from the surface. In Pro b. 2.6, you obtained 
this same result by a much more laborious method. 

It seems surprising, at first, that the field of an infinite plane is independent of 
how far away you are. What about the 1/ r 2 in Coulomb's law? The point is that as 
you move farther and farther away from the plane, more and more charge comes 
into your "field of view" (a cone shape extending out from your eye), and this 
compensates for the diminishing influence of any particular piece. The electric 
field of a sphere falls off like 1 j r 2; the electric field of an infinite line falls off like 
1 j r; and the electric field of an infinite plane does not fall off at all (you cannot 
escape from an infinite plane). 

Although the direct use of Gauss's law to compute electric fields is limited to 
cases of spherical, cylindrical, and planar symmetry, we can put together combi­
nations of objects possessing such symmetry, even though the arrangement as a 
whole is not symmetrical. For example, invoking the principle of superposition, 
we could find the field in the vicinity of two uniformly charged parallel cylinders, 
or a sphere near an infinite charged plane. 

Example 2.6. Two infinite parallel planes carry equal but opposite uniform 
charge densities ±a (Fig. 2.23). Find the field in each of the three regions: (i) 
to the left of both, (ii) between them, (iii) to the right of both. 

Solution 
The left plate produces a field (1/2Eo)a, which points away from it (Fig. 2.24)­
to the left in region (i) and to the right in regions (ii) and (iii). The right plate, 
being negatively charged, produces a field (1/2E0)a, which points toward it-to 
the right in regions (i) and (ii) and to the left in region (iii). The two fields cancel 
in regions (i) and (iii); they conspire in region (ii). Conclusion: The field between 
the plates is a /Eo, and points to the right; elsewhere it is zero. 

(i) (ii) (iii) 
E_ E E_ ---
(i) (ii) (iii) 

+0' -0' +0' 

FIGURE2.23 FIGURE2.24 
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Problem 2.11 Use Gauss's law to find the electric field inside and outside a spherical 
shell of radius R that carries a uniform surface charge density a. Compare your 
answer to Prob. 2.7. 

Problem 2.12 Use Gauss's law to find the electric field inside a uniformly charged 
solid sphere (charge density p). Compare your answer to Prob. 2.8. 

Problem 2.13 Find the electric field a distance s from an infinitely long straight 
wire that carries a uniform line charge)., Compare Eq. 2.9. 

Problem 2.14 Find the electric field inside a sphere that carries a charge density pro­
portional to the distance from the origin, p = kr, for some constant k. [Hint: This 
charge density is not uniform, and you must integrate to get the enclosed charge.] 

Problem 2.15 A thick spherical shell carries charge density 
k 

p = - (a~ r ~b) 
r2 

(Fig. 2.25). Find the electric field in the three regions: (i) r < a, (ii) a < r < b, (iii) 
r > b. Plot lEI as a function of r, for the case b = 2a. 

Problem 2.16 A long coaxial cable (Fig. 2.26) carries a uniform volume charge 
density p on the inner cylinder (radius a), and a uniform surface charge density on 
the outer cylindrical shell (radius b). This surface charge is negative and is of just 
the right magnitude that the cable as a whole is electrically neutral. Find the electric 
field in each of the three regions: (i) inside the inner cylinder (s < a), (ii) between 
the cylinders (a < s <b), (iii) outside the cable (s >b). Plot lEI as a function of s. 

FIGURE2.25 FIGURE2.26 

Problem 2.17 An infinite plane slab, of thickness 2d, carries a uniform volume 
charge density p (Fig. 2.27). Find the electric field, as a function of y, where y = 0 
at the center. Plot E versus y, calling E positive when it points in the + y direction 
and negative when it points in the - y direction. 

• Problem 2.18 Two spheres, each of radius R and carrying uniform volume 
charge densities +p and -p, respectively, are placed so that they partially overlap 
(Fig. 2.28). Call the vector from the positive center to the negative center d. Show 
that the field in the region of overlap is constant, and find its value. [Hint: Use the 
answer to Prob. 2.12.] 
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z 

FIGURE2.27 FIGURE2.28 

2.2.4 • The Curl of E 

I'll calculate the curl ofE, as I did the divergence in Sect. 2.2.1, by studying first 
the simplest possible configuration: a point charge at the origin. In this case 

1 q A 

E= ---r. 
4nEo r 2 

Now, a glance at Fig. 2.12 should convince you that the curl of this field has to 
be zero, but I suppose we ought to come up with something a little more rigorous 
than that. What if we calculate the line integral of this field from some point a to 
some other point b (Fig. 2.29): 

1b E. dl. 

In spherical coordinates, dl = dr r + r dO B + r sin() d¢ ~. so 

E · dl = -
1

- !!....dr. 
4nEo r 2 

z 

y 

X 
a 

FIGURE2.29 
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Therefore, 

{b 1 {b q -1 q lrb 1 ( q q ) 
la E. dl = 4nEo la r2 dr = 4nEo-;: ra = 4nEo ra - rb ' (2.18) 

where ra is the distance from the origin to the point a and rb is the distance to b. 
The integral around a closed path is evidently zero (for then ra = rb): 

(2.19) 

and hence, applying Stokes' theorem, 

I v X E = 0. (2.20) 

Now, I proved Eqs. 2.19 and 2.20 only for the field of a single point charge 
at the origin, but these results make no reference to what is, after all, a perfectly 
arbitrary choice of coordinates; they hold no matter where the charge is located. 
Moreover, if we have many charges, the principle of superposition states that the 
total field is a vector sum of their individual fields: 

E = Et +Ez + ... , 

so 

V x E = V x (E1 + E2 + ... ) = (V x E1) + (V x E2) + ... = 0. 

Thus, Eqs. 2.19 and 2.20 hold for any static charge distribution whatever. 

Problem 2.19 Calculate V x E directly from Eq. 2.8, by the method of Sect. 2.2.2. 
Refer to Prob. 1.63 if you get stuck. 

2.3 • ELECTRIC POTENTIAL 

2.3.1 • Introduction to Potential 

The electric field E is not just any old vector function. It is a very special kind of 
vector function: one whose curl is zero. E = yi, for example, could not possibly 
be an electrostatic field; no set of charges, regardless of their sizes and positions, 
could ever produce such a field. We're going to exploit this special property of 
electric fields to reduce a vector problem (finding E) to a much simpler scalar 
problem. The first theorem in Sect. 1.6.2 asserts that any vector whose curl is zero 
is equal to the gradient of some scalar. What I'm going to do now amounts to a 
proof of that claim, in the context of electrostatics. 
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FIGURE2.30 

Because V x E = 0, the line integral of E around any closed loop is zero (that 
follows from Stokes' theorem). Because f E · dl = 0, the line integral of E from 
point a to point b is the same for all paths (otherwise you could go out along path 
(i) and return along path (ii)-Fig. 2.30---and obtain f E · dl -=!= 0). Because the 
line integral is independent of path, we can define a function6 

V (r) = - J: E · dl. (2.21) 

Here 0 is some standard reference point on which we have agreed beforehand; V 
then depends only on the point r. It is called the electric potential. 

The potential difference between two points a and b is 

V(b)- V(a) =-1: E · dl +La E · dl 

=-1: E·dl-1° E·dl= -1b E·dl. (2.22) 

Now, the fundamental theorem for gradients states that 

V(b)- V(a) = 1\vv). dl, 

so 

1b (VV) · dl = -1b E · dl. 

Since, finally, this is true for any points a and b, the integrands must be equal: 

I E=-VV. I (2.23) 

6To avoid any possible ambiguity, I should perhaps put a prime on the integration variable: 

V(r) =-1: E(r') · dl'. 

But this makes for cumbersome notation, and I prefer whenever possible to reserve the primes for 
source points. However, when (as in Ex. 2.7) we calculate such integrals explicitly, I will put in the 
primes. 
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Equation 2.23 is the differential version of Eq. 2.21; it says that the electric field 
is the gradient of a scalar potential, which is what we set out to prove. 

Notice the subtle but crucial role played by path independence (or, equiva­
lently, the fact that V x E = 0) in this argument. If the line integral of E depended 
on the path taken, then the "definition" of V, Eq. 2.21, would be nonsense. It sim­
ply would not define a function, since changing the path would alter the value of 
V (r). By the way, don't let the minus sign in Eq. 2.23 distract you; it carries over 
from Eq. 2.21 and is largely a matter of convention. 

Problem 2.20 One of these is an impossible electrostatic field. Which one? 

(a) E=k[xyx+2yzy+3xzz]; 

(b) E = k[y2 x + (2xy + z2
) y + 2yz z]. 

Here k is a constant with the appropriate units. For the possible one, find the poten­
tial, using the origin as your reference point. Check your answer by computing V V. 
[Hint: You must select a specific path to integrate along. It doesn't matter what path 
you choose, since the answer is path-independent, but you simply cannot integrate 
unless you have a definite path in mind.] 

2.3.2 • Comments on Potential 

(i) The name. The word "potential" is a hideous misnomer because it inevitably 
reminds you of potential energy. This is particularly insidious, because there 
is a connection between "potential" and "potential energy," as you will see in 
Sect. 2.4. I'm sorry that it is impossible to escape this word. The best I can do is 
to insist once and for all that "potential" and "potential energy" are completely 
different terms and should, by all rights, have different names. Incidentally, a sur­
face over which the potential is constant is called an equipotential. 

(ii) Advantage of the potential formulation. If you know V, you can eas­
ily get E-just take the gradient: E = - V V. This is quite extraordinary when 
you stop to think about it, forE is a vector quantity (three components), but V 
is a scalar (one component). How can one function possibly contain all the in­
formation that three independent functions carry? The answer is that the three 
components of E are not really as independent as they look; in fact, they are ex­
plicitly interrelated by the very condition we started with, V x E = 0. In terms of 
components, 

This brings us back to my observation at the beginning of Sect. 2.3.1: Eisa very 
special kind of vector. What the potential formulation does is to exploit this feature 
to maximum advantage, reducing a vector problem to a scalar one, in which there 
is no need to fuss with components. 
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(iii) The reference point 0. There is an essential ambiguity in the definition of 
potential, since the choice of reference point 0 was arbitrary. Changing reference 
points amounts to adding a constant K to the potential: 

V'(r) =- ( E · dl =- {
0 

E · dl- ( E · dl = K + V(r), 
Jo, leY lo 

where K is the line integral of E from the old reference point 0 to the new one 0'. 
Of course, adding a constant to V will not affect the potential difference between 
two points: 

V'(b)- V'(a) = V(b)- V(a), 

since the K's cancel out. (Actually, it was already clear from Eq. 2.22 that the 
potential difference is independent of 0, because it can be written as the line 
integral of E from a to b, with no reference to 0.) Nor does the ambiguity affect 
the gradient of V: 

VV' = VV, 

since the derivative of a constant is zero. That's why all such V's, differing only 
in their choice of reference point, correspond to the same field E. 

Potential as such carries no real physical significance, for at any given point 
we can adjust its value at will by a suitable relocation of 0. In this sense, it is 
rather like altitude: If I ask you how high Denver is, you will probably tell me 
its height above sea level, because that is a convenient and traditional reference 
point. But we could as well agree to measure altitude above Washington, D.C., 
or Greenwich, or wherever. That would add (or, rather, subtract) a fixed amount 
from all our sea-level readings, but it wouldn't change anything about the real 
world. The only quantity of intrinsic interest is the difference in altitude between 
two points, and that is the same whatever your reference level. 

Having said this, however, there is a "natural" spot to use for 0 in 
electrostatics-analogous to sea level for altitude-and that is a point infinitely 
far from the charge. Ordinarily, then, we "set the zero of potential at infinity." 
(Since V ( 0) = 0, choosing a reference point is equivalent to selecting a place 
where V is to be zero.) But I must warn you that there is one special circum­
stance in which this convention fails: when the charge distribution itself extends 
to infinity. The symptom of trouble, in such cases, is that the potential blows up. 
For instance, the field of a uniformly charged plane is (a /2Eo)n, as we found in 
Ex. 2.5; if we naively put 0 = oo, then the potential at height z above the plane 
becomes 

V(z) = -lz -1
- a dz = - -

1
- a(z- oo). 

oo 2Eo 2Eo 

The remedy is simply to choose some other reference point (in this example you 
might use a point on the plane). Notice that the difficulty occurs only in textbook 
problems; in "real life" there is no such thing as a charge distribution that goes on 
forever, and we can always use infinity as our reference point. 
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(iv) Potential obeys the superposition principle. The original superposition 
principle pertains to the force on a test charge Q. It says that the total force on Q 
is the vector sum of the forces attributable to the source charges individually: 

F = F1 +F2 + ... 
Dividing through by Q, we see that the electric field, too, obeys the superposition 
principle: 

E = E1 +E2 + ... 
Integrating from the common reference point tor, it follows that the potential also 
satisfies such a principle: 

v = v1 + v2 + ... 
That is, the potential at any given point is the sum of the potentials due to all the 
source charges separately. Only this time it is an ordinary sum, not a vector sum, 
which makes it a lot easier to work with. 

(v) Units of Potential. In our units, force is measured in newtons and charge 
in coulombs, so electric fields are in newtons per coulomb. Accordingly, potential 
is newton-meters per coulomb, or joules per coulomb. A joule per coulomb is 
a volt. 

Example 2.7. Find the potential inside and outside a spherical shell of radius R 
(Fig. 2.31) that carries a uniform surface charge. Set the reference point at infinity. 

FIGURE2.31 

Solution 
From Gauss's law, the field outside is 

1 q A 

E= ---r, 
4rrE0 r 2 

where q is the total charge on the sphere. The field inside is zero. For points 
outside the sphere (r > R), 

V(r) =- E ·dl = -- - dr' = ---1r -1 1r q 1 q lr 
0 4rrEo 00 r'2 4rrEo r' 00 

1 q 

4rrEo r 
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To find the potential inside the sphere (r < R), we must break the integral into 
two pieces, using in each region the field that prevails there: 

-1 1R q 1r 1 q IR 1 q V(r) = -- - dr'- (O)dr' = --- +0 = ---. 
4nEo 00 r'2 R 4nEo r' 00 4nEo R 

Notice that the potential is not zero inside the shell, even though the field is. 
V is a constant in this region, to be sure, so that V V = 0-that's what matters. 
In problems of this type, you must always work your way in from the reference 
point; that's where the potential is "nailed down." It is tempting to suppose that 
you could figure out the potential inside the sphere on the basis of the field there 
alone, but this is false: The potential inside the sphere is sensitive to what's going 
on outside the sphere as well. If I placed a second uniformly charged shell out at 
radius R' > R, the potential insideR would change, even though the field would 
still be zero. Gauss's law guarantees that charge exterior to a given point (that 
is, at larger r) produces no net field at that point, provided it is spherically or 
cylindrically symmetric, but there is no such rule for potential, when infinity is 
used as the reference point. 

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere 
whose radius is R and whose total charge is q. Use infinity as your reference point. 
Compute the gradient of V in each region, and check that it yields the correct field. 
Sketch V(r). 

Problem 2.22 Find the potential a distance s from an infinitely long straight wire 
that carries a uniform line charge A.. Compute the gradient of your potential, and 
check that it yields the correct field. 

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the 
center, using infinity as your reference point. 

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference 
between a point on the axis and a point on the outer cylinder. Note that it is not 
necessary to commit yourself to a particular reference point, if you use Eq. 2.22. 

2.3.3 • Poisson's Equation and Laplace's Equation 

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a 
scalar potential. 

E = -VV. 

The question arises: What do the divergence and curl of E, 

V·E=£_ and v X E = 0, 
Eo 
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look like, in terms of V? Well, V · E = V · (-V V) = - V2 V, so, apart from that 
persistent minus sign, the divergence of E is the Laplacian of V. Gauss's law, 
then, says 

~ 
~ 

(2.24) 

This is known as Poisson's equation. In regions where there is no charge, so 
p = 0, Poisson's equation reduces to Laplace's equation, 

(2.25) 

We'll explore this equation more fully in Chapter 3. 
So much for Gauss's law. What about the curl law? This says that 

VxE=Vx(-VV)=O. 

But that's no condition on V --curl of gradient is always zero. Of course, we 
used the curl law to show that E could be expressed as the gradient of a scalar, 
so it's not really surprising that this works out: V x E = 0 permits E = -VV; 
in return, E = - V V guarantees V x E = 0. It takes only one differential equa­
tion (Poisson's) to determine V, because V is a scalar; forE we needed two, the 
divergence and the curl. 

2.3.4 • The Potential of a Localized Charge Distribution 

I defined V in terms ofE (Eq. 2.21). Ordinarily, though, it's E that we're looking 
for (if we already knew E, there wouldn't be much point in calculating V). The 
idea is that it might be easier to get V first, and then calculate E by taking the 
gradient. Typically, then, we know where the charge is (that is, we know p), and 
we want to find V. Now, Poisson's equation relates V and p, but unfortunately 
it's "the wrong way around": it would give us p, if we knew V, whereas we want 
V, knowing p. What we must do, then, is "invert" Poisson's equation. That's the 
program for this section, although I shall do it by roundabout means, beginning, 
as always, with a point charge at the origin. 

The electric field is E=(1/4nEo)(1/r2)r, and dl=drr+rdOO+ 
r sinO d¢ ~ (Eq. 1.68), so 

E · dl = -
1
- !!.._ dr. 

4nEo r 2 

Setting the reference point at infinity, the potential of a point charge q at the 
origin is 

1r -1 1r q , 1 q lr V(r) =- E·dl= -- - dr = ---
o 4nEo 00 r'2 4nEo r' 00 

1 q 

4nEo r · 

(You see here the advantage of using infinity for the reference point: it kills the 
lower limit on the integral.) Notice the sign of V; presumably the conventional 
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FIGURE2.32 

minus sign in the definition (Eq. 2.21) was chosen in order to make the poten­
tial of a positive charge come out positive. It is useful to remember that regions 
of positive charge are potential "hills," regions of negative charge are potential 
"valleys," and the electric field points "downhill," from plus toward minus. 

In general, the potential of a point charge q is 

V(r) = -
1- g_, 

4rrEo 1-
(2.26) 

where 1-, as always, is the distance from q to r (Fig. 2.32). Invoking the superpo­
sition principle, then, the potential of a collection of charges is 

V(r) = _ 1_ f. qi' 
4rrEo i=l1-i 

(2.27) 

or, for a continuous distribution, 

1 I 1 V(r) = - - dq. 
4rrEo 1-

(2.28) 

In particular, for a volume charge, it's 

V(r) = _ 1_ I p(r') dr:'. 
4rrEo 1-

(2.29) 

This is the equation we were looking for, telling us how to compute V when we 
know p; it is, if you like, the "solution" to Poisson's equation, for a localized 
charge distribution.7 Compare Eq. 2.29 with the corresponding formula for the 
electric .field in terms of p (Eq. 2.8): 

E(r) = -
1-1 p(r') .f.dr:'. 

4rrEo 1-2 

The main point to notice is that the pesky unit vector .f. is gone, so there is no need 
to fuss with components. The potentials of line and surface charges are 

V = -
1- I .A(r') dl' and 

4rrEo 1-

V = _ 1_ I a(r') da'. 
4rrEo 1-

(2.30) 

I should warn you that everything in this section is predicated on the assump­
tion that the reference point is at infinity. This is hardly apparent in Eq. 2.29, but 
7Equation 2.29 is an example of the Helmholtz theorem (Appendix B). 
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remember that we got that equation from the potential of a point charge at the ori­
gin, (lj4nE0 )(qjr), which is valid only when 0 = oo. If you try to apply these 
formulas to one of those artificial problems in which the charge itself extends to 
infinity, the integral will diverge. 

Example 2.8. Find the potential of a uniformly charged spherical shell of radius 
R (Fig. 2.33). 

Solution 
This is the same problem we solved in Ex. 2.7, but this time let's do it using 
Eq. 2.30: 

V(r) = -- - da. 1 f (I ' 

4nEo .z. 

We might as well set the point P on the z axis and use the law of cosines to 
express.z.: 

.z-2 = R2 + z2
- 2Rz cosO'. 

z 

y 

FIGURE2.33 

An element of surface area on the sphere is R2 sin()' dO' d¢', so 

f R 2 sinO' dO' d¢' 
4nEoV(z) = u 

,J R2 + z2 - 2Rz cos()' 

= 2n R2u dO' 1rr sinO' 

o ,J R2 + z2 - 2Rz cos ()' 

= 2n R
2
u ( IhJ R2 + z2 

- 2Rz coso') 1: 

= 
2
n :u ( J R2 + z2 + 2Rz - J R2 + z2 - 2Rz) 

= 
2
n :u [ J (R + z)2 - J (R - z)2 J . 
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At this stage, we must be very careful to take the positive root. For points outside 
the sphere, z is greater than R, and hence J (R- z)2 = z- R; for points inside 
the sphere, J (R - z)2 = R - z. Thus, 

Ra R2a 
V(z) = - [(R + z)- (z- R)] = - , 

2EoZ EoZ 
outside; 

Ra Ra 
V(z) = - [(R + z)- (R- z)] = - , 

2EoZ Eo 
inside. 

In terms of r and the total charge on the shell, q = 4rr R2a, 

{ 

1 
q (r 2: R), 

V(r) = 4rrEo r 
1 q 

(r::; R). 
4rrEo R 

Of course, in this particular case, it was easier to get V by using Eq. 2.21 than 
Eq. 2.30, because Gauss's law gave usE with so little effort. But if you compare 
Ex. 2.8 with Prob. 2.7, you will appreciate the power ofthe potential formulation. 

+q 

Problem 2.25 Using Eqs. 2.27 and 2.30, find the potential at a distance z above the 
center of the charge distributions in Fig. 2.34. In each case, compute E = - V V, and 
compare your answers with Ex. 2.1, Ex. 2.2, and Prob. 2.6, respectively. Suppose 
that we changed the right-hand charge in Fig. 2.34a to -q; what then is the potential 
at P? What field does that suggest? Compare your answer to Pro b. 2.2, and explain 
carefully any discrepancy. 

TP 
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Zl 
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I 
I 
I 
I 

d +q 
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Zl 
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~ 
(a) Two point charges (b) Uniform line charge (c) Uniform surface charge 

FIGURE2.34 

Problem 2.26 A conical surface (an empty ice-cream cone) carries a uniform sur­
face charge a. The height of the cone is h, as is the radius of the top. Find the 
potential difference between points a (the vertex) and b (the center of the top). 

Problem 2.27 Find the potential on the axis of a uniformly charged solid cylinder, 
a distance z from the center. The length of the cylinder is L, its radius is R, and 
the charge density is p. Use your result to calculate the electric field at this point. 
(Assume that z > Lj2.) 
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Problem 2.28 Use Eq. 2.29 to calculate the potential inside a uniformly charged 
solid sphere of radius R and total charge q. Compare your answer to Pro b. 2.21. 

Problem 2.29 Check that Eq. 2.29 satisfies Poisson's equation, by applying the 
Laplacian and using Eq. 1.102. 

2.3.5 • Boundary Conditions 

In the typical electrostatic problem you are given a source charge distribution 
p, and you want to find the electric field E it produces. Unless the symmetry 
of the problem allows a solution by Gauss's law, it is generally to your advan­
tage to calculate the potential first, as an intermediate step. These are the three 
fundamental quantities of electrostatics: p, E, and V. We have, in the course 
of our discussion, derived all six formulas interrelating them. These equations 
are neatly summarized in Fig. 2.35. We began with just two experimental obser­
vations: (1) the principle of superposition-a broad general rule applying to all 
electromagnetic forces, and (2) Coulomb's law-the fundamental law of electro­
statics. From these, all else followed. 

You may have noticed, in studying Exs. 2.5 and 2.6, or working problems such 
as 2.7, 2.11, and 2.16, that the electric field always undergoes a discontinuity 
when you cross a surface charge a. In fact, it is a simple matter to find the amount 
by which E changes at such a boundary. Suppose we draw a wafer-thin Gaussian 
pillbox, extending just barely over the edge in each direction (Fig. 2.36). Gauss's 
law says that 

J. E · da = _!_ Qenc = _!_a A, 
j Eo Eo 
s 

where A is the area of the pillbox lid. (If a varies from point to point or the surface 
is curved, we must pick A to be extremely small.) Now, the sides of the pillbox 

E=-VV 

V=-fE-dl 

FIGURE2.35 
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FIGURE2.36 

contribute nothing to the flux, in the limit as the thickness E goes to zero, so we 
are left with 

_l _l 1 
Eabove - Ebelow = - u, 

Eo 
(2.31) 

where E~ove denotes the component of E that is perpendicular to the surface im­
mediately above, and Etelow is the same, only just below the surface. For consis­
tency, we let ''upward" be the positive direction for both. Conclusion: The normal 
component of E is discontinuous by an amount u j Eo at any boundary. In partic­
ular, where there is no surface charge, E .l is continuous, as for instance at the 
surface of a uniformly charged solid sphere. 

The tangential component of E, by contrast, is always continuous. For if we 
apply Eq. 2.19, 

f E ·dl = 0, 

to the thin rectanfular loo~ of Fig. 2.37, the ends give nothing (as E --+ 0), and 
the sides give (E~bovel- E~elowl), so 

Ell -Ell 
above - below• (2.32) 

where Ell stands for the components of E parallel to the surface. The boundary 
conditions on E (Eqs. 2.31 and 2.32) can be combined into a single formula: 

UA 
Eabove - Ebelow = - n, 

Eo 

FIGURE2.37 

(2.33) 



90 Chapter 2 Electrostatics 

FIGURE2.38 

where ii is a unit vector perpendicular to the surface, pointing from "below" to 
"above."8 

The potential, meanwhile, is continuous across any boundary (Fig. 2.38), since 

Yabove - Vbelow = - ib E · dl; 

as the path length shrinks to zero, so too does the integral: 

Vabove = Vbelow · (2.34) 

However, the gradient of V inherits the discontinuity in E; since E = - V V, 
Eq. 2.33 implies that 

or, more conveniently, 

where 

1 A 

VVabove- VVbelow = - - o-n, 
Eo 

a Vabove a Vbelow 
--- - --- = - - o-, an an Eo 

av A 

- =VV·n an 

(2.35) 

(2.36) 

(2.37) 

denotes the normal derivative of V (that is, the rate of change in the direction 
perpendicular to the surface). 

Please note that these boundary conditions relate the fields and potentials just 
above and just below the surface. For example, the derivatives in Eq. 2.36 are the 
limiting values as we approach the surface from either side. 

8Notice that it doesn't matter which side you call "above" and which "below," since reversal would 
switch the direction of n. Incidentally, if you're only interested in the field due to the (essentially 
flat) local patch of surface charge itself, the answer is (u /2Eo)n immediately above the surface, and 
-(u/2Eo)n immediately below. This follows from Ex. 2.5, for if you are close enough to the patch it 
"looks" like an infinite plane. Evidently the entire discontinuity in E is attributable to this local patch 
of surface charge. 
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Problem 2.30 

(a) Check that the results of Exs. 2.5 and 2.6, and Prob. 2.11, are consistent with 
Eq. 2.33. 

(b) Use Gauss's law to find the field inside and outside a long hollow cylindrical 
tube, which carries a uniform surface charge a. Check that your result is con­
sistent with Eq. 2.33. 

(c) Check that the result of Ex. 2.8 is consistent with boundary conditions 2.34 and 
2.36. 

2.4 • WORK AND ENERGY IN ELECTROSTATICS 

2.4.1 • The Work It Takes to Move a Charge 

Suppose you have a stationary configuration of source charges, and you want to 
move a test charge Q from point a to point b (Fig. 2.39). Question: How much 
work will you have to do? At any point along the path, the electric force on Q is 
F = QE; the force you must exert, in opposition to this electrical force, is - QE. 
(If the sign bothers you, think about lifting a brick: gravity exerts a force mg 
downward, but you exert a force mg upward. Of course, you could apply an even 
greater force-then the brick would accelerate, and part of your effort would be 
"wasted" generating kinetic energy. What we're interested in here is the minimum 
force you must exert to do the job.) The work you do is therefore 

W = 1b F · dl = -Q 1b E · dl = Q[V(b)- V(a)]. 

Notice that the answer is independent of the path you take from a to b; in mechan­
ics, then, we would call the electrostatic force "conservative." Dividing through 
by Q, we have 

w 
V(b)- V(a) = Q. (2.38) 

In words, the potential difference between points a and b is equal to the work per 
unit charge required to carry a particle from a to b. In particular, if you want to 
bring Q in from far away and stick it at point r, the work you must do is 

W = Q[V(r)- V(oo)], 

FIGURE2.39 
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so, if you have set the reference point at infinity, 

W = QV(r). (2.39) 

In this sense, potential is potential energy (the work it takes to create the system) 
per unit charge (just as the field is the force per unit charge). 

2.4.2 • The Energy of a Point Charge Distribution 

How much work would it take to assemble an entire collection of point charges? 
Imagine bringing in the charges, one by one, from far away (Fig. 2.40). The first 
charge, q1, takes no work, since there is no field yet to fight against. Now bring in 
q2. According to Eq. 2.39, this will cost you q2 V1 (r2), where Y1 is the potential 
due to q1, and r2 is the place we're putting q2: 

(~t-12 is the distance between q1 and q2 once they are in position). As you bring in 
each charge, nail it down in its final location, so it doesn't move when you bring 
in the next charge. Now bring in q3 ; this requires work q3 V1,2(r3), where V1,2 is 
the potential due to charges q1 and q 2, namely, (1/4rrEo)(qi/~t-13 + q2j~t-23 ). Thus 

Similarly, the extra work to bring in q4 will be 

The total work necessary to assemble the first four charges, then, is 

FIGURE2.40 
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You see the general rule: Take the product of each pair of charges, divide by 
their separation distance, and add it all up: 

1 n n qoq 0 

w--~~-~ J 
- 4nEo ~~ 1- 00 • 

i=l j>i IJ 

(2.40) 

The stipulation j > i is to remind you not to count the same pair twice. A nicer 
way to accomplish this is intentionally to count each pair twice, and then divide 
by2: 

1 n n qoq 0 

W--~~-~ J 

8nEo {;: f;: -2-ij 
(2.41) 

(we must still avoid i = j, of course). Notice that in this form the answer plainly 
does not depend on the order in which you assemble the charges, since every pair 
occurs in the sum. 

Finally, let's pull out the factor qi: 

1 n ( n 1 qj) 
W- - qo ---

- 2 L I L 4nEo 1-.. . 
i=l j;fi I] 

The term in parentheses is the potential at point ri (the position of qi) due to all 
the other charges-all of them, now, not just the ones that were present at some 
stage during the assembly. Thus, 

(2.42) 

That's how much work it takes to assemble a configuration of point charges; it's 
also the amount of work you'd get back if you dismantled the system. In the 
meantime, it represents energy stored in the configuration ("potential" energy, if 
you insist, though for obvious reasons I prefer to avoid that word in this context). 

Problem 2.31 

(a) Three charges are situated at the comers of a square (side a), as shown in 
Fig. 2.41. How much work does it take to bring in another charge, +q, from 
far away and place it in the fourth comer? 

(b) How much work does it take to assemble the whole configuration of four 
charges? 

FIGURE2.41 
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Problem 2.32 Two positive point charges, qA and qs (masses mA and ms) are at 
rest, held together by a massless string of length a. Now the string is cut, and the 
particles fly off in opposite directions. How fast is each one going, when they are 
far apart? 

Problem 2.33 Consider an infinite chain of point charges, ±q (with alternating 
signs), strung out along the x axis, each a distance a from its nearest neighbors. 
Find the work per particle required to assemble this system. [Partial Answer: 
-otq2 j(4rrE0a), for some dimensionless number a; your problem is to determine ot. 

It is known as the Madelung constant. Calculating the Madelung constant for 
2- and 3-dimensional arrays is much more subtle and difficult.] 

2.4.3 • The Energy of a Continuous Charge Distribution 

For a volume charge density p, Eq. 2.42 becomes 

(2.43) 

(The corresponding integrals for line and surface charges would be J 'AV dl and 
J aV da.) There is a lovely way to rewrite this result, in which p and V are 
eliminated in favor of E. First use Gauss's law to express p in terms of E: 

p = EoV · E, so W = ~ J (V · E)V dr. 

Now use integration by parts (Eq. 1.59) to transfer the derivative from E to V: 

W= ~ [-f E·(VV)dr+f VE·daJ. 

But VV = -E, so 

(2.44) 

But what volume is this we're integrating over? Let's go back to the formula 
we started with, Eq. 2.43. From its derivation, it is clear that we should integrate 
over the region where the charge is located. But actually, any larger volume would 
do just as well: The "extra" territory we throw in will contribute nothing to the 
integral, since p = 0 out there. With this in mind, we return to Eq. 2.44. What 
happens here, as we enlarge the volume beyond the minimum necessary to trap 
all the charge? Well, the integral of E 2 can only increase (the integrand being 
positive); evidently the surface integral must decrease correspondingly to leave 
the sum intact. (In fact, at large distances from the charge, E goes like 1 I r 2 and V 
like 1 I r, while the surface area grows like r2

; roughly speaking, then, the surface 
integral goes down like 1 I r.) Please understand: Eq. 2.44 gives you the correct 
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energy W, whatever volume you use (as long as it encloses all the charge), but 
the contribution from the volume integral goes up, and that of the surface integral 
goes down, as you take larger and larger volumes. In particular, why not integrate 
over all space? Then the surface integral goes to zero, and we are left with 

I W = T j E2 
dr I (all space). (2.45) 

Example 2.9. Find the energy of a uniformly charged spherical shell of total 
charge q and radius R. 

Solution 1 
Use Eq. 2.43, in the version appropriate to surface charges: 

W=~Javda. 
Now, the potential at the surface of this sphere is (1/4nE0)q I R (a constant­
Ex. 2.7), so 

1 q f 1 q2 
W = 8nEo R ada= 8nEo Ji· 

Solution 2 
Use Eq. 2.45. Inside the sphere, E = 0; outside, 

Therefore, 

1 q A 

E= ---r, 
4nEo r 2 so 

Eo J (q2
) 2 • Wtot = 

2 4 (r smO dr dOd¢) 
2(4nE0) r 

outside 

1 2 100 1 1 q2 
= --q4n - dr= ---

32n2Eo R r 2 8nEo R 

Problem 2.34 Find the energy stored in a uniformly charged solid sphere of radius 
R and charge q. Do it three different ways: 

(a) Use Eq. 2.43. You found the potential in Prob. 2.21. 

(b) Use Eq. 2.45. Don't forget to integrate over all space. 

(c) Use Eq. 2.44. Take a spherical volume of radius a. What happens as a ~ oo? 
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Problem 2.35 Here is a fourth way of computing the energy of a uniformly charged 
solid sphere: Assemble it like a snowball, layer by layer, each time bringing in an 
infinitesimal charge dq from far away and smearing it uniformly over the surface, 
thereby increasing the radius. How much work d W does it take to build up the radius 
by an amount dr? Integrate this to find the work necessary to create the entire sphere 
of radius R and total charge q. 

2.4.4 • Comments on Electrostatic Energy 

(i) A perplexing ''inconsistency." Equation 2.45 clearly implies that the 
energy of a stationary charge distribution is always positive. On the other hand, 
Eq. 2.42 (from which 2.45 was in fact derived), can be positive or negative. For 
instance, according to Eq. 2.42, the energy of two equal but opposite charges a 
distance~t- apart is -(1/4nt:0)(q2 j~t-). What's gone wrong? Which equation is cor­
rect? 

The answer is that both are correct, but they speak to slightly different ques­
tions. Equation 2.42 does not take into account the work necessary to make the 
point charges in the first place; we started with point charges and simply found 
the work required to bring them together. This is wise strategy, since Eq. 2.45 
indicates that the energy of a point charge is in fact infinite: 

W = 
0 

2 4 (r 2 sin0drd0dl/J) = -- 2 dr = oo. E f (q2) q2 1oo 1 
2(4nt:o) r 8nt:o 0 r 

Equation 2.45 is more complete, in the sense that it tells you the total energy 
stored in a charge configuration, but Eq. 2.42 is more appropriate when you're 
dealing with point charges, because we prefer (for good reason!) to leave out that 
portion of the total energy that is attributable to the fabrication of the point charges 
themselves. In practice, after all, the point charges (electrons, say) are given to us 
ready-made; all we do is move them around. Since we did not put them together, 
and we cannot take them apart, it is immaterial how much work the process would 
involve. (Still, the infinite energy of a point charge is a recurring source of embar­
rassment for electromagnetic theory, afflicting the quantum version as well as the 
classical. We shall return to the problem in Chapter 11.) 

Now, you may wonder where the inconsistency crept into an apparently water­
tight derivation. The "flaw" lies between Eqs. 2.42 and 2.43: in the former, V(ri) 
represents the potential due to all the other charges but not qi, whereas in the 
latter, V(r) is the full potential. For a continuous distribution, there is no distinc­
tion, since the amount of charge right at the point r is vanishingly small, and its 
contribution to the potential is zero. But in the presence of point charges you'd 
better stick with Eq. 2.42. 

(ii) Where is the energy stored? Equations 2.43 and 2.45 offer two different 
ways of calculating the same thing. The first is an integral over the charge dis­
tribution; the second is an integral over the field. These can involve completely 
different regions. For instance, in the case of the spherical shell (Ex. 2.9) the 
charge is confined to the surface, whereas the electric field is everywhere outside 
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this surface. Where is the energy, then? Is it stored in the field, as Eq. 2.45 seems 
to suggest, or is it stored in the charge, as Eq. 2.43 implies? At the present stage 
this is simply an unanswerable question: I can tell you what the total energy is, 
and I can provide you with several different ways to compute it, but it is imperti­
nent to worry about where the energy is located. In the context of radiation theory 
(Chapter 11) it is useful (and in general relativity it is essential) to regard the 
energy as stored in the field, with a density 

Eo E2 "t 1 2 = energy per um vo ume. (2.46) 

But in electrostatics one could just as well say it is stored in the charge, with a 
density ! p V. The difference is purely a matter of bookkeeping. 

(iii) The superposition principle. Because electrostatic energy is quadratic 
in the fields, it does not obey a superposition principle. The energy of a compound 
system is not the sum of the energies of its parts considered separately-there are 
also "cross terms": 

Eo J 2 Eo J 2 Wtot = 2 E dr: = 2 (E1 + E2) dr: 

Eo J ( 2 2 ) = 2 E 1 + E2 + 2El · E2 dr: 

= W1 + W2 +Eo J E1 · E2 dr:. (2.47) 

For example, if you double the charge everywhere, you quadruple the total energy. 

Problem 2.36 Consider two concentric spherical shells, of radii a and b. Suppose 
the inner one carries a charge q, and the outer one a charge -q (both of them 
uniformly distributed over the surface). Calculate the energy of this configuration, 
(a) using Eq. 2.45, and (b) using Eq. 2.47 and the results of Ex. 2.9. 

Problem 2.37 Find the interaction energy (Eo J E 1 • E2 dr: in Eq. 2.47) for two point 
charges, q1 and q2, a distance a apart. [Hint: Put q1 at the origin and q2 on the z axis; 
use spherical coordinates, and do the r integral first.] 

2.5 • CONDUCTORS 

2.5.1 • Basic Properties 

In an insulator, such as glass or rubber, each electron is on a short leash, attached 
to a particular atom. In a metallic conductor, by contrast, one or more electrons 
per atom are free to roam. (In liquid conductors such as salt water, it is ions that 
do the moving.) A perfect conductor would contain an unlimited supply of free 
charges. In real life there are no perfect conductors, but metals come pretty close, 
for most purposes. 
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From this definition, the basic electrostatic properties of ideal conductors 
immediately follow: 

(i) E = 0 inside a conductor. Why? Because if there were any field, those 
free charges would move, and it wouldn't be electrostatics any more. Hmm ... 
that's hardly a satisfactory explanation; maybe all it proves is that you can't have 
electrostatics when conductors are present. We had better examine what happens 
when you put a conductor into an external electric field Eo (Fig. 2.42). Initially, 
the field will drive any free positive charges to the right, and negative ones to the 
left. (In practice, it's the negative charges-electrons-that do the moving, but 
when they depart, the right side is left with a net positive charge-the stationary 
nuclei-so it doesn't really matter which charges move; the effect is the same.) 
When they come to the edge of the material, the charges pile up: plus on the right 
side, minus on the left. Now, these induced charges produce a field of their own, 
E1, which, as you can see from the figure, is in the opposite direction to E0. That's 
the crucial point, for it means that the field of the induced charges tends to cancel 
the original field. Charge will continue to flow until this cancellation is complete, 
and the resultant field inside the conductor is precisely zero.9 The whole process 
is practically instantaneous. 

(ii) p = 0 inside a conductor. This follows from Gauss's law: V · E = pjE0. 
If E is zero, so also is p. There is still charge around, but exactly as much plus as 
minus, so the net charge density in the interior is zero. 

(iii) Any net charge resides on the surface. That's the only place left. 
(iv) A conductor is an equipotential. For if a and b are any two points 

within (or at the surface of) a given conductor, V(b)- V(a) =- J: E · dl = 0, 
and hence V(a) = V(b). 

(v) E is perpendicular to the surface, just outside a conductor. Otherwise, 
as in (i), charge will immediately flow around the surface until it kills off the 
tangential component (Fig. 2.43). (Perpendicular to the surface, charge cannot 
flow, of course, since it is confined to the conducting object.) 

+ 
+ 
+ 
+ 
+ 

+----+ 
- E + 

1 + 
+ 
+ 
+ 
+ 
+ 

FIGURE2.42 

9 Outside the conductor the field is not zero, for here Eo and Et do not tend to cancel. 
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FIGURE2.43 

I think it is astonishing that the charge on a conductor flows to the surface. 
Because of their mutual repulsion, the charges naturally spread out as much as 
possible, but for all of them to go to the surface seems like a waste of the interior 
space. Surely we could do better, from the point of view of making each charge 
as far as possible from its neighbors, to sprinkle some of them throughout the 
volume ... Well, it simply is not so. You do best to put all the charge on the 
surface, and this is true regardless of the size or shape of the conductor.10 

The problem can also be phrased in terms of energy. Like any other free 
dynamical system, the charge on a conductor will seek the configuration that 
minimizes its potential energy. What property (iii) asserts is that the electrostatic 
energy of a solid object (with specified shape and total charge) is a minimum 
when that charge is spread over the surface. For instance, the energy of a sphere 
is (118nEo)(q2 I R) if the charge is uniformly distributed over the surface, as we 
found in Ex. 2.9, but it is greater, (3120nEo)(q2 I R), if the charge is uniformly 
distributed throughout the volume (Prob. 2.34). 

2.5.2 • Induced Charges 

If you hold a charge +q near an uncharged conductor (Fig. 2.44), the two will 
attract one another. The reason for this is that q will pull minus charges over to 
the near side and repel plus charges to the far side. (Another way to think of it 
is that the charge moves around in such a way as to kill off the field of q for 
points inside the conductor, where the total field must be zero.) Since the negative 
induced charge is closer to q, there is a net force of attraction. (In Chapter 3 we 
shall calculate this force explicitly, for the case of a spherical conductor.) 

When I speak of the field, charge, or potential "inside" a conductor, I mean in 
the "meat" of the conductor; if there is some hollow cavity in the conductor, and 

10By the way, the one- and two-dimensional analogs are quite different: The charge on a conducting 
disk does not all go to the perimeter (R. Friedberg, Am. J. Phys. 61, 1084 (1993)), nor does the charge 
on a conducting needle go to the ends (D. J. Griffiths andY. Li, Am. J. Phys. 64, 706 (1996))-see 
Prob. 2.56. Moreover, if the exponent of r in Coulomb's law were not precisely 2, the charge on a 
solid conductor would not all go to the surface-see D. J. Griffiths and D. Z. Uvanovic, Am. J. Phys. 
69, 435 (2001), and Prob. 2.53g. 
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Gaussian 
surface 

• 
+q 

Conductor 

FIGURE2.44 FIGURE2.45 

within that cavity you put some charge, then the field in the cavity will not be zero. 
But in a remarkable way the cavity and its contents are electrically isolated from 
the outside world by the surrounding conductor (Fig. 2.45). No external fields 
penetrate the conductor; they are canceled at the outer surface by the induced 
charge there. Similarly, the field due to charges within the cavity is canceled, 
for all exterior points, by the induced charge on the inner surface. However, the 
compensating charge left over on the outer surface of the conductor effectively 
"communicates" the presence of q to the outside world. The total charge induced 
on the cavity wall is equal and opposite to the charge inside, for if we surround the 
cavity with a Gaussian surface, all points of which are in the conductor (Fig. 2.45), 
j E · da = 0, and hence (by Gauss's law) the net enclosed charge must be zero. 
But Qenc = q + q induced, so q induced = -q. Then if the conductor as a whole is 
electrically neutral, there must be a charge +q on its outer surface. 

Example 2.10. An uncharged spherical conductor centered at the origin has a 
cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the 
cavity is a charge q. Question: What is the field outside the sphere? 

FIGURE2.46 
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Solution 
At first glance, it would appear that the answer depends on the shape of the cavity 
and the location of the charge. But that's wrong: the answer is 

E = -
1- !Lr 

4rrEo r 2 

regardless. The conductor conceals from us all information concerning the na­
ture of the cavity, revealing only the total charge it contains. How can this be? 
Well, the charge +q induces an opposite charge -q on the wall of the cavity, 
which distributes itself in such a way that its field cancels that of q, for all points 
exterior to the cavity. Since the conductor carries no net charge, this leaves +q to 
distribute itself uniformly over the surface of the sphere. (It's uniform because the 
asymmetrical influence of the point charge +q is negated by that of the induced 
charge -q on the inner surface.) For points outside the sphere, then, the only thing 
that survives is the field of the leftover +q, uniformly distributed over the outer 
surface. 

It may occur to you that in one respect this argument is open to challenge: 
There are actually three fields at work here: Eq, Einduced• and Eleftover· All we 
know for certain is that the sum of the three is zero inside the conductor, yet I 
claimed that the first two alone cancel, while the third is separately zero there. 
Moreover, even if the first two cancel within the conductor, who is to say they still 
cancel for points outside? They do not, after all, cancel for points inside the cavity. 
I cannot give you a completely satisfactory answer at the moment, but this much 
at least is true: There exists a way of distributing -q over the inner surface so as 
to cancel the field of q at all exterior points. For that same cavity could have been 
carved out of a huge spherical conductor with a radius of 27 miles or light years or 
whatever. In that case, the leftover +q on the outer surface is simply too far away 
to produce a significant field, and the other two fields would have to accomplish 
the cancellation by themselves. So we know they can do it ... but are we sure 
they choose to? Perhaps for small spheres nature prefers some complicated three­
way cancellation. Nope: As we'll see in the uniqueness theorems of Chapter 3, 
electrostatics is very stingy with its options; there is always precisely one way­
no more--of distributing the charge on a conductor so as to make the field inside 
zero. Having found a possible way, we are guaranteed that no alternative exists, 
even in principle. 

If a cavity surrounded by conducting material is itself empty of charge, then the 
field within the cavity is zero. For any field line would have to begin and end on the 
cavity wall, going from a plus charge to a minus charge (Fig. 2.47). Letting that 
field line be part of a closed loop, the rest of which is entirely inside the conductor 
(where E = 0), the integral :f E · dl is distinctly positive, in violation ofEq. 2.19. 
It follows that E = 0 within an empty cavity, and there is in fact no charge on the 
surface of the cavity. (This is why you are relatively safe inside a metal car during 
a thunderstorm-you may get cooked, if lightning strikes, but you will not be 
electrocuted. The same principle applies to the placement of sensitive apparatus 
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FIGURE2.47 

inside a grounded Faraday cage, to shield out stray electric fields. In practice, 
the enclosure doesn't even have to be solid conductor-chicken wire will often 
suffice.) 

Problem 2.38 A metal sphere of radius R, carrying charge q, is surrounded by a 
thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The 
shell carries no net charge. 

(a) Find the surface charge density a at R, at a, and at b. 

(b) Find the potential at the center, using infinity as the reference point. 

(c) Now the outer surface is touched to a grounding wire, which drains off charge 
and lowers its potential to zero (same as at infinity). How do your answers to 
(a) and (b) change? 

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the 
interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of 
each cavity a point charge is placed-call these charges qa and qb. 

(a) Find the surface charge densities aa, ab, and aR. 

(b) What is the field outside the conductor? 

(c) What is the field within each cavity? 

(d) What is the force on qa and qb? 

FIGURE2.48 FIGURE2.49 
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(e) Which of these answers would change if a third charge, qc, were brought near 
the conductor? 

Problem 2.40 

(a) A point charge q is inside a cavity in an uncharged conductor (Fig. 2.45). Is the 
force on q necessarily zero?11 

(b) Is the force between a point charge and a nearby uncharged conductor always 
attractive?12 

2.5.3 • Surface Charge and the Force on a Conductor 

Because the field inside a conductor is zero, boundary condition 2.33 requires that 
the field immediately outside is 

a A 

E= - D, 
Eo 

(2.48) 

consistent with our earlier conclusion that the field is normal to the surface. In 
terms of potential, Eq. 2.36 yields 

av 
a= -E0 - . an (2.49) 

These equations enable you to calculate the surface charge on a conductor, if you 
can determine E or V; we shall use them frequently in the next chapter. 

In the presence of an electric field, a surface charge will experience a force; 
the force per unit area, f, is a E. But there's a problem here, for the electric field is 
discontinuous at a surface charge, so what are we supposed to use: Eabove• Ebelow• 

or something in between? The answer is that we should use the average of the two: 

1 
f = a E average = 2a (E above + E below). (2.50) 

FIGURE2.50 
11This problem was suggested by Nelson Christensen. 
12See M. Levin and S. G. Johnson, Am. J. Phys. 79, 843 (2011). 
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Why the average? The reason is very simple, though the telling makes it sound 
complicated: Let's focus our attention on a tiny patch of surface surrounding the 
point in question (Fig. 2.50). (Make it small enough so it is essentially flat and 
the surface charge on it is essentially constant.) The total field consists of two 
parts-that attributable to the patch itself, and that due to everything else (other 
regions of the surface, as well as any external sources that may be present): 

E = Epatch + Eother · 

Now, the patch cannot exert a force on itself, any more than you can lift yourself 
by standing in a basket and pulling up on the handles. The force on the patch, 
then, is due exclusively to E other• and this suffers no discontinuity (if we removed 
the patch, the field in the "hole" would be perfectly smooth). The discontinuity is 
due entirely to the charge on the patch, which puts out a field (a /2Eo) on either 
side, pointing away from the surface. Thus, 

and hence 

a A 

E above = E other + -
2 

n, 
Eo 
a A 

Ebelow = Eother- - n, 
2Eo 

1 
E other = 2 (E above + E below) = E average· 

Averaging is really just a device for removing the contribution of the patch itself. 
That argument applies to any surface charge; in the particular case of a con­

ductor, the field is zero inside and (a /Eo)n outside (Eq. 2.48), so the average is 
(a j2Eo)n, and the force per unit area is 

(2.51) 

This amounts to an outward electrostatic pressure on the surface, tending to draw 
the conductor into the field, regardless of the sign of a. Expressing the pressure 
in terms of the field just outside the surface, 

(2.52) 

Problem 2.41 Two large metal plates (each of area A) are held a small distanced 
apart. Suppose we put a charge Q on each plate; what is the electrostatic pressure 
on the plates? 

Problem 2.42 A metal sphere of radius R carries a total charge Q. What is the force 
of repulsion between the "northern" hemisphere and the "southern" hemisphere? 
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FIGURE2.51 

2.5.4 • Capacitors 

Suppose we have two conductors, and we put charge + Q on one and - Q on the 
other (Fig. 2.51). Since V is constant over a conductor, we can speak unambigu­
ously of the potential difference between them: 

[

(+) 

v = v+ - v_ = - E . di. 
(-) 

We don't know how the charge distributes itself over the two conductors, and 
calculating the field would be a nightmare, if their shapes are complicated, but 
this much we do know: E is proportional to Q. ForE is given by Coulomb's law: 

E= -- - 11.dr, 1 f p" 
4nEo ~z-2 

so if you double p, you double E. [Wait a minute! How do we know that dou­
bling Q (and also- Q) simply doubles p? Maybe the charge moves around into 
a completely different configuration, quadrupling p in some places and halving it 
in others, just so the total charge on each conductor is doubled. The fact is that 
this concern is unwarranted--doubling Q does double p everywhere; it doesn't 
shift the charge around. The proof of this will come in Chapter 3; for now you'll 
just have to trust me.] 

Since E is proportional to Q, so also is V. The constant of proportionality is 
called the capacitance of the arrangement: 

Q 
C= v· (2.53) 

Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and 
separation of the two conductors. In SI units, C is measured in farads (F); a farad 
is a coulomb-per-volt. Actually, this turns out to be inconveniently large; more 
practical units are the microfarad (10-6 F) and the picofarad (10-12 F). 

Notice that V is, by definition, the potential of the positive conductor less 
that of the negative one; likewise, Q is the charge of the positive conductor. Ac­
cordingly, capacitance is an intrinsically positive quantity. (By the way, you will 
occasionally hear someone speak of the capacitance of a single conductor. In this 
case the "second conductor," with the negative charge, is an imaginary spherical 
shell of infinite radius surrounding the one conductor. It contributes nothing to 
the field, so the capacitance is given by Eq. 2.53, where V is the potential with 
infinity as the reference point.) 
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Example 2.11. Find the capacitance of a parallel-plate capacitor consisting of 
two metal surfaces of area A held a distance d apart (Fig. 2.52). 

FIGURE2.52 

Solution 
If we put + Q on the top and - Q on the bottom, they will spread out uniformly 
over the two surfaces, provided the area is reasonably large and the separation 
small.13 The surface charge density, then, is a = Q j A on the top plate, and so the 
field, according to Ex. 2.6, is (1/Eo) Qj A. The potential difference between the 
plates is therefore 

and hence 

Q 
V= - d, 

A Eo 

A Eo 
c=a· (2.54) 

If, for instance, the plates are square with sides 1 em long, and they are held 1 mm 
apart, then the capacitance is 9 X 10-13 F. 

Example 2.12. Find the capacitance of two concentric spherical metal shells, 
with radii a and b. 

Solution 
Place charge + Q on the inner sphere, and - Q on the outer one. The field between 
the spheres is 

1 Q A 

E= ---r, 
4nEo r 2 

so the potential difference between them is 

V = -1a E · dl = _ ___g_ 1a ]__ dr = ___g_ (_!_- _!_). 
b 4n Eo b r2 4n Eo a b 

13The exact solution is not easy-even for the simpler case of circular plates. See G. T. Carlson and 
B. L.lllman, Am. J. Phys. 62, 1099 (1994). 
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As promised, V is proportional to Q; the capacitance is 

Q ab 
C = - = 4rrEo---. 

V (b- a) 

To "charge up" a capacitor, you have to remove electrons from the positive 
plate and carry them to the negative plate. In doing so, you fight against the electric 
field, which is pulling them back toward the positive conductor and pushing them 
away from the negative one. How much work does it take, then, to charge the 
capacitor up to a final amount Q? Suppose that at some intermediate stage in the 
process the charge on the positive plate is q, so that the potential difference is 
q j C. According to Eq. 2.38, the work you must do to transport the next piece of 
charge, dq, is 

dW = (~) dq. 

The total work necessary, then, to go from q = 0 to q = Q, is 

w = 1 Q ( ~) dq = 4 ~2' 
or, since Q = CV, 

w = ~cv2 
2 ' 

(2.55) 

where V is the final potential of the capacitor. 

Problem 2.43 Find the capacitance per unit length of two coaxial metal cylindrical 
tubes, of radii a and b (Fig. 2.53). 

FIGURE2.53 

Problem 2.44 Suppose the plates of a parallel-plate capacitor move closer together 
by an infinitesimal distance E, as a result of their mutual attraction. 

(a) Use Eq. 2.52 to express the work done by electrostatic forces, in terms of the 
field E, and the area of the plates, A. 

(b) Use Eq. 2.46 to express the energy lost by the field in this process. 

(This problem is supposed to be easy, but it contains the embryo of an alternative 
derivation of Eq. 2.52, using conservation of energy.) 
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More Problems on Chapter 2 

Problem 2.45 Find the electric field at a height z above the center of a square sheet 
(side a) carrying a uniform surface charge u. Check your result for the limiting 
cases a ~ oo and z » a. 

[ Answer:(u j2Eo) { (4/rr) tan-1 .Jl + (a2 j2z2) - 1} J 
Problem 2.46 If the electric field in some region is given (in spherical coordinates) 
by the expression 

k [ A A] E(r) = -;: 3 r + 2 sin() cos() sin ifJ fJ + sin() cos ifJ ifJ , 

for some constantk, what is the charge density? [Answer: 3kE0 (1 +cos 2() sinifJ)/r2] 

Problem 2.47 Find the net force that the southern hemisphere of a uniformly 
charged solid sphere exerts on the northern hemisphere. Express your answer in 
terms of the radius Rand the total charge Q. [Answer: (1/4rrE0)(3Q2 Jl6R2)] 

Problem 2.48 An inverted hemispherical bowl of radius R carries a uniform surface 
charge density u. Find the potential difference between the "north pole" and the 
center. [Answer: (Ruj2E0)(.../2- 1)] 

Problem 2.49 A sphere of radius R carries a charge density p (r) = kr (where k is 
a constant). Find the energy of the configuration. Check your answer by calculating 
it in at least two different ways. [Answer: rrk2 R1 j7Eo] 

Problem 2.50 The electric potential of some configuration is given by the expression 

e-J..r 
V(r) =A- , 

r 

where A and)... are constants. Find the electric field E(r), the charge density p(r), 
and the total charge Q. [Answer: p = EoA(4rr83(r)- J...2 e-J..r Jr)] 

Problem 2.51 Find the potential on the rim of a uniformly charged disk (radius R, 
charge density u). [Hint: First show that V = k(u Rjrr:E0), for some dimensionless 
number k, which you can express as an integral. Then evaluate k analytically, if you 
can, or by computer.] 

Problem 2.52 Two infinitely long wires running parallel to the x axis carry uniform 
charge densities +J... and -J... (Fig. 2.54). 

FIGURE2.54 
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(a) Find the potential at any point (x, y, z), using the origin as your reference. 

(b) Show that the equipotential surfaces are circular cylinders, and locate the axis 
and radius of the cylinder corresponding to a given potential V0• 

Problem 2.53 In a vacuum diode, electrons are "boiled" off a hot cathode, at po­
tential zero, and accelerated across a gap to the anode, which is held at positive 
potential V0 • The cloud of moving electrons within the gap (called space charge) 
quickly builds up to the point where it reduces the field at the surface of the cathode 
to zero. From then on, a steady current I flows between the plates. 

Suppose the plates are large relative to the separation (A » d2 in Fig. 2.55), so 
that edge effects can be neglected. Then V, p, and v (the speed of the electrons) are 
all functions of x alone. 

Cathode 
(V=O) 

FIGURE2.55 

(a) Write Poisson's equation for the region between the plates. 

(b) Assuming the electrons start from rest at the cathode, what is their speed at point 
x, where the potential is V(x)? 

(c) In the steady state, I is independent of x. What, then, is the relation between 
p and v? 

(d) Use these three results to obtain a differential equation for V, by eliminating 
p and v. 

(e) Solve this equation for Vas a function of x, V0 , and d. Plot V(x), and compare 
it to the potential without space-charge. Also, find p and v as functions of x. 

(f) Show that 

(2.56) 

and find the constant K. (Equation 2.56 is called the Child-Langmuir law. 
It holds for other geometries as well, whenever space-charge limits the current. 
Notice that the space-charge limited diode is nonlinear-it does not obey Ohm's 
law.) 
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Problem 2.54 Imagine that new and extraordinarily precise measurements have re­
vealed an error in Coulomb's law. The actual force of interaction between two point 
charges is found to be 

where A is a new constant of nature (it has dimensions of length, obviously, and is a 
huge number-say half the radius of the known universe-so that the correction is 
small, which is why no one ever noticed the discrepancy before). You are charged 
with the task of reformulating electrostatics to accommodate the new discovery. 
Assume the principle of superposition still holds. 

(a) What is the electric field of a charge distribution p (replacing Eq. 2.8)? 

(b) Does this electric field admit a scalar potential? Explain briefly how you reached 
your conclusion. (No formal proof necessary-just a persuasive argument.) 

(c) Find the potential of a point charge q-the analog to Eq. 2.26. (If your answer 
to (b) was "no," better go back and change it!) Use oo as your reference point. 

(d) For a point charge q at the origin, show that 

J. E · da + ~ f V dr = ~q, rs A lv Eo 

where S is the surface, V the volume, of any sphere centered at q. 

(e) Show that this result generalizes: 

J. E · da + ~ { V di = ~ Qenc• rs A lv Eo 

for any charge distribution. (This is the next best thing to Gauss's Law, in the 
new "electrostatics.") 

(t) Draw the triangle diagram (like Fig. 2.35) for this world, putting in all the ap­
propriate formulas. (Think of Poisson's equation as the formula for p in terms 
of V, and Gauss's law (differential form) as an equation for pin terms of E.) 

(g) Show that some of the charge on a conductor distributes itself (uniformly!) over 
the volume, with the remainder on the surface. [Hint: E is still zero, inside a 
conductor.] 

Problem 2.55 Suppose an electric field E(x, y, z) has the form 

Ex= ax, Ey = 0, 

where a is a constant. What is the charge density? How do you account for the fact 
that the field points in a particular direction, when the charge density is uniform? 
[This is a more subtle problem than it looks, and worthy of careful thought.] 
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Problem 2.56 All of electrostatics follows from the lfr2 character of Coulomb's 
law, together with the principle of superposition. An analogous theory can therefore 
be constructed for Newton's law of universal gravitation. What is the gravitational 
energy of a sphere, of mass M and radius R, assuming the density is uniform? 
Use your result to estimate the gravitational energy of the sun (look up the relevant 
numbers). Note that the energy is negative-masses attract, whereas (like) electric 
charges repel. As the matter "falls in," to create the sun, its energy is converted into 
other forms (typically thermal), and it is subsequently released in the form of radia­
tion. The sun radiates at a rate of 3.86 x 1026 W; if all this came from gravitational 
energy, how long would the sun last? [The sun is in fact much older than that, so 
evidently this is not the source of its power.14] 

Problem 2.57 We know that the charge on a conductor goes to the surface, but just 
how it distributes itself there is not easy to determine. One famous example in which 
the surface charge density can be calculated explicitly is the ellipsoid: 

In this case15 

(2.57) 

where Q is the total charge. By choosing appropriate values for a, b, and c, obtain 
(from Eq. 2.57): (a) the net (both sides) surface charge density a(r) on a circular 
disk of radius R; (b) the net surface charge density a (x) on an infinite conducting 
"ribbon" in the xy plane, which straddles they axis from x =-a to x =a (let A 
be the total charge per unit length of ribbon); (c) the net charge per unit length A.(x) 
on a conducting "needle," running from x =-a to x =a. In each case, sketch the 
graph of your result. 

Problem 2.58 

(a) Consider an equilateral triangle, inscribed in a circle of radius a, with a point 
charge q at each vertex. The electric field is zero (obviously) at the center, but 
(surprisingly) there are three other points inside the triangle where the field is 
zero. Where are they? [Answer: r = 0.285 a-you'll probably need a computer 
to get it.] 

(b) For a regular n-sided polygon there are n points (in addition to the center) where 
the field is zero.16 Find their distance from the center for n = 4 and n = 5. What 
do you suppose happens as n --+ oo? 

14Lord Kelvin used this argument to counter Darwin's theory of evolution, which called for a much 
older Earth. Of course, we now know that the source of the Sun's energy is nuclear fusion, not gravity. 
15For the derivation (which is a real tour de force), see W. R. Smythe, Static and Dynamic Electricity, 
3rd ed. (New York: Hemisphere, 1989), Sect. 5.02. 
16S. D. Baker, Am. J. Phys. 52, 165 (1984); D. Kiang and D. A. Tindall, Am. J. Phys. 53, 593 (1985). 
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Problem 2.59 Prove or disprove (with a counterexample) the following 

Theorem: Suppose a conductor carrying a net charge Q, when placed in an 
external electric field Ee, experiences a force F; if the external field is now 
reversed <Ee ---+ -Ee), the force also reverses (F---+ -F). 

What if we stipulate that the external field is uniform? 

Problem 2.60 A point charge q is at the center of an uncharged spherical conducting 
shell, of inner radius a and outer radius b. Question: How much work would it take 
to move the charge out to infinity (through a tiny hole drilled in the shell)? [Answer: 
(q2 j4rrE0)(1/a).] 

Problem 2.61 What is the minimum-energy configuration for a system of N equal 
point charges placed on or inside a circle of radius R?17 Because the charge on 
a conductor goes to the surface, you might think the N charges would arrange 
themselves (uniformly) around the circumference. Show (to the contrary) that for 
N = 12 it is better to place 11 on the circumference and one at the center. How about 
for N = 11 (is the energy lower if you put all11 around the circumference, or if you 
put 10 on the circumference and one at the center)? [Hint: Do it numerically-you'll 
need at least 4 significant digits. Express all energies as multiples of q 2 j4rrE0 R] 

17M. G. Calkin, D. Kiang, and D. A. Tindall, Am. H. Phys. 55, 157 (1987). 



CHAPTER 

3 Potentials 

3.1 • LAPLACE'S EQUATION 

3.1.1 • Introduction 

The primary task of electrostatics is to find the electric field of a given stationary 
charge distribution. In principle, this purpose is accomplished by Coulomb's law, 
in the form ofEq. 2.8: 

E(r) = -- ~p(r')dr'. 1 f A 

4nEo ~t-
(3.1) 

Unfortunately, integrals of this type can be difficult to calculate for any but the 
simplest charge configurations. Occasionally we can get around this by exploiting 
symmetry and using Gauss's law, but ordinarily the best strategy is first to calcu­
late the potential, V, which is given by the somewhat more tractable Eq. 2.29: 

V(r) = -- - p(r') dr'. 1 f 1 
4nEo It-

(3.2) 

Still, even this integral is often too tough to handle analytically. Moreover, in prob­
lems involving conductors p itself may not be known in advance; since charge is 
free to move around, the only thing we control directly is the total charge (or 
perhaps the potential) of each conductor. 

In such cases, it is fruitful to recast the problem in differential form, using 
Poisson's equation (2.24), 

2 1 v v = - - p, (3.3) 
Eo 

which, together with appropriate boundary conditions, is equivalent to Eq. 3.2. 
Very often, in fact, we are interested in finding the potential in a region where 
p = 0. (If p = 0 everywhere, of course, then V = 0, and there is nothing further 
to say-that's not what I mean. There may be plenty of charge elsewhere, but 
we're confining our attention to places where there is no charge.) In this case, 
Poisson's equation reduces to Laplace's equation: 

(3.4) 

113 
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or, written out in Cartesian coordinates, 

(3.5) 

This formula is so fundamental to the subject that one might almost say elec­
trostatics is the study of Laplace's equation. At the same time, it is a ubiquitous 
equation, appearing in such diverse branches of physics as gravitation and mag­
netism, the theory of heat, and the study of soap bubbles. In mathematics, it plays 
a major role in analytic function theory. To get a feel for Laplace's equation and 
its solutions (which are called harmonic functions), we shall begin with the one­
and two-dimensional versions, which are easier to picture, and illustrate all the 
essential properties of the three-dimensional case. 

3.1.2 • Laplace's Equation in One Dimension 

Suppose V depends on only one variable, x. Then Laplace's equation becomes 

The general solution is 

V(x) = mx + b, (3.6) 

the equation for a straight line. It contains two undetermined constants (m 
and b), as is appropriate for a second-order (ordinary) differential equation. They 
are fixed, in any particular case, by the boundary conditions of that problem. For 
instance, it might be specified that V = 4 at x = 1, and V = 0 at x = 5. In that 
case, m = -1 and b = 5, so V = -x + 5 (see Fig. 3.1). 

I want to call your attention to two features of this result; they may seem silly 
and obvious in one dimension, where I can write down the general solution explic­
itly, but the analogs in two and three dimensions are powerful and by no means 
obvious: 

4 

3 

2 

v 

2 3 4 5 6 X 

FIGURE3.1 
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1. V(x) is the average of V(x +a) and V(x- a), for any a: 

1 
V(x) = 2[V(x +a)+ V(x- a)]. 

Laplace's equation is a kind of averaging instruction; it tells you to assign 
to the point x the average of the values to the left and to the right of x. 
Solutions to Laplace's equation are, in this sense, as boring as they could 
possibly be, and yet fit the end points properly. 

2. Laplace's equation tolerates no local maxima or minima; extreme values 
of V must occur at the end points. Actually, this is a consequence of (1), 
for if there were a local maximum, V would be greater at that point than 
on either side, and therefore could not be the average. (Ordinarily, you 
expect the second derivative to be negative at a maximum and positive at a 
minimum. Since Laplace's equation requires, on the contrary, that the sec­
ond derivative is zero, it seems reasonable that solutions should exhibit no 
extrema. However, this is not a proof, since there exist functions that have 
maxima and minima at points where the second derivative vanishes: x 4 , for 
example, has such a minimum at the point x = 0.) 

3.1.3 • Laplace's Equation in Two Dimensions 

If V depends on two variables, Laplace's equation becomes 

This is no longer an ordinary differential equation (that is, one involving ordinary 
derivatives only); it is a partial differential equation. As a consequence, some of 
the simple rules you may be familiar with do not apply. For instance, the gen­
eral solution to this equation doesn't contain just two arbitrary constants--or, for 
that matter, any finite number-despite the fact that it's a second-order equation. 
Indeed, one cannot write down a "general solution" (at least, not in a closed form 
like Eq. 3.6). Nevertheless, it is possible to deduce certain properties common to 
all solutions. 

It may help to have a physical example in mind. Picture a thin rubber sheet (or a 
soap film) stretched over some support. For definiteness, suppose you take a card­
board box, cut a wavy line all the way around, and remove the top part (Fig. 3.2). 
Now glue a tightly stretched rubber membrane over the box, so that it fits like a 
drum head (it won't be a flat drumhead, of course, unless you chose to cut the 
edges off straight). Now, if you lay out coordinates (x, y) on the bottom of the 
box, the height V(x, y) of the sheet above the point (x, y) will satisfy Laplace's 
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v 

X 

FIGURE3.2 

equation.1 (The one-dimensional analog would be a rubber band stretched 
between two points. Of course, it would form a straight line.) 

Harmonic functions in two dimensions have the same properties we noted in 
one dimension: 

1. The value of V at a point (x, y) is the average of those around the point. 
More precisely, if you draw a circle of any radius R about the point (x, y), 
the average value of V on the circle is equal to the value at the center: 

V(x, y) = -
1
- J. V dl. 

2:n:R r 
circle 

(This, incidentally, suggests the method of relaxation, on which computer 
solutions to Laplace's equation are based: Starting with specified values for 
V at the boundary, and reasonable guesses for V on a grid of interior points, 
the first pass reassigns to each point the average of its nearest neighbors. 
The second pass repeats the process, using the corrected values, and so on. 
Mter a few iterations, the numbers begin to settle down, so that subsequent 
passes produce negligible changes, and a numerical solution to Laplace's 
equation, with the given boundary values, has been achieved.)2 

2. V has no local maxima or minima; all extrema occur at the boundaries. (As 
before, this follows from (1).) Again, Laplace's equation picks the most 
featureless function possible, consistent with the boundary conditions: no 
hills, no valleys, just the smoothest conceivable surface. For instance, if 
you put a ping-pong ball on the stretched rubber sheet of Fig. 3.2, it will 

1 Actually, the equation satisfied by a rubber sheet is 

a ( av) a ( av) [ (av)2 (av)2]-112 
- g - + - g - =0, whereg= 1+ - + - ; ax ax ay ay ax ay 

it reduces (approximately) to Laplace's equation as long as the surface does not deviate too radically 
from a plane. 
2See, for example, E. M. Purcell, Electricity and Magnetism, 2nd ed. (New York: McGraw-Hill, 1985), 
problem 3.30. 
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roll over to one side and fall off-it will not find a "pocket" somewhere to 
settle into, for Laplace's equation allows no such dents in the surface. From 
a geometrical point of view, just as a straight line is the shortest distance 
between two points, so a harmonic function in two dimensions minimizes 
the surface area spanning the given boundary line. 

3.1.4 • Laplace's Equation in Three Dimensions 

In three dimensions I can neither provide you with an explicit solution (as in one 
dimension) nor offer a suggestive physical example to guide your intuition (as I 
did in two dimensions). Nevertheless, the same two properties remain true, and 
this time I will sketch a proof. 3 

1. The value of V at point r is the average value of V over a spherical surface 
of radius R centered at r: 

V(r) = __!_
2 

J. V da. 
4nR j 

sphere 

2. As a consequence, V can have no local maxima or minima; the extreme 
values of V must occur at the boundaries. (For if V had a local maximum 
at r, then by the very nature of maximum I could draw a sphere around r 
over which all values of V -and a fortiori the average-would be less than 
at r.) 

Proof. Let's begin by calculating the average potential over a spherical surface 
of radius R due to a single point charge q located outside the sphere. We may as 
well center the sphere at the origin and choose coordinates so that q lies on the 
z-axis (Fig. 3.3). The potential at a point on the surface is 

X 

1 q 
V= ---, 

4rrEo ..z. 

q 

da 

FIGURE3.3 

y 

3For a proof that does not rely on Coulomb's law (only on Laplace's equation), see Prob. 3.37. 
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where 

so 

;z,
2 = z2 + R2

- 2zR cosO, 

Vave = -
1
--q- j[z2 + R2

- 2zRcosor112 R2 sinO dOd¢ 
4n R2 4nEo 

= ----Jz2 + R2 - 2zRcosO q 1 177: 

4nEo 2zR o 

q 1 1 q 
= --[(z+ R)- (z- R)] = --. 

4nEo 2zR 4nEo z 

But this is precisely the potential due to q at the center of the sphere! By the 
superposition principle, the same goes for any collection of charges outside the 
sphere: their average potential over the sphere is equal to the net potential they 
produce at the center. D 

Problem 3.1 Find the average potential over a spherical surface of radius R due to 
a point charge q located inside (same as above, in other words, only with z < R). 
(In this case, of course, Laplace's equation does not hold within the sphere.) Show 
that, in general, 

Qenc 
Yave = V center + -

4 
R, 

:ll'Eo 

where V center is the potential at the center due to all the external charges, and Qenc is 
the total enclosed charge. 

Problem 3.2 In one sentence, justify Earnshaw's Theorem: A charged particle 
cannot be held in a stable equilibrium by electrostatic forces alone. As an example, 
consider the cubical arrangement of fixed charges in Fig. 3.4. It looks, off hand, 
as though a positive charge at the center would be suspended in midair, since it 
is repelled away from each comer. Where is the leak in this "electrostatic bottle"? 
[To harness nuclear fusion as a practical energy source it is necessary to heat a 
plasma (soup of charged particles) to fantastic temperatures-so hot that contact 
would vaporize any ordinary pot. Earnshaw's theorem says that electrostatic con­
tainment is also out of the question. Fortunately, it is possible to confine a hot plasma 
magnetically.] 

FIGURE3.4 
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Problem 3.3 Find the general solution to Laplace's equation in spherical coordi­
nates, for the case where V depends only on r. Do the same for cylindrical coordi­
nates, assuming V depends only on s. 

Problem3.4 

(a) Show that the average electric field over a spherical surface, due to charges 
outside the sphere, is the same as the field at the center. 

(b) What is the average due to charges inside the sphere? 

3.1.5 • Boundary Conditions and Uniqueness Theorems 

Laplace's equation does not by itself determine V; in addition, suitable boundary 
conditions must be supplied. This raises a delicate question: What are appropriate 
boundary conditions, sufficient to determine the answer and yet not so strong 
as to generate inconsistencies? The one-dimensional case is easy, for here the 
general solution V = mx + b contains two arbitrary constants, and we therefore 
require two boundary conditions. We might, for instance, specify the value of the 
function at each end, or we might give the value of the function and its derivative 
at one end, or the value at one end and the derivative at the other, and so on. 
But we cannot get away with just the value or just the derivative at one end­
this is insufficient information. Nor would it do to specify the derivatives at both 
ends-this would either be redundant (if the two are equal) or inconsistent (if they 
are not). 

In two or three dimensions we are confronted by a partial differential equation, 
and it is not so obvious what would constitute acceptable boundary conditions. Is 
the shape of a taut rubber membrane, for instance, uniquely determined by the 
frame over which it is stretched, or, like a canning jar lid, can it snap from one 
stable configuration to another? The answer, as I think your intuition would sug­
gest, is that V is uniquely determined by its value at the boundary (canning jars 
evidently do not obey Laplace's equation). However, other boundary conditions 
can also be used (see Prob. 3.5). The proof that a proposed set of boundary condi­
tions will suffice is usually presented in the form of a uniqueness theorem. There 
are many such theorems for electrostatics, all sharing the same basic format-1'11 
show you the two most useful ones.4 

First uniqueness theorem: The solution to Laplace's equation in 
some volume V is uniquely determined if V is specified on the 
boundary surface S. 

Proof. In Fig. 3.5 I have drawn such a region and its boundary. (There could also 
be "islands" inside, so long as V is given on all their surfaces; also, the outer 

41 do not intend to prove the existence of solutions here-that's a much more difficult job. In context, 
the existence is generally clear on physical grounds. 
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Vspecified 
on this 

surface (S) --....: 

FIGURE3.5 

boundary could be at infinity, where V is ordinarily taken to be zero.) Suppose 
there were two solutions to Laplace's equation: 

V2V1 = 0 and V2V2 = 0, 

both of which assume the specified value on the surface. I want to prove that they 
must be equal. The trick is look at their difference: 

This obeys Laplace's equation, 

yr2y3 = yr2yl- yr2y2 = 0, 

and it takes the value zero on all boundaries (since V1 and V2 are equal there). 
But Laplace's equation allows no local maxima or minima-all extrema occur on 
the boundaries. So the maximum and minimum of V3 are both zero. Therefore V3 

must be zero everywhere, and hence 

D 

Example 3.1. Show that the potential is constant inside an enclosure com­
pletely surrounded by conducting material, provided there is no charge within the 
enclosure. 

Solution 
The potential on the cavity wall is some constant, V0 (that's item (iv), in 
Sect. 2.5.1), so the potential inside is a function that satisfies Laplace's equa­
tion and has the constant value Yo at the boundary. It doesn't take a genius to 
think of one solution to this problem: V = Vo everywhere. The uniqueness the­
orem guarantees that this is the only solution. (It follows that the field inside an 
empty cavity is zero-the same result we found in Sect. 2.5 .2 on rather different 
grounds.) 

The uniqueness theorem is a license to your imagination. It doesn't matter 
how you come by your solution; if (a) it satisfies Laplace's equation and (b) it has 
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the correct value on the boundaries, then it's right. You'll see the power of this 
argument when we come to the method of images. 

Incidentally, it is easy to improve on the first uniqueness theorem: I assumed 
there was no charge inside the region in question, so the potential obeyed 
Laplace's equation, but we may as well throw in some charge (in which case 
V obeys Poisson's equation). The argument is the same, only this time 

2 1 v v1 = - - p, 
2 1 

V V2 = - - p, 
Eo Eo 

so 

2 2 2 1 1 v V3 = v V1 - v V2 = - - p + - p = o. 
Eo Eo 

Once again the difference (V3 = V1 - V2) satisfies Laplace's equation and has the 
value zero on all boundaries, so V3 = 0 and hence V1 = V2• 

Corollary: The potential in a volume V is uniquely determined if 
(a) the charge density throughout the region, and (b) the 
value of V on all boundaries, are specified. 

3.1.6 • Conductors and the Second Uniqueness Theorem 

The simplest way to set the boundary conditions for an electrostatic problem is to 
specify the value of V on all surfaces surrounding the region of interest. And this 
situation often occurs in practice: In the laboratory, we have conductors connected 
to batteries, which maintain a given potential, or to ground, which is the exper­
imentalist's word for V = 0. However, there are other circumstances in which 
we do not know the potential at the boundary, but rather the charges on various 
conducting surfaces. Suppose I put charge Qa on the first conductor, Qb on the 
second, and so on-I'm not telling you how the charge distributes itself over each 
conducting surface, because as soon as I put it on, it moves around in a way I do 
not control. And for good measure, let's say there is some specified charge density 
p in the region between the conductors. Is the electric field now uniquely deter­
mined? Or are there perhaps a number of different ways the charges could arrange 
themselves on their respective conductors, each leading to a different field? 

Second uniqueness theorem: In a volume V surrounded by conduc­
tors and containing a specified charge density p, the electric field is 
uniquely determined if the total charge on each conductor is given 
(Fig. 3.6). (The region as a whole can be bounded by another con­
ductor, or else unbounded.) 

Proof. Suppose there are two fields satisfying the conditions of the problem. Both 
obey Gauss's law in differential form in the space between the conductors: 

1 
V ·E1 = - p, 

Eo 
1 

V·E2= - p. 
Eo 
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Integration surfaces 

Outer boundary­
could be at infinity 

FIGURE3.6 

And both obey Gauss's law in integral form for a Gaussian surface enclosing each 
conductor: 

i th conducting 
surface 

1 
E1·da= - Qi, 

Eo 
i th conducting 

surface 

1 
E2·da= - Qi. 

Eo 

Likewise, for the outer boundary (whether this is just inside an enclosing conduc­
tor or at infinity), 

outer 
boundary 

1 
E1 · da = - Qtot. 

Eo 

As before, we examine the difference 

which obeys 

in the region between the conductors, and 

outer 
boundary 

f E3 ·da = 0 

over each boundary surface. 

(3.7) 

(3.8) 

Now there is one final piece of information we must exploit: Although we 
do not know how the charge Qi distributes itself over the ith conductor, we do 
know that each conductor is an equipotential, and hence V3 is a constant (not 
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necessarily the same constant) over each conducting surface. (It need not be zero, 
for the potentials V1 and V2 may not be equal-all we know for sure is that both 
are constant over any given conductor.) Next comes a trick. Invoking product rule 
number 5 (inside front cover), we find that 

Here I have used Eq. 3.7, and E3 = -VV3 . Integrating this over V, and applying 
the divergence theorem to the left side: 

f V · (V3E3) dr: = f V3E3 · da =-f (E3)
2 dr:. 

v s v 

The surface integral covers all boundaries of the region in question-the con­
ductors and outer boundary. Now V3 is a constant over each surface (if the outer 
boundary is infinity, V3 = 0 there), so it comes outside each integral, and what 
remains is zero, according to Eq. 3.8. Therefore, 

But this integrand is never negative; the only way the integral can vanish is if 
E3 = 0 everywhere. Consequently, E 1 = E2, and the theorem is proved. D 

This proof was not easy, and there is a real danger that the theorem itself will 
seem more plausible to you than the proof. In case you think the second unique­
ness theorem is "obvious," consider this example of Purcell's: Figure 3.7 shows 
a simple electrostatic configuration, consisting of four conductors with charges 
±Q, situated so that the plusses are near the minuses. It all looks very comfort­
able. Now, what happens if we join them in pairs, by tiny wires, as indicated in 
Fig. 3.8? Since the positive charges are very near negative charges (which is where 
they like to be) you might well guess that nothing will happen-the configuration 
looks stable. 

Well, that sounds reasonable, but it's wrong. The configuration in Fig. 3.8 is 
impossible. For there are now effectively two conductors, and the total charge 
on each is zero. One possible way to distribute zero charge over these con­
ductors is to have no accumulation of charge anywhere, and hence zero field 

FIGURE3.7 FIGURE3.8 
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FIGURE3.9 

everywhere (Fig. 3.9). By the second uniqueness theorem, this must be the solu­
tion: The charge will flow down the tiny wires, canceling itself off. 

Problem 3.5 Prove that the field is uniquely determined when the charge density p 
is given and either v or the normal derivative a v 1 an is specified on each boundary 
surface. Do not assume the boundaries are conductors, or that V is constant over 
any given surface. 

Problem 3.6 A more elegant proof of the second uniqueness theorem uses Green's 
identity (Prob. 1.61c), with T = U = V3• Supply the details. 

3.2 • THE METHOD OF IMAGES 

3.2.1 • The Classic Image Problem 

Suppose a point charge q is held a distance d above an infinite grounded con­
ducting plane (Fig. 3.10). Question: What is the potential in the region above the 
plane? It's not just (1/4nE0)q j'l-, for q will induce a certain amount of negative 
charge on the nearby surface of the conductor; the total potential is due in part 
to q directly, and in part to this induced charge. But how can we possibly calcu­
late the potential, when we don't know how much charge is induced or how it is 
distributed? 

From a mathematical point of view, our problem is to solve Poisson's equa­
tion in the region z > 0, with a single point charge q at (0, 0, d), subject to the 
boundary conditions: 

1. V = 0 when z = 0 (since the conducting plane is grounded), and 

2. V --+ 0 far from the charge (that is, for x2 + y2 + z2 » d2). 

The first uniqueness theorem (actually, its corollary) guarantees that there is only 
one function that meets these requirements. If by trick or clever guess we can 
discover such a function, it's got to be the answer. 

Trick: Forget about the actual problem; we're going to study a completely 
different situation. This new configuration consists of two point charges, +q at 
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(0, 0, d) and-qat (0, 0, -d), and no conducting plane (Fig. 3.11). For this con­
figuration, I can easily write down the potential: 

V (x, y, z) = -
1
- [ ~ - q ] . (3.9) 

4nEo Jx2 + y2 + (z _ d)2 Jx2 + y2 + (z + d)2 

(The denominators represent the distances from (x, y, z) to the charges +q and 
-q, respectively.) It follows that 

1. V = 0 when z = 0, 

2. V --+ 0 for x 2 + y2 + z2 » d2, 

and the only charge in the region z > 0 is the point charge +q at (0, 0, d). But 
these are precisely the conditions of the original problem! Evidently the second 
configuration happens to produce exactly the same potential as the first config­
uration, in the "upper" region z :::: 0. (The "lower" region, z < 0, is completely 
different, but who cares? The upper part is all we need.) Conclusion: The poten­
tial of a point charge above an infinite grounded conductor is given by Eq. 3.9, for 
z:::: 0. 

Notice the crucial role played by the uniqueness theorem in this argument: 
without it, no one would believe this solution, since it was obtained for a com­
pletely different charge distribution. But the uniqueness theorem certifies it: If it 
satisfies Poisson's equation in the region of interest, and assumes the correct value 
at the boundaries, then it must be right. 

3.2.2 • Induced Surface Charge 

Now that we know the potential, it is a straightforward matter to compute the 
surface charge a induced on the conductor. According to Eq. 2.49, 

av 
a = -Eoa;:;, 
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where av jan is the normal derivative of Vat the surface. In this case the normal 
direction is the z direction, so 

a= -Eo av I . 
az z=O 

From Eq. 3.9, 

av 1 { -q(z- d) q(z +d) } 
-a; = 4nEo [x2 + y2 + (z _ d)2]3!2 + [x2 + y2 + (z + d)2]3!2 ' 

-qd 
a(x, y) = 2n(x2 + y2 + d2)3f2. (3.10) 

As expected, the induced charge is negative (assuming q is positive) and greatest 
atx = y = 0. 

While we're at it, let's compute the total induced charge 

Q = J ada. 

This integral, over the xy plane, could be done in Cartesian coordinates, with 
da = dx dy, but it's a little easier to use polar coordinates (r, ¢),with r 2 = x 2 + y2 

and da = r dr d¢. Then 

and 

1
2TC 100 -qd qd IOO Q = r dr d¢ = - -q 

o o 2n(r2 + d2)3f2 ../r2 + d2 o - . 
(3.11) 

The total charge induced on the plane is -q, as (with benefit of hindsight) you 
can perhaps convince yourself it had to be. 

3.2.3 • Force and Energy 

The charge q is attracted toward the plane, because of the negative induced charge. 
Let's calculate the force of attraction. Since the potential in the vicinity of q is the 
same as in the analog problem (the one with +q and -q but no conductor), so 
also is the field and, therefore, the force: 

1 q 2 
A 

F=-----z. 
4nEo (2d)2 

5For an entirely different derivation of this result, see Prob. 3.38. 

(3.12) 
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Beware: It is easy to get carried away, and assume that everything is the same 
in the two problems. Energy, however, is not the same. With the two point charges 
and no conductor, Eq. 2.42 gives 

1 q2 
W=----

4rrEo 2d 

But for a single charge and conducting plane, the energy is half of this: 

1 q2 
W=----. 

4rrEo 4d 

Why half? Think of the energy stored in the fields (Eq. 2.45): 

W = ~ J E 2
dr. 

(3.13) 

(3.14) 

In the first case, both the upper region (z > 0) and the lower region (z < 0) 
contribute-and by symmetry they contribute equally. But in the second case, 
only the upper region contains a nonzero field, and hence the energy is half as 
great.6 

Of course, one could also determine the energy by calculating the work 
required to bring q in from infinity. The force required (to oppose the electri­
cal force in Eq. 3.12) is (1/4rrEo)(q2 j4z2)z, so 

1
d 1 1d q2 

W = F · dl = -- -- dz 
oo 4rrEo 00 4z2 

1 ( q2)1d 
4rrEo 4z 00 

1 q2 
- ---

4rrEo 4d 

As I move q toward the conductor, I do work only on q. It is true that induced 
charge is moving in over the conductor, but this costs me nothing, since the whole 
conductor is at potential zero. By contrast, if I simultaneously bring in two point 
charges (with no conductor), I do work on both of them, and the total is (again) 
twice as great. 

3.2.4 • Other Image Problems 

The method just described is not limited to a single point charge; any station­
ary charge distribution near a grounded conducting plane can be treated in the 
same way, by introducing its mirror image-hence the name method of images. 
(Remember that the image charges have the opposite sign; this is what guarantees 
that the xy plane will be at potential zero.) There are also some exotic problems 
that can be handled in similar fashion; the nicest of these is the following. 

6For a generalization of this result, seeM. M. Taddei, T. N. C. Mendes, and C. Farina, Eur. J. Phys. 
30,965 (2009), and Prob. 3.41b. 
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Example 3.2. A point charge q is situated a distance a from the center of a 
grounded conducting sphere of radius R (Fig. 3.12). Find the potential outside 
the sphere. 

a 
q 

q 

V=O a 

FIGURE3.12 FIGURE3.13 

Solution 
Examine the completely different configuration, consisting of the point charge q 
together with another point charge 

placed a distance 

I R 
q = - - q, 

a 
(3.15) 

(3.16) 

to the right of the center of the sphere (Fig. 3.13). No conductor, now-just the 
two point charges. The potential of this configuration is 

V(r)= - - + - , 1 (q q') 
4nEo 1- 1-' 

(3.17) 

where 1- and 1-' are the distances from q and q', respectively. Now, it happens (see 
Prob. 3.8) that this potential vanishes at all points on the sphere, and therefore fits 
the boundary conditions for our original problem, in the exterior region. 7 

Conclusion: Eq. 3.17 is the potential of a point charge near a grounded con­
ducting sphere. (Notice that b is less than R, so the "image" charge q' is safely 
inside the sphere-you cannot put image charges in the region where you are cal­
culating V; that would change p, and you'd be solving Poisson's equation with 

7This solution is due to William Thomson Oater Lord Kelvin), who published it in 1848, when he 
was just 24. It was apparently inspired by a theorem of Apollonius (200 BC) that says the locus of 
points with a fixed ratio of distances from two given points is a sphere. See J. C. Maxwell, "Treatise on 
Electricity and Magnetism, Vol. I;' Dover, New York, p. 245. I thank Gabriel Karl for this interesting 
history. 
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the wrong source.) In particular, the force of attraction between the charge and 
the sphere is 

1 qq' 
F- -

- 4nEo (a - b)2 -
(3.18) 

The method of images is delightfully simple ... when it works. But it is as 
much an art as a science, for you must somehow think up just the right "auxil­
iary" configuration, and for most shapes this is forbiddingly complicated, if not 
impossible. 

Problem 3.7 Find the force on the charge +q in Fig. 3.14. (The xy plane is a 
grounded conductor.) 

Problem 3.8 

z 

3d +q 
,.. __ ...,..,.. ___ , 
-2q , .. 

.; 
I 

,.s"' 

---... t~ 
y 

X V=O 

FIGURE3.14 

(a) Using the law of cosines, show that Eq. 3.17 can be written as follows: 

V (r ()) - -
1
- [ q - ~========'q'=:=======] 

' - 41l'Eo .Jr2 +a2 -2racos() ..jR2 +(rajR)2 -2racos() ' 

(3.19) 

where r and () are the usual spherical polar coordinates, with the z axis along the 
line through q. In this form, it is obvious that V = 0 on the sphere, r = R. 

(b) Find the induced surface charge on the sphere, as a function of(). Integrate this 
to get the total induced charge. (What should it be?) 

(c) Calculate the energy of this configuration. 

Problem 3.9 In Ex. 3.2 we assumed that the conducting sphere was grounded 
(V = 0). But with the addition of a second image charge, the same basic model 
will handle the case of a sphere at any potential V0 (relative, of course, to infin­
ity). What charge should you use, and where should you put it? Find the force of 
attraction between a point charge q and a neutral conducting sphere. 
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Problem 3.10 A uniform line charge ).. is placed on an infinite straight wire, a dis­
tanced above a grounded conducting plane. (Let's say the wire runs parallel to the 
x-axis and directly above it, and the conducting plane is the xy plane.) 

(a) Find the potential in the region above the plane. [Hint: Refer to Prob. 2.52.] 

(b) Find the charge density a induced on the conducting plane. 

Problem 3.11 Two semi-infinite grounded conducting planes meet at right angles. 
In the region between them, there is a point charge q, situated as shown in Fig. 3.15. 
Set up the image configuration, and calculate the potential in this region. What 
charges do you need, and where should they be located? What is the force on q? 
How much work did it take to bring q in from infinity? Suppose the planes met 
at some angle other than 90°; would you still be able to solve the problem by the 
method of images? If not, for what particular angles does the method work? 

y 

b --------r q 
I 
I 
I 
I 

a 

FIGURE3.15 

X 

y 

X 

-Vo +Vo 

FIGURE3.16 

Problem 3.12 Two long, straight copper pipes, each of radius R, are held a distance 
2d apart. One is at potential V0 , the other at - V0 (Fig. 3.16). Find the potential 
everywhere. [Hint: Exploit the result ofProb. 2.52.] 

3.3 • SEPARATION OF VARIABLES 

In this section we shall attack Laplace's equation directly, using the method of 
separation of variables, which is the physicist's favorite tool for solving par­
tial differential equations. The method is applicable in circumstances where the 
potential (V) or the charge density (a) is specified on the boundaries of some 
region, and we are asked to find the potential in the interior. The basic strategy is 
very simple: We look for solutions that are products of functions, each of which 
depends on only one of the coordinates. The algebraic details, however, can be 
formidable, so I'm going to develop the method through a sequence of examples. 
We'll start with Cartesian coordinates and then do spherical coordinates (I'll leave 
the cylindrical case for you to tackle on your own, in Prob. 3.24). 
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3.3.1 • Cartesian Coordinates 

Example 3.3. Two infinite grounded metal plates lie parallel to the xz plane, 
one at y = 0, the other at y =a (Fig. 3.17). The left end, at x = 0, is closed off 
with an infinite strip insulated from the two plates, and maintained at a specific 
potential V0 (y). Find the potential inside this "slot." 

y 

V=O 
X 

V=O 

z 

FIGURE3.17 

Solution 
The configuration is independent of z, so this is really a two-dimensional problem. 
In mathematical terms, we must solve Laplace's equation, 

a2v a2v 
ax2 + ay2 = 0, (3.20) 

subject to the boundary conditions 

(i) V = Owheny = 0, 

} 
(ii) V = Owheny =a, 
(iii) V = Vo(Y) when x = 0, 
(iv) V ~ Oasx ~ oo. 

(3.21) 

(The latter, although not explicitly stated in the problem, is necessary on physical 
grounds: as you get farther and farther away from the "hot" strip at x = 0, the 
potential should drop to zero.) Since the potential is specified on all boundaries, 
the answer is uniquely determined. 

The first step is to look for solutions in the form of products: 

V(x, y) = X(x)Y(y). (3.22) 

On the face of it, this is an absurd restriction-the overwhelming majority of 
solutions to Laplace's equation do not have such a form. For example, V(x, y) = 



132 Chapter 3 Potentials 

(5x + 6y) satisfies Eq. 3.20, but you can't express it as the product of a function x 
times a function y. Obviously, we're only going to get a tiny subset of all possible 
solutions by this means, and it would be a miracle if one of them happened to fit 
the boundary conditions of our problem ... But hang on, because the solutions 
we do get are very special, and it turns out that by pasting them together we can 
construct the general solution. 

Anyway, putting Eq. 3.22 into Eq. 3.20, we obtain 

d 2 X d 2Y 
Y -

2 
+X- 2 =0. 

dx dy 

The next step is to "separate the variables" (that is, collect all the x-dependence 
into one term and all the y-dependence into another). Typically, this is accom­
plished by dividing through by V: 

1 d2 X 1 d2 Y 
--+ -- =0. 
X dx2 Y dy2 

(3.23) 

Here the first term depends only on x and the second only on y; in other words, 
we have an equation of the form 

f(x) + g(y) = 0. (3.24) 

Now, there's only one way this could possibly be true: f and g must both be 
constant. For what if f (x) changed, as you vary x-then if we held y fixed and 
fiddled withx, the sum f(x) + g(y) would change, in violationofEq. 3.24, which 
says it's always zero. (That's a simple but somehow rather elusive argument; don't 
accept it without due thought, because the whole method rides on it.) 

It follows from Eq. 3.23, then, that 

1 d2X 1 d2Y 
X dx 2 = C1 and y dy2 = C2, with C1 + C2 = 0. (3.25) 

One of these constants is positive, the other negative (or perhaps both are zero). 
In general, one must investigate all the possibilities; however, in our particular 
problem we need C1 positive and C2 negative, for reasons that will appear in a 
moment. Thus 

d2X- k2 
-- - X, 
dx2 

(3.26) 

Notice what has happened: A partial differential equation (3.20) has been con­
verted into two ordinary differential equations (3.26). The advantage of this is 
obvious--ordinary differential equations are a lot easier to solve. Indeed: 

Y (y) = C sin ky + D cos ky, 

so 

V(x, y) = (Aekx + Be-kx)(C sinky + D cosky). (3.27) 
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This is the appropriate separable solution to Laplace's equation; it remains to 
impose the boundary conditions, and see what they tell us about the constants. To 
begin at the end, condition (iv) requires that A equal zero.8 Absorbing B into C 
and D, we are left with 

V(x, y) = e-kx(Csinky + Dcosky). 

Condition (i) now demands that D equal zero, so 

V(x, y) = Ce-kx sinky. 

Meanwhile (ii) yields sin ka = 0, from which it follows that 

k - mr 
- ' (n=l,2,3, ... ). 

a 

(3.28) 

(3.29) 

(At this point you can see why I chose C1 positive and C2 negative: If X were 
sinusoidal, we could never arrange for it to go to zero at infinity, and if Y were 
exponential we could not make it vanish at both 0 and a. Incidentally, n = 0 is 
no good, for in that case the potential vanishes everywhere. And we have already 
excluded negative n 's.) 

That's as far as we can go, using separable solutions, and unless V0 (y) just 
happens to have the form sin(mryja) for some integer n, we simply can't.fit the 
final boundary condition at x = 0. But now comes the crucial step that redeems 
the method: Separation of variables has given us an infinite family of solutions 
(one for each n ), and whereas none of them by itself satisfies the final boundary 
condition, it is possible to combine them in a way that does. Laplace's equation is 
linear, in the sense that if V1, V2 , V3, ••• satisfy it, so does any linear combina­
tion, V = a1 V1 + az Vz + a3 V3 + ... , where a1, az, ... are arbitrary constants. 
For 

Exploiting this fact, we can patch together the separable solutions (Eq. 3.28) to 
construct a much more general solution: 

00 

V(x, y) = L Cne-mr:xfa sin(mryja). (3.30) 
n=l 

This still satisfies three of the boundary conditions; the question is, can we (by 
astute choice of the coefficients Cn) fit the final boundary condition (iii)? 

00 

V(O, y) = L Cn sin(mryja) = Vo(y). (3.31) 
n=l 

81'm assuming k is positive, but this involves no loss of generality-negative k gives the same solution 
(Eq. 3.27), only with the constants shuffled (A~ B, C---+ -C). Occasionally (though not in this 
example) k = 0 must also be included (see Prob. 3.54). 
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Well, you may recognize this sum-it's a Fourier sine series. And Dirichlet's 
theorem9 guarantees that virtually any function V0(y)-it can even have a finite 
number of discontinuities--can be expanded in such a series. 

But how do we actually determine the coefficients Cn, buried as they are in that 
infinite sum? The device for accomplishing this is so lovely it deserves a name-I 
call it Fourier's trick, though it seems Euler had used essentially the same idea 
somewhat earlier. Here's how it goes: Multiply Eq. 3.31 by sin(n'nyja) (where 
n' is a positive integer), and integrate from 0 to a: 

00 r r L Cn Jo sin(nnyja) sin(n'nyja) dy = Jo Vo(Y) sin(n'nyja) dy. 
n=l 0 0 

(3.32) 

You can work out the integral on the left for yourself; the answer is 

{ 

0, 

faa sin(nnyja) sin(n'nyja) dy = a 

2' 

ifn'f.n, 

(3.33) 
ifn' = n. 

Thus all the terms in the series drop out, save only the one where n = n', and the 
left side ofEq. 3.32, reduces to (aj2)Cn'· Conclusion:10 

2 loa Cn = - Vo(Y) sin(nnyja) dy. 
a o 

(3.34) 

That does it: Eq. 3.30 is the solution, with coefficients given by Eq. 3.34. 
As a concrete example, suppose the strip at x = 0 is a metal plate with con­
stant potential V0 (remember, it's insulated from the grounded plates at y = 0 and 
y =a). Then 

2Vo loa . 2Vo { Cn = - sm(nnyja)dy = - (1- cosnn) = 
a 0 nn 

0, 

4Vo 

nn 

Thus 

4Vo ~ 1 I . V(x, y) = - ~ - e-mrx a sm(nnyja). 
1T n=l,3,5 ... n 

ifn is even, 

if n is odd. 

(3.35) 

(3.36) 

Figure 3.18 is a plot of this potential; Fig. 3.19 shows how the first few terms 
in the Fourier series combine to make a better and better approximation to the 
constant V0 : (a) is n = 1 only, (b) includes n up to 5, (c) is the sum of the first 10 
terms, and (d) is the sum of the first 100 terms. 
9Boas, M., Mathematical Methods in the Physical Sciences, 2nd ed. (New York: John Wiley, 1983). 
10For aesthetic reasons I've dropped the prime; Eq. 3.34 holds for n = 1, 2, 3, ... , and it doesn't 
matter (obviously) what letter you use for the "dummy" index. 
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FIGURE3.19 

Incidentally, the infinite series in Eq. 3.36 can be summed explicitly (try your 
hand at it, if you like); the result is 

( ) 
2Vo _1 ( sin(nyja) ) 

V x,y = - tan . . 
rr smh(rrxja) 

(3.37) 

In this form, it is easy to check that Laplace's equation is obeyed and the four 
boundary conditions (Eq. 3.21) are satisfied. 

The success of this method hinged on two extraordinary properties of the sep­
arable solutions (Eqs. 3.28 and 3.29): completeness and orthogonality. A set of 
functions fn (y) is said to be complete if any other function f (y) can be expressed 
as a linear combination of them: 

00 

f(y) = L Cnfn(y). (3.38) 
n=l 

The functions sin(nny fa) are complete on the interval 0 ~ y ~a. It was this fact, 
guaranteed by Dirichlet's theorem, that assured us Eq. 3.31 could be satisfied, 
given the proper choice of the coefficients Cn. (The proof of completeness, for 
a particular set of functions, is an extremely difficult business, and I'm afraid 
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physicists tend to assume it's true and leave the checking to others.) A set of 
functions is orthogonal if the integral of the product of any two different members 
of the set is zero: 

for n' f= n. (3.39) 

The sine functions are orthogonal (Eq. 3.33); this is the property on which 
Fourier's trick is based, allowing us to kill off all terms but one in the infinite 
series and thereby solve for the coefficients Cn. (Proof of orthogonality is gen­
erally quite simple, either by direct integration or by analysis of the differential 
equation from which the functions came.) 

Example 3.4. Two infinitely-long grounded metal plates, again at y = 0 and 
y = a, are connected at x = ±b by metal strips maintained at a constant potential 
V0 , as shown in Fig. 3.20 (a thin layer of insulation at each comer prevents them 
from shorting out). Find the potential inside the resulting rectangular pipe. 

Solution 
Once again, the configuration is independent of z. Our problem is to solve 
Laplace's equation 

a2 v a2v 
ax2 + ay2 = 0, 

subject to the boundary conditions 

(i) V = 0 when y = 0, } 
(ii) V = 0 when y = a, 
(iii) V = V0 when x = b, 
(iv) V = Vo when x = -b. 

(3.40) 

The argument runs as before, up to Eq. 3.27: 

V(x, y) = (Aekx + Be-kx)(C sinky + D cosky). 

y 

X 

FIGURE3.20 
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This time, however, we cannot set A = 0; the region in question does not 
extend to x = oo, so ekx is perfectly acceptable. On the other hand, the situa­
tion is symmetric with respect to x, so V(-x, y) = V(x, y), and it follows that 
A= B. Using 

ekx + e-kx = 2coshkx, 

and absorbing 2A into C and D, we have 

V(x, y) = coshkx (C sinky + Dcosky). 

Boundary conditions (i) and (ii) require, as before, that D = 0 and k = nn fa, so 

V(x, y) = C cosh(nnxja) sin(nnyja). (3.41) 

Because V(x, y) is even in x, it will automatically meet condition (iv) if it fits 
(iii). It remains, therefore, to construct the general linear combination, 

00 

V(x, y) = L Cn cosh(nnxja) sin(nnyja), 
n=l 

and pick the coefficients Cn in such a way as to satisfy condition (iii): 

00 

V(b, y) = L Cn cosh(nnbja) sin(nnyja) = Vo. 
n=l 

This is the same problem in Fourier analysis that we faced before; I quote the 
result from Eq. 3.35: 

{ 

0, 

Cn cosh(nnbja) = 4Vo 

nn 

if n is even 

if n is odd 

Conclusion: The potential in this case is given by 

4Vo " 1 cosh(nnxja) . 
V(x, y) = - ~ - sm(nnyja). 

n n=l, 3,s ... n cosh(nn b j a) 
(3.42) 
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This function is shown in Fig. 3.21. 

VIVo 0.5 

xlb 1.0 

FIGURE3.21 

Example 3.5. An infinitely long rectangular metal pipe (sides a and b) is 
grounded, but one end, at x = 0, is maintained at a specified potential V0 (y, z), 
as indicated in Fig. 3.22. Find the potential inside the pipe. 

FIGURE3.22 

Solution 
This is a genuinely three-dimensional problem, 

subject to the boundary conditions 

(i) V = 0 when y = 0, 
(ii) V = 0 when y = a, 
(iii) V = 0 when z = 0, 
(iv) V = 0 when z = b, 
(v) V --+ 0 as x --+ oo, 
(vi) V = V0 (y, z) when x = 0. 

X 

(3.43) 

(3.44) 
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As always, we look for solutions that are products: 

V(x, y, z) = X(x)Y(y)Z(z). (3.45) 

Putting this into Eq. 3.43, and dividing by V, we find 

1 d2 X 1 d 2 Y 1 d2 Z 
--+ -- + -- =0. 
X dx2 Y dy2 Z dz2 

It follows that 

Our previous experience (Ex. 3.3) suggests that C1 must be positive, C2 and C3 

negative. Setting C2 = -k2 and C3 = -12 , we have C1 = k2 + 12 , and hence 

(3.46) 

Once again, separation of variables has turned a partial differential equation 
into ordinary differential equations. The solutions are 

Y(y) = C sinky + D cosky, 

Z(z) = Esinlz+Fcoslz. 

Boundary condition (v) implies A = 0, (i) gives D = 0, and (iii) yields F = 0, 
whereas (ii) and (iv) require that k = nn:ja and l = mn:jb, where nand m are 
positive integers. Combining the remaining constants, we are left with 

V(x, y, z) = ce-rr.j(nfa)
2
+<mJWx sin(nn:yja) sin(mn:zjb). (3.47) 

This solution meets all the boundary conditions except (vi). It contains two un­
specified integers (n and m ), and the most general linear combination is a double 
sum: 

00 00 

V(x, y, z) = L L Cn,me-rr.j(nfa)
2
+(m/Wx sin(nn:yfa) sin(mn:zjb). (3.48) 

n=l m=l 

We hope to fit the remaining boundary condition, 

00 00 

V(O, y, z) = L L Cn,m sin(nn:yja) sin(mrrz/b) = Vo(y, z), (3.49) 
n=l m=l 
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by appropriate choice of the coefficients Cn,m. To determine these constants, we 
multiply by sin(n'nyja) sin(m'nzjb), where n' and m' are arbitrary positive 
integers, and integrate: 

00 00 r r L L Cn,m Jo sin(nnyfa) sin(n'nyfa) dy Jo sin(mnzjb) sin(m'nzjb) dz 
n=l m=l 0 0 

=loa fob Vo(y, z) sin(n'nyja) sin(m'nzjb) dy dz. 

Quoting Eq. 3.33, the left side is (abf4)Cn',m'• so 

Cn,m =a: loa fob Vo(y,z)sin(nnyfa) sin(mnzjb)dydz. (3.50) 

Equation 3.48, with the coefficients given by Eq. 3.50, is the solution to our 
problem. 

For instance, if the end of the tube is a conductor at constant potential V0 , 

Cn,m = 
4

Vo fa sin(nnyja)dy {b sin(mnzjb)dz 
ab Jo Jo 

if n or m is even, 

(3.51) 
if n and m are odd. 

In this case 
00 

V(x, y, z) = 
16

Vo '"' -
1
- e-1t,.j(nfa)2+(mfWx sin(nnyja) sin(mnzjb). 

n 2 ~ nm 
n,m=1,3,5 ... 

(3.52) 
Notice that the successive terms decrease rapidly; a reasonable approximation 
would be obtained by keeping only the first few. 

Problem 3.13 Find the potential in the infinite slot of Ex. 3.3 if the boundary at 
x = 0 consists of two metal strips: one, from y = 0 to y = a J2, is held at a constant 
potential V0 , and the other, from y = aj2 toy= a, is at potential-V0 • 

Problem 3.14 For the infinite slot (Ex. 3.3), determine the charge density o-(y) on 
the strip at x = 0, assuming it is a conductor at constant potential V0 • 

Problem 3.15 A rectangular pipe, running parallel to the z-axis (from -oo to +oo ), 
has three grounded metal sides, at y = 0, y =a, and x = 0. The fourth side, at 
x = b, is maintained at a specified potential V0 (y). 

(a) Develop a general formula for the potential inside the pipe. 

(b) Find the potential explicitly, for the case V0 (y) = V0 (a constant). 
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Problem 3.16 A cubical box (sides of length a) consists of five metal plates, which 
are welded together and grounded (Fig. 3.23). The top is made of a separate sheet 
of metal, insulated from the others, and held at a constant potential V0 • Find the 
potential inside the box. [What should the potential at the center (a/2, aj2, aj2) 
be? Check numerically that your formula is consistent with this value.] 11 

X 

FIGURE3.23 

3.3.2 • Spherical Coordinates 

In the examples considered so far, Cartesian coordinates were clearly appropriate, 
since the boundaries were planes. For round objects, spherical coordinates are 
more natural. In the spherical system, Laplace's equation reads: 

1 a ( 2 av) 1 a ( . av) 1 a2v -- r - +---- smO - + =0. r2 ar ar r2 sin 0 ao ao r2 sin2 0 a¢2 
(3.53) 

I shall assume the problem has azimuthal symmetry, so that V is independent of 
¢;12 in that case, Eq. 3.53 reduces to 

- r - +--- smO - =0. a ( 2av) 1 a (. av) 
ar ar sin 0 ao ao (3.54) 

As before, we look for solutions that are products: 

V(r, 0) = R(r)8(0). (3.55) 

Putting this into Eq. 3.54, and dividing by V, 

-- r - + ---- smO - =0 1 d ( 2 dR) 1 d (. de) 
R dr dr 8 sinO dO dO · 

(3.56) 

11This cute test was suggested by J. Castro. 
12The general case, for t/J-dependent potentials, is treated in all the graduate texts. See, for instance, 
J.D. Jackson's Classical Electrodynamics, 3rd ed. (New York: John Wiley, 1999), Chapter 3. 
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Since the first term depends only on r, and the second only on (), it follows that 
each must be a constant: 

-- r - = l(l + 1), 1 d ( 2 dR) 
Rdr dr 

--- smO - = -1(1 + 1). 1 d (. de) 
e sin() d() d() 

(3.57) 

Here l(l + 1) is just a fancy way of writing the separation constant-you'll see in 
a minute why this is convenient. 

As always, separation of variables has converted a partial differential equation 
(3.54) into ordinary differential equations (3.57). The radial equation, 

has the general solution 

d ( dR) dr r
2 dr = l(l + 1)R, 

l B 
R(r) = Ar + rl+l, 

(3.58) 

(3.59) 

as you can easily check; A and B are the two arbitrary constants to be expected 
in the solution of a second-order differential equation. But the angular equation, 

d (. de) 11 . dO smOdO =- ( + 1) smO 8, (3.60) 

is not so simple. The solutions are Legendre polynomials in the variable cos (): 

8(0) = P1(cos0). 

P1 (x) is most conveniently defined by the Rodrigues formula: 

1 d 2 l 

( )

l 

Pz(x) = - - (x - 1) . 
211! dx 

The first few Legendre polynomials are listed in Table 3.1. 

Po(x) = 1 

Pl(X) = X 

Pz(x) (3x2 - 1)/2 

P3(x) (5x3 - 3x)j2 

P4(x) (35x4
- 30x2 + 3)/8 

Ps(x) (63x5 - 70x3 + 15x)/8 

TABLE 3.1 Legendre Polynomials. 

(3.61) 

(3.62) 
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Notice that P1(x) is (as the name suggests) an lth-order polynomial in x; it con­
tains only even powers, if 1 is even, and odd powers, if 1 is odd. The factor in front 
(1/211!) was chosen in order that 

P1(1) = 1. (3.63) 

The Rodrigues formula obviously works only for nonnegative integer values 
of l. Moreover, it provides us with only one solution. But Eq. 3.60 is second­
order, and it should possess two independent solutions, for every value of l. It 
turns out that these "other solutions" blow up at () = 0 and/or () = n, and are 
therefore unacceptable on physical grounds.13 For instance, the second solution 
fori= 0 is 

8(0) = ln (tan%). (3.64) 

You might want to check for yourself that this satisfies Eq. 3.60. 
In the case of azimuthal symmetry, then, the most general separable solution 

to Laplace's equation, consistent with minimal physical requirements, is 

V(r, 0) = ( Ar1 + r~l) P1(cos0). 

(There was no need to include an overall constant in Eq. 3.61 because it can be 
absorbed into A and B at this stage.) As before, separation of variables yields an 
infinite set of solutions, one for each l. The general solution is the linear combi­
nation of separable solutions: 

V(r, 0) = f ( A1r
1 + r~l) P1(cos0). 

1=0 

(3.65) 

The following examples illustrate the power of this important result. 

Example 3.6. The potential V0 (0) is specified on the surface of a hollow sphere, 
of radius R. Find the potential inside the sphere. 

Solution 
In this case, B1 = 0 for alll---otherwise the potential would blow up at the origin. 
Thus, 

00 

V(r, 0) = L A1r
1 P1(cos0). (3.66) 

1=0 

13In rare cases where the z axis is excluded, these "other solutions" do have to be considered. 



144 Chapter 3 Potentials 

At r = R this must match the specified function V0 (0): 

00 

V(R, 0) = L AzR1 Pz(cosO) = Vo(O). 
1=0 

(3.67) 

Can this equation be satisfied, for an appropriate choice of coefficients Az? Yes: 
The Legendre polynomials (like the sines) constitute a complete set of functions, 
on the interval -1 ::S x ::S 1 (0 ::S 0 ::S n). How do we determine the constants? 
Again, by Fourier's trick, for the Legendre polynomials (like the sines) are or­
thogonal functions: 14 

1
1 

P1(x)P1,(x) dx = f]f Pz(cosO)Pz,(cosO) sinO dO 
-1 lo 

{ 

0, 

= 2 

21 + 1' 

if l' f= l, 

(3.68) 
ifl' = l. 

Thus, multiplying Eq. 3.67 by P1, (cos 0) sin 0 and integrating, we have 

l' 2 11r . Az,R -- = Vo(O)Pz,(cosO) smO dO, 
21' + 1 0 

or 

21 + 111f . Az = --
1
- Vo(O)Pz(cosO) smO dO. 

2R 0 
(3.69) 

Equation 3.66 is the solution to our problem, with the coefficients given by 
Eq. 3.69. 

It can be difficult to evaluate integrals of the form 3.69 analytically, and in 
practice it is often easier to solve Eq. 3.67 "by eyeball."15 For instance, suppose 
we are told that the potential on the sphere is 

Vo(O) = k sin2(0 /2), (3.70) 

where k is a constant. Using the half-angle formula, we rewrite this as 

k k 
Vo(O) = 2 (1- cosO)= 2[P0(cos0)- P1(cos0)]. 

14M. Boas, Mathematical Methods in the Physical Sciences, 2nd ed. (New York: John Wiley, 1983), 
Section 12.7. 
15This is certainly true whenever Vo(B) can be expressed as a polynomial in cos e. The degree of the 
polynomial tells us the highest l we require, and the leading coefficient determines the corresponding 
A1. Subtracting off A1R1 P1(cosB) and repeating the process, we systematically work our way down 
to A0 • Notice that if Vo is an even function of cos e, then only even terms will occur in the sum (and 
likewise for odd functions). 
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PuttingthisintoEq. 3.67, wereadoffimmediatelythatA0 = kj2, A1 = -kj(2R), 
and all other A1's vanish. Therefore, 

k [ 0 r
1 

] k ( r ) V(r,O) = 2 r P0(cos0)- RP1(cos0) = 2 1- RcosO . (3.71) 

Example 3.7. The potential V0 (0) is again specified on the surface of a sphere of 
radius R, but this time we are asked to find the potential outside, assuming there 
is no charge there. 

Solution 
In this case it's the A1 's that must be zero (or else V would not go to zero at oo ), so 

oo Bz 
V(r, 0) = L rl+l Pz(cosO). 

l=O 

At the surface of the sphere, we require that 

oo B 
V(R, 0) = L Rl~l P1(cos0) = V0(0). 

l=O 

(3.72) 

Multiplying by P1,(cos0) sinO and integrating-exploiting, again, the orthogo­
nality relation 3.68-we have 

Bt' 2 {rr 
Rl'+l 21,+ 1 = Jo V0(0)P1,(cos0)sin0d0, 

or 

B1 = --Rl+1 V0(0)P1(cos0) sinO dO. 21 + 1 !orr 
2 0 

(3.73) 

Equation 3.72, with the coefficients given by Eq. 3.73, is the solution to our 
problem. 

Example 3.8. An uncharged metal sphere of radius R is placed in an other­
wise uniform electric field E = E0Z. The field will push positive charge to the 
"northern" surface of the sphere, and-symmetrically-negative charge to the 
"southern" surface (Fig. 3.24 ). This induced charge, in tum, distorts the field in 
the neighborhood of the sphere. Find the potential in the region outside the sphere. 
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Solution 
The sphere is an equipotential-we may as well set it to zero. Then by symmetry 
the entire xy plane is at potential zero. This time, however, V does not go to zero 
at large z. In fact, far from the sphere the field is E0z, and hence 

V---+ -Eoz +C. 

y 

FIGURE3.24 

Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly, 
the boundary conditions for this problem are 

(i) V = 0 when r = R, } 
(ii) V ---+ - E0r cos 8 for r » R. 

(3.74) 

We must fit these boundary conditions with a function of the form 3.65. 
The first condition yields 

1 B1 
AIR + Rl+l = 0, 

or 

(3.75) 

so 

V(r, B)="£ A1 (r1- ~;:~
1

) P1(cos8). 
1=0 

For r » R, the second term in parentheses is negligible, and therefore condition 
(ii) requires that 

00 

LA1r1 P1(cos8) = -E0rcos8. 
1=0 
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Evidently only one term is present: 1 = 1. In fact, since P1 (cos 0) =cos 0, we can 
read off immediately 

A1 =-Eo, all other At's zero. 

Conclusion: 

V(r, 0) = -E0 (r- ~:)cosO. (3.76) 

The first term (-E0r cos 0) is due to the external field; the contribution 
attributable to the induced charge is 

If you want to know the induced charge density, it can be calculated in the usual 
way: 

u(O)=-Eoavl =EoEo(1+2R:)cosOI =3EoEocosO. (3.77) 
ar r=R r r=R 

As expected, it is positive in the "northern" hemisphere (0 ::::; 0 ::::; rr /2) and neg­
ative in the "southern" (rr /2 ::::; 0 ::::; rr). 

Example 3.9. A specified charge density u0(0) is glued over the surface of a 
spherical shell of radius R. Find the resulting potential inside and outside the 
sphere. 

Solution 
You could, of course, do this by direct integration: 

V = -
1

- / uo da, 
4rrEo 1z. 

but separation of variables is often easier. For the interior region, we have 

00 

V(r, 0) = L Atrt Pt(cosO) (r::::; R) (3.78) 
t=O 

(no Bt terms-they blow up at the origin); in the exterior region 

(r 2: R) (3.79) 

(no At terms-they don't go to zero at infinity). These two functions must be 
joined together by the appropriate boundary conditions at the surface itself. First, 
the potential is continuous at r = R (Eq. 2.34): 
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(3.80) 

It follows that the coefficients of like Legendre polynomials are equal: 

(3.81) 

(To prove that formally, multiply both sides of Eq. 3.80 by P1,(cos0) sinO and 
integrate from 0 ton, using the orthogonality relation 3.68.) Second, the radial 
derivative of V suffers a discontinuity at the surface (Eq. 2.36): 

( aVout - avin) I = _ _!._ao(O). 
ar ar r=R Eo 

(3.82) 

Thus 

~ Bz ~ 1 1 1 - ~(1 + 1)-----z+2Pz(cos0)- ~1AzR- Pz(cosO) = - - ao(O), 
l=O R l=O Eo 

or, using Eq. 3.81, 

00 1 
L(2l + 1)AzR1

-
1 Pz(cosO) = - a0(0). 

~0 ~ 
(3.83) 

From here, the coefficients can be determined using Fourier's trick: 

1 17r Az = 
1
_ 1 ao(O)Pz(cosO) sinO dO. 

2EoR o 
(3.84) 

Equations 3.78 and 3.79 constitute the solution to our problem, with the coeffi­
cients given by Eqs. 3.81 and 3.84. 

For instance, if 

a0 (0) = kcosO = kP1(cos0), 

for some constant k, then all the A1's are zero except for 1 = 1, and 

A1 = - [PI (cos O)f sinO dO = - . k 17r k 
2Eo o 3Eo 

The potential inside the sphere is therefore 

k 
V (r, 0) = - r cos 0 

3Eo 
(r:::: R), 

(3.85) 

(3.86) 
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whereas outside the sphere 

kR 3 1 
V(r, 0) = - 2 cos0 

3Eo r 
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(r:::: R). (3.87) 

In particular, if cr0 (0) is the induced charge on a metal sphere in an external 
field E0z, so that k = 3E0 E0 (Eq. 3.77), then the potential inside is E0r cos 0 = 
E0z, and the field is - E0z-exactly right to cancel off the external field, as of 
course it should be. Outside the sphere the potential due to this surface charge is 

consistent with our conclusion in Ex. 3.8. 

Problem 3.17 Derive P3 (x) from the Rodrigues formula, and check that P3 (cos0) 
satisfies the angular equation (3.60) for l = 3. Check that P3 and P1 are orthogonal 
by explicit integration. 

Problem 3.18 

(a) Suppose the potential is a constant V0 over the surface of the sphere. Use the 
results of Ex. 3.6 and Ex. 3.7 to find the potential inside and outside the sphere. 
(Of course, you know the answers in advance-this is just a consistency check 
on the method.) 

(b) Find the potential inside and outside a spherical shell that carries a uniform 
surface charge a0 , using the results of Ex. 3.9. 

Problem 3.19 The potential at the surface of a sphere (radius R) is given by 

V0 = kcos30, 

where k is a constant. Find the potential inside and outside the sphere, as well as 
the surface charge density a(O) on the sphere. (Assume there's no charge inside or 
outside the sphere.) 

Problem 3.20 Suppose the potential V0(0) at the surface of a sphere is specified, 
and there is no charge inside or outside the sphere. Show that the charge density on 
the sphere is given by 

(3.88) 

where 

C1 = 11f Vo(O)PL(cosO) sinO dO. (3.89) 
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Problem 3.21 Find the potential outside a charged metal sphere (charge Q, radius 
R) placed in an otherwise uniform electric field E0 • Explain clearly where you are 
setting the zero of potential. 

Problem 3.22 In Prob. 2.25, you found the potential on the axis of a uniformly 
charged disk: 

V(r, 0) = _!!_ (Jr 2 + R2 - r). 
2Eo 

(a) Use this, together with the fact that P1(1) = 1, to evaluate the first three terms 
in the expansion (Eq. 3.72) for the potential of the disk at points off the axis, 
assuming r > R. 

(b) Find the potential for r < R by the same method, using Eq. 3.66. [Note: You 
must break the interior region up into two hemispheres, above and below the 
disk. Do not assume the coefficients A1 are the same in both hemispheres.] 

Problem 3.23 A spherical shell of radius R carries a uniform surface charge a0 

on the "northern" hemisphere and a uniform surface charge -a0 on the "southern" 
hemisphere. Find the potential inside and outside the sphere, calculating the coeffi­
cients explicitly up to A6 and B6. 

• Problem 3.24 Solve Laplace's equation by separation of variables in cylindrical 
coordinates, assuming there is no dependence on z (cylindrical symmetry). [Make 
sure you find all solutions to the radial equation; in particular, your result must 
accommodate the case of an infinite line charge, for which (of course) we already 
know the answer.] 

Problem 3.25 Find the potential outside an infinitely long metal pipe, of radius R, 
placed at right angles to an otherwise uniform electric field E0 • Find the surface 
charge induced on the pipe. [Use your result from Prob. 3.24.] 

Problem 3.26 Charge density 

a(¢) =a sinS¢ 

(where a is a constant) is glued over the surface of an infinite cylinder of radius R 
(Fig. 3.25). Find the potential inside and outside the cylinder. [Use your result from 
Prob. 3.24.] 

y 

FIGURE3.25 
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3.4 • MULTIPOLE EXPANSION 

3.4.1 • Approximate Potentials at Large Distances 

If you are very far away from a localized charge distribution, it "looks" like a point 
charge, and the potential is-to good approximation-(l/4rrEo)Q/r, where Q is 
the total charge. We have often used this as a check on formulas for V. But what 
if Q is zero? You might reply that the potential is then approximately zero, and of 
course, you're right, in a sense (indeed, the potential at larger is pretty small even 
if Q is not zero). But we're looking for something a bit more informative than that. 

Example 3.10. A (physical) electric dipole consists of two equal and opposite 
charges (±q) separated by a distance d. Find the approximate potential at points 
far from the dipole. 

Solution 
Let L be the distance from -q and 1-+ the distance from +q (Fig. 3.26). Then 

V(r)= - - - - , 1 (q q) 
4rrEo 1-+ 1-_ 

and (from the law of cosines) 

( 
d d

2
) 1-i = r2 + (d/2)2 =f rd cos()= r2 1 =f - cosO+ - 2 . 

r 4r 

We're interested in the regime r » d, so the third term is negligible, and the 
binomial expansion yields 

1 1 ( d ) -l/
2 

1 ( d ) - ~ - 1 =f - cos() ~ - 1 ± - cos() . 
1-± r r r 2r 

Thus 

+q 

d 

-q 

FIGURE3.26 
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and hence 

() 

rv 1 qdcos(} 
V r = 

4nE0 r 2 
(3.90) 

The potential of a dipole goes like 1 I r 2 at large r; as we might have anticipated, 
it falls off more rapidly than the potential of a point charge. If we put together 
a pair of equal and opposite dipoles to make a quadrupole, the potential goes 
like 11r3 ; for back-to-back quadrupoles (an octopole), it goes like 11r4 ; and so 
on. Figure 3.27 summarizes this hierarchy; for completeness I have included the 
electric monopole (point charge), whose potential, of course, goes like 1 I r. 

+ • 

Monopole 
(V- 1/r) 

+ ----
Dipole 

(V- l/r2) 

+D-
+ 

Quadrupole 
(V- l/r3) 

FIGURE3.27 

+ 

+ 
Octopole 
(V- l/r4) 

+ 
-

Example 3.10 pertains to a very special charge configuration. I propose now to 
develop a systematic expansion for the potential of any localized charge distribu­
tion, in powers of 1 I r. Figure 3.28 defines the relevant variables; the potential at 
r is given by 

V(r) = -- - p(r') dr'. 1 f 1 
4nEo ..z. 

(3.91) 

Using the law of cosines, 

where a is the angle between r and r'. Thus 

..z. = r.Jl+E, (3.92) 

V
p 

d't' 

r' 

FIGURE3.28 
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with 

E = ( ~) ( ~ - 2 cos a) . 
For points well outside the charge distribution, E is much less than 1, and this 
invites a binomial expansion: 

1 1 -1/2 1 ( 1 3 2 5 3 ) - = - (1 +E) = - 1- - E + - E - - E + ... , 
~z, r r 2 8 16 

(3.93) 

or, in terms of r, r', and a: 

1 1 [ 1 (r') (r' ) 3 (r') 2 

(r' )
2 

:;; = -;: 1 - 2 -; -; - 2 cos a + g -; -; - 2 cos a 

5 (r') 3 (r' )3 

] -
16 

-; -; - 2 cos a + ... 

= - 1 + - (cos a) + -1 [ (r') (r') 2 

(3 cos
2 a- 1) 

r r r 2 

(C) 3 
(5 cos

3 a- 3 cos a) ] + + .... 
r 2 

In the last step, I have collected together like powers of (r' j r); surprisingly, their 
coefficients (the terms in parentheses) are Legendre polynomials! The remarkable 
result16 is that 

1 1 
00 

(r')n - = - L - Pn(cosa). 
1z, r r n=O 

(3.94) 

Substituting this back into Eq. 3.91, and noting that r is a constant, as far as the 
integration is concerned, I conclude that 

1 00 1 f 
V(r) = --L (+1") (r')n Pn(cosa)p(r') dr', 

4Jl'Eo n=O r n 
(3.95) 

or, more explicitly, 

V(r) = -
1
- [~ Jp(r')dr' + 1

2 
fr'cosap(r')dr' 

4nEo r r 

+ r
1
3 J (r')

2 (~cos2 a- 4) p(r')dr' + ... J. (3.96) 

16This suggests a second way of defining the Legendre polynomials (the first being Rodrigues' for­
mula); lf!z, is called the generating function for Legendre polynomials. 
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This is the desired result-the multi pole expansion of V in powers of 1 j r. 
The first term (n = 0) is the monopole contribution (it goes like 1/r); the sec­
ond (n = 1) is the dipole (it goes like 1jr2

); the third is quadrupole; the fourth 
octopole; and so on. Remember that a is the angle between r and r 1

, so the inte­
grals depend on the direction to the field point. If you are interested in the poten­
tial along the Z1 axis (or-putting it the other way around-if you orient your r 1 

coordinates so the Z1 axis lies along r), then a is the usual polar angle 01
• 

As it stands, Eq. 3.95 is exact, but it is useful primarily as an approxima­
tion scheme: the lowest nonzero term in the expansion provides the approximate 
potential at large r, and the successive terms tell us how to improve the approxi­
mation if greater precision is required. 

Problem 3.27 A sphere of radius R, centered at the origin, carries charge density 

R . 
p(r, ()) = k 2 (R- 2r) sme, 

r 

where k is a constant, and r, () are the usual spherical coordinates. Find the approx­
imate potential for points on the z axis, far from the sphere. 

Problem 3.28 A circular ring in the xy plane (radius R, centered at the origin) carries 
a uniform line charge A.. Find the first three terms (n = 0, 1, 2) in the multipole 
expansion for V (r, ()). 

3.4.2 • The Monopole and Dipole Terms 

Ordinarily, the multipole expansion is dominated (at large r) by the monopole 
term: 

1 Q 
Vmon(r) = -4--, 

rrEo r 
(3.97) 

where Q = J p d r is the total charge of the configuration. This is just what we 
expect for the approximate potential at large distances from the charge. For a point 
charge at the origin, Vmon is the exact potential, not merely a first approximation 
at large r; in this case, all the higher multi poles vanish. 

If the total charge is zero, the dominant term in the potential will be the dipole 
(unless, of course, it also vanishes): 

1 1 f Vdip(r) = --2 r1 cos a p(r1
) dr 1

• 

4rrEo r 

Since a is the angle between r 1 and r (Fig. 3.28), 

r 1 cos a = r . r 1
' 

and the dipole potential can be written more succinctly: 

1 1 A f 1 I I Vdip(r) = --2 r · r p(r) dr. 
4rrEo r 
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This integral (which does not depend on r) is called the dipole moment of the 
distribution: 

p = J r' p(r') dr', 

and the dipole contribution to the potential simplifies to 

1 P. r vdi (r) = ----. 
P 4nEo r 2 

(3.98) 

(3.99) 

The dipole moment is determined by the geometry (size, shape, and density) 
ofthe charge distribution. Equation 3.98 translates in the usual way (Sect. 2.1.4) 
for point, line, and surface charges. Thus, the dipole moment of a collection of 
point charges is 

n 

p = Lqir~. (3.100) 
i=l 

For a physical dipole (equal and opposite charges, ±q), 

p = qr~ - qr'_ = q(r~ - r'_) = qd, (3.101) 

where dis the vector from the negative charge to the positive one (Fig. 3.29). 
Is this consistent with what we got in Ex. 3.10? Yes: If you put Eq. 3.101 into 

Eq. 3.99, you recover Eq. 3.90. Notice, however, that this is only the approximate 
potential of the physical dipole-evidently there are higher multipole contribu­
tions. Of course, as you go farther and farther away, V dip becomes a better and 
better approximation, since the higher terms die off more rapidly with increas­
ing r. By the same token, at a fixed r the dipole approximation improves as you 
shrink the separation d. To construct a perfect (point) dipole whose potential is 
given exactly by Eq. 3.99, you'd have to let d approach zero. Unfortunately, you 
then lose the dipole term too, unless you simultaneously arrange for q to go to in­
finity! A physical dipole becomes a pure dipole, then, in the rather artificial limit 
d--+ 0, q --+ oo, with the product qd = p held fixed. When someone uses the 
word "dipole," you can't always tell whether they mean a physical dipole (with 

+q 

y 

X 

FIGURE3.29 
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:o: 
FIGURE3.30 

finite separation between the charges) or an ideal (point) dipole. If in doubt, as­
sume that dis small enough (compared tor) that you can safely apply Eq. 3.99. 

Dipole moments are vectors, and they add accordingly: if you have two 
dipoles, PI and P2. the total dipole moment is PI + P2· For instance, with four 
charges at the comers of a square, as shown in Fig. 3.30, the net dipole moment is 
zero. You can see this by combining the charges in pairs (vertically, ..(.. + t = 0, 
or horizontally, -+ + +- = 0) or by adding up the four contributions individually, 
using Eq. 3.100. This is a quadrupole, as I indicated earlier, and its potential is 
dominated by the quadrupole term in the multipole expansion. 

Problem 3.29 Four particles (one of charge q, one of charge 3q, and two of charge 
-2q) are placed as shown in Fig. 3.31, each a distance a from the origin. Find a 
simple approximate formula for the potential, valid at points far from the origin. 
(Express your answer in spherical coordinates.) 

z 

3q 

a 
a 

-2q y 

X 

FIGURE3.31 

Problem 3.30 In Ex. 3.9, we derived the exact potential for a spherical shell of 
radius R, which carries a surface charge a = k cos(). 

(a) Calculate the dipole moment of this charge distribution. 

(b) Find the approximate potential, at points far from the sphere, and compare the 
exact answer (Eq. 3.87). What can you conclude about the higher multipoles? 

Problem 3.31 For the dipole in Ex. 3.10, expand 1/1-± to order (djr) 3 , and use this 
to determine the quadrupole and octopole terms in the potential. 
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3.4.3 • Origin of Coordinates in Multipole Expansions 

I mentioned earlier that a point charge at the origin constitutes a "pure" monopole. 
If it is not at the origin, it's no longer a pure monopole. For instance, the charge 
in Fig. 3.32 has a dipole moment p = qdy, and a corresponding dipole term in 
its potential. The monopole potential (1/4rrE0)q/r is not quite correct for this 
configuration; rather, the exact potential is (1/4rrE0)q j~z,. The multipole expansion 
is, remember, a series in inverse powers of r (the distance to the origin), and when 
we expand 1 I ~z,, we get all powers, not just the first. 

So moving the origin (or, what amounts to the same thing, moving the charge) 
can radically alter a multipole expansion. The monopole moment Q does not 
change, since the total charge is obviously independent of the coordinate system. 
(In Fig. 3.32, the monopole term was unaffected when we moved q away from 
the origin-it's just that it was no longer the whole story: a dipole term-and for 
that matter all higher poles-appeared as well.) Ordinarily, the dipole moment 
does change when you shift the origin, but there is an important exception: If the 
total charge is zero, then the dipole moment is independent of the choice of origin. 
For suppose we displace the origin by an amount a (Fig. 3.33). The new dipole 
moment is then 

p = j f' p(r') dr' = j (r'- a)p(r') dr' 

= j r' p(r') dr'- a j p(r') dr' = p- Qa. 

z 

y 

q y 

X 
X 

FIGURE3.32 FIGURE3.33 

In particular, if Q = 0, then p = p. So if someone asks for the dipole moment 
in Fig. 3.34(a), you can answer with confidence "qd," but if you're asked for the 
dipole moment in Fig. 3.34(b), the appropriate response would be "With respect 
to what origin?" 

d - ~ 
-q q q a q 

(a) (b) 

FIGURE3.34 
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X 

Problem 3.32 Two point charges, 3q and -q, are separated by a distance a. For 
each of the arrangements in Fig. 3.35, find (i) the monopole moment, (ii) the dipole 
moment, and (iii) the approximate potential (in spherical coordinates) at large r 
(include both the monopole and dipole contributions). 

z z z 
3q 

a 
-q 

y y a 3q y 

X X 

(a) (b) (c) 

FIGURE3.35 

3.4.4 • The Electric Field of a Dipole 

So far we have worked only with potentials. Now I would like to calculate the 
electric field of a (perfect) dipole. If we choose coordinates so that pis at the origin 
and points in the z direction (Fig. 3.36), then the potential at r, ()is (Eq. 3.99): 

r. p p cos() 
Vdip(r, 0) = -- = --. 

4nEor2 4nE0r 2 
(3.102) 

To get the field, we take the negative gradient of V: 

av 2pcos() 
Er= - - = ' ar 4nEor3 

1 av p sin() 
Eo=--- = ---

r a0 4nEor3 ' 

1 av 
Ec/J =- rsinO ac~> = O. 

Thus 

(3.103) 
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z 

y 

FIGURE3.36 

This formula makes explicit reference to a particular coordinate system (spher­
ical) and assumes a particular orientation for p (along z). It can be recast in a 
coordinate-free form, analogous to the potential in Eq. 3.99-see Prob. 3.36. 

Notice that the dipole field falls off as the inverse cube of r; the monopole field 
(QI4nE0r 2)i goes as the inverse square, of course. Quadrupole fields go like 
11 r 4 , octopole like 1 I r 5, and so on. (This merely reflects the fact that monopole 
potentials fall off like 1 I r, dipole like 1 I r 2

, quadrupole like 1 I r 3, and so on-the 
gradient introduces another factor of 1 I r.) 

Figure 3.37(a) shows the field lines of a "pure" dipole (Eq. 3.103). For com­
parison, I have also sketched the field lines for a "physical" dipole, in Fig. 3.37(b). 
Notice how similar the two pictures become if you blot out the central region; up 
close, however, they are entirely different. Only for points r » d does Eq. 3.103 
represent a valid approximation to the field of a physical dipole. As I mentioned 
earlier, this regime can be reached either by going to large r or by squeezing the 
charges very close together. 17 

z z 

y y 

(a) Field of a "pure" dipole (b) Field of a "physical" dipole 

FIGURE3.37 

17Even in the limit, there remains an infinitesimal region at the origin where the field of a physical 
dipole points in the "wrong" direction, as you can see by "walking" down the z axis in Fig. 3.35(b). If 
you want to explore this subtle and important point, work Prob. 3.48. 
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Problem 3.33 A "pure" dipole p is situated at the origin, pointing in the z direction. 

(a) What is the force on a point charge q at (a, 0, 0) (Cartesian coordinates)? 

(b) What is the force on q at (0, 0, a)? 

(c) How much work does it take to move q from (a, 0, 0) to (0, 0, a)? 

Problem 3.34 Three point charges are located as shown in Fig. 3.38, each a distance 
a from the origin. Find the approximate electric field at points far from the origin. 
Express your answer in spherical coordinates, and include the two lowest orders in 
the multipole expansion. 

z 

y 

X 

FIGURE3.38 

Problem 3.35 A solid sphere, radius R, is centered at the origin. The "northern" 
hemisphere carries a uniform charge density p0 , and the "southern" hemisphere a 
uniform charge density - p0 • Find the approximate field E(r, 0) for points far from 
the sphere (r » R). 

• Problem 3.36 Show that the electric field of a (perfect) dipole (Eq. 3.103) can be 
written in the coordinate-free form 

1 1 A A 

Edi (r) = -- [3(p · r)r- p]. 
P 4Jl'Eo r 3 

(3.104) 

More Problems on Chapter 3 

Problem 3.37 In Section 3.1.4, I proved that the electrostatic potential at any point 
P in a charge-free region is equal to its average value over any spherical surface 
(radius R) centered at P. Here's an alternative argument that does not rely on 
Coulomb's law, only on Laplace's equation. We might as well set the origin at P. 
Let Vave(R) be the average; first show that 

-- = -- VV·da dVave 1 f 
dR 4JrR2 

(note that the R2 in da cancels the 1/ R2 out front, so the only dependence on R 
is in V itself). Now use the divergence theorem, and conclude that if V satisfies 
Laplace's equation, then Vave(R) = Vave(O) = V(P), for all R. 18 

181 thank Ted Jacobson for suggesting this proof. 
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Problem 3.38 Here's an alternative derivation ofEq. 3.10 (the surface charge den­
sity induced on a grounded conducted plane by a point charge q a distance d above 
the plane). This approach19 (which generalizes to many other problems) does not 
rely on the method of images. The total field is due in part to q, and in part to the 
induced surface charge. Write down the z components of these fields-in terms of 
q and the as-yet-unknown a(x, y)-just below the surface. The sum must be zero, 
of course, because this is inside a conductor. Use that to determine a. 

Problem 3.39 Two infinite parallel grounded conducting planes are held a distance 
a apart. A point charge q is placed in the region between them, a distance x from 
one plate. Find the force on q. 2° Check that your answer is correct for the special 
cases a~ oo and x = aj2. 

Problem 3.40 Two long straight wires, carrying opposite uniform line charges ±A., 
are situated on either side of a long conducting cylinder (Fig. 3.39). The cylinder 
(which carries no net charge) has radius R, and the wires are a distance a from the 
axis. Find the potential. 

[ 
A. 

1 
{ (s2 + a 2 + 2sa cos¢)[(saj R)2 + R2

- 2sa cos¢]}] 
Answer: V(s, ¢) = -- n 

4Jrt:o (s2 + a 2 - 2sa cos¢)[(saj R)2 + R2 + 2sa cos¢] 

-A. 
a 

FIGURE3.39 

Problem 3.41 Buckminsterfullerine is a molecule of 60 carbon atoms arranged 
like the stitching on a soccer-ball. It may be approximated as a conducting spher­
ical shell of radius R = 3.5 A. A nearby electron would be attracted, according to 
Prob. 3.9, so it is not surprising that the ion C(j0 exists. (Imagine that the electron­
on average-smears itself out uniformly over the surface.) But how about a second 
electron? At large distances it would be repelled by the ion, obviously, but at a cer­
tain distance r (from the center), the net force is zero, and closer than this it would 
be attracted. So an electron with enough energy to get in that close should bind. 

(a) Find r, in A. [You'll have to do it numerically.] 

(b) How much energy (in electron volts) would it take to push an electron in (from 
infinity) to the point r? 

[Incidentally, the C(j0- ion has been observed.f1 

19See J. L. R. Marrero, Am. J. Phys. 78, 639 (2010). 
200btaining the induced surface charge is not so easy. See B. G. Dick, Am. J. Phys. 41, 1289 (1973), 
M. Zahn, Am. J. Phys. 44, 1132 (1976), J. Pleines and S. Mahajan, Am. J. Phys. 45, 868 (1977), and 
Prob. 3.51 below. 
21 Richard Mawhorter suggested this problem. 



162 Chapter 3 Potentials 

Problem 3.42 You can use the superposition principle to combine solutions 
obtained by separation of variables. For example, in Prob. 3.16 you found the 
potential inside a cubical box, if five faces are grounded and the sixth is at a con­
stant potential V0 ; by a six-fold superposition of the result, you could obtain the 
potential inside a cube with the faces maintained at specified constant voltages V1, 

V2, ••• V6. In this way, using Ex. 3.4 and Prob. 3.15, find the potential inside a 
rectangular pipe with two facing sides (x = ±b) at potential V0 , a third (y =a) at 
vl. and the last (at y = 0) grounded. 

Problem 3.43 A conducting sphere of radius a, at potential V0 , is surrounded by a 
thin concentric spherical shell of radius b, over which someone has glued a surface 
charge 

u(()) = kcos(), 

where k is a constant and () is the usual spherical coordinate. 

(a) Find the potential in each region: (i) r > b, and (ii) a < r < b. 

(b) Find the induced surface charge u;(8) on the conductor. 

(c) What is the total charge of this system? Check that your answer is consistent 
with the behavior of V at large r. 

r ~ b ] 

r~b 

Problem 3.44 A charge + Q is distributed uniformly along the z axis from z = -a 
to z = +a. Show that the electric potential at a point r is given by 

Q 1 [ 1 (a)2 1 (a)4 ] V(r, ()) = 
4

:7l'Eo ;:- 1 + 3" ;:- P2(cos()) + S ;:- P4(cos()) + ... , 

for r >a. 

Problem 3.45 A long cylindrical shell of radius R carries a uniform surface charge 
u0 on the upper half and an opposite charge -u0 on the lower half (Fig. 3.40). Find 
the electric potential inside and outside the cylinder. 

y 

X 

FIGURE3.40 
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Problem 3.46 A thin insulating rod, running from z =-a to z =+a, carries the 
indicated line charges. In each case, find the leading term in the multipole expansion 
of the potential: (a)).= kcos('T(zj2a), (b)).= ksin('T(zja), (c)).= kcos('T(zja), 
where k is a constant. 

• Problem 3.47 Show that the average field inside a sphere of radius R, due to all the 
charge within the sphere, is 

1 p 
Eave= - -

4
- R 3 , 
'T(Eo 

(3.105) 

where p is the total dipole moment. There are several ways to prove this delightfully 
simple result. Here's one method:22 

(a) Show that the average field due to a single charge q at point r inside the 
sphere is the same as the field at r due to a uniformly charged sphere with 
p = -qj(~'T(R3 ), namely 

_1 ___ 1_/ !L/i,d-c' 
4'T(Eo (~7'( R 3 ) 'l-2 ' 

where 4 is the vector from r to d -c'. 

(b) The latter can be found from Gauss's law (see Prob. 2.12). Express the answer 
in terms of the dipole moment of q. 

(c) Use the superposition principle to generalize to an arbitrary charge distribution. 

(d) While you're at it, show that the average field over the volume of a sphere, due 
to all the charges outside, is the same as the field they produce at the center. 

Problem 3.48 

(a) Using Eq. 3.103, calculate the average electric field of a dipole, over a spher­
ical volume of radius R, centered at the origin. Do the angular integrals first. 
[Note: You must express rand 0 in terms ofi, y, and z (see back cover) before 
integrating. If you don't understand why, reread the discussion in Sect. 1.4.1.] 
Compare your answer with the general theorem (Eq. 3.105). The discrepancy 
here is related to the fact that the field of a dipole blows up at r = 0. The angular 
integral is zero, but the radial integral is infinite, so we really don't know what 
to make of the answer. To resolve this dilemma, let's say that Eq. 3.103 applies 
outside a tiny sphere of radius E-its contribution to Eave is then unambiguously 
zero, and the whole answer has to come from the field inside theE-sphere. 

(b) What must the field inside the E -sphere be, in order for the general theorem 
(Eq. 3.105) to hold? [Hint: since E is arbitrarily small, we're talking about some­
thing that is infinite at r = 0 and whose integral over an infinitesimal volume is 
finite.] [Answer: -(pj3E0)83(r)] 

Evidently, the true field of a dipole is 

1 1 AA 1 3 
Edip(r) = --- [3(p · r)r- p]- - p 8 (r). 

4'T(Eo r3 3Eo 
(3.106) 

22 Another method exploits the result of Prob. 3.4. See B. Y.-K. Hu, Eur. J. Phys. 30, L29 (2009). 
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You may wonder how we missed the delta-function term23 when we calculated 
the field back in Sect. 3.4.4. The answer is that the differentiation leading to 
Eq. 3.103 is valid except at r = 0, but we should have known (from our experience 
in Sect. 1.5.1) that the point r = 0 would be problematic.24 

Problem 3.49 In Ex. 3.9, we obtained the potential of a spherical shell with surface 
charge a(())= kcos(). In Prob. 3.30, you found that the field is pure dipole out­
side; it's uniform inside (Eq. 3.86). Show that the limit R ---* 0 reproduces the delta 
function term in Eq. 3.106. 

Problem 3.50 

(a) Suppose a charge distribution p1 (r) produces a potential V1 (r), and some other 
charge distribution P2(r) produces a potential V2(r). [The two situations may 
have nothing in common, for all I care-perhaps number 1 is a uniformly 
charged sphere and number 2 is a parallel-plate capacitor. Please understand 
that p1 and p2 are not present at the same time; we are talking about two differ­
ent problems, one in which only p1 is present, and another in which only p2 is 
present.] Prove Green's reciprocity theorem:25 

! P1V2dr = ! 
all space all space 

[Hint: Evaluate J E 1 • E 2 dr two ways, first writing E 1 = - VV1 and using in­
tegration by parts to transfer the derivative to E2, then writing E2 = - V V2 and 
transferring the derivative to E 1.] 

(b) Suppose now that you have two separated conductors (Fig. 3.41). If you charge 
up conductor a by amount Q (leaving b uncharged), the resulting potential of 
b is, say, Vab. On the other hand, if you put that same charge Q on conductor b 
(leaving a uncharged), the potential of a would be Vba. Use Green's reciprocity 
theorem to show that Vab = Vba (an astonishing result, since we assumed noth­
ing about the shapes or placement of the conductors). 

FIGURE3.41 

23There are other ways of getting the delta-function term in the field of a dipole-my own favorite is 
Prob. 3.49. Note that unless you are right on top of the dipole, Eq. 3.104 is perfectly adequate. 
24See C. P. Frahm, Am. J. Phys. 51, 826 (1983). For applications, see D. J. Griffiths, Am. J. Phys. 50, 
698 (1982). There are other (perhaps preferable) ways of expressing the contact (delta-function) term 
in Eq. 3.106; see A. Gsponer, Eur. J. Phys. 28, 267 (2007), J. Franklin, Am. J. Phys. 78, 1225 (2010), 
and V. Hnizdo, Eur. J. Phys. 32, 287 (2011). 
25For interesting commentary, see B. Y.-K. Hu, Am. J. Phys. 69, 1280 (2001). 
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Problem 3.51 Use Green's reciprocity theorem (Prob. 3.50) to solve the following 
two problems. [Hint: for distribution 1, use the actual situation; for distribution 2, 
remove q, and set one of the conductors at potential V0.] 

(a) Both plates of a parallel-plate capacitor are grounded, and a point charge q is 
placed between them at a distance x from plate 1. The plate separation is d. Find 
the induced charge on each plate. [Answer: Q1 = q(xjd- 1); Q2 = -qxjd] 

(b) Two concentric spherical conducting shells (radii a and b) are grounded, and a 
point charge q is placed between them (at radius r ). Find the induced charge on 
each sphere. 

Problem 3.52 

(a) Show that the quadrupole term in the multipole expansion can be written 

1 1 
3 

A A 

Vquad(r) = -
4
-3 L rirjQij 
7rEo r i,j=l 

(in the notation of Eq. 1.31), where 

Qij = ~ J [3r;rj - (r')2oij]p(r') dr'. 

Here 

ifi = j 

ifi =I= j 

is the Kronecker delta, and Qij is the quadrupole moment of the charge 
distribution. Notice the hierarchy: 

1 Q 
Vmon = 4rrEo 7; 

1 LJ'iPi 
Vdip = -4---2- ; 

:TrEo r 

The monopole moment (Q) is a scalar, the dipole moment (p) is a vector, the 
quadrupole moment (Qij) is a second-rank tensor, and so on. 

(b) Find all nine components of Qij for the configuration in Fig. 3.30 (assume the 
square has side a and lies in the xy plane, centered at the origin). 

(c) Show that the quadrupole moment is independent of origin if the monopole and 
dipole moments both vanish. (This works all the way up the hierarchy-the 
lowest nonzero multipole moment is always independent of origin.) 

(d) How would you define the octo pole moment? Express the octopole term in the 
multipole expansion in terms of the octopole moment. 

Problem 3.53 In Ex. 3.8 we determined the electric field outside a spherical conduc­
tor (radius R) placed in a uniform external field E0 • Solve the problem now using 
the method of images, and check that your answer agrees with Eq. 3.76. [Hint: Use 
Ex. 3.2, but put another charge, -q, diametrically opposite q. Let a ~ oo, with 
(1/4rrE0)(2qja2) = -E0 held constant.] 
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Problem 3.54 For the infinite rectangular pipe in Ex. 3.4, suppose the potential on 
the bottom (y = 0) and the two sides (x = ±b) is zero, but the potential on the top 
(y =a) is a nonzero constant V0• Find the potential inside the pipe. [Note: This is a 
rotated version ofProb. 3.15(b), but set it up as in Ex. 3.4, using sinusoidal functions 
in y and hyperbolics in x. It is an unusual case in which k = 0 must be included. 
Begin by finding the general solution to Eq. 3.26 when k = 0.]26 

[Answer: V. (l. + 1. " 00 1=..!.r. cosh(mrx/a) sin(n1ryja)). Alternatively using sinu-o a n L....n=l n cosh(nnbja) ' 

soidalfunctionsofx andhyperbolicsiny -~ " 00 (-t)n.sinh(anr) cos(ot. x) where 
' b L....n=l an smh(ana) n ' 

ot.n = (2n - 1)77: j2b J 

Problem 3.55 

(a) A long metal pipe of square cross-section (side a) is grounded on three sides, 
while the fourth (which is insulated from the rest) is maintained at constant 
potential V0 • Find the net charge per unit length on the side opposite to V0 • 

[Hint: Use your answer to Prob. 3.15 or Prob. 3.54.] 

(b) A long metal pipe of circular cross-section (radius R) is divided (lengthwise) 
into four equal sections, three of them grounded and the fourth maintained at 
constant potential V0• Find the net charge per unit length on the section opposite 
to Vo. [Answertoboth(a)and(b):). = -(EoVo/7r)ln2]27 

Problem 3.56 An ideal electric dipole is situated at the origin, and points in the z 
direction, as in Fig. 3.36. An electric charge is released from rest at a point in the xy 
plane. Show that it swings back and forth in a semi-circular arc, as though it were a 
pendulum supported at the origin. 28 

Problem 3.57 A stationary electric dipole p = p z is situated at the origin. A pos­
itive point charge q (mass m) executes circular motion (radius s) at constant speed 
in the field of the dipole. Characterize the plane of the orbit. Find the speed, angular 

momentum and total energy of the charge.29 
[ Answer:L = J qpmj3,J377:Eo] 

Problem 3.58 Find the charge density a(O) on the surface of a sphere (radius R) that 
produces the same electric field, for points exterior to the sphere, as a charge q at 
the point a < Ron the z axis. [Answer:~(R2 - a 2)(R2 + a 2

- 2Ra cos &)-312
] 

26For further discussion, seeS. Hassani, Am. J. Phys. 59, 470 (1991). 
27These are special cases of the Thompson-Lampard theorem; see J.D. Jackson, Am. J. Phys. 67, 
107 (1999). 
28This charming result is due toR. S. Jones, Am. J. Phys. 63, 1042 (1995). 
29G. P. Sastry, V. Srinivas, and A. V. Madhav, Eur. J. Phys. 17,275 (1996). 



CHAPTER 

4 Electric Fields in Matter 

4.1 • POLARIZATION 

4.1.1 • Dielectrics 

In this chapter, we shall study electric fields in matter. Matter, of course, comes 
in many varieties-solids, liquids, gases, metals, woods, glasses-and these sub­
stances do not all respond in the same way to electrostatic fields. Nevertheless, 
most everyday objects belong (at least, in good approximation) to one of two large 
classes: conductors and insulators (or dielectrics). We have already talked about 
conductors; these are substances that contain an "unlimited" supply of charges 
that are free to move about through the material. In practice, what this ordinarily 
means is that many of the electrons (one or two per atom, in a typical metal) are 
not associated with any particular nucleus, but roam around at will. In dielectrics, 
by contrast, all charges are attached to specific atoms or molecules-they're on 
a tight leash, and all they can do is move a bit within the atom or molecule. Such 
microscopic displacements are not as dramatic as the wholesale rearrangement 
of charge in a conductor, but their cumulative effects account for the characteris­
tic behavior of dielectric materials. There are actually two principal mechanisms 
by which electric fields can distort the charge distribution of a dielectric atom 
or molecule: stretching and rotating. In the next two sections I'll discuss these 
processes. 

4.1.2 • Induced Dipoles 

What happens to a neutral atom when it is placed in an electric field E? Your 
first guess might well be: "Absolutely nothing-since the atom is not charged, the 
field has no effect on it." But that is incorrect. Although the atom as a whole is 
electrically neutral, there is a positively charged core (the nucleus) and a nega­
tively charged electron cloud surrounding it. These two regions of charge within 
the atom are influenced by the field: the nucleus is pushed in the direction of the 
field, and the electrons the opposite way. In principle, if the field is large enough, 
it can pull the atom apart completely, "ionizing" it (the substance then becomes 
a conductor). With less extreme fields, however, an equilibrium is soon estab­
lished, for if the center of the electron cloud does not coincide with the nucleus, 
these positive and negative charges attract one another, and that holds the atom 
together. The two opposing forces-E pulling the electrons and nucleus apart, 
their mutual attraction drawing them back together-reach a balance, leaving the 
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H 
0.667 

He 
0.205 

Li 
24.3 

Be 
5.60 

c 
1.67 

Ne 
0.396 

Na 
24.1 

Ar K Cs 
1.64 43.4 59.4 

TABLE 4.1 Atomic Polarizabilities (aj4rrE0 , in units of 10-30 m3). Data from: Hand­

book of Chemistry and Physics, 91 st ed. (Boca Raton: CRC Press, 2010). 

atom polarized, with plus charge shifted slightly one way, and minus the other. 
The atom now has a tiny dipole moment p, which points in the same direction 
as E. Typically, this induced dipole moment is approximately proportional to the 
field (as long as the latter is not too strong): 

p = aE. (4.1) 
The constant of proportionality a is called atomic polarizability. Its value 
depends on the detailed structure of the atom in question. Table 4.1 lists some 
experimentally determined atomic polarizabilities. 

Example 4.1. A primitive model for an atom consists of a point nucleus ( +q) 
surrounded by a uniformly charged spherical cloud ( -q) of radius a (Fig. 4.1). 
Calculate the atomic polarizability of such an atom. 

FIGURE4.1 FIGURE4.2 

Solution 
In the presence of an external field E, the nucleus will be shifted slightly to the 
right and the electron cloud to the left, as shown in Fig. 4.2. (Because the actual 
displacements involved are extremely small, as you'll see in Prob. 4.1, it is rea­
sonable to assume that the electron cloud retains its spherical shape.) Say that 
equilibrium occurs when the nucleus is displaced a distance d from the center of 
the sphere. At that point, the external field pushing the nucleus to the right exactly 
balances the internal field pulling it to the left: E = Ee, where Ee is the field pro­
duced by the electron cloud. Now the field at a distance d from the center of a 
uniformly charged sphere is 

1 qd 
E - --­
e- 4nEo a3 

(Prob. 2.12). At equilibrium, then, 

E- -
1

- qd or p = qd = (4nEoa3)E. 
- 4nEo a 3 ' 
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The atomic polarizability is therefore 

a = 4nt:oa3 = 3t:ov, (4.2) 

where v is the volume of the atom. Although this atomic model is extremely crude, 
the result (Eq. 4.2) is not too bad-it's accurate to within a factor of four or so for 
many simple atoms. 

For molecules the situation is not quite so simple, because frequently they 
polarize more readily in some directions than in others. Carbon dioxide (Fig. 4.3), 
for instance, has a polarizability of 4.5 X w-4° C2·m/N when you apply the field 
along the axis of the molecule, but only 2 x w-40 for fields perpendicular to 
this direction. When the field is at some angle to the axis, you must resolve it 
into parallel and perpendicular components, and multiply each by the pertinent 
polarizability: 

p = a.1E.1 + a
11
E

11
• 

In this case, the induced dipole moment may not even be in the same direction 
as E. And C02 is relatively simple, as molecules go, since the atoms at least 
arrange themselves in a straight line; for a completely asymmetrical molecule, 
Eq. 4.1 is replaced by the most general linear relation between E and p: 

Px = CXxxEx + CXxyEy + CXxzEz } 

Py = CXyxEx + CXyyEy + CXyzEz 

Pz = CXzxEx + CXzyEy + CXzzEz 

FIGURE4.3 

(4.3) 

The set of nine constants aij constitute the polarizability tensor for the molecule. 
Their values depend on the orientation of the axes you use, though it is always 
possible to choose "principal" axes such that all the off-diagonal terms (axy• CXzx• 

etc.) vanish, leaving just three nonzero polarizabilities: axx• ayy• and CXzz· 

Problem 4.1 A hydrogen atom (with the Bohr radius of half an angstrom) is situated 
between two metal plates 1 mm apart, which are connected to opposite terminals of 
a 500 V battery. What fraction of the atomic radius does the separation distance d 
amount to, roughly? Estimate the voltage you would need with this apparatus to 

ionize the atom. [Use the value of a in Table 4.1. Moral: The displacements we're 
talking about are minute, even on an atomic scale.] 
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Problem 4.2 According to quantum mechanics, the electron cloud for a hydrogen 
atom in the ground state has a charge density 

where q is the charge of the electron and a is the Bohr radius. Find the atomic 
polarizability of such an atom. [Hint: First calculate the electric field of the electron 
cloud, E.(r); then expand the exponential, assuming r « a.1 

Problem 4.3 According to Eq. 4.1, the induced dipole moment of an atom is pro­
portional to the external field. This is a "rule of thumb," not a fundamental law, 
and it is easy to concoct exceptions-in theory. Suppose, for example, the charge 
density of the electron cloud were proportional to the distance from the center, out 
to a radius R. To what power of E would p be proportional in that case? Find the 
condition on p(r) such that Eq. 4.1 will hold in the weak-field limit. 

Problem 4.4 A point charge q is situated a large distance r from a neutral atom of 
polarizability ot. Find the force of attraction between them. 

4.1.3 • Alignment of Polar Molecules 

The neutral atom discussed in Sect. 4.1.2 had no dipole moment to start with-p 
was induced by the applied field. Some molecules have built-in, permanent dipole 
moments. In the water molecule, for example, the electrons tend to cluster around 
the oxygen atom (Fig. 4.4), and since the molecule is bent at 105°, this leaves a 
negative charge at the vertex and a net positive charge on the opposite side. (The 
dipole moment of water is unusually large: 6.1 x w-30 C.m; in fact, this is what 
accounts for its effectiveness as a solvent.) What happens when such molecules 
(called polar molecules) are placed in an electric field? 

If the field is uniform, the force on the positive end, F+ = qE, exactly cancels 
the force on the negative end, F_ = -qE (Fig. 4.5). However, there will be a 
torque: 

N = (r+ x F+) + (r_ x F_) 

= [Cd/2) X (qE)] + [C-d/2) X (-qE)] = qd X E. 

F_ -q 

E • 

FIGURE4.4 FIGURE4.5 

1 For a more sophisticated approach, see W. A. Bowers, Am. J. Phys. 54, 347 (1986). 
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Thus a dipole p = qd in a uniform field E experiences a torque 

(4.4) 

Notice that N is in such a direction as to line pup parallel toE; a polar molecule 
that is free to rotate will swing around until it points in the direction of the applied 
field. 

If the field is nonuniform, so that F + does not exactly balance F _, there will be 
a net force on the dipole, in addition to the torque. Of course, E must change rather 
abruptly for there to be significant variation in the space of one molecule, so this 
is not ordinarily a major consideration in discussing the behavior of dielectrics. 
Nevertheless, the formula for the force on a dipole in a nonuniform field is of 
some interest: 

F = F+ + F_ = q(E+- E_) = q(~E), 

where ~E represents the difference between the field at the plus end and the field 
at the minus end. Assuming the dipole is very short, we may use Eq. 1.35 to 
approximate the small change in Ex: 

with corresponding formulas for Ey and Ez. More compactly, 

~E = (d · V)E, 

and therefore2 

F = (p · V)E. (4.5) 

For a "perfect" dipole of infinitesimal length, Eq. 4.4 gives the torque about 
the center of the dipole even in a nonuniform field; about any other point N = 
(p x E)+ (r x F). 

Problem 4.5 In Fig. 4.6, p1 and p2 are (perfect) dipoles a distance r apart. What is 
the torque on Pt due to P2? What is the torque on P2 due to Pt? [In each case, I want 
the torque on the dipole about its own center. If it bothers you that the answers are 
not equal and opposite, see Prob. 4.29.] 

Pt t------~-----~ p2 

FIGURE4.6 FIGURE4.7 
2In the present context, Eq. 4.5 could be written more conveniently as F = V (p ·E). However, it is 
safer to stick with (p · V)E, because we will be applying the formula to materials in which the dipole 
moment (per unit volume) is itself a function of position and this second expression would imply 
(incorrectly) that p too is to be differentiated. 
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Problem 4.6 A (perfect) dipole p is situated a distance z above an infinite grounded 
conducting plane (Fig. 4.7). The dipole makes an angle() with the perpendicular to 
the plane. Find the torque on p. If the dipole is free to rotate, in what orientation 
will it come to rest? 

Problem 4.7 Show that the energy of an ideal dipole p in an electric field E is 
given by 

I u = -p·E. I (4.6) 

Problem 4.8 Show that the interaction energy of two dipoles separated by a dis­
placement r is 

1 1 A A 

U = ---[Pt · P2- 3(Pt · r)(P2 · r)]. 
4rrEo r 3 

[Hint: Use Prob. 4.7 and Eq. 3.104.] 

(4.7) 

Problem 4.9 A dipole p is a distance r from a point charge q, and oriented so that 
p makes an angle () with the vector r from q to p. 

(a) What is the force on p? 

(b) What is the force on q? 

4.1.4 • Polarization 

In the previous two sections, we have considered the effect of an external elec­
tric field on an individual atom or molecule. We are now in a position to answer 
(qualitatively) the original question: What happens to a piece of dielectric material 
when it is placed in an electric field? If the substance consists of neutral atoms (or 
nonpolar molecules), the field will induce in each a tiny dipole moment, pointing 
in the same direction as the field. 3 If the material is made up of polar molecules, 
each permanent dipole will experience a torque, tending to line it up along the 
field direction. (Random thermal motions compete with this process, so the align­
ment is never complete, especially at higher temperatures, and disappears almost 
at once when the field is removed.) 

Notice that these two mechanisms produce the same basic result: a lot of little 
dipoles pointing along the direction of the field-the material becomes polarized. 
A convenient measure of this effect is 

P = dipole moment per unit volume, 

which is called the polarization. From now on we shall not worry much about 
how the polarization got there. Actually, the two mechanisms I described are 
not as clear-cut as I tried to pretend. Even in polar molecules there will be 

3In asymmetric molecules, the induced dipole moment may not be parallel to the field, but if the 
molecules are randomly oriented, the perpendicular contributions will average to zero. Within a single 
crystal, the orientations are certainly not random, and we would have to treat this case separately. 
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some polarization by displacement (though generally it is a lot easier to rotate a 
molecule than to stretch it, so the second mechanism dominates). It's even possi­
ble in some materials to "freeze in" polarization, so that it persists after the field 
is removed. But let's forget for a moment about the cause of the polarization, and 
let's study the field that a chunk of polarized material itself produces. Then, in 
Sect. 4.3, we'll put it all together: the original field, which was responsible for P, 
plus the new field, which is due toP. 

4.2 . THE FIELD OF A POLARIZED OBJECT 

4.2.1 • Bound Charges 

Suppose we have a piece of polarized material-that is, an object containing a 
lot of microscopic dipoles lined up. The dipole moment per unit volume P is 
given. Question: What is the field produced by this object (not the field that may 
have caused the polarization, but the field the polarization itself causes)? Well, 
we know what the field of an individual dipole looks like, so why not chop the 
material up into infinitesimal dipoles and integrate to get the total? As usual, it's 
easier to work with the potential. For a single dipole p (Eq. 3.99), 

1 p. ,£ 
V(r)=--, 

4rrEo 'l-2 
(4.8) 

where .to is the vector from the dipole to the point at which we are evaluating the 
potential (Fig. 4.8). In the present context, we have a dipole moment p = P dr:' in 
each volume element d r:', so the total potential is 

1 J P(r') · ,£ , 
V(r) = --

2 
dr:. 

4rrEo "" 
(4.9) 

v 

That does it, in principle. But a little sleight-of-hand casts this integral into a 
much more illuminating form. Observing that 

FIGURE4.8 
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where (unlike Prob. 1.13) the differentiation is with respect to the source coordi­
nates (r1

), we have 

V = -
1 

/P· V
1 (~) dr

1
• 

4rrEo ~t-
v 

Integrating by parts, using product rule number 5 (in the front cover), gives 

1 [ f 1 (p) 1 f 1 1 1] V = 4rrEo v V · ~ dr - v ~(V · P) dr , 

or, invoking the divergence theorem, 

1 f1 1 1 /1 I I V = -- - P· da- -- - (V ·P)dr. 
4rrEo 1t. 4nEo 1t. 

(4.10) 

s v 

The first term looks like the potential of a surface charge 

(4.11) 

(where ii is the normal unit vector), while the second term looks like the potential 
of a volume charge 

I Pb = -V. P. (4.12) 

With these definitions, Eq. 4.10 becomes 

V(r) = -- - da + -- - dr. 1 f (jb I 1 f Pb I 

4rrEo ~t- 4rrEo It-
(4.13) 

s v 

What this means is that the potential (and hence also the field) of a polarized 
object is the same as that produced by a volume charge density Pb = - V · P plus 
a surface charge density ab = P · ii. Instead of integrating the contributions of all 
the infinitesimal dipoles, as in Eq. 4.9, we could first find those bound charges, 
and then calculate the fields they produce, in the same way we calculate the field 
of any other volume and surface charges (for example, using Gauss's law). 

Example 4.2. Find the electric field produced by a uniformly polarized sphere 
of radius R. 

Solution 
We may as well choose the z axis to coincide with the direction of polarization 
(Fig. 4.9). The volume bound charge density Pb is zero, since P is uniform, but 

(jb = p . ii = p cos 0' 
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FIGURE4.9 

where () is the usual spherical coordinate. What we want, then, is the field pro­
duced by a charge density P cos() plastered over the surface of a sphere. But we 
already computed the potential of such a configuration, in Ex. 3.9: 

V(r, ()) = I 
p 

- rcos(), 
3Eo 

p R3 
--cos() 
3Eo r 2 ' 

for r ~ R, 

for r ~ R. 

Since r cos() = z, the field inside the sphere is uniform: 

p A 1 
E = - V V = - - z = - - P for r < R. 

3Eo 3Eo ' 
(4.14) 

This remarkable result will be very useful in what follows. Outside the sphere the 
potential is identical to that of a perfect dipole at the origin, 

1 P. r 
V = ---- for r ~ R, 

4nE0 r 2 ' 

FIGURE4.10 

(4.15) 
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whose dipole moment is, not surprisingly, equal to the total dipole moment of the 
sphere: 

4 3 
p = 3nR P. 

The field of the uniformly polarized sphere is shown in Fig. 4.10. 

Problem 4.10 A sphere of radius R carries a polarization 

P(r) = kr, 

where k is a constant and r is the vector from the center. 

(a) Calculate the bound charges ub and Ph· 

(b) Find the field inside and outside the sphere. 

(4.16) 

Problem 4.11 A short cylinder, of radius a and length L, carries a "frozen-in" uni­
form polarization P, parallel to its axis. Find the bound charge, and sketch the elec­
tric field (i) for L » a, (ii) for L « a, and (iii) for L Rj a. [This is known as a bar 
electret; it is the electrical analog to a bar magnet. In practice, only very special 
materials-barium titanate is the most "familiar" example-will hold a permanent 
electric polarization. That's why you can't buy electrets at the toy store.] 

Problem 4.12 Calculate the potential of a uniformly polarized sphere (Ex. 4.2) 
directly from Eq. 4.9. 

4.2.2 • Physical Interpretation of Bound Charges 

In the last section we found that the field of a polarized object is identical to 
the field that would be produced by a certain distribution of "bound charges," uh 
and Ph· But this conclusion emerged in the course of abstract manipulations on 
the integral in Eq. 4.9, and left us with no clue as to the physical meaning of these 
bound charges. Indeed, some authors give you the impression that bound charges 
are in some sense "fictitious" -mere bookkeeping devices used to facilitate the 
calculation of fields. Nothing could be further from the truth: Ph and uh repre­
sent perfectly genuine accumulations of charge. In this section I'll explain how 
polarization leads to these charge distributions. 

The basic idea is very simple: Suppose we have a long string of dipoles, as 
shown in Fig. 4.11. Along the line, the head of one effectively cancels the tail of 
its neighbor, but at the ends there are two charges left over: plus at the right end 
and minus at the left. It is as if we had peeled off an electron at one end and carried 
it all the way down to the other end, though in fact no single electron made the 
whole trip-a lot of tiny displacements add up to one large one. We call the net 
charge at the ends a bound charge to remind ourselves that it cannot be removed; 

------------ = - +- +- +- +- +- + + 

FIGURE4.11 
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d 

= -q--+q 

FIGURE4.12 FIGURE4.13 

in a dielectric every electron is attached to a specific atom or molecule. But apart 
from that, bound charge is no different from any other kind. 

To calculate the actual amount of bound charge resulting from a given polar­
ization, examine a "tube" of dielectric parallel to P. The dipole moment of the 
tiny chunk shown in Fig. 4.12 is P(Ad), where A is the cross-sectional area of 
the tube and dis the length of the chunk. In terms of the charge (q) at the end, 
this same dipole moment can be written qd. The bound charge that piles up at the 
right end of the tube is therefore 

q = PA. 

If the ends have been sliced off perpendicularly, the surface charge density is 

ab = ~ = P. 

For an oblique cut (Fig. 4.13), the charge is still the same, but A = A end cos(), so 
q p A 

ab = -- = P cos() = · n. 
A end 

The effect of the polarization, then, is to paint a bound charge ab = P · ii over the 
surface of the material. This is exactly what we found by more rigorous means in 
Sect. 4.2.1. But now we know where the bound charge comes from. 

If the polarization is nonuniform, we get accumulations of bound charge within 
the material, as well as on the surface. A glance at Fig. 4.14 suggests that a diverg­
ing P results in a pileup of negative charge. Indeed, the net bound charge J Ph d r 

+ 

+ 

+ 

FIGURE4.14 
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in a given volume is equal and opposite to the amount that has been pushed out 
through the surface. The latter (by the same reasoning we used before) is P · ii per 
unit area, so 

J Pbdr: =-f P·da =- jcv ·P)dr:. 

v s v 

Since this is true for any volume, we have 

Pb = -V · P, 

confirming, again, the more rigorous conclusion of Sect. 4.2.1. 

Example 4.3. There is another way of analyzing the uniformly polarized sphere 
(Ex. 4.2), which nicely illustrates the idea of a bound charge. What we have, 
really, is two spheres of charge: a positive sphere and a negative sphere. With­
out polarization the two are superimposed and cancel completely. But when the 
material is uniformly polarized, all the plus charges move slightly upward (the 
z direction), and all the minus charges move slightly downward (Fig. 4.15). The 
two spheres no longer overlap perfectly: at the top there's a "cap" of leftover pos­
itive charge and at the bottom a cap of negative charge. This "leftover" charge is 
precisely the bound surface charge ab. 

FIGURE4.15 

In Prob. 2.18, you calculated the field in the region of overlap between two 
uniformly charged spheres; the answer was 

1 qd 
E-----

- 4nEo R3 ' 

where q is the total charge of the positive sphere, d is the vector from the negative 
center to the positive center, and R is the radius of the sphere. We can express this 
in terms of the polarization of the sphere, p = qd = C1n R3)P, as 

1 
E=-- P. 

3Eo 
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Meanwhile, for points outside, it is as though all the charge on each sphere were 
concentrated at the respective center. We have, then, a dipole, with potential 

1 P. r 
V= ----. 

4rrEo r 2 

(Remember that dis some small fraction of an atomic radius; Fig. 4.15 is grossly 
exaggerated.) These answers agree, of course, with the results of Ex. 4.2. 

Problem 4.13 A very long cylinder, of radius a, carries a uniform polarization P 
perpendicular to its axis. Find the electric field inside the cylinder. Show that the 
field outside the cylinder can be expressed in the form 

a2 
A A 

E(r) = --
2 

[2(P · s)s- P]. 
2EoS 

[Careful: I said "uniform," not "radial"!] 

Problem 4.14 When you polarize a neutral dielectric, the charge moves a bit, but 
the total remains zero. This fact should be reflected in the bound charges ab and Pb· 
Prove from Eqs. 4.11 and 4.12 that the total bound charge vanishes. 

4.2.3 • The Field Inside a Dielectric4 

I have been sloppy about the distinction between "pure" dipoles and "physical" 
dipoles. In developing the theory of bound charges, I assumed we were working 
with the pure kind-indeed, I started with Eq. 4.8, the formula for the potential 
of a perfect dipole. And yet, an actual polarized dielectric consists of physical 
dipoles, albeit extremely tiny ones. What is more, I presumed to represent dis­
crete molecular dipoles by a continuous density function P. How can I justify 
this method? Outside the dielectric there is no real problem: here we are far away 
from the molecules (1- is many times greater than the separation distance between 
plus and minus charges), so the dipole potential dominates overwhelmingly and 
the detailed "graininess" of the source is blurred by distance. Inside the dielectric, 
however, we can hardly pretend to be far from all the dipoles, and the procedure I 
used in Sect. 4.2.1 is open to serious challenge. 

In fact, when you stop to think about it, the electric field inside matter must 
be fantastically complicated, on the microscopic level. If you happen to be very 
near an electron, the field is gigantic, whereas a short distance away it may be 
small or may point in a totally different direction. Moreover, an instant later, as 
the atoms move about, the field will have altered entirely. This true microscopic 
field would be utterly impossible to calculate, nor would it be of much interest 
if you could. Just as, for macroscopic purposes, we regard water as a continu­
ous fluid, ignoring its molecular structure, so also we can ignore the microscopic 

4This section can be skipped without loss of continuity. 
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bumps and wrinkles in the electric field inside matter, and concentrate on the 
macroscopic field. This is defined as the average field over regions large enough 
to contain many thousands of atoms (so that the uninteresting microscopic fluc­
tuations are smoothed over), and yet small enough to ensure that we do not wash 
out any significant large-scale variations in the field. (In practice, this means we 
must average over regions much smaller than the dimensions of the object itself.) 
Ordinarily, the macroscopic field is what people mean when they speak of "the" 
field inside matter. 5 

It remains to show that the macroscopic field is what we actually obtain when 
we use the methods of Sect. 4.2.1. The argument is subtle, so hang on. Sup­
pose I want to calculate the macroscopic field at some point r within a dielectric 
(Fig. 4.16). I know I must average the true (microscopic) field over an appropriate 
volume, so let me draw a small sphere about r, of radius, say, a thousand times 
the size of a molecule. The macroscopic field at r, then, consists of two parts: the 
average field over the sphere due to all charges outside, plus the average due to all 
charges inside: 

E = Eout + Ein· 

You proved in Prob. 3.47(d) that the average field (over a sphere), produced by 
charges outside, is equal to the field they produce at the center, so Eout is the field 
at r due to the dipoles exterior to the sphere. These are far enough away that we 
can safely use Eq. 4.9: 

1 J P(r') .,.£ , 
Yout = -- 2 dr . 

4nEo -z. 
(4.17) 

outside 

The dipoles inside the sphere are too close to treat in this fashion. But fortunately 
all we need is their average field, and that, according to Eq. 3.105, is 

E- - _ _ 1_ R_ 
m- 4nEo R3' 

regardless of the details of the charge distribution within the sphere. The only 
relevant quantity is the total dipole moment, p = <1n R3) P: 

1 
Ein = - -

3 
P. (4.18) 

Eo 

FIGURE4.16 
5In case the notion of macroscopic fields sounds suspicious to you, let me point out that you do exactly 
the same averaging whenever you speak of the density of a material. 
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Now, by assumption, the sphere is small enough that P does not vary signif­
icantly over its volume, so the term left out of the integral in Eq. 4.17 corre­
sponds to the field at the center of a uniformly polarized sphere, to wit: - (1 /3E0)P 
(Eq. 4.14). But this is precisely what Em (Eq. 4.18) puts back in! The macroscopic 
field, then, is given by the potential 

1 J P(r') . ..£ , 
V (r) = --

2 
dr , 

4rrEo It-
(4.19) 

where the integral runs over the entire volume of the dielectric. This is, of course, 
what we used in Sect. 4.2.1; without realizing it, we were correctly calculating 
the averaged, macroscopic field, for points inside the dielectric. 

You may have to reread the last couple of paragraphs for the argument to sink 
in. Notice that it all revolves around the curious fact that the average field over 
any sphere (due to the charge inside) is the same as the field at the center of a 
uniformly polarized sphere with the same total dipole moment. This means that no 
matter how crazy the actual microscopic charge configuration, we can replace it 
by a nice smooth distribution of perfect dipoles, if all we want is the macroscopic 
(average) field. Incidentally, while the argument ostensibly relies on the spherical 
shape I chose to average over, the macroscopic field is certainly independent of 
the geometry of the averaging region, and this is reflected in the final answer, 
Eq. 4.19. Presumably one could reproduce the same argument for a cube or an 
ellipsoid or whatever-the calculation might be more difficult, but the conclusion 
would be the same. 

4.3 • THE ELECTRIC DISPLACEMENT 

4.3.1 • Gauss's Law in the Presence of Dielectrics 

In Sect. 4.2 we found that the effect of polarization is to produce accumulations of 
(bound) charge, Ph = - V · P within the dielectric and ah = P · ii on the surface. 
The field due to polarization of the medium is just the field of this bound charge. 
We are now ready to put it all together: the field attributable to bound charge plus 
the field due to everything else (which, for want of a better term, we call free 
charge, p 1 ). The free charge might consist of electrons on a conductor or ions 
embedded in the dielectric material or whatever; any charge, in other words, that 
is not a result of polarization. Within the dielectric, the total charge density can 
be written: 

P =Ph+ PJ, (4.20) 

and Gauss's law reads 

Eo V · E = p = Ph + p f = - V · P + P f, 

where E is now the total field, not just that portion generated by polarization. 
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It is convenient to combine the two divergence terms: 

V · ( EoE + P) = p 1 . 

The expression in parentheses, designated by the letter D, 

I D = EoE+P, I (4.21) 

is known as the electric displacement. In terms of D, Gauss's law reads 

V ·D = P!• (4.22) 

or, in integral form, 

f D · da = Q!eru:' (4.23) 

where Q !one denotes the total free charge enclosed in the volume. This is a par­
ticularly useful way to express Gauss's law, in the context of dielectrics, because 
it makes reference only to free charges, and free charge is the stuff we control. 
Bound charge comes along for the ride: when we put the free charge in place, 
a certain polarization automatically ensues, by the mechanisms of Sect. 4.1, and 
this polarization produces the bound charge. In a typical problem, therefore, we 
know p1, but we do not (initially) know Pb; Eq. 4.23lets us go right to work with 
the information at hand. In particular, whenever the requisite symmetry is present, 
we can immediately calculateD by the standard Gauss's law methods. 

Example 4.4. A long straight wire, carrying uniform line charge A., is surrounded 
by rubber insulation out to a radius a (Fig. 4.17). Find the electric displacement. 

Gaussian surface 

FIGURE4.17 

Solution 
Drawing a cylindrical Gaussian surface, of radius s and length L, and applying 
Eq. 4.23, we find 

D(2nsL) = A.L. 
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Therefore, 

).. A 

D = - s. (4.24) 
2ns 

Notice that this formula holds both within the insulation and outside it. In the 
latter region, P = 0, so 

1 ).. A 

E= - D= --s, 
Eo 2nE0s 

for s >a. 

Inside the rubber, the electric field cannot be determined, since we do not know P. 

It may appear to you that I left out the surface bound charge ah in deriving 
Eq. 4.22, and in a sense that is true. We cannot apply Gauss's law precisely at the 
surface of a dielectric, for here Ph blows up, 6 taking the divergence of E with it. 
But everywhere else the logic is sound, and in fact if we picture the edge of the 
dielectric as having some finite thickness, within which the polarization tapers 
off to zero (probably a more realistic model than an abrupt cut-off anyway), then 
there is no surface bound charge; Ph varies rapidly but smoothly within this "skin," 
and Gauss's law can be safely applied everywhere. At any rate, the integral form 
(Eq. 4.23) is free from this "defect." 

Problem 4.15 A thick spherical shell (inner radius a, outer radius b) is made of 
dielectric material with a "frozen-in" polarization 

kA 
P(r) = - r, 

r 

where k is a constant and r is the distance from the center (Fig. 4.18). (There is 
no free charge in the problem.) Find the electric field in all three regions by two 
different methods: 

p 

(a) Sphere (b) Needle (c) Wafer 

FIGURE4.18 FIGURE4.19 

6The polarization drops abruptly to zero outside the material, so its derivative is a delta function (see 
Prob. 1.46). The surface bound charge is precisely this term-in this sense it is actually included in 
Pb, but we ordinarily prefer to handle it separately as CTb. 
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(a) Locate all the bound charge, and use Gauss's law (Eq. 2.13) to calculate the 
field it produces. 

(b) Use Eq. 4.23 to find D, and then get E from Eq. 4.21. [Notice that the second 
method is much faster, and it avoids any explicit reference to the bound charges.] 

Problem 4.16 Suppose the field inside a large piece of dielectric is E0 , so that the 
electric displacement is Do = EoEo + P. 

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find 
the field at the center of the cavity in terms of E0 and P. Also find the displace­
ment at the center of the cavity in terms of Do and P. Assume the polarization 
is "frozen in," so it doesn't change when the cavity is excavated. 

(b) Do the same for a long needle-shaped cavity running parallel toP (Fig. 4.19b). 

(c) Do the same for a thin wafer-shaped cavity perpendicular toP (Fig. 4.19c). 

Assume the cavities are small enough that P, E0, and Do are essentially uniform. 
[Hint: Carving out a cavity is the same as superimposing an object of the same 
shape but opposite polarization.] 

4.3.2 • A Deceptive Parallel 

Equation 4.22 looks just like Gauss's law, only the total charge density p is 
replaced by the free charge density p f, and D is substituted for EoE. For this 
reason, you may be tempted to conclude that Dis "just like" E (apart from the 
factor Eo), except that its source is PJ instead of p: "To solve problems involving 
dielectrics, you just forget all about the bound charge-calculate the field as you 
ordinarily would, only call the answer D instead of E." This reasoning is seduc­
tive, but the conclusion is false~ in particular, there is no "Coulomb's law" forD: 

D(r)-=!= -
4

2
p1(r')dr'. 1 f A 

4n Jt. 

The parallel between E and D is more subtle than that. 
For the divergence alone is insufficient to determine a vector field; you need to 

know the curl as well. One tends to forget this in the case of electrostatic fields 
because the curl of E is always zero. But the curl of D is not always zero. 

V x D = Eo(V x E)+ (V x P) = V x P, (4.25) 

and there is no reason, in general, to suppose that the curl of P vanishes. Some­
times it does, as in Ex. 4.4 and Prob. 4.15, but more often it does not. The 
bar electret of Prob. 4.11 is a case in point: here there is no free charge any­
where, so if you really believe that the only source of D is p f, you will be 
forced to conclude that D = 0 everywhere, and hence that E = ( -1 f Eo)P inside 
and E = 0 outside the electret, which is obviously wrong. (I leave it for you to 
find the place where V x Pi= 0 in this problem.) Because V x D-=!= 0, more­
over, D cannot be expressed as the gradient of a scalar-there is no "potential" 
forD. 
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Advice: When you are asked to compute the electric displacement, first look for 
symmetry. If the problem exhibits spherical, cylindrical, or plane symmetry, then 
you can get D directly from Eq. 4.23 by the usual Gauss's law methods. (Evidently 
in such cases V x P is automatically zero, but since symmetry alone dictates the 
answer, you're not really obliged to worry about the curl.) If the requisite sym­
metry is absent, you'll have to think of another approach, and, in particular, you 
must not assume that D is determined exclusively by the free charge. 

4.3.3 • Boundary Conditions 

The electrostatic boundary conditions of Sect. 2.3.5 can be recast in terms of D. 
Equation 4.23 tells us the discontinuity in the component perpendicular to an 
interface: 

(4.26) 

while Eq. 4.25 gives the discontinuity in parallel components: 

D~bove- D~elow = p~bove- p~elow· (4.27) 

In the presence of dielectrics, these are sometimes more useful than the corre­
sponding boundary conditions on E (Eqs. 2.31 and 2.32): 

and 

_l _l 1 
Eabove- Ebelow = - a, 

Eo 

E~bove- E~elow = 0. 

(4.28) 

(4.29) 

You might try applying them, for example, to Probs. 4.16 and 4.17. 

Problem 4.17 For the bar electret of Prob. 4.11, make three careful sketches: one 
of P, one of E, and one of D. Assume L is about 2a. [Hint: E lines terminate on 
charges; D lines terminate onfree charges.] 

4.4 • LINEAR DIELECTRICS 

4.4.1 • Susceptibility, Permittivity, Dielectric Constant 

In Sects. 4.2 and 4.3 we did not commit ourselves as to the cause of P; we dealt 
only with the effects of polarization. From the qualitative discussion of Sect. 4.1, 
though, we know that the polarization of a dielectric ordinarily results from an 
electric field, which lines up the atomic or molecular dipoles. For many sub­
stances, in fact, the polarization is proportional to the field, provided E is not 
too strong: 

P = EoXeE. (4.30) 
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The constant of proportionality, Xe. is called the electric susceptibility of the 
medium (a factor of Eo has been extracted to make Xe dimensionless). The value of 
Xe depends on the microscopic structure of the substance in question (and also on 
external conditions such as temperature). I shall call materials that obey Eq. 4.30 
linear dielectrics. 7 

Note that E in Eq. 4.30 is the total field; it may be due in part to free charges 
and in part to the polarization itself. If, for instance, we put a piece of dielectric 
into an external field E0, we cannot compute P directly from Eq. 4.30; the external 
field will polarize the material, and this polarization will produce its own field, 
which then contributes to the total field, and this in turn modifies the polarization, 
which . . . Breaking out of this infinite regress is not always easy. You'll see some 
examples in a moment. The simplest approach is to begin with the displacement, 
at least in those cases where D can be deduced directly from the free charge 
distribution. 

In linear media we have 

D = EoE + P = EoE + EoXeE = Eo(1 + Xe)E, 

so D is also proportional to E: 

D=EE, 

where 

E = Eo(1 + Xe). 

(4.31) 

(4.32) 

(4.33) 

This new constant E is called the permittivity of the material. (In vacuum, where 
there is no matter to polarize, the susceptibility is zero, and the permittivity is Eo. 
That's why Eo is called the permittivity of free space. I dislike the term, for it 
suggests that the vacuum is just a special kind of linear dielectric, in which the 
permittivity happens to have the value 8.85 x w-12 C 2 /N·m2 .) If you remove a 
factor of Eo, the remaining dimensionless quantity 

E 
Er = 1 + Xe = ­

Eo 
(4.34) 

is called the relative permittivity, or dielectric constant, of the material. Dielec­
tric constants for some common substances are listed in Table 4.2. (Notice that Er 

is greater than 1, for all ordinary materials.) Of course, the permittivity and the 
dielectric constant do not convey any information that was not already available 
in the susceptibility, nor is there anything essentially new in Eq. 4.32; the physics 
of linear dielectrics is all contained in Eq. 4.30. 8 

7In modem optical applications, especially, nonlinear materials have become increasingly important. 
For these there is a second term in the formula for P as a function of E-typically a cubic term. In gen­
eral, Eq. 4.30 can be regarded as the first (nonzero) term in the Taylor expansion of P in powers of E. 
8 As long as we are engaged in this orgy of unnecessary terminology and notation, I might as well 
mention that formulas for D in terms of E (Eq. 4.32, in the case of linear dielectrics) are called 
constitutive relations. 
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Dielectric Dielectric 
Material Constant Material Constant 
Vacuum 1 Benzene 2.28 
Helium 1.000065 Diamond 5.7-5.9 
Neon 1.00013 Salt 5.9 
Hydrogen (H2) 1.000254 Silicon 11.7 
Argon 1.000517 Methanol 33.0 
Air (dry) 1.000536 Water 80.1 
Nitrogen (N2) 1.000548 Ice (-30° C) 104 
Water vapor (100° C) 1.00589 KTaNb03 (0° C) 34,000 

TABLE 4.2 Dielectric Constants (unless otherwise specified, values given are for 1 atm, 

20° C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press, 

2010). 

Example 4.5. A metal sphere of radius a carries a charge Q (Fig. 4.20). It is 
surrounded, out to radius b, by linear dielectric material of permittivity E. Find 
the potential at the center (relative to infinity). 

Solution 
To compute V, we need to know E; to find E, we might first try to locate the 
bound charge; we could get the bound charge from P, but we can't calculate P 
unless we already know E (Eq. 4.30). We seem to be in a bind. What we do know 
is the free charge Q, and fortunately the arrangement is spherically symmetric, so 
let's begin by calculating D, using Eq. 4.23: 

D = _g_2 r, for all points r > a. 
4nr 

(Inside the metal sphere, of course, E = P = D = 0.) Once we know D, it is a 
trivial matter to obtain E, using Eq. 4.32: 

E-
{ 

_ Q_ r for a < r < b, 
4nEr2 ' 

_ Q __ r, for r > b. 
4nEor2 

FIGURE4.20 
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The potential at the center is therefore 

V = -1° E ·dl = -lb (~) dr- fa(~) dr- {
0

(0)dr 
00 00 4nEor }b 4na la 

As it turns out, it was not necessary for us to compute the polarization or the 
bound charge explicitly, though this can easily be done: 

EoXeQ A 

p = EoXeE = --2 r, 
4Jl'Er 

in the dielectric, and hence 

Pb = -V ·P=O, 

while 

{ 

EoXeQ 
A 4Jl'Eb2 ' 

ab = p. n = 
-EoXeQ 
4nEa2 ' 

at the outer surface, 

at the inner surface. 

Notice that the surface bound charge at a is negative (ii points outward with 
respect to the dielectric, which is +r at b but -r at a). This is natural, since 
the charge on the metal sphere attracts its opposite in all the dielectric molecules. 
It is this layer of negative charge that reduces the field, within the dielectric, from 
lj4nEo(Qjr2)r to lj4nE(Qjr2)r. In this respect, a dielectric is rather like an 
imperfect conductor: on a conducting shell the induced surface charge would be 
such as to cancel the field of Q completely in the region a < r < b; the dielectric 
does the best it can, but the cancellation is only partial. 

You might suppose that linear dielectrics escape the defect in the parallel 
between E and D. Since P and D are now proportional to E, does it not fol­
low that their curls, like E's, must vanish? Unfortunately, it does not, for the line 
integral of P around a closed path that straddles the boundary between one type of 
material and another need not be zero, even though the integral of E around the 
same loop must be. The reason is that the proportionality factor EoXe is different 
on the two sides. For instance, at the interface between a polarized dielectric and 
the vacuum (Fig. 4.21), Pis zero on one side but not on the other. Around this 

P=O 
Vacuum I • 

FIGURE4.21 
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loop f P · dl f= 0, and hence, by Stokes' theorem, the curl of P cannot vanish 
everywhere within the loop (in fact, it is infinite at the boundary).9 

Of course, if the space is entirely filled with a homogeneous10 linear dielectric, 
then this objection is void; in this rather special circumstance 

V · D = PJ and V x D = 0, 

so D can be found from the free charge just as though the dielectric were not there: 

D = EoEvac, 

where Evac is the field the same free charge distribution would produce in the 
absence of any dielectric. According to Eqs. 4.32 and 4.34, therefore, 

1 1 
E = - D = - Evac· (4.35) 

E Er 

Conclusion: When all space is filled with a homogeneous linear dielectric, the 
field everywhere is simply reduced by a factor of one over the dielectric constant. 
(Actually, it is not necessary for the dielectric to fill all space: in regions where 
the field is zero anyway, it can hardly matter whether the dielectric is present or 
not, since there's no polarization in any event.) 

For example, if a free charge q is embedded in a large dielectric, the field it 
produces is 

1 q A 

E= ---r 
4rrE r 2 

(4.36) 

(that's E, not Eo), and the force it exerts on nearby charges is reduced accord­
ingly. But it's not that there is anything wrong with Coulomb's law; rather, the 
polarization of the medium partially "shields" the charge, by surrounding it with 
bound charge of the opposite sign (Fig. 4.22). 11 

FIGURE4.22 

9Putting that argument in differential form, Eq. 4.30 and product rule 7 yield v X p = -EoE X (V x.), 
so the problem arises when V Xe is not parallel to E. 
10 A homogeneous medium is one whose properties (in this case the susceptibility) do not vary with 
position. 
11 In quantum electrodynamics, the vacuum itself can be polarized, and this means that the effective 
(or "renormalized") charge of the electron, as you might measure it in the laboratory, is not its true 
("bare") value, and in fact depends slightly on how far away you are! 
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Example 4.6. A parallel-plate capacitor (Fig. 4.23) is filled with insulating 
material of dielectric constant Er. What effect does this have on its capacitance? 

Solution 
Since the field is confined to the space between the plates, the dielectric will 
reduce E, and hence also the potential difference V, by a factor 1 I Er. Accordingly, 
the capacitance C = Q IV is increased by a factor of the dielectric constant, 

(4.37) 

This is, in fact, a common way to beef up a capacitor. 

FIGURE4.23 

A crystal is generally easier to polarize in some directions than in others, 12 and 
in this case Eq. 4.30 is replaced by the general linear relation 

Px = Eo(Xexx Ex + Xexy Ey + Xexz Ez) } 

Py = Eo(XeyxEx + XeyyEY + Xey,Ez) , 

Pz = Eo(Xe,xEx + Xe,yEy + Xe,,Ez) 

(4.38) 

just as Eq. 4.1 was superseded by Eq. 4.3 for asymmetrical molecules. The nine 
coefficients, Xexx, Xexy, ... , constitute the susceptibility tensor. 

Problem 4.18 The space between the plates of a parallel-plate capacitor (Fig. 4.24) 
is filled with two slabs of linear dielectric material. Each slab has thickness a, so 
the total distance between the plates is 2a. Slab 1 has a dielectric constant of 2, and 
slab 2 has a dielectric constant of 1.5. The free charge density on the top plate is a 

and on the bottom plate -a. 

12 A medium is said to be isotropic if its properties (such as susceptibility) are the same in all 
directions. Thus Eq. 4.30 is the special case ofEq. 4.38 that holds for isotropic media. Physicists tend 
to be sloppy with their language, and unless otherwise indicated the term "linear dielectric" implies 
"isotropic linear dielectric," and suggests "homogeneous isotropic linear dielectric." But technically, 
"linear" just means that at any given point, and for E in a given direction, the components of P are 
proportional to E-the proportionality factor could vary with position and/or direction. 
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Slab 1 

Slab 1 

a 

a 

FIGURE4.24 

(a) Find the electric displacement Din each slab. 

(b) Find the electric field E in each slab. 

(c) Find the polarization P in each slab. 

(d) Find the potential difference between the plates. 

(e) Find the location and amount of all bound charge. 

(f) Now that you know all the charge (free and bound), recalculate the field in each 
slab, and confirm your answer to (b). 

Problem 4.19 Suppose you have enough linear dielectric material, of dielectric 
constant En to half-fill a parallel-plate capacitor (Fig. 4.25). By what fraction is 
the capacitance increased when you distribute the material as in Fig. 4.25(a)? How 
about Fig. 4.25(b)? For a given potential difference V between the plates, find E, 
D, and P, in each region, and the free and bound charge on all surfaces, for both 
cases. 

Problem 4.20 A sphere of linear dielectric material has embedded in it a uniform 
free charge density p. Find the potential at the center of the sphere (relative to 
infinity), if its radius is R and the dielectric constant is E,. 

(a) (b) 

FIGURE4.25 
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Problem 4.21 A certain coaxial cable consists of a copper wire, radius a, sur­
rounded by a concentric copper tube of inner radius c (Fig. 4.26). The space between 
is partially filled (from b out to c) with material of dielectric constant E,, as shown. 
Find the capacitance per unit length of this cable. 

FIGURE4.26 

4.4.2 • Boundary Value Problems with Linear Dielectrics 

In a (homogeneous isotropic) linear dielectric, the bound charge density (pb) is 
proportional to the free charge density (p 1 ): 

13 

Ph= -V .p = -V ·(Eo XeD)=-(~) PJ· 
E 1 + Xe 

(4.39) 

In particular, unless free charge is actually embedded in the material, p = 0, and 
any net charge must reside at the surlace. Within such a dielectric, then, the 
potential obeys Laplace's equation, and all the machinery of Chapter 3 carries 
over. It is convenient, however, to rewrite the boundary conditions in a way that 
makes reference only to the free charge. Equation 4.26 says 

(4.40) 

or (in terms of the potential), 

a Yabove a Ybetow 
Eabove~- Ebelow~ = -af, (4.41) 

whereas the potential itself is, of course, continuous (Eq. 2.34): 

Yabove = Ybelow · (4.42) 

13This does not apply to the surface charge (crb), because Xe is not independent of position (obviously) 
at the boundary. 
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Example 4.7. A sphere of homogeneous linear dielectric material is placed in 
an otherwise uniform electric field Eo (Fig. 4.27). Find the electric field inside the 
sphere. 

FIGURE4.27 

Solution 
This is reminiscent of Ex. 3.8, in which an uncharged conducting sphere was 
introduced into a uniform field. In that case, the field of the induced charge 
canceled Eo within the sphere; in a dielectric, the cancellation (from the bound 
charge) is incomplete. 

Our problem is to solve Laplace's equation, for Vrn(r, 0) when r :::; R, and 
Vout(r, 0) when r 2: R, subject to the boundary conditions 

(i) Vrn = Vout. at r = R, 

(ii) 
avin avout 

at r = R, (4.43) E-- = Eo ---a;:-' ar 

(iii) Vout ~ -Eor cosO, for r » R. 

(The second of these follows from Eq. 4.41, since there is no free charge at the 
surface.) Inside the sphere, Eq. 3.65 says 

00 

l-'in(r, 0) = L At r 1 Pz(cosO); (4.44) 
l=O 

outside the sphere, in view of (iii), we have 

(4.45) 

Boundary condition (i) requires that 

oo oo B 
L A1 R

1 P1(cos0) = -E0R cosO+ L Rl~l P1(cos0), 
l=O l=O 
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Meanwhile, condition (ii) yields 

~ z 1 ~ (1 + l)Bz 
Er ~lAzR- Pz(cosO) =-Eo cosO-~ Rl+2 Pz(cosO), 

l=O l=O 

so 

(l + l)Bz 1 Rl+2 , for l i= 1, 

2Bl 
ErAl =-Eo- - . 

R3 

It follows that 

Evidently 

3Eo 3Eo 
Viu(r, 0) = - -- r cosO = - -- z, 

Er + 2 Er + 2 

and hence the field inside the sphere is (surprisingly) uniform: 

3 
E= --Eo. 

Er +2 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

Example 4.8. Suppose the entire region below the plane z = 0 in Fig. 4.28 is 
filled with uniform linear dielectric material of susceptibility Xe. Calculate the 
force on a point charge q situated a distance d above the origin. 

14Remember, Pt (cos(}) = cos(}, and the coefficients must be equal for each l, as you could prove by 
multiplying by PI' (cos(}) sin(}, integrating from 0 ton, and invoking the orthogonality of the Legendre 
polynomials (Eq. 3.68). 
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z 
q 

y 

FIGURE4.28 

Solution 
The surface bound charge on the xy plane is of opposite sign to q, so the force 
will be attractive. (In view of Eq. 4.39, there is no volume bound charge.) Let us 
first calculate ab, using Eqs. 4.11 and 4.30.15 

where Ez is the z-component of the total field just inside the dielectric, at z = 0. 
This field is due in part to q and in part to the bound charge itself. From Coulomb's 
law, the former contribution is 

1 q qd 
-----..,-----,---- cos () = 

4nEo (r2 + d 2) 4nEo (r2 + d2)3f2' 

where r = J x 2 + y2 is the distance from the origin. The z component of the field 
of the bound charge, meanwhile, is -ab/2Eo (see footnote after Eq. 2.33). Thus 

[ 
1 qd O'b] 

ab = EoXe 4nEo (r2 + d2)3f2 - 2Eo ' 

which we can solve for ab: 

1 ( Xe ) qd 
ab = - 2n Xe + 2 (r2 + d2)3/2. 

(4.50) 

Apart from the factor Xe!(Xe + 2), this is exactly the same as the induced charge 
on an infinite conducting plane under similar circumstances (Eq. 3.10).16 Evi­
dently the total bound charge is 

qb = - (__.1:::._) q. 
Xe +2 

(4.51) 

15This method mimics Prob. 3.38. 
16For some purposes a conductor can be regarded as the limiting case of a linear dielectric, with 
Xe -+ oo. This is often a useful check-try applying it to Exs. 4.5, 4.6, and 4.7. 
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We could, of course, obtain the field of ab by direct integration 

E = _ l J (:) abda. 
4rrEo It-

But, as in the case of the conducting plane, there is a nicer solution by the method 
of images. Indeed, if we replace the dielectric by a single point charge qb at the 
image position (0, 0, -d), we have 

v - _ 1_ [ q + qb ] 
- 4rrEo Jx2 + y2 + (z _ d)2 Jx2 + y2 + (z + d)2 ' 

(4.52) 

in the region z > 0. Meanwhile, a charge (q + qb) at (0, 0, d) yields the potential 

v- _ 1_ [ q + qb ] 
- 4rrEo Jx2 + y2 + (z _ d)2 ' 

(4.53) 

for the region z < 0. Taken together, Eqs. 4.52 and 4.53 constitute a function that 
satisfies Poisson's equation with a point charge qat (0, 0, d), which goes to zero at 
infinity, which is continuous at the boundary z = 0, and whose normal derivative 
exhibits the discontinuity appropriate to a surface charge ab at z = 0: 

( av I av I ) 1 ( Xe ) qd 
-Eo ~ z=O+ - ~ z=O- = - 2rr Xe + 2 (x2 + y2 + d2)3f2. 

Accordingly, this is the correct potential for our problem. In particular, the force 
on q is: 

F = _ 1_ qqb z = - _ 1_ (__l!___) Lz. 
4rrEo (2d)2 4rrEo Xe + 2 4d2 

(4.54) 

I do not claim to have provided a compelling motivation for Eqs. 4.52 and 
4.53-like all image solutions, this one owes its justification to the fact that it 
works: it solves Poisson's equation, and it meets the boundary conditions. Still, 
discovering an image solution is not entirely a matter of guesswork. There are at 
least two "rules of the game": (1) You must never put an image charge into the 
region where you're computing the potential. (Thus Eq. 4.52 gives the potential 
for z > 0, but this image charge qb is at z = -d; when we turn to the region z < 0 
(Eq. 4.53), the image charge (q + qb) is at z =+d.) (2) The image charges must 
add up to the correct total in each region. (That's how I knew to use qb to account 
for the charge in the region z ::::; 0, and (q + qb) to cover the region z ~ 0.) 

Problem 4.22 A very long cylinder of linear dielectric material is placed in an 
otherwise uniform electric field E0 • Find the resulting field within the cylinder. (The 
radius is a, the susceptibility Xe. and the axis is perpendicular to Eo.) 
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Problem 4.23 Find the field inside a sphere of linear dielectric material in an oth­
erwise uniform electric field Eo (Ex. 4.7) by the following method of successive 
approximations: First pretend the field inside is just E0 , and use Eq. 4.30 to write 
down the resulting polarization P0 . This polarization generates a field of its own, 
E1 (Ex. 4.2), which in turn modifies the polarization by an amount Pt. which fur­
ther changes the field by an amount E 2, and so on. The resulting field is E0 + E1 + 
E2 + · · · . Sum the series, and compare your answer with Eq. 4.49. 

Problem 4.24 An uncharged conducting sphere of radius a is coated with a thick 
insulating shell (dielectric constant Er) out to radius b. This object is now placed in 
an otherwise uniform electric field E0 • Find the electric field in the insulator. 

Problem 4.25 Suppose the region above the xy plane in Ex. 4.8 is also filled with 
linear dielectric but of a different susceptibility x;. Find the potential everywhere. 

4.4.3 • Energy in Dielectric Systems 

It takes work to charge up a capacitor (Eq. 2.55): 

w = !cv2
• 

If the capacitor is filled with linear dielectric, its capacitance exceeds the vacuum 
value by a factor of the dielectric constant, 

as we found in Ex. 4.6. Evidently the work necessary to charge a dielectric-filled 
capacitor is increased by the same factor. The reason is pretty clear: you have to 
pump on more (free) charge, to achieve a given potential, because part of the field 
is canceled off by the bound charges. 

In Chapter 2, I derived a general formula for the energy stored in any electro­
static system (Eq. 2.45): 

W = ~ J E 2
dr. (4.55) 

The case of the dielectric-filled capacitor suggests that this should be changed to 

Eo J 2 1 J W = 2 ErE dr = "2 D · Edr, 

in the presence of linear dielectrics. To prove it, suppose the dielectric material 
is fixed in position, and we bring in the free charge, a bit at a time. As p 1 is 
increased by an amount l:!..p 1 , the polarization will change and with it the bound 
charge distribution; but we're interested only in the work done on the incremental 
free charge: 

(4.56) 
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Since V · D = p1, !:l.p1 = V · (!:l.D), where !:l.D is the resulting change in D, so 

!:l.W = /[V · (!:l.D)]Vdr. 

Now 

V · [(!:l.D)V] = [V · (!:l.D)]V + !:l.D · (VV), 

and hence (integrating by parts): 

!:l.W = f V · [(!:l.D)V]dr + /(!:l.D) ·Edr. 

The divergence theorem turns the first term into a surface integral, which vanishes 
if we integrate over all space. Therefore, the work done is equal to 

!:l.W = /(!:l.D) ·Edr. (4.57) 

So far, this applies to any material. Now, if the medium is a linear dielectric, 
then D = EE, so 

(for infinitesimal increments). Thus 

The total work done, then, as we build the free charge up from zero to the final 
configuration, is 

(4.58) 

as anticipated.17 

It may puzzle you that Eq. 4.55, which we derived quite generally in Chap­
ter 2, does not seem to apply in the presence of dielectrics, where it is replaced 
by Eq. 4.58. The point is not that one or the other of these equations is wrong, 
but rather that they address somewhat different questions. The distinction is sub­
tle, so let's go right back to the beginning: What do we mean by "the energy 
of a system"? Answer: It is the work required to assemble the system. Very 

17In case you are wondering why I did not do this more simply by the method of Sect. 2.4.3, starting 
with W = ! J p f V d -r, the reason is that this formula is untrue, in general. Study the derivation of 
Eq. 2.42, and you will see that it applies only to the total charge. For linear dielectrics it happens to 
hold for the free charge alone, but this is scarcely obvious a priori and, in fact, is most easily confirmed 
by working backward from Eq. 4.58. 
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well-but when dielectrics are involved, there are two quite different ways one 
might construe this process: 

1. We bring in all the charges (free and bound), one by one, with tweezers, and 
glue each one down in its proper final location. If this is what you mean by 
"assemble the system," then Eq. 4.55 is your formula for the energy stored. 
Notice, however, that this will not include the work involved in stretching 
and twisting the dielectric molecules (if we picture the positive and nega­
tive charges as held together by tiny springs, it does not include the spring 
energy, !kx2 , associated with polarizing each molecule).l8 

2. With the unpolarized dielectric in place, we bring in the free charges, one by 
one, allowing the dielectric to respond as it sees fit. If this is what you mean 
by "assemble the system" (and ordinarily it is, since free charge is what we 
actually push around), then Eq. 4.58 is the formula you want. In this case 
the "spring" energy is included, albeit indirectly, because the force you must 
apply to the free charge depends on the disposition of the bound charge; as 
you move the free charge, you are automatically stretching those "springs." 

Example 4.9. A sphere of radius R is filled with material of dielectric constant Er 

and uniform embedded free charge Pi· What is the energy of this configuration? 

Solution 
From Gauss's law (in the form ofEq. 4.23), the displacement is 

So the electric field is 

{ 
p; r (r < R), 

D(r) = 3 Pi R A 

--r (r > R). 
3 r 2 

{ 

__!!j__r (r < R), 
3EoEr 

E(r) = Pi R3 A 

--r (r > R). 
3Eo r 2 

The purely electrostatic energy (Eq. 4.55) is 

18The "spring" itself may be electrical in nature, but it is still not included in Eq. 4.55, if E is taken to 
be the macroscopic field. 
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But the total energy (Eq. 4.58) is 

= ~~p}Rs (5:r + 1). 
Notice that W1 < W2-that's because W1 does not include the energy involved in 
stretching the molecules. 

Let's check that W2 is the work done on the free charge in assembling the 
system. We start with the (uncharged, unpolarized) dielectric sphere, and bring in 
the free charge in infinitesimal installments (dq ), filling out the sphere layer by 
layer. When we have reached radius r', the electric field is 

P! (r < r'), --r 
3EoEr 

P! r'3 
A 

(r' < r < R), E(r) = ---r 
3EoEr r 2 

,3 
PJ r A 

(r > R). --r 
3Eo r2 

The work required to bring the next dq in from infinity to r' is 

This increases the radius (r'): 

dq = PJ4nr'
2 

dr', 

so the total work done, in going from r' = 0 tor'= R, is 

W = 
4
np} [_!_ (1- _!_) {R r'5 dr' + _!_ {R r'4 dr'] 
3Eo R Er Jo Er Jo 

= 
2

rr p}R5 
( -

1
- + 1) = w2 . ./ 

9Eo 5Er 

Evidently the energy "stored in the springs" is 

2rr 2 5 
Wspring = W2- W1 = -

45 2 p1R (Er- 1). 
EoEr 
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I would like to confirm this in an explicit model. Picture the dielectric as a col­
lection of tiny proto-dipoles, each consisting of +q and -q attached to a spring 
of constant k and equilibrium length 0, so in the absence of any field the positive 
and negative ends coincide. One end of each dipole is nailed in position (like the 
nuclei in a solid), but the other end is free to move in response to any imposed 
field. Let dr be the volume assigned to each proto-dipole (the dipole itself may 
occupy only a small portion of this space). 

With the field turned on, the electric force on the free end is balanced by the 
spring force; 19 the charges separate by a distance d: q E = kd. In our case 

E = _!!L_r. 
3EoEr 

The resulting dipole moment is p = qd, and the polarization is P = pfdr, so 

Pi 
k= - d2 Prdr. 

3EoEr 

The energy of this particular spring is 

1 2 Pi dWspring = - kd = -
6

- Prdr, 
2 EoEr 

and hence the total is 

Pi f Wspring = -- Pr dr. 
6EoEr 

Now 

so 

and it works out perfectly. 

It is sometimes alleged that Eq. 4.58 represents the energy even for nonlinear 
dielectrics, but this is false: To proceed beyond Eq. 4.57, one must assume lin­
earity. In fact, for dissipative systems the whole notion of "stored energy" loses 
its meaning, because the work done depends not only on the final configuration 
but on how it got there. If the molecular "springs" are allowed to have some 

19Note that the "spring" here is a surrogate for whatever holds the molecule together-it includes the 
electrical attraction of the other end. If it bothers you that the force is taken to be proportional to the 
separation, look again at Example 4.1. 
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friction, for instance, then Wspring can be made as large as you like, by assem­
bling the charges in such a way that the spring is obliged to expand and con­
tract many times before reaching its final state. In particular, you get nonsensical 
results if you try to apply Eq. 4.58 to electrets, with frozen-in polarization (see 
Prob. 4.27). 

Problem 4.26 A spherical conductor, of radius a, carries a charge Q (Fig. 4.29). It 
is surrounded by linear dielectric material of susceptibility Xe. out to radius b. Find 
the energy of this configuration (Eq. 4.58). 

FIGURE4.29 

Problem 4.27 Calculate W, using both Eq. 4.55 and Eq. 4.58, for a sphere of radius 
R with frozen-in uniform polarization P (Ex. 4.2). Comment on the discrepancy. 
Which (if either) is the "true" energy of the system? 

4.4.4 • Forces on Dielectrics 

Just as a conductor is attracted into an electric field (Eq. 2.51), so too is a 
dielectric-and for essentially the same reason: the bound charge tends to accu­
mulate near the free charge of the opposite sign. But the calculation of forces on 
dielectrics can be surprisingly tricky. Consider, for example, the case of a slab of 
linear dielectric material, partially inserted between the plates of a parallel-plate 
capacitor (Fig. 4.30). We have always pretended that the field is uniform inside a 
parallel-plate capacitor, and zero outside. If this were literally true, there would 
be no net force on the dielectric at all, since the field everywhere would be per­
pendicular to the plates. However, there is in reality a fringing field around the 
edges, which for most purposes can be ignored but in this case is responsible for 
the whole effect. (Indeed, the field could not terminate abruptly at the edge of 
the capacitor, for if it did, the line integral of E around the closed loop shown in 
Fig. 4.31 would not be zero.) It is this nonuniform fringing field that pulls the 
dielectric into the capacitor. 

Fringing fields are notoriously difficult to calculate; luckily, we can avoid this 
altogether, by the following ingenious method. 20 Let W be the energy of the 

2°For a direct calculation from the fringing fields, see E. R. Dietz, Am. J. Phys. 72, 1499 (2004). 
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FIGURE4.31 

system-it depends, of course, on the amount of overlap. If I pull the dielectric 
out an infinitesimal distance dx, the energy is changed by an amount equal to the 
work done: 

dW = Fmedx, (4.59) 

where Fme is the force I must exert, to counteract the electrical force F on the 
dielectric: Fme = -F. Thus the electrical force on the slab is 

dW 
F = - - . (4.60) 

dx 
Now, the energy stored in the capacitor is 

w = ~cv2 , (4.61) 

and the capacitance in this case is 
EoW 

C = d(Erl- XeX), (4.62) 

where l is the length of the plates (Fig. 4.30). Let's assume that the total charge 
on the plates (Q = CV) is held constant, as the dielectric moves. In terms of Q, 

1 Q2 
w = 2-c. (4.63) 
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so 

dW 1 Q2 dC 1 2 dC 
F=- - = ---- = - V -

dx 2 C2 dx 2 dx · 
(4.64) 

But 
dC EoXeW 

dx d 
and hence 

EoXeW 2 
F=---v. 

2d 
(4.65) 

(The minus sign indicates that the force is in the negative x direction; the dielectric 
is pulled into the capacitor.) 

It is a common error to use Eq. 4.61 (with V constant), rather than Eq. 4.63 
(with Q constant), in computing the force. One then obtains 

1 2 dC 
F= - - V -

2 dx' 

which is off by a sign. It is, of course, possible to maintain the capacitor at a fixed 
potential, by connecting it up to a battery. But in that case the battery also does 
work as the dielectric moves; instead of Eq. 4.59, we now have 

dW = Fmedx + V dQ, (4.66) 

where V d Q is the work done by the battery. It follows that 

dW dQ 1 2 dC 2 dC 1 2 dC 
F=- - +V- =- - V - +V - = - V -

dx dx 2 dx dx 2 dx ' 
(4.67) 

the same as before (Eq. 4.64), with the correct sign. 
Please understand: The force on the dielectric cannot possibly depend on 

whether you plan to hold Q constant or V constant-it is determined entirely 
by the distribution of charge, free and bound. It's simpler to calculate the force 
assuming constant Q, because then you don't have to worry about work done by 
the battery; but if you insist, it can be done correctly either way. 

Notice that we were able to determine the force without knowing anything 
about the fringing fields that are ultimately responsible for it! Of course, it's built 
into the whole structure of electrostatics that V x E = 0, and hence that the fring­
ing fields must be present; we're not really getting something for nothing here­
just cleverly exploiting the internal consistency of the theory. The energy stored 
in the fringing fields themselves (which was not accounted for in this derivation) 
stays constant, as the slab moves; what does change is the energy well inside the 
capacitor, where the field is nice and uniform. 

Problem 4.28 Two long coaxial cylindrical metal tubes (inner radius a, outer radius 
b) stand vertically in a tank of dielectric oil (susceptibility Xe• mass density p). The 
inner one is maintained at potential V, and tbe outer one is grounded (Fig. 4.32). To 
what height (h) does tbe oil rise, in tbe space between tbe tubes? 
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Oil 

More Problems on Chapter 4 

Problem 4.29 

FIGURE4.32 
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(a) For the configuration in Prob. 4.5, calculate the force on p2 due to Ph and the 
force on p1 due to p2. Are the answers consistent with Newton's third law? 

(b) Find the total torque on p2 with respect to the center of ph and compare it with 
the torque on p1 about that same point. [Hint: combine your answer to (a) with 
the result of Prob. 4.5.] 

Problem 4.30 An electric dipole p, pointing in the y direction, is placed midway 
between two large conducting plates, as shown in Fig. 4.33. Each plate makes a 

y 

--

FIGURE4.33 
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small angle () with respect to the x axis, and they are maintained at potentials ± V. 
What is the direction of the net force on p? (There's nothing to calculate, here, but 
do explain your answer qualitatively.) 

Problem 4.31 A point charge Q is "nailed down" on a table. Around it, at radius R, 
is a frictionless circular track on which a dipole p rides, constrained always to point 
tangent to the circle. Use Eq. 4.5 to show that the electric force on the dipole is 

F = _g__!__ 
41l'Eo R 3 

Notice that this force is always in the "forward" direction (you can easily confirm 
this by drawing a diagram showing the forces on the two ends of the dipole). Why 
isn't this a perpetual motion machine?21 

Problem 4.32 Earnshaw's theorem (Prob. 3.2) says that you cannot trap a charged 
particle in an electrostatic field. Question: Could you trap a neutral (but polarizable) 
atom in an electrostatic field? 

(a) Show that the force on the atom is F = iaV (E2
). 

(b) The question becomes, therefore: Is it possible for E 2 to have a local maximum 
(in a charge-free region)? In that case the force would push the atom back to its 
equilibrium position. Show that the answer is no. [Hint: Use Prob. 3.4(a).]22 

Problem 4.33 A dielectric cube of side a, centered at the origin, carries a "frozen­
in" polarization P = kr, where k is a constant. Find all the bound charges, and check 
that they add up to zero. 

Problem 4.34 The space between the plates of a parallel-plate capacitor is filled 
with dielectric material whose dielectric constant varies linearly from 1 at the 
bottom plate (x = 0) to 2 at the top plate (x =d). The capacitor is connected 
to a battery of voltage V. Find all the bound charge, and check that the total 
is zero. 

Problem 4.35 A point charge q is imbedded at the center of a sphere of linear 
dielectric material (with susceptibility Xe and radius R). Find the electric field, the 
polarization, and the bound charge densities, Pb and ab. What is the total bound 
charge on the surface? Where is the compensating negative bound charge located? 

Problem 4.36 At the interface between one linear dielectric and another, the electric 
field lines bend (see Fig. 4.34). Show that 

(4.68) 

assuming there is no free charge at the boundary. [Comment: Eq. 4.68 is reminiscent 
of Snell's law in optics. Would a convex "lens" of dielectric material tend to "focus," 
or "defocus," the electric field?] 

21 This charming paradox was suggested by K. Brownstein. 
22Interestingly, it can be done with oscillating fields. See K. T. McDonald, Am. J. Phys. 68, 486 
(2000). 
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FIGURE4.34 

Problem 4.37 A point dipole p is imbedded at the center of a sphere of linear 
dielectric material (with radius R and dielectric constant E, ). Find the electric po­
tential inside and outside the sphere. 

[ 
p cos() ( r3 

( E, - 1) ) p cos() ( 3 ) ] 
Answer: 4rra2 1 + 2 R3 (E, + 2) , (r ~ R); 41l'Eor2 E, + 2 , (r ~ R) 

Problem 4.38 Prove the following uniqueness theorem: A volume V contains a 
specified free charge distribution, and various pieces of linear dielectric material, 
with the susceptibility of each one given. If the potential is specified on the bound­
aries S of V (V = 0 at infinity would be suitable) then the potential throughout V 
is uniquely determined. [Hint: Integrate V · (V3D3) over V.] 

FIGURE4.35 

Problem 4.39 A conducting sphere at potential V0 is half embedded in linear 
dielectric material of susceptibility Xe. which occupies the region z < 0 (Fig. 4.35). 
Claim: the potential everywhere is exactly the same as it would have been in the 
absence of the dielectric! Check this claim, as follows: 

(a) Write down the formula for the proposed potential V(r), in terms of V0 , R, 
and r. Use it to determine the field, the polarization, the bound charge, and the 
free charge distribution on the sphere. 

(b) Show that the resulting charge configuration would indeed produce the potential 
V(r). 

(c) Appeal to the uniqueness theorem in Prob. 4.38 to complete the argument. 

(d) Could you solve the configurations in Fig. 4.36 with the same potential? If not, 
explain why. 
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(a) (b) 

FIGURE4.36 

Problem 4.40 According to Eq. 4.5, the force on a single dipole is (p · V)E, so the 
net force on a dielectric object is 

F =! (P · V)Eextdr. (4.69) 

[Here Eext is the field of everything except the dielectric. You might assume that it 
wouldn't matter if you used the total field; after all, the dielectric can't exert a force 
on itself. However, because the field of the dielectric is discontinuous at the location 
of any bound surface charge, the derivative introduces a spurious delta function, and 
it is safest to stick with Eext·1 Use Eq. 4.69 to determine the force on a tiny sphere, 
of radius R, composed of linear dielectric material of susceptibility x •• which is 
situated a distance s from a fine wire carrying a uniform line charge ).. . 

Problem 4.41 In a linear dielectric, the polarization is proportional to the field: 
P = EoXeE. If the material consists of atoms (or nonpolar molecules), the induced 
dipole moment of each one is likewise proportional to the field p =a E. Question: 
What is the relation between the atomic polarizability a and the susceptibility Xe? 

Since P (the dipole moment per unit volume) is p (the dipole moment per atom) 
times N (the number of atoms per unit volume), P = Np = N aE, one's first incli­
nation is to say that 

Na 
x.= - . 

Eo 
(4.70) 

And in fact this is not far off, if the density is low. But closer inspection reveals 
a subtle problem, for the field E in Eq. 4.30 is the total macroscopic field in the 
medium, whereas the field in Eq. 4.1 is due to everything except the particular atom 
under consideration (polarizability was defined for an isolated atom subject to a 
specified external field); call this field Eelse· Imagine that the space allotted to each 
atom is a sphere of radius R, and show that 

Use this to conclude that 

or 

E = (1- Na) Eelse· 
3t:o 

Naft:o 
Xe = ----=------

1- Naj3t:o' 

a = 3t:o ( E, - 1 ) . 
N Er +2 

(4.71) 

(4.72) 
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Equation 4.72 is known as the Clausius-Mossotti formula, or, in its application to 

optics, the Lorentz-Lorenz equation. 

Problem 4.42 Check the Clausius-Mossotti relation (Eq. 4.72) for the gases listed 
in Table 4.1. (Dielectric constants are given in Table 4.2.) (The densities here are 
so small that Eqs. 4.70 and 4.72 are indistinguishable. For experimental data that 
confirm the Clausius-Mossotti correction term see, for instance, the first edition of 
Purcell's Electricity and Magnetism, Problem 9.28.)23 

Problem 4.43 The Clausius-Mossotti equation (Prob. 4.41) tells you how to cal­
culate the susceptibility of a nonpolar substance, in terms of the atomic polariz­
ability a. The Langevin equation tells you how to calculate the susceptibility of a 
polar substance, in terms of the permanent molecular dipole moment p. Here's how 
it goes: 

(a) The energy of a dipole in an external field E is u = -p · E = -pEcos() 
(Eq. 4.6), where () is the usual polar angle, if we orient the z axis along E. 
Statistical mechanics says that for a material in equilibrium at absolute temper­
ature T, the probability of a given molecule having energy u is proportional to 

the Boltzmann factor, 

exp( -ul kT). 

The average energy of the dipoles is therefore 

I ue-(ufkT) dfJ. 

<U> = I . 
e-(ufkT) dfJ. 

where dfJ. =sin() d() dl/J, and the integration is over all orientations (() : 
0 ~ Jr; l/J : 0 ~ 2Jr). Use this to show that the polarization of a substance 
containing N molecules per unit volume is 

P = Np[coth(pEikT)- (kTipE)]. (4.73) 

That's the Langevin formula. Sketch PIN p as a function of p E I kT. 

(b) Notice that for large fields/low temperatures, virtually all the molecules are 
lined up, and the material is nonlinear. Ordinarily, however, kT is much greater 
than p E. Show that in this regime the material is linear, and calculate its suscep­
tibility, in terms of N, p, T, and k. Compute the susceptibility of water at 20°C, 
and compare the experimental value in Table 4.2. (The dipole moment of water 
is 6.1 x 10-3° C·m.) This is rather far off, because we have again neglected the 
distinction between E and Eelse· The agreement is better in low-density gases, 
for which the difference between E and Eelse is negligible. Try it for water vapor 
at 100°C and 1 atm. 

23E. M. Purcell, Electricity and Magnetism (Berkeley Physics Course, Vol. 2), (New York: McGraw­
Hill, 1963). 
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Magnetostatics 

5.1 • THE LORENTZ FORCE LAW 

5.1.1 • Magnetic Fields 

Remember the basic problem of classical electrodynamics: We have a collection 
of charges q1, q2 , q3, ... (the "source" charges), and we want to calculate the force 
they exert on some other charge Q (the "test" charge). (See Fig. 5.1.) According 
to the principle of superposition, it is sufficient to find the force of a single source 
charge-the total is then the vector sum of all the individual forces. Up to now, 
we have confined our attention to the simplest case, electrostatics, in which the 
source charge is at rest (though the test charge need not be). The time has come 
to consider the forces between charges in motion. 

To give you some sense of what is in store, imagine that I set up the following 
demonstration: Two wires hang from the ceiling, a few centimeters apart; when 
I turn on a current, so that it passes up one wire and back down the other, the 
wires jump apart-they evidently repel one another (Fig. 5.2(a)). How do we 
explain this? You might suppose that the battery (or whatever drives the current) 
is actually charging up the wire, and that the force is simply due to the electrical 
repulsion of like charges. But this is incorrect. I could hold up a test charge near 
these wires, and there would be no force on it, 1 for the wires are in fact electrically 
neutral. (It's true that electrons are flowing down the line-that's what a current 
is-but there are just as many stationary plus charges as moving minus charges 
on any given segment.) Moreover, if I hook up my demonstration so as to make 
the current flow up both wires (Fig. 5.2(b)), they are found to attract! 

• 

• .Q 

• 

• 

Source charges Test charge 

FIGURES.l 

1This is not precisely true, as we shall see in Prob. 7.43. 
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(a) Currents in opposite 
directions repel. 

(b) Currents in same 
directions attract. 

FIGURE5.2 
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Whatever force accounts for the attraction of parallel currents and the repulsion 
of antiparallel ones is not electrostatic in nature. It is our first encounter with a 
magnetic force. Whereas a stationary charge produces only an electric field E in 
the space around it, a moving charge generates, in addition, a magnetic field B. 
In fact, magnetic fields are a lot easier to detect, in practice-all you need is a 
Boy Scout compass. How these devices work is irrelevant at the moment; it is 
enough to know that the needle points in the direction of the local magnetic field. 
Ordinarily, this means north, in response to the earth's magnetic field, but in the 
laboratory, where typical fields may be hundreds of times stronger than that, the 
compass indicates the direction of whatever magnetic field is present. 

I I 

Wire 1 Wire2 

FIGURE5.3 FIGURE5.4 
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Now, if you hold up a tiny compass in the vicinity of a current-carrying wire, 
you quickly discover a very peculiar thing: The field does not point toward the 
wire, nor away from it, but rather it circles around the wire. In fact, if you grab 
the wire with your right hand-thumb in the direction of the current-your fingers 
curl around in the direction of the magnetic field (Fig. 5.3). How can such a field 
lead to a force of attraction on a nearby parallel current? At the second wire, the 
magnetic field points into the page (Fig. 5.4), the current is upward, and yet the 
resulting force is to the left! It's going to take a strange law to account for these 
directions. 

5.1.2 • Magnetic Forces 

In fact, this combination of directions is just right for a cross product: the magnetic 
force on a charge Q, moving with velocity v in a magnetic field B, is2 

I Fmag = Q(v X B). I (5.1) 

This is known as the Lorentz force law.3 In the presence of both electric and 
magnetic fields, the net force on Q would be 

F = Q[E + (v x B)]. (5.2) 

I do not pretend to have derived Eq. 5.1, of course; it is a fundamental axiom 
of the theory, whose justification is to be found in experiments such as the one I 
described in Sect. 5.1.1. 

Our main job from now on is to calculate the magnetic field B (and for that 
matter the electric field E as well; the rules are more complicated when the source 
charges are in motion). But before we proceed, it is worthwhile to take a closer 
look at the Lorentz force law itself; it is a peculiar law, and it leads to some truly 
bizarre particle trajectories. 

Example 5.1. Cyclotron motion. The archtypical motion of a charged particle 
in a magnetic field is circular, with the magnetic force providing the centripetal 
acceleration. In Fig. 5.5, a uniform magnetic field points into the page; if the 
charge Q moves counterclockwise, with speed v, around a circle of radius R, 
the magnetic force points inward, and has a fixed magnitude QvB-just right to 
sustain uniform circular motion: 

v2 
QvB = mR, or p = QBR, 

2 Since F and v are vectors, B is actually a pseudovector. 
3 Actually, it is due to Oliver Heaviside. 

(5.3) 
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y 

B 
X 

FIGURE5.5 FIGURE5.6 

where m is the particle's mass and p = mv is its momentum. Equation 5.3 is 
known as the cyclotron formula because it describes the motion of a particle in a 
cyclotron-the first of the modem particle accelerators. It also suggests a simple 
experimental technique for finding the momentum of a charged particle: send it 
through a region of known magnetic field, and measure the radius of its trajectory. 
This is in fact the standard means for determining the momenta of elementary 
particles. 

I assumed that the charge moves in a plane perpendicular to B. If it starts out 
with some additional speed v

11 
parallel to B, this component of the motion is 

unaffected by the magnetic field, and the particle moves in a helix (Fig. 5.6). The 
radius is still given by Eq. 5.3, but the velocity in question is now the component 
perpendicular to B, v .l· 

Example 5.2. Cycloid Motion. A more exotic trajectory occurs if we include 
a uniform electric field, at right angles to the magnetic one. Suppose, for instance, 
that B points in the x-direction, and E in the z-direction, as shown in Fig. 5.7. 
A positive charge is released from the origin; what path will it follow? 

Solution 
Let's think it through qualitatively, first. Initially, the particle is at rest, so the mag­
netic force is zero, and the electric field accelerates the charge in the z-direction. 
As it picks up speed, a magnetic force develops which, according to Eq. 5.1, pulls 
the charge around to the right. The faster it goes, the stronger Fmag becomes; 
eventually, it curves the particle back around towards the y axis. At this point the 
charge is moving against the electrical force, so it begins to slow down-the mag­
netic force then decreases, and the electrical force takes over, bringing the particle 
to rest at point a, in Fig. 5.7. There the entire process commences anew, carrying 
the particle over to point b, and so on. 

Now let's do it quantitatively. There being no force in the x-direction, the posi­
tion of the particle at any timet can be described by the vector (0, y(t), z(t)); the 
velocity is therefore 
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X 

FIGURE5.7 

v=(O,y,Z;), 

where dots indicate time derivatives. Thus 

i y z 
v x B = 0 y z = Bz y - By z, 

B 0 0 

and hence, applying Newton's second law, 

F = Q(E+v x B)= Q(Ez+ Bzy- Byz) = ma = m(yy+zz). 

Or, treating the y and z components separately, 

QBz =my, 

For convenience, let 

QE- QBy = mz. 

QB 
(J) = --. 

m 
(5.4) 

(This is the cyclotron frequency, at which the particle would revolve in the ab­
sence of any electric field.) Then the equations of motion take the form 

Their general solution4 is 

y(t) = C1 coswt + C2 sinwt + (E/ B)t + C3, } 

z(t) = C2coswt- C1 sinwt + C4. 

(5.5) 

(5.6) 

4 As coupled differential equations, they are easily solved by differentiating the first and using the 
second to eliminate z. 
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But the particle started from rest (Y(O) = z(O) = 0), at the origin (y(O) = z(O) = 
0); these four conditions determine the constants C1, C2 , C3, and C4 : 

E . 
y(t) = - (wt- smwt), 

wB 
E 

z(t) = - (1- coswt). 
wB 

In this form, the answer is not terribly enlightening, but if we let 

E 
R= - , 

wB 

(5.7) 

(5.8) 

and eliminate the sines and cosines by exploiting the trigonometric identity 
sin2 wt + cos2 wt = 1, we find that 

(5.9) 

This is the formula for a circle, of radius R, whose center (0, Rwt, R) travels in 
the y-direction at a constant speed 

E 
u = wR = - . 

B 
(5.10) 

The particle moves as though it were a spot on the rim of a wheel rolling along the 
y axis. The curve generated in this way is called a cycloid. Notice that the overall 
motion is not in the direction of E, as you might suppose, but perpendicular to it. 

One implication of the Lorentz force law (Eq. 5.1) deserves special attention: 

I Magnetic forces do no work. 

For if Q moves an amount dl = v dt, the work done is 

dWmag = Fmag. dl = Q(v X B). vdt = 0. (5.11) 

This follows because (v x B) is perpendicular to v, so (v x B) · v = 0. Magnetic 
forces may alter the direction in which a particle moves, but they cannot speed 
it up or slow it down. The fact that magnetic forces do no work is an elementary 
and direct consequence of the Lorentz force law, but there are many situations 
in which it appears so manifestly false that one's confidence is bound to waver. 
When a magnetic crane lifts the carcass of a junked car, for instance, something 
is obviously doing work, and it seems perverse to deny that the magnetic force 
is responsible. Well, perverse or not, deny it we must, and it can be a very subtle 
matter to figure out who does deserve the credit in such circumstances. We'll see 
a cute example in the next section, but the full story will have to await Chapter 8. 

Problem 5.1 A particle of charge q enters a region of uniform magnetic field B 
(pointing into the page). The field deflects the particle a distanced above the original 
line of flight, as shown in Fig. 5.8. Is the charge positive or negative? In terms of a, 
d, B and q, find the momentum of the particle. 
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Field region 

FIGURE5.8 

Problem 5.2 Find and sketch the trajectory of the particle in Ex. 5.2, if it starts at 
the origin with velocity 

(a) v(O) = (E I B)y, 

(b) v(O) = (EI2B)y, 

(c) v(O) = (E I B)(y + z). 

Problem 5.3 In 1897, J. J. Thomson "discovered" the electron by measuring the 
charge-to-mass ratio of "cathode rays" (actually, streams of electrons, with charge 
q and mass m) as follows: 

(a) First he passed the beam through uniform crossed electric and magnetic fields 
E and B (mutually perpendicular, and both of them perpendicular to the beam), 
and adjusted the electric field until he got zero deflection. What, then, was the 
speed of the particles (in terms of E and B)? 

(b) Then he turned off the electric field, and measured the radius of curvature, R, 
of the beam, as deflected by the magnetic field alone. In terms of E, B, and R, 
what is the charge-to-mass ratio (qlm) of the particles? 

5.1.3 • Currents 

The current in a wire is the charge per unit time passing a given point. By def­
inition, negative charges moving to the left count the same as positive ones to 
the right. This conveniently reflects the physical fact that almost all phenomena 
involving moving charges depend on the product of charge and velocity-if you 
reverse the signs of q and v, you get the same answer, so it doesn't really mat­
ter which you have. (The Lorentz force law is a case in point; the Hall effect 
(Prob. 5.41) is a notorious exception.) In practice, it is ordinarily the negatively 
charged electrons that do the moving-in the direction opposite to the electric 
current. To avoid the petty complications this entails, I shall often pretend it's the 
positive charges that move, as in fact everyone assumed they did for a century 
or so after Benjamin Franklin established his unfortunate convention.5 Current is 
measured in coulombs-per-second, or amperes (A): 

1 A= 1 Cfs. (5.12) 

5If we called the electron plus and the proton minus, the problem would never arise. In the context of 
Franklin's experiments with eat's fur and glass rods, the choice was completely arbitrary. 
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FIGURE5.9 

A line charge ).. traveling down a wire at speed v (Fig. 5 .9) constitutes a current 

I= A.v, (5.13) 

because a segment of length v!:l.t, carrying charge A.v!:l.t, passes point Pin a time 
interval !:l.t. Current is actually a vector: 

I =A.v. (5.14) 

Because the path of the flow is dictated by the shape of the wire, one doesn't 
ordinarily bother to display the direction of I explicitly, 6 but when it comes to 
surface and volume currents we cannot afford to be so casual, and for the sake of 
notational consistency it is a good idea to acknowledge the vectorial character of 
currents right from the start. A neutral wire, of course, contains as many stationary 
positive charges as mobile negative ones. The former do not contribute to the 
current-the charge density A. in Eq. 5.13 refers only to the moving charges. In 
the unusual situation where both types move, I = )..+ v + + ).._ v _. 

The magnetic force on a segment of current -carrying wire is 

F mag = J (v x B) dq = J (v x B)A. dl = J (I x B) dl. (5.15) 

Inasmuch as I and dl both point in the same direction, we can just as well write 
this as 

Fmag = J I(dl X B). (5.16) 

Typically, the current is constant (in magnitude) along the wire, and in that case I 
comes outside the integral: 

Fmag=I/(dlxB). (5.17) 

Example 5.3. A rectangular loop of wire, supporting a mass m, hangs vertically 
with one end in a uniform magnetic field B, which points into the page in the 
shaded region of Fig. 5.10. For what current I, in the loop, would the magnetic 
force upward exactly balance the gravitational force downward? 

6For the same reason, if you are describing a locomotive constrained to move along a specified track, 
you would probably speak of its speed, rather than its velocity. 
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FIGURES.lO 

Solution 
First of all, the current must circulate clockwise, in order for (I x B) in the hori­
zontal segment to point upward. The force is 

Fmag = IBa, 

where a is the width of the loop. (The magnetic forces on the two vertical seg­
ments cancel.) For Fmag to balance the weight (mg), we must therefore have 

mg 
I= - . 

Ba 

The weight just hangs there, suspended in mid-air! 

(5.18) 

What happens if we now increase the current? Then the upward magnetic force 
exceeds the downward force of gravity, and the loop rises, lifting the weight. 
Somebody's doing work, and it sure looks as though the magnetic force is re­
sponsible. Indeed, one is tempted to write 

Wmag = Fmagh = I Bah, (5.19) 

where h is the distance the loop rises. But we know that magnetic forces never do 
work. What's going on here? 

Well, when the loop starts to rise, the charges in the wire are no longer moving 
horizontally-their velocity now acquires an upward component u, the speed of 
the loop (Fig. 5.11), in addition to the horizontal component w associated with 
the current (I = A.w). The magnetic force, which is always perpendicular to the 
velocity, no longer points straight up, but tilts back. It is perpendicular to the net 
displacement of the charge (which is in the direction of v), and therefore it does 
no work on q. It does have a vertical component (qwB); indeed, the net vertical 
force on all the charge (A.a) in the upper segment of the loop is 

Fvert = A.awB =I Ba (5.20) 

(as before); but now it also has a horizontal component (quB), which opposes 
the flow of current. Whoever is in charge of maintaining that current, therefore, 
must now push those charges along, against the backward component of the mag­
netic force. 
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quB 

q w 

FIGURES.ll 

The total horizontal force on the top segment is 

Fhoriz = ).auB. (5.21) 

In a time dt, the charges move a (horizontal) distance w dt, so the work done by 
this agency (presumably a battery or a generator) is 

Wbattery = ).aB J uw dt = I Bah, 

which is precisely what we naively attributed to the magnetic force in Eq. 5.19. 
Was work done in this process? Absolutely! Who did it? The battery! What, then, 
was the role of the magnetic force? Well, it redirected the horizontal force of the 
battery into the vertical motion of the loop and the weight? 

FIGURE5.12 

It may help to consider a mechanical analogy. Imagine you're sliding a trunk 
up a frictionless ramp, by pushing on it horizontally with a mop (Fig. 5.12). The 
normal force (N) does no work, because it is perpendicular to the displacement. 
But it does have a vertical component (which in fact is what lifts the trunk), and 
a (backward) horizontal component (which you have to overcome by pushing on 
the mop). Who is doing the work here? You are, obviously-and yet your force 
(which is purely horizontal) is not (at least, not directly) what lifts the box. The 

7 If you like, the vertical component of F mag does work lifting the car, but the horizontal component 
does equal negative work opposing the current. However you look at it, the net work done by the 
magnetic force is zero. 
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normal force plays the same passive (but crucial) role as the magnetic force in 
Ex. 5.3: while doing no work itself, it redirects the efforts of the active agent 
(you, or the battery, as the case may be), from horizontal to vertical. 

When charge flows over a surface, we describe it by the surface current den­
sity, K, defined as follows: Consider a "ribbon" of infinitesimal width dl1.., run­
ning parallel to the flow (Fig. 5.13). If the current in this ribbon is dl, the surface 
current density is 

dl 
K= - . 

dh 
(5.22) 

In words, K is the current per unit width. In particular, if the (mobile) surface 
charge density is a and its velocity is v, then 

K=av. (5.23) 

In general, K will vary from point to point over the surface, reflecting variations 
in a and/or v. The magnetic force on the surface current is 

Fmag = J (v x B)a da = J (K x B) da. (5.24) 

Caveat: Just as E suffers a discontinuity at a surface charge, soB is discontinuous 
at a surface current. In Eq. 5.24, you must be careful to use the average field, just 
as we did in Sect. 2.5.3. 

When the flow of charge is distributed throughout a three-dimensional region, 
we describe it by the volume current density, J, defined as follows: Consider a 
"tube" of infinitesimal cross section da1.., running parallel to the flow (Fig. 5.14). 
If the current in this tube is dl, the volume current density is 

dl 
J= - . 

da1.. 
(5.25) 

In words, J is the current per unit area. If the (mobile) volume charge density is 
p and the velocity is v, then 

J= pv. (5.26) 

FIGURE5.13 
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FIGURE5.14 

The magnetic force on a volume current is therefore 

Fmag = J (v x B)pdr = J (J x B)dr. (5.27) 

Example 5.4. 

(a) A current I is uniformly distributed over a wire of circular cross section, with 
radius a (Fig. 5.15). Find the volume current density J. 

Solution 
The area (perpendicular to the flow) is na2

, so 

I 
1= - z· 

na 

This was trivial because the current density was uniform. 

(b) Suppose the current density in the wire is proportional to the distance from the 
axis, 

J =ks 

(for some constant k). Find the total current in the wire. 

·I I~ 

FIGURE 5.15 FIGURE5.16 

Solution 
Because J varies with s, we must integrate Eq. 5.25. The current through the 
shaded patch (Fig. 5.16) is J daj_, and daj_ = s ds df/>. So 

f {a 2nka3 

I= (ks)(s ds df/>) = 2nk Jo s2 ds = -
3
-
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According to Eq. 5.25, the total current crossing a surfaceS can be written as 

I = L J da1.. = L J · da. (5.28) 

(The dot product serves neatly to pick out the appropriate component of da.) In 
particular, the charge per unit time leaving a volume V is 

fs J ·da = fv (V ·J)dr. 

Because charge is conserved, whatever flows out through the surface must come 
at the expense of what remains inside: 

fv (V · J) dr = - :t fv p dr = - fv ( ~) dr. 

(The minus sign reflects the fact that an outward flow decreases the charge left 
in V.) Since this applies to any volume, we conclude that 

~ 
~ 

(5.29) 

This is the precise mathematical statement of local charge conservation; it is called 
the continuity equation. 

For future reference, let me summarize the "dictionary" we have implicitly de­
veloped for translating equations into the forms appropriate to point, line, surface, 
and volume currents: 

t( )q;V; rv { ( )ldl rv 1 ( )Kda rv 1 ( )J dr. 
i = 1 }line surface volwne 

(5.30) 

This correspondence, which is analogous to q "' A. dl "' ada "' p dr for the var­
ious charge distributions, generates Eqs. 5.15, 5.24, and 5.27 from the original 
Lorentz force law (5.1). 

Problem 5.4 Suppose that the magnetic field in some region has the form 

B = kzi 

(where k is a constant). Find the force on a square loop (side a), lying in the yz 

plane and centered at the origin, if it carries a current I, flowing counterclockwise, 
when you look down the x axis. 

Problem 5.5 A current I flows down a wire of radius a. 

(a) If it is uniformly distributed over the surface, what is the surface current den­
sity K? 

(b) If it is distributed in such a way that the volume current density is inversely 
proportional to the distance from the axis, what is J (s)? 
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Problem5.6 

(a) A phonograph record carries a uniform density of "static electricity" u. If it 
rotates at angular velocity w, what is the surface current density K at a distance 
r from the center? 

(b) A uniformly charged solid sphere, of radius R and total charge Q, is centered 
at the origin and spinning at a constant angular velocity w about the z axis. Find 
the current density J at any point (r, (), q,) within the sphere. 

Problem 5.7 For a configuration of charges and currents confined within a volume 
V, show that 

fv Jd-c = dpfdt, (5.31) 

where pis the total dipole moment. [Hint: evaluate fv V · (xJ) d-e.] 

5.2 . THE BIOT-SAVART LAW 

5.2.1 • Steady Currents 

Stationary charges produce electric fields that are constant in time; hence the term 
electrostatics. 8 Steady currents produce magnetic fields that are constant in time; 
the theory of steady currents is called magnetostatics. 

Stationary charges ::::} constant electric fields: electrostatics. 
Steady currents ::::} constant magnetic fields: magnetostatics. 

By steady current I mean a continuous flow that has been going on forever, 
without change and without charge piling up anywhere. (Some people call 
them "stationary currents"; to my ear, that's a contradiction in terms.) Formally, 
electro/magnetostatics is the regime 

ap 
- =0, at 

aJ =0, 
at (5.32) 

at all places and all times. Of course, there's no such thing in practice as a truly 
steady current, any more than there is a truly stationary charge. In this sense, 
both electrostatics and magnetostatics describe artificial worlds that exist only in 
textbooks. However, they represent suitable approximations as long as the actual 
fluctuations are remote, or gradual-in fact, for most purposes magnetostatics 
applies very well to household currents, which alternate 120 times a second! 

8 Actually, it is not necessary that the charges be stationary, but only that the charge density at 
each point be constant. For example, the sphere in Prob. 5.6(b) produces an electrostatic field 
lj4n~:0 (Qjr2)r, even though it is rotating, because p does not depend on t. 
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Notice that a moving point charge cannot possibly constitute a steady current. 
If it's here one instant, it's gone the next. This may seem like a minor thing to 
you, but it's a major headache for me. I developed each topic in electrostatics 
by starting out with the simple case of a point charge at rest; then I generalized 
to an arbitrary charge distribution by invoking the superposition principle. This 
approach is not open to us in magnetostatics because a moving point charge does 
not produce a static field in the first place. We are forced to deal with extended 
current distributions right from the start, and, as a result, the arguments are bound 
to be more cumbersome. 

When a steady current flows in a wire, its magnitude I must be the same all 
along the line; otherwise, charge would be piling up somewhere, and it wouldn't 
be a steady current. More generally, since apjat = 0 in magnetostatics, the con­
tinuity equation (5.29) becomes 

V ·J=O. (5.33) 

5.2.2 • The Magnetic Field of a Steady Current 

The magnetic field of a steady line current is given by the Biot-Savart law: 

B(r) = J-to j I x ..£ dl' = J-to I J di' x ..£. 
4n ~J.-2 4n ~J.-2 

(5.34) 

The integration is along the current path, in the direction of the flow; dl' is an 
element of length along the wire, and 4, as always, is the vector from the source to 
the point r (Fig. 5.17). The constant p,0 is called the permeability of free space:9 

J-to = 4n X w-7 NjA2
• (5.35) 

These units are such that B itself comes out in newtons per ampere-meter (as 
required by the Lorentz force law), or teslas (T): 10 

1 T= 1N/(A·m). (5.36) 

FIGURE5.17 

9This is an exact number, not an empirical constant. It serves (via Eq. 5.40) to define the ampere, and 
the ampere in tum defines the coulomb. 
10For some reason, in this one case the cgs unit (the gauss) is more commonly used than the SI unit: 
1 tesla = 104 gauss. The earth's magnetic field is about half a gauss; a fairly strong laboratory magnetic 
field is, say, 10,000 gauss. 
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As the starting point for magnetostatics, the Biot-Savart law plays a role analo­
gous to Coulomb's law in electrostatics. Indeed, the 1/1-2 dependence is common 
to both laws. 

Example 5.5. Find the magnetic field a distance s from a long straight wire 
carrying a steady current I (Fig. 5.18). 

Ot 

dl' Wire segment 

FIGURE5.18 FIGURE5.19 

Solution 
In the diagram, (dl' x 4) points out of the page, and has the magnitude 

dl' sina = dl' cosO. 

Also, l' = stanO, so 

I S 
dl = -

2
- dO, 

cos 0 

and s = 1- cos 0, so 

Thus 

J.Lol 1fh (cos
2 
0) ( s ) B = - --

2
- --

2
- cosOdO 

4n th s cos 0 

J.Lol 1fh J.Lol . . = - cosO dO= - (sm02 - smOI). 
4ns lh 4ns 

(5.37) 

Equation 5.37 gives the field of any straight segment of wire, in terms of the 
initial and final angles 01 and 02 (Fig. 5.19). Of course, a finite segment by itself 
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could never support a steady current (where would the charge go when it got to 
the end?), but it might be a piece of some closed circuit, and Eq. 5.37 would 
then represent its contribution to the total field. In the case of an infinite wire, 
fh = -n /2 and (h = 7l' /2, so we obtain 

J.Lol 
B= -

2ns 
(5.38) 

Notice that the field is inversely proportional to the distance from the wire­
just like the electric field of an infinite line charge. In the region below the wire, 
B points into the page, and in general, it "circles around" the wire, in accordance 
with the right-hand rule (Fig. 5.3): 

J.Lol A 

B= - l/J. 
2ns 

(5.39) 

As an application, let's find the force of attraction between two long, parallel 
wires a distanced apart, carrying currents h and [z (Fig. 5.20). The field at (2) 
due to (1) is 

J.Loh 
B= -

2nd' 

and it points into the page. The Lorentz force law (in the form appropriate to line 
currents, Eq. 5.17) predicts a force directed towards (1), of magnitude 

F = l ( J.Loh ) J dl 2 2nd · 

The total force, not surprisingly, is infinite, but the force per unit length is 

f = J.Lo hlz. 
2rr d 

(5.40) 

If the currents are anti parallel (one up, one down), the force is repulsive­
consistent again with the qualitative observations in Sect. 5.1.1. 

(1) (2) 

FIGURE5.20 
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Example 5.6. Find the magnetic field a distance z above the center of a circular 
loop of radius R, which carries a steady current I (Fig. 5.21). 

B 

FIGURE5.21 

Solution 
The field dB attributable to the segment dl' points as shown. As we integrate dl' 
around the loop, dB sweeps out a cone. The horizontal components cancel, and 
the vertical components combine, to give 

/1-0 f dl' B(z) = - I 2 cosO. 
4n 1-

(Notice that dl' and 4 are perpendicular, in this case; the factor of cos 0 projects 
out the vertical component.) Now, cos 0 and ~t-2 are constants, and J dl' is simply 
the circumference, 2n R, so 

J.Lol (cosO) J.Lol R
2 

B(z) = 4n -----;;;- 2n R = 2 (R2 + z2)3f2. (5.41) 

For surface and volume currents, the Biot-Savart law becomes 

B(r) = J.Lo J K(r') x ..£ da' 
4n ~t-2 

and B(r) = J.Lo J J(r') x ..£ dr', (5.42) 
4n ~t-2 

respectively. You might be tempted to write down the corresponding formula for 
a moving point charge, using the "dictionary" (Eq. 5.30): 

(5.43) 
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but this is simply wrong. 11 As I mentioned earlier, a point charge does not con­
stitute a steady current, and the Biot-Savart law, which only holds for steady cur­
rents, does not correctly determine its field. 

The superposition principle applies to magnetic fields just as it does to electric 
fields: if you have a collection of source currents, the net field is the (vector) sum 
of the fields due to each of them taken separately. 

Problem5.8 

(a) Find the magnetic field at the center of a square loop, which carries a steady 
current I. Let R be the distance from center to side (Fig. 5.22). 

(b) Find the field at the center of a regular n-sided polygon, carrying a steady cur­
rent I. Again, let R be the distance from the center to any side. 

(c) Check that your formula reduces to the field at the center of a circular loop, in 
the limit n ~ oo. 

Problem 5.9 Find the magnetic field at point P for each of the steady current con­
figurations shown in Fig. 5.23. 

Ipj~ 
-r 
C_

----
I 

p 

----

(a) (b) 

FIGURE5.22 FIGURE5.23 

Problem 5.10 

(a) Find the force on a square loop placed as shown in Fig. 5.24(a), near an infinite 
straight wire. Both the loop and the wire carry a steady current I. 

(b) Find the force on the triangular loop in Fig. 5.24(b). 

(a) (b) 

FIGURE5.24 

11 I say this loud and clear to emphasize the point of principle; actually, Eq. 5.43 is approximately 
right for nonrelativistic charges (v «c), under conditions where retardation can be neglected (see 
Ex. 10.4). 



5.3 The Divergence and Curl of B 229 

Problem 5.11 Find the magnetic field at point P on the axis of a tightly wound 
solenoid (helical coil) consisting of n turns per unit length wrapped around a cylin­
drical tube of radius a and carrying current I (Fig. 5.25). Express your answer in 
terms of fh and fh (it's easiest that way). Consider the turns to be essentially circu­
lar, and use the result of Ex. 5.6. What is the field on the axis of an infinite solenoid 
(infinite in both directions)? 

FIGURE5.25 

Problem 5.12 Use the result of Ex. 5.6 to calculate the magnetic field at the center 
of a uniformly charged spherical shell, of radius R and total charge Q, spinning at 
constant angular velocity w. 

Problem 5.13 Suppose you have two infinite straight line charges A., a distance d 
apart, moving along at a constant speed v (Fig. 5.26). How great would v have to 
be in order for the magnetic attraction to balance the electrical repulsion? Work out 
the actual number. Is this a reasonable sort of speed?12 

-u 

-u 

FIGURE5.26 

5.3 . THE DIVERGENCE AND CURL OF B 

5.3.1 • Straight-Line Currents 

The magnetic field of an infinite straight wire is shown in Fig. 5.27 (the current is 
coming out of the page). At a glance, it is clear that this field has a nonzero curl 
(something you'll never see in an electrostatic field); let's calculate it. 

According to Eq. 5.38, the integral of B around a circular path of radius s, 
centered at the wire, is 

f f JLol JLol f B·dl= - dl= - dl=JLol. 
2ns 2ns 

Notice that the answer is independent of s; that's because B decreases at the same 
rate as the circumference increases. In fact, it doesn't have to be a circle; any old 

12If you've studied special relativity, you may be tempted to look for complexities in this problem 
that are not really there-A and v are both measured in the laboratory frame, and this is ordinary 
electrostatics. 
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B 

FIGURE5.27 

loop that encloses the wire would give the same answer. For if we use cylindrical 
coordinates (s, ¢, z), with the current flowing along the z axis, B = (J.Lol j2n s)~ 
and dl = ds s + s d¢ ~ + dz z, so 

f J.Lol f 1 J.Lol izrr B ·dl = - - sd¢ = - d¢ = J.Lol. 
2rr s 2n 0 

This assumes the loop encircles the wire exactly once; if it went around twice, 
then ¢ would run from 0 to 4rr, and if it didn't enclose the wire at all, then ¢ 
would go from ¢1 to ¢2 and back again, with J d¢ = 0 (Fig. 5.28). 

Now suppose we have a bundle of straight wires. Each wire that passes through 
our loop contributes J.Lol, and those outside contribute nothing (Fig. 5.29). The 
line integral will then be 

f B · dl = J.Lolenc• (5.44) 

where Ienc stands for the total current enclosed by the integration path. If the flow 
of charge is represented by a volume current density J, the enclosed current is 

lenc = J J · da, (5.45) 

FIGURE5.28 FIGURE5.29 
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with the integral taken over any surface bounded by the loop. Applying Stokes' 
theorem to Eq. 5.44, then, 

J (V x B) · da = 11-o I J · da, 

and hence 

V x B = 11-oJ. (5.46) 

With minimal labor, we have actually obtained the general formula for the curl 
of B. But our derivation is seriously flawed by the restriction to infinite straight 
line currents (and combinations thereof). Most current configurations cannot be 
constructed out of infinite straight wires, and we have no right to assume that 
Eq. 5.46 applies to them. So the next section is devoted to the formal derivation 
of the divergence and curl of B, starting from the Biot-Savart law itself. 

5.3.2 • The Divergence and Curl of B 

The Biot-Savart law for the general case of a volume current reads 

B(r) = /1-o I J(r')z x ~ dr:'. 
4n Jt. 

(5.47) 

This formula gives the magnetic field at a point r = (x, y, z) in terms of an inte­
gral over the current distribution J (x', y', z') (Fig. 5 .30). It is best to be absolutely 
explicit at this stage: 

B is a function of (x, y, z), 

J is a function of (x', y', z'), 

~ = (x - x') i + (y - y') y + (z - z') z, 
dr:' = dx' dy' dz'. 

The integration is over the primed coordinates; the divergence and the curl of B 
are with respect to the unprimed coordinates. 

FIGURE5.30 
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Applying the divergence to Eq. 5.47, we obtain: 

V · B = - V · J x - dr . J-Lo J ( 4) ' 
4n IJ,2 

(5.48) 

Invoking product rule number 6, 

(5.49) 

But V x J = 0, because J doesn't depend on the unprimed variables, while 
V x (4j~J,2 ) = 0 (Prob. 1.63), so 

I v ·B=O. I (5.50) 

Evidently the divergence of the magnetic field is zero. 
Applying the curl to Eq. 5.47, we obtain: 

V X B = :; f V X (J X ~) dr'. (5.51) 

Again, our strategy is to expand the integrand, using the appropriate product 
rule-in this case number 8: 

(5.52) 

(I have dropped terms involving derivatives of J, because J does not depend on 
x, y, z.) The second term integrates to zero, as we'll see in the next paragraph. 
The first term involves the divergence we were at pains to calculate in Chapter 1 
(Eq. 1.100): 

Thus 

V x B = J-Lo j J(r')4n83(r- r') dr' = J-LoJ(r), 
4n 

(5.53) 

which confirms that Eq. 5.46 is not restricted to straight-line currents, but holds 
quite generally in magnetostatics. 

To complete the argument, however, we must check that the second term in 
Eq. 5.52 integrates to zero. Because the derivative acts only on4j~J,2 , we can switch 
from V to V' at the cost of a minus sign: 13 

" ' " -(J · V) - = (J · V ) - . 
IJ,2 IJ,2 

(5.54) 

13The point here is that ~ depends only on the difference between the coordinates; note that 
(ajax) f(x- x') = -(ajax')f(x- x'). 
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The x component, in particular, is 

(x-x') [(x-x')] (x-x') (J·V') ~ =V'· ll-3 J - ~ (V'·J) 

(using product rule 5). Now, for steady currents the divergence of J is zero 
(Eq. 5.33), so 

and therefore this contribution to the integral (Eq. 5.51) can be written 

f V'. [(x- x') J] dr' = J. (x- x') J · da'. 
lv 'l-3 Jrs 'l-3 

(5.55) 

(The reason for switching from V to V' was to permit this integration by parts.) 
But what region are we integrating over? Well, it's the volume that appears in 
the Biot-Savart law (Eq. 5.47)-large enough, that is, to include all the current. 
You can make it bigger than that, if you like; J = 0 out there anyway, so it will 
add nothing to the integral. The essential point is that on the boundary the cur­
rent is zero (all current is safely inside) and hence the surface integral (Eq. 5.55) 
vanishes.14 

5.3.3 • Ampere's Law 

The equation for the curl of B, 

V x B = JLoJ, (5.56) 

is called Ampere's law (in differential form). It can be converted to integral form 
by the usual device of applying one of the fundamental theorems-in this case 
Stokes' theorem: 

J (V x B) · da = f B · dl = /Lo J J · da. 

Now, J J ·dais the total current passing through the surface (Fig. 5.31), which 
we call Ienc (the current enclosed by the Amperian loop). Thus 

;f B · dl = JLolenc· (5.57) 

14If J itself extends to infinity (as in the case of an infinite straight wire), the surface integral is still 
typically zero, though the analysis calls for greater care. 
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J 

FIGURE5.31 

This is the integral version of Ampere's law; it generalizes Eq. 5.44 to arbi­
trary steady currents. Notice that Eq. 5.57 inherits the sign ambiguity of Stokes' 
theorem (Sect. 1.3.5): Which way around the loop am I supposed to go? And 
which direction through the surface corresponds to a "positive" current? The res­
olution, as always, is the right-hand rule: If the fingers of your right hand indicate 
the direction of integration around the boundary, then your thumb defines the 
direction of a positive current. 

Just as the Biot-Savart law plays a role in magnetostatics that Coulomb's law 
assumed in electrostatics, so Ampere's plays the part of Gauss's: 

{ 
Electrostatics : Coulomb --+ 
Magneto statics : Biot- Savart --+ 

Gauss, 
Ampere. 

In particular, for currents with appropriate symmetry, Ampere's law in integral 
form offers a lovely and extraordinarily efficient way of calculating the magnetic 
field. 

Example 5. 7. Find the magnetic field a distance s from a long straight wire 
(Fig. 5.32), carrying a steady current I (the same problem we solved in Ex. 5.5, 
using the Biot-Savart law). 

Solution 
We know the direction of B is "circumferential," circling around the wire as indi­
cated by the right-hand rule. By symmetry, the magnitude of B is constant around 
an Amperian loop of radius s, centered on the wire. So Ampere's law gives 

or 

f B · dl = B f dl = B2ns = f.Lolenc = f.Lol, 

f.Lol 
B= -

2ns 

This is the same answer we got before (Eq. 5.38), but it was obtained this time 
with far less effort. 
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Amperian loop 
z 

Sheet of current K 

' y 

X 

FIGURE5.32 FIGURE5.33 

Example 5.8. Find the magnetic field of an infinite uniform surface current 
K = K i:, flowing over the xy plane (Fig. 5.33). 

Solution 
First of all, what is the direction of B? Could it have any x component? No: A 
glance at the Biot-Savart law (Eq. 5.42) reveals that B is perpendicular to K. 
Could it have a z component? No again. You could confirm this by noting that 
any vertical contribution from a filament at +y is canceled by the corresponding 
filament at - y. But there is a nicer argument: Suppose the field pointed away from 
the plane. By reversing the direction of the current, I could make it point toward 
the plane (in the Biot-Savart law, changing the sign of the current switches the sign 
of the field). But the z component of B cannot possibly depend on the direction of 
the current in the xy plane. (Think about it!) So B can only have a y component, 
and a quick check with your right hand should convince you that it points to the 
left above the plane and to the right below it. 

With this in mind, we draw a rectangular Amperian loop as shown in Fig. 5 .33, 
parallel to the y z plane and extending an equal distance above and below the 
surface. Applying Ampere's law, 

f B · dl = 2Bl = f.l,oienc = f.l,oKl, 

(one Bl comes from the top segment and the other from the bottom), so B = 
(/1o/2)K, or, more precisely, 

B _ { +(/1o/2)K y for z < 0, 
- -(f.l,o/2)K y for z > 0. 

(5.58) 

Notice that the field is independent of the distance from the plane, just like the 
electric field of a uniform surface charge (Ex. 2.5). 

Example 5.9. Find the magnetic field of a very long solenoid, consisting of n 
closely wound turns per unit length on a cylinder of radius R, each carrying a 
steady current I (Fig. 5.34). [The point of making the windings so close is that 
one can then pretend each turn is circular. If this troubles you (after all, there is 
a net current I in the direction of the solenoid's axis, no matter how tight the 
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I -

FIGURE5.34 FIGURE5.35 

winding), picture instead a sheet of aluminum foil wrapped around the cylin­
der, carrying the equivalent uniform surface current K = nl (Fig. 5.35). Or make 
a double winding, going up to one end and then-always in the same sense­
going back down again, thereby eliminating the net longitudinal current. But, in 
truth, this is all unnecessary fastidiousness, for the field inside a solenoid is huge 
(relatively speaking), and the field of the longitudinal current is at most a tiny 
refinement.] 

Solution 
First of all, what is the direction ofB? Could it have a radial component? No. For 
suppose Bs were positive; if we reversed the direction of the current, Bs would 
then be negative. But switching I is physically equivalent to turning the solenoid 
upside down, and that certainly should not alter the radial field. How about a 
"circumferential" component? No. For BI/J would be constant around an Amperian 
loop concentric with the solenoid (Fig. 5 .36), and hence 

f B · dl = BI/J(2ns) = f.Lolenc = 0, 

since the loop encloses no current. 
So the magnetic field of an infinite, closely wound solenoid runs parallel to the 

axis. From the right-hand rule, we expect that it points upward inside the solenoid 
and downward outside. Moreover, it certainly approaches zero as you go very far 

FIGURE5.36 

I 
I 
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1 

Amperianloops 

FIGURE5.37 
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away. With this in mind, let's apply Ampere's law to the two rectangular loops in 
Fig. 5.37. Loop llies entirely outside the solenoid, with its sides at distances a 

and b from the axis: 

f B · dl = [B(a)- B(b)]L = J.Lolenc = 0, 

so 

B(a) = B(b). 

Evidently the field outside does not depend on the distance from the axis. But we 
agreed that it goes to zero for large s. It must therefore be zero everywhere! (This 
astonishing result can also be derived from the Biot-Savart law, of course, but it's 
much more difficult. See Prob. 5.46.) 

As for loop 2, which is half inside and half outside, Ampere's law gives 

f B · dl = BL = J.Lolenc = J.Lonl L, 

where B is the field inside the solenoid. (The right side of the loop contributes 
nothing, since B = 0 out there.) Conclusion: 

{ 

J.Lonl z, 
B= 

0, 

inside the solenoid, 

outside the solenoid. 
(5.59) 

Notice that the field inside is uniform-it doesn't depend on the distance from 
the axis. In this sense the solenoid is to magnetostatics what the parallel-plate 
capacitor is to electrostatics: a simple device for producing strong uniform 
fields. 

Like Gauss's law, Ampere's law is always true (for steady currents), but it is 
not always useful. Only when the symmetry of the problem enables you to pull B 
outside the integral j B · dl can you calculate the magnetic field from Ampere's 
law. When it does work, it's by far the fastest method; when it doesn't, you have 
to fall back on the Biot-Savart law. The current configurations that can be handled 
by Ampere's law are 

1. Infinite straight lines (prototype: Ex. 5.7). 

2. Infinite planes (prototype: Ex. 5.8). 

3. Infinite solenoids (prototype: Ex. 5.9). 

4. Toroids (prototype: Ex. 5.10). 

The last of these is a surprising and elegant application of Ampere's law. As in 
Exs. 5.8 and 5.9, the hard part is figuring out the direction of the field (which we 
will now have done, once and for all, for each of the four geometries); the actual 
application of Ampere's law takes only one line. 
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Example 5.10. A toroidal coil consists of a circular ring, or "donut," around 
which a long wire is wrapped (Fig. 5.38). The winding is uniform and tight 
enough so that each turn can be considered a plane closed loop. The cross­
sectional shape of the coil is immaterial. I made it rectangular in Fig. 5.38 for 
the sake of simplicity, but it could just as well be circular or even some weird 
asymmetrical form, as in Fig. 5.39, as long as the shape remains the same all the 
way around the ring. In that case, it follows that the magnetic field of the toroid is 
circumferential at all points, both inside and outside the coil. 

FIGURE5.38 

Proof. According to the Biot-Savart law, the field at r due to the current element 
at r' is 

dB = /LO I X .£ dl'. 
4n 1-3 

We may as well put r in the xz plane (Fig. 5.39), so its Cartesian components are 
(x, 0, z), while the source coordinates are 

r' = (s' cos¢', s' sin¢', z'). 

z 

X 

FIGURE5.39 



5.3 The Divergence and Curl of B 239 

Then 

-t = (x- s' cosq/, -s' sin¢', z- z'). 

Since the current has no ¢ component, I= Iss+ lz z, or (in Cartesian coordi­
nates) 

I= Us cos¢', Is sin¢', lz). 

Accordingly, 

[ 

x 
I X -t = Is COS ¢' 

(x - s' cos¢') 

y 
Is sin¢' 

(-s' sin¢') 

z ] lz 

(z- z') 

[sin¢' {Is(Z- z') + s' lz)] X+ [ lz(X - s' cos¢') -Is cos l/>'(z- z')] y 

+ [ -lsx sin¢'] Z. 

But there is a symmetrically situated current element at r", with the same s', the 
same .z., the same dl', the same Is, and the same lz, but negative ¢' (Fig. 5.39). 
Because sin¢' changes sign, the x and z contributions from r' and r" cancel, 
leaving only a y term. Thus the field at r is in the y direction, and in general the 
field points in the ~ direction. D 

Now that we know the field is circumferential, determining its magnitude is 
ridiculously easy. Just apply Ampere's law to a circle of radius s about the axis of 
the toroid: 

B2n s = f.J-olenc• 

and hence 

{ 

f.J-oNI ~ 
B(r) = 2ns ' 

0, 

for points inside the coil, 
(5.60) 

for points outside the coil, 

where N is the total number of turns. 

Problem 5.14 A steady current I flows down a long cylindrical wire of radius a 
(Fig. 5.40). Find the magnetic field, both inside and outside the wire, if 

(a) The current is uniformly distributed over the outside surface of the wire. 

(b) The current is distributed in such a way that J is proportional to s, the distance 
from the axis. 
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I- y 

FIGURE5.40 FIGURE 5.41 

Problem 5.15 A thick slab extending from z = -a to z = +a (and infinite in the 
x andy directions) carries a uniform volume current J = J i: (Fig. 5.41). Find the 
magnetic field, as a function of z, both inside and outside the slab. 

Problem 5.16 Two long coaxial solenoids each carry current I, but in opposite 
directions, as shown in Fig. 5.42. The inner solenoid (radius a) has n 1 turns per 
unit length, and the outer one (radius b) has n2 • Find B in each of the three regions: 
(i) inside the inner solenoid, (ii) between them, and (iii) outside both. 

FIGURE5.42 FIGURE5.43 

Problem 5.17 A large parallel-plate capacitor with uniform surface charge a on the 
upper plate and -a on the lower is moving with a constant speed v, as shown in 
Fig. 5.43. 

(a) Find the magnetic field between the plates and also above and below them. 

(b) Find the magnetic force per unit area on the upper plate, including its direction. 

(c) At what speed v would the magnetic force balance the electrical force?15 

Problem 5.18 Show that the magnetic field of an infinite solenoid runs parallel to 
the axis, regardless of the cross-sectional shape of the coil, as long as that shape 
is constant along the length of the solenoid. What is the magnitude of the field, 
inside and outside of such a coil? Show that the toroid field (Eq. 5.60) reduces to 
the solenoid field, when the radius of the donut is so large that a segment can be 
considered essentially straight. 

Problem 5.19 In calculating the current enclosed by an Amperian loop, one must, 
in general, evaluate an integral of the form 

Ienc = l J · da. 

15See footnote to Prob. 5.13. 
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The trouble is, there are infinitely many surfaces that share the same boundary line. 
Which one are we supposed to use? 

5.3.4 • Comparison of Magnetostatics and Electrostatics 

The divergence and curl of the electrostatic field are 

{

V·E=_!_p, 
Eo 

v X E = 0, 

(Gauss's law); 

(no name). 

These are Maxwell's equations for electrostatics. Together with the boundary 
conditionE --+ 0 far from all charges, 16 Maxwell's equations determine the field, 
if the source charge density p is given; they contain essentially the same infor­
mation as Coulomb's law plus the principle of superposition. The divergence and 
curl of the magnetostatic field are 

{

v ·B = o, 

V x B = JLoJ, 

(no name); 

(Ampere's law). 

These are Maxwell's equations for magnetostatics. Again, together with the 
boundary condition B --+ 0 far from all currents, Maxwell's equations determine 
the magnetic field; they are equivalent to the Biot-Savart law (plus superposition). 
Maxwell's equations and the force law 

F = Q(E +v x B) 

constitute the most elegant formulation of electrostatics and magnetostatics. 
The electric field diverges away from a (positive) charge; the magnetic field 

line curls around a current (Fig. 5.44). Electric field lines originate on positive 
charges and terminate on negative ones; magnetic field lines do not begin or end 
anywhere-to do so would require a nonzero divergence. They typically form 
closed loops or extend out to infinityP To put it another way, there are no point 
sources for B, as there are for E; there exists no magnetic analog to electric 
charge. This is the physical content of the statement V · B = 0. Coulomb and 
others believed that magnetism was produced by magnetic charges (magnetic 
monopoles, as we would now call them), and in some older books you will still 
find references to a magnetic version of Coulomb's law, giving the force of at­
traction or repulsion between them. It was Ampere who first speculated that all 
magnetic effects are attributable to electric charges in motion (currents). As far 

16In those artificial problems where the charge (or current) extends to infinity-infinite planes, for 
example-symmetry considerations can sometimes take the place of boundary conditions. 
17 A third possibility turns out to be surprisingly common: they can form chaotic tangles. See 
M. Lieberherr, Am. J. Phys. 78, 1117 (2010). 
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(a) Electrostatic field 
of a point charge 

B 

(b) Magneto static field 
of a long wire 

FIGURE5.44 

as we know, Ampere was right; nevertheless, it remains an open experimental 
question whether magnetic monopoles exist in nature (they are obviously pretty 
rare, or somebody would have found one18 ), and in fact some recent elementary 
particle theories require them. For our purposes, though, B is divergenceless, and 
there are no magnetic monopoles. It takes a moving electric charge to produce a 
magnetic field, and it takes another moving electric charge to "feel" a magnetic 
field. 

Typically, electric forces are enormously larger than magnetic ones. That's not 
something intrinsic to the theory; it has to do with the sizes of the fundamen­
tal constants Eo and f.-to· In general, it is only when both the source charges and 
the test charge are moving at velocities comparable to the speed of light that the 
magnetic force approaches the electric force in strength. (Problems 5.13 and 5.17 
illustrate this rule.) How is it, then, that we notice magnetic effects at all? The 
answer is that both in the production of a magnetic field (Biot-Savart) and in its 
detection (Lorentz), it is the current that matters, and we can compensate for a 
smallish velocity by pouring huge amounts of charge down the wire. Ordinarily, 
this charge would simultaneously generate so large an electric force as to swamp 
the magnetic one. But if we arrange to keep the wire neutral, by embedding in it 
an equal quantity of opposite charge at rest, the electric field cancels out, leaving 
the magnetic field to stand alone. It sounds very elaborate, but of course this is 
precisely what happens in an ordinary current carrying wire. 

Problem 5.20 

(a) Find the density p of mobile charges in a piece of copper, assuming each atom 
contributes one free electron. [Look up the necessary physical constants.] 

(b) Calculate the average electron velocity in a copper wire 1 mm in diameter, 
carrying a current of 1 A. [Note: This is literally a snail's pace. How, then, can 
you carry on a long distance telephone conversation?] 

18 An apparent detection (B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982)) has never been reproduced­
and not for want of trying. For a delightful brief history of ideas about magnetism, see Chapter 1 in 
D. C. Mattis, The Theory of Magnetism (New York: Harper & Row, 1965). 
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(c) What is the force of attraction between two such wires, 1 em apart? 

(d) If you could somehow remove the stationary positive charges, what would the 
electrical repulsion force be? How many times greater than the magnetic force 
is it? 

Problem 5.21 Is Ampere's law consistent with the general rule (Eq. 1.46) that 
divergence-of-curl is always zero? Show that Ampere's law cannot be valid, in gen­
eral, outside magnetostatics. Is there any such "defect" in the other three Maxwell 
equations? 

Problem 5.22 Suppose there did exist magnetic monopoles. How would you mod­
ify Maxwell's equations and the force law to accommodate them? If you think there 
are several plausible options, list them, and suggest how you might decide experi­
mentally which one is right. 

5.4 • MAGNETIC VECTOR POTENTIAL 

5.4.1 • The Vector Potential 

Just as V x E = 0 permitted us to introduce a scalar potential (V) in electrostatics, 

E = -VV, 

so V · B = 0 invites the introduction of a vector potential A in magnetostatics: 

I B = v X A. I (5.61) 

The former is authorized by Theorem 1 (of Sect. 1.6.2), the latter by Theorem 2 
(The proof of Theorem 2 is developed in Prob. 5.31). The potential formulation 
automatically takes care of V · B = 0 (since the divergence of a curl is always 
zero); there remains Ampere's law: 

v x B = v x (V x A) = v (V . A) - V 2 A = JLoJ. (5.62) 

Now, the electric potential had a built-in ambiguity: you can add to V any 
function whose gradient is zero (which is to say, any constant), without altering 
the physical quantity E. Likewise, you can add to A any function whose curl 
vanishes (which is to say, the gradient of any scalar), with no effect on B. We can 
exploit this freedom to eliminate the divergence of A: 

I V·A=O. I (5.63) 

To prove that this is always possible, suppose that our original potential, A0, 

is not divergenceless. If we add to it the gradient of). (A = A0 + V ')..), the new 
divergence is 

V ·A= V · A 0 + V 2
).. 
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We can accommodate Eq. 5.63, then, if a function A can be found that satisfies 

But this is mathematically identical to Poisson's equation (2.24), 

with V · A0 in place of p /Eo as the "source." And we know how to solve Poisson's 
equation-that's what electrostatics is all about ("given the charge distribution, 
find the potential"). In particular, if p goes to zero at infinity, the solution is 
Eq. 2.29: 

V= -- - dr, 1 f P 1 

4nEo Jt. 

and by the same token, if V · A0 goes to zero at infinity, then 

1 jV·Ao 1 A= - --dr. 
4n Jt. 

If V · Ao does not go to zero at infinity, we'll have to use other means to dis­
cover the appropriate A, just as we get the electric potential by other means when 
the charge distribution extends to infinity. But the essential point remains: It is 
always possible to make the vector potential divergenceless. To put it the other 
way around: the definition B = V x A specifies the curl of A, but it doesn't say 
anything about the divergence-we are at liberty to pick that as we see fit, and 
zero is ordinarily the simplest choice. 

With this condition on A, Ampere's law (Eq. 5.62) becomes 

(5.64) 

This again is nothing but Poisson's equation-or rather, it is three Poisson's equa­
tions, one for each Cartesian 19 component. Assuming J goes to zero at infinity, 
we can read off the solution: 

A(r) = J-to j J(r
1

) dr1 • 

4n Jt. 
(5.65) 

19In Cartesian coordinates, V2 A= (V2 Ax)i + (V2 Ay)Y + (V2 Az)Z, so Eq. 5.64 reduces to V2 Ax = 
-J-Lolx, V2 Ay = -J-Loly, and V2 Az = -J-Lolz. In curvilinear coordinates the unit vectors them­
selves are functions of position, and must be differentiated, so it is not the case, for example, that 
V2 A, = - J-Lo J,. Remember that even if you plan to evaluate integrals such as 5.65 using curvilinear 
coordinates, you must first express J in terms of its Cartesian components (see Sect. 1.4.1). 
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For line and surface currents, 

A= J.to J! dl' = J.tol J ..!_ dl'; 
4n ~J- 4n ~J-

(5.66) 

(If the current does not go to zero at infinity, we have to find other ways to get 
A; some of these are explored in Ex. 5.12 and in the problems at the end of the 
section.) 

It must be said that A is not as useful as V. For one thing, it's still a vector, 
and although Eqs. 5.65 and 5.66 are somewhat easier to work with than the Biot­
Savart law, you still have to fuss with components. It would be nice if we could 
get away with a scalar potential 

B = -VU, (5.67) 

but this is incompatible with Ampere's law, since the curl of a gradient is always 
zero. (A magnetostatic scalar potential can be used, if you stick scrupulously 
to simply-connected, current-free regions, but as a theoretical tool, it is of limited 
interest. See Prob. 5.29.) Moreover, since magnetic forces do no work, A does 
not admit a simple physical interpretation in terms of potential energy per unit 
charge. (In some contexts it can be interpreted as momentum per unit charge. 20) 

Nevertheless, the vector potential has substantial theoretical importance, as we 
shall see in Chapter 10. 

Example 5.11. A spherical shell of radius R, carrying a uniform surface charge 
a, is set spinning at angular velocity (J). Find the vector potential it produces at 
point r (Fig. 5.45). 

Solution 
It might seem natural to set the polar axis along w, but in fact the integration 
is easier if we let r lie on the z axis, so that (J) is tilted at an angle 1/f. We may 
as well orient the x axis so that w lies in the xz plane, as shown in Fig. 5.46. 
According to Eq. 5.66, 

z 
ro 

y 

FIGURE5.45 FIGURE5.46 

20M. D. Semon and J. R. Taylor, Am. J. Phys. 64, 1361 (1996). 
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A(r) = 11-o J K(r') da', 
4rr ..z. 

where K = av, ..z. = ,J R2 + r2 - 2Rr cos()', and da' = R2 sin()' dO' d¢'. Now 
the velocity of a point r' in a rotating rigid body is given by m x r'; in this case, 

i y 
V=(I)Xf

1
= (J) sin 1/1 0 

R sin()' cos¢' R sin()' sin¢' 

z 
(J) cos 1/1 
R cosO' 

= R(J) [- (cos 1/1 sin()' sin¢') i + (cos 1/1 sin()' cos¢'- sin 1/1 cosO') y 

+ (sin 1/1 sin()' sin¢') z] . 

Notice that each of these terms, save one, involves either sin¢' or cos¢'. Since 

fo 2
'T( sin¢' d¢' = fo 2

'T( cos¢' d¢' = 0, 

such terms contribute nothing. There remains 

A(r) = 
J-toR 3a(J)sin1/f (1'T( cosO'sinO' ')A d() y. 

2 o ..j R2 + r2 - 2Rr cos()' 

Letting u = cos ()', the integral becomes 

+1 2 2 1+1 1 u (R + r + Rru) 1 2 2 --;:::::::;:::=::::;::::::::::::::;::::::::== du = 2 2 v R + r - 2Rru 
-1 ,J R2 + r2 - 2Rru 3R r -1 

1 
= - - 2 2 [(R2 + r2 + Rr)IR- rl 

3R r 
-(R2 + r2 - Rr)(R + r)]. 

If the point r lies inside the sphere, then R > r, and this expression reduces to 
(2rj3R2); if r lies outside the sphere, so that R < r, it reduces to (2Rj3r2). Not­
ing that ((I) x r) = -(J)r sin 1/1 y, we have, finally, 

{ 

11-o:a ((I) x r), for points inside the sphere, 
A(r) = R4 (5.68) 

11-o a 
--

3 
- ((1) x r), for points outside the sphere. 

3r 

Having evaluated the integral, I revert to the "natural" coordinates of Fig. 5.45, 
in which (I) coincides with the z axis and the point r is at (r, (), ¢ ): 

A(r,O,ifJ) = { 

11-oR(J)a A 

3 
r sinO q,, 

11-o R4 (J)a sin () A 

3 r 2 q,, 

(r:::::; R), 
(5.69) 

(r 2: R). 
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Curiously, the field inside this spherical shell is uniform: 

2JLoRwa A A 2 A 2 
B = V x A= 

3 
(cosO r- sinO 0) = 3/1-oCT Rwz = 3/1-oCT Rw. (5.70) 

Example 5.12. Find the vector potential of an infinite solenoid with n turns per 
unit length, radius R, and current I. 

Solution 
This time we cannot use Eq. 5.66, since the current itself extends to infinity. But 
here's a cute method that does the job. Notice that 

fA · dl = f (V x A) · da = f B · da = <1>, (5.71) 

where <I> is the flux of B through the loop in question. This is reminiscent of 
Ampere's law in integral form (Eq. 5.57), 

f B · dl = J.Lolenc· 

In fact, it's the same equation, with B--+ A and J.Lolenc --+ <1>. If symmetry per­
mits, we can determine A from <I> in the same way we got B from Ienc• in 
Sect. 5.3.3. The present problem (with a uniform longitudinal magnetic field 
J.Lonl inside the solenoid and no field outside) is analogous to the Ampere's 
law problem of a fat wire carrying a uniformly distributed current. The vector 
potential is "circumferential" (it mimics the magnetic field in the analog); using a 
circular "Amperian loop" at radius s inside the solenoid, we have 

fA· dl = A(2ns) = J B · da = J.Lonl(ns2
), 

so 

J.Lonl A 

A= -
2

- sfb, fors::::; R. (5.72) 

For an Amperian loop outside the solenoid, the flux is 

since the field only extends out to R. Thus 

A= J.Lonl R
2

;;. fors >_ R. 
2 s .,, (5.73) 

If you have any doubts about this answer, check it: Does V x A= B? Does 
V · A = 0? If so, we're done. 
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Typically, the direction of A mimics the direction of the current. For instance, 
both were azimuthal in Exs. 5.11 and 5.12. Indeed, if all the current flows in 
one direction, then Eq. 5.65 suggests that A must point that way too. Thus the 
potential of a finite segment of straight wire (Pro b. 5.23) is in the direction of the 
current. Of course, if the current extends to infinity you can't use Eq. 5.65 in the 
first place (see Probs. 5.26 and 5.27). Moreover, you can always add an arbitrary 
constant vector to A-this is analogous to changing the reference point for V, and 
it won't affect the divergence or curl of A, which is all that matters (in Eq. 5.65 
we have chosen the constant so that A goes to zero at infinity). In principle you 
could even use a vector potential that is not divergenceless, in which case all bets 
are off. Despite these caveats, the essential point remains: Ordinarily the direction 
of A will match the direction of the current. 

Problem 5.23 Find the magnetic vector potential of a finite segment of straight wire 
carrying a current I. [Put the wire on the z axis, from z1 to z2, and use Eq. 5.66.] 
Check that your answer is consistent with Eq. 5.37. 

Problem 5.24 What current density would produce the vector potential, A = k ~ 
(where k is a constant), in cylindrical coordinates? 

Problem 5.25 If B is uniform, show that A(r) = -!(r x B) works. That is, check 
that V · A = 0 and V x A = B. Is this result unique, or are there other functions 
with the same divergence and curl? 

Problem 5.26 

(a) By whatever means you can think of (short of looking it up), find the vector 
potential a distance s from an infinite straight wire carrying a current I. Check 
that V · A = 0 and V x A = B. 

(b) Find the magnetic potential inside the wire, if it has radius R and the current is 
uniformly distributed. 

Problem 5.27 Find the vector potential above and below the plane surface current 
in Ex. 5.8. 

Problem 5.28 

(a) Check that Eq. 5.65 is consistent with Eq. 5.63, by applying the divergence. 

(b) Check that Eq. 5.65 is consistent with Eq. 5.47, by applying the curl. 

(c) Check that Eq. 5.65 is consistent with Eq. 5.64, by applying the Laplacian. 

Problem 5.29 Suppose you want to define a magnetic scalar potential U (Eq. 5.67) 
in the vicinity of a current-carrying wire. First of all, you must stay away from the 
wire itself (there V x B f:. 0); but that's not enough. Show, by applying Ampere's 
law to a path that starts at a and circles the wire, returning to b (Fig. 5.47), that the 
scalar potential cannot be single-valued (that is, U (a) f:. U (b), even if they repre­
sent the same physical point). As an example, find the scalar potential for an infinite 
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FIGURE5.47 

straight wire. (To avoid a multivalued potential, you must restrict yourself to simply­
connected regions that remain on one side or the other of every wire, never allowing 
you to go all the way around.) 

Problem 5.30 Use the results of Ex. 5.11 to find the magnetic field inside a solid 
sphere, of uniform charge density p and radius R, that is rotating at a constant 
angular velocity lO. 

Problem 5.31 

(a) Complete the proof of Theorem 2, Sect. 1.6.2. That is, show that any diver­
genceless vector field F can be written as the curl of a vector potential A. What 
you have to do is find Ax, Ay. and Az such that (i) aAzfay- aAyjaz = Fx; 
(ii) aAxfaz- aAzfax = Fy; and (iii) aAyjax - aAxfay = Fz. Here's one 
way to do it: Pick Ax = 0, and solve (ii) and (iii) for Ay and Az. Note that 
the "constants of integration" are themselves functions of y and z-they're 
constant only with respect to x. Now plug these expressions into (i), and use 
the fact that V · F = 0 to obtain 

Ay =fox Fz(x', y, z) dx'; Az =loy Fx(O, y', z) dy' -fox Fy(x', y, z) dx'. 

(b) By direct differentiation, check that the A you obtained in part (a) satisfies 
V x A= F. Is A divergenceless? [This was a very asymmetrical construc­
tion, and it would be surprising if it were-although we know that there exists 
a vector whose curl is F and whose divergence is zero.] 

(c) As an example, let F = y x + z y + x Z. Calculate A, and confirm that 
V x A = F. (For further discussion, see Prob. 5.53.) 

5.4.2 • Boundary Conditions 

In Chapter 2, I drew a triangular diagram to summarize the relations among the 
three fundamental quantities of electrostatics: the charge density p, the electric 
field E, and the potential V. A similar figure can be constructed for magnetostatics 
(Fig. 5.48), relating the current density J, the field B, and the potential A. There is 
one "missing link" in the diagram: the equation for A in terms of B. It's unlikely 
you would ever need such a formula, but in case you are interested, see Probs. 5.52 
and 5.53. 
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FIGURE5.48 

Just as the electric field suffers a discontinuity at a surface charge, so the mag­
netic field is discontinuous at a surface current. Only this time it is the tangential 
component that changes. For if we apply Eq. 5.50, in integral form, 

f B ·da= 0, 

to a wafer-thin pillbox straddling the surface (Fig. 5.49), we get 

(5.74) 

As for the tangential components, an Amperian loop running perpendicular to the 
current (Fig. 5.50) yields 

f B · dl = ( B!bove- B~elow) l = JLolenc = JLoKl, 

or 

II II 
B above - Bbelow = /LO K · (5.75) 

FIGURE5.49 



5.4 Magnetic Vector Potential 251 

FIGURE5.50 

Thus the component of B that is parallel to the surface but perpendicular to the 
current is discontinuous in the amount f.Lo K. A similar Amperian loop running 
parallel to the current reveals that the parallel component is continuous. These 
results can be summarized in a single formula: 

Babove- Bbelow = f.Lo(K X ii), (5.76) 

where ii is a unit vector perpendicular to the surface, pointing ''upward." 
Like the scalar potential in electrostatics, the vector potential is continuous 

across any boundary: 

Aabove =Abelow. (5.77) 

for V · A = 0 guarantees21 that the normal component is continuous; and 
V x A = B, in the form 

fA· dl = J B · da = <1>, 

means that the tangential components are continuous (the flux through an Am­
perian loop of vanishing thickness is zero). But the derivative of A inherits the 
discontinuity of B: 

aAabove aAbetow 
--- - --- = -JLoK. an an (5.78) 

Problem 5.32 

(a) Check Eq. 5.76 for the configuration in Ex. 5.9. 

(b) Check Eqs. 5.77 and 5.78 for the configuration in Ex. 5.11. 

Problem 5.33 Prove Eq. 5.78, using Eqs. 5.63, 5.76, and 5.77. [Suggestion: I'd set 
up Cartesian coordinates at the surface, with z perpendicular to the surface and x 
parallel to the current.] 

21 Note that Eqs. 5.77 and 5.78 presuppose that A is divergenceless. 
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5.4.3 • Multipole Expansion of the Vector Potential 

If you want an approximate formula for the vector potential of a localized current 
distribution, valid at distant points, a multipole expansion is in order. Remember: 
the idea of a multipole expansion is to write the potential in the form of a power 
series in 1/r, where r is the distance to the point in question (Fig. 5.51); if r is 
sufficiently large, the series will be dominated by the lowest nonvanishing contri­
bution, and the higher terms can be ignored. As we found in Sect. 3.4.1 (Eq. 3.94), 

1 1 1 
00 (r 1 )n - = = - - Pn(cosa) 

lz. Jr 2 + (r1
)
2 - 2rr1 cos a r ~ r ' 

(5.79) 

where a is the angle between r and r'. Accordingly, the vector potential of a 
current loop can be written 

A(r) = J.Lol J. ..!.dl1 = J.Lol ~ __..!._
1 

J.(r 1)nPn(cosa)dl1, 

4rr j 1z. 4n ~ rn+ j 
n=O 

(5.80) 

or, more explicitly: 

J.Lol [ 1 f 1 f A(r) = - - dl1 + 2 r 1 cosadl1 

4rr r r 
(5.81) 

1 J. 1 2 (3 2 1) 1 ] + r 3 j (r ) 2 cos a - 2 dl + . . . . 

As in the multi pole expansion of V, we call the first term (which goes like 1 j r) the 
monopole term, the second (which goes like 1jr2

) dipole, the third quadrupole, 
and so on. 

FIGURES.Sl 
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Now, the magnetic monopole term is always zero, for the integral is just the 
total vector displacement around a closed loop: 

f dl
1 

= 0. (5.82) 

This reflects the fact that there are no magnetic monopoles in nature (an assump­
tion contained in Maxwell's equation V · B = 0, on which the entire theory of 
vector potential is predicated). 

In the absence of any monopole contribution, the dominant term is the dipole 
(except in the rare case where it, too, vanishes): 

A j.lQ/ f I d I j.lQI f A I d I dip(r) = --
2 

r cosa I= --
2 

(r·r) I. 
4nr 4nr 

(5.83) 

This integral can be rewritten in a more illuminating way if we invoke Eq. 1.1 08, 
withe= r: 

Then 

f (r. r') dl1 
= -r x J da

1
• 

J.lO m X r 
Adi (r) = ---, 

P 4n r2 

where m is the magnetic dipole moment: 

(5.84) 

(5.85) 

(5.86) 

Here a is the "vector area" of the loop (Pro b. 1.62); if the loop is flat, a is the 
ordinary area enclosed, with the direction assigned by the usual right-hand rule 
(fingers in the direction of the current). 

Example 5.13. Find the magnetic dipole moment of the "bookend-shaped" loop 
shown in Fig. 5.52. All sides have length w, and it carries a current I. 

y 

FIGURE5.52 
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Solution 
This wire could be considered the superposition of two plane square loops 
(Fig. 5.53). The "extra" sides (AB) cancel when the two are put together, since 
the currents flow in opposite directions. The net magnetic dipole moment is 

m = Iw2 y + Iw2 z; 
its magnitude is ../ii w2

, and it points along the 45° line z = y. 

s--w--

+ L"J! 
A I 

FIGURE5.53 

It is clear from Eq. 5.86 that the magnetic dipole moment is independent of 
the choice of origin. You may remember that the electric dipole moment is in­
dependent of the origin only when the total charge vanishes (Sect. 3.4.3). Since 
the magnetic monopole moment is always zero, it is not really surprising that the 
magnetic dipole moment is always independent of origin. 

Although the dipole term dominates the multipole expansion (unless m = 0) 
and thus offers a good approximation to the true potential, it is not ordinarily the 
exact potential; there will be quadrupole, octopole, and higher contributions. You 
might ask, is it possible to devise a current distribution whose potential is "pure" 
dipole-for which Eq. 5.85 is exact? Well, yes and no: like the electrical analog, 
it can be done, but the model is a bit contrived. To begin with, you must take an 
infinitesimally small loop at the origin, but then, in order to keep the dipole mo­
ment finite, you have to crank the current up to infinity, with the product m = I a 
held fixed. In practice, the dipole potential is a suitable approximation whenever 
the distance r greatly exceeds the size of the loop. 

The magnetic field of a (perfect) dipole is easiest to calculate if we put m at 
the origin and let it point in the z-direction (Fig. 5.54). According to Eq. 5.85, the 
potential at point (r, (), ¢) is 

z 

y 

X 

FIGURE5.54 
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z z 

y 

(a) Field of a "pure" dipole (b) Field of a "physical" dipole 

and hence 

FIGURE5.55 

A 
f.-tom sin();;. 

di (r) = ---- .,, 
P 4rr r 2 

J-tom A 

Bdip(r) = v X A= --3 (2cos() r +sin() 0). 
4rrr 
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y 

(5.87) 

(5.88) 

Surprisingly, this is identical in structure to the field of an electric dipole 
(Eq. 3.103)! (Up close, however, the field of a physical magnetic dipole-a 
small current loop-looks quite different from the field of a physical electric 
dipole-plus and minus charges a short distance apart. Compare Fig. 5.55 with 
Fig. 3.37.) 

• Problem 5.34 Show that the magnetic field of a dipole can be written in coordinate­
free form: 

Bm (r) = J.Lo _.!._ [3(m · r)r- m]. 
P 4rr r 3 

(5.89) 

Problem 5.35 A circular loop of wire, with radius R, lies in the xy plane (centered 
at the origin) and carries a current I running counterclockwise as viewed from the 
positive z axis. 

(a) What is its magnetic dipole moment? 

(b) What is the (approximate) magnetic field at points far from the origin? 

(c) Show that, for points on the z axis, your answer is consistent with the exact field 
(Ex. 5.6), when z » R. 

Problem 5.36 Find the exact magnetic field a distance z above the center of a square 
loop of side w, carrying a current I. Verify that it reduces to the field of a dipole, 
with the appropriate dipole moment, when z » w. 
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Problem 5.37 

(a) A phonograph record of radius R, carrying a uniform surface charge u, is rotat­
ing at constant angular velocity w. Find its magnetic dipole moment. 

(b) Find the magnetic dipole moment of the spinning spherical shell in Ex. 5.11. 
Show that for points r > R the potential is that of a perfect dipole. 

Problem 5.38 I worked out the multipole expansion for the vector potential of a 
line current because that's the most common type, and in some respects the easiest 
to handle. For a volume current J: 

(a) Write down the multipole expansion, analogous to Eq. 5.80. 

(b) Write down the monopole potential, and prove that it vanishes. 

(c) Using Eqs. 1.107 and 5.86, show that the dipole moment can be written 

m = ~ j (r x J) d-r. 

More Problems on Chapter 5 

(5.90) 

Problem 5.39 Analyze the motion of a particle (charge q, mass m) in the magnetic 
field of a long straight wire carrying a steady current I. 

(a) Is its kinetic energy conserved? 

(b) Find the force on the particle, in cylindrical coordinates, with I along the z axis. 

(c) Obtain the equations of motion. 

(d) Suppose i is constant. Describe the motion. 

Problem 5.40 It may have occurred to you that since parallel currents attract, the 
current within a single wire should contract into a tiny concentrated stream along 
the axis. Yet in practice the current typically distributes itself quite uniformly over 
the wire. How do you account for this? If the positive charges (density P+) are 
"nailed down," and the negative charges (density p_) move at speed v (and none 
of these depends on the distance from the axis), show that p_ = -p+y 2 , where 
y = 1 I J 1 - (vIc )2 and c 2 = 1 I J-LoEo. If the wire as a whole is neutral, where is the 
compensating charge located?22 [Notice that for typical velocities (see Prob. 5.20), 
the two charge densities are essentially unchanged by the current (since y R:l 1). In 
plasmas, however, where the positive charges are also free to move, this so-called 
pinch effect can be very significant.] 

Problem 5.41 A current I flows to the right through a rectangular bar of conducting 
material, in the presence of a uniform magnetic field B pointing out of the page 
(Fig. 5.56). 

(a) If the moving charges are positive, in which direction are they deflected by 
the magnetic field? This deflection results in an accumulation of charge on the 

22For further discussion, see D. C. Gabuzda, Am. J. Phys. 61, 360 (1993). 
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upper and lower surfaces of the bar, which in turn produces an electric force to 
counteract the magnetic one. Equilibrium occurs when the two exactly cancel. 
(This phenomenon is known as the Hall effect.) 

(b) Find the resulting potential difference (the Hall voltage) between the top and 
bottom of the bar, in terms of B, v (the speed of the charges), and the relevant 
dimensions of the bar. 23 

(c) How would your analysis change if the moving charges were negative? [The 
Hall effect is the classic way of determining the sign of the mobile charge 
carriers in a material.] 

L&J 
B I 

FIGURE 5.56 FIGURE5.57 

Problem 5.42 A plane wire loop of irregular shape is situated so that part of it is 
in a uniform magnetic field B (in Fig. 5.57 the field occupies the shaded region, 
and points perpendicular to the plane of the loop). The loop carries a current I. 
Show that the net magnetic force on the loop is F = I B w, where w is the chord 
subtended. Generalize this result to the case where the magnetic field region itself 
has an irregular shape. What is the direction of the force? 

Field region 

FIGURE5.58 

Problem 5.43 A circularly symmetrical magnetic field (B depends only on the dis­
tance from the axis), pointing perpendicular to the page, occupies the shaded region 
in Fig. 5.58. If the total flux (j B · da) is zero, show that a charged particle that 
starts out at the center will emerge from the field region on a radial path (provided 

23The potential within the bar makes an interesting boundary-value problem. See M. J. Moelter, 
J. Evans, G. Elliot, and M. Jackson, Am. J. Phys. 66, 668 (1998). 
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it escapes at all). On the reverse trajectory, a particle fired at the center from outside 
will hit its target (if it has sufficient energy), though it may follow a weird route 
getting there. [Hint: Calculate the total angular momentum acquired by the particle, 
using the Lorentz force law.] 

Problem 5.44 Calculate the magnetic force of attraction between the northern and 
southern hemispheres of a spinning charged spherical shell (Ex. 5.11). [Answer: 
(Jr J4)t-Loa2w2 R4 .] 

Problem 5.45 Consider the motion of a particle with mass m and electric charge q. 
in the field of a (hypothetical) stationary magnetic monopole qm at the origin: 

B = 1-Lo qm r. 
4Jr r 2 

(a) Find the acceleration of q., expressing your answer in terms of q, qm, m, r (the 
position of the particle), and v (its velocity). 

(b) Show that the speed v = I vi is a constant of the motion. 

(c) Show that the vector quantity 

Q :: m(r X V) - /-Loqeqm r 
41f 

is a constant of the motion. [Hint: differentiate it with respect to time, and 
prove-using the equation of motion from (a)-that the derivative is zero.] 

(d) Choosing spherical coordinates (r, (), r/J), with the polar (z) axis along Q, 

(i) calculate Q · ~. and show that () is a constant of the motion (so q. moves 
on the surface of a cone-something Poincare first discovered in 1896)24

; 

(ii) calculate Q . r, and show that the magnitude of Q is 

Q = 1-Lo I q.qm I ; 
4Jr cos() 

(iii) calculate Q · 0, show that 

drjJ k 
dt r2 ' 

and determine the constant k. 

(e) By expressing v2 in spherical coordinates, obtain the equation for the trajectory, 
in the form 

dr 
drjJ = f(r) 

(that is: determine the function f(r)). 

(t) Solve this equation for r(r/J). 

24In point of fact, the charge follows a geodesic on the cone. The original paper is H. Poincare, 
Comptes rendus de l'Academie des Sciences 123, 530 (1896); for a more modem treatment, see B. 
Rossi and S. Olbert, Introduction to the Physics of Space (New York: McGraw-Hill, 1970). 
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Problem 5.46 Use the Biot-Savart law (most conveniently in the form of Eq. 5.42 
appropriate to surface currents) to find the field inside and outside an infinitely long 
solenoid of radius R, with n turns per unit length, carrying a steady current I. 

d 

FIGURE5.59 

Problem 5.47 The magnetic field on the axis of a circular current loop (Eq. 5.41) 
is far from uniform (it falls off sharply with increasing z). You can produce a more 
nearly uniform field by using two such loops a distanced apart (Fig. 5.59). 

(a) Find the field (B) as a function of z, and show that aBjaz is zero at the point 
midway between them (z = 0). 

(b) If you pick d just right, the second derivative of B will also vanish at the mid­
point. This arrangement is known as a Helmholtz coil; it's a convenient way 
of producing relatively uniform fields in the laboratory. Determine d such that 
a2 B jaz2 = 0 at the midpoint, and find the resulting magnetic field at the center. 
[Answer: 8f.1,01 j5,JSR] 

Problem 5.48 Use Eq. 5.41 to obtain the magnetic field on the axis of the rotating 
disk in Prob. 5.37(a). Show that the dipole field (Eq. 5.88), with the dipole moment 
you found in Prob. 5.37, is a good approximation if z » R. 

Problem 5.49 Suppose you wanted to find the field of a circular loop (Ex. 5.6) at 
a point r that is not directly above the center (Fig. 5.60). You might as well choose 
your axes so that r lies in the yz plane at (0, y, z). The source point is (R cos¢', 
R sin¢', 0), and ¢' runs from 0 to 2Jr. Set up the integrals25 from which you could 
calculate Bx, By. and Bz, and evaluate Bx explicitly. 

Problem 5.50 Magnetostatics treats the "source current" (the one that sets up the 
field) and the "recipient current" (the one that experiences the force) so asymmet­
rically that it is by no means obvious that the magnetic force between two current 
loops is consistent with Newton's third law. Show, starting with the Biot-Savart law 
(Eq. 5.34) and the Lorentz force law (Eq. 5.16), that the force on loop 2 due to 
loop 1 (Fig. 5.61) can be written as 

(5.91) 

25These are elliptic integrals-seeR. H. Good, Eur. J. Phys. 22, 119 (2001). 
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y 

FIGURE5.60 FIGURE5.61 

In this form, it is clear that F 2 = - F 1, since ..£ changes direction when the roles of 
1 and 2 are interchanged. (If you seem to be getting an "extra" term, it will help to 
note that dlz · ..£ = d!J...) 

Problem 5.51 Consider a plane loop of wire that carries a steady current I; we 
want to calculate the magnetic field at a point in the plane. We might as well take 
that point to be the origin (it could be inside or outside the loop). The shape of the 
wire is given, in polar coordinates, by a specified function r(()) (Fig. 5.62). 

FIGURE5.62 

(a) Show that the magnitude of the field is26 

B = J.Lol f d(). 
4rr r 

(5.92) 

[Hint: Start with the Biot-Savart law; note that""= -r, and dl X r points per­
pendicular to the plane; ShOW that ldl X rl = d/ Sin f/J = r d() .] 

(b) Test this formula by calculating the field at the center of a circular loop. 

(c) The "lituus spiral" is defined by 

a 
r(()) = ../8' (0 < () ~ 2rr) 

(for some constant a). Sketch this figure, and complete the loop with a straight 
segment along the x axis. What is the magnetic field at the origin? 

26J. A. Miranda, Am. J. Phys. 68, 254 (2000). 
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(d) For a conic section with focus at the origin, 

r(O) = p , 
1 + ecos() 

where pis the semilatus rectum (they intercept) and e is the eccentricity (e = 0 
for a circle, 0 < e < 1 for an ellipse, e = 1 for a parabola). Show that the field is 

B = f.Lol 
2p 

regardless of the eccentricity. 27 

Problem 5.52 

(a) One way to fill in the "missing link" in Fig. 5.48 is to exploit the analogy be­
tween the defining equations for A (viz. V · A = 0, V x A = B) and Maxwell's 
equations for B (viz. V · B = 0, V x B = f.LoJ). Evidently A depends on B in 
exactly the same way that B depends on f.LoJ (to wit: the Biot-Savart law). Use 
this observation to write down the formula for A in terms of B. 

(b) The electrical analog to your result in (a) is 

1 I E(r') · ,£ , 
V(r) = - - ---d-e. 

4Jr ""2 
Derive it, by exploiting the appropriate analogy. 

Problem 5.53 Another way to fill in the "missing link" in Fig. 5.48 is to look for a 
magnetostatic analog to Eq. 2.21. The obvious candidate would be 

A(r) = J: (B x dl). 

(a) Test this formula for the simplest possible case-uniform B (use the origin as 
your reference point). Is the result consistent with Prob. 5.25? You could cure 
this problem by throwing in a factor of k, but the flaw in this equation runs 
deeper. 

(b) Show that J (B x dl) is not independent of path, by calculating f (B x dl) 
around the rectangular loop shown in Fig. 5.63. 

----w----

I 

FIGURE5.63 

27C. Christodoulides, Am. J. Phys. 77, 1195 (2009). 
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As far as I know, 28 the best one can do along these lines is the pair of equations 

(i) V(r) = -r · J0
1 

E(A.r) dA., 

(ii) A(r) = -r x f0
1 

A.B(A.r) dA.. 

[Equation (i) amounts to selecting a radial path for the integral in Eq. 2.21; 
equation (ii) constitutes a more "symmetrical" solution to Prob. 5.31.] 

(c) Use (ii) to find the vector potential for uniform B. 

(d) Use (ii) to find the vector potential of an infinite straight wire carrying a steady 
current I. Does (ii) automatically satisfy V · A = 0? [Answer: (JLol J2rr: s) 
(zS- sz)] 

Problem 5.54 

(a) Construct the scalar potential U (r) for a "pure" magnetic dipole m. 

(b) Construct a scalar potential for the spinning spherical shell (Ex. 5.11). [Hint: 
for r > R this is a pure dipole field, as you can see by comparing Eqs. 5.69 and 
5.87.] 

(c) Try doing the same for the interior of a solid spinning sphere. [Hint: If you 
solved Pro b. 5.30, you already know the field; set it equal to - V U, and solve 
for U. What's the trouble?] 

Problem 5.55 Just as V · B = 0 allows us to express B as the curl of a vector poten­
tial (B = V x A), so V · A = 0 permits us to write A itself as the curl of a "higher" 
potential: A = V x W. (And this hierarchy can be extended ad infinitum.) 

(a) Find the general formula for W (as an integral over B), which holds when 
B ~ 0 atoo. 

(b) Determine W for the case of a uniform magnetic field B. [Hint: see Prob. 5.25.] 

(c) Find Winside and outside an infinite solenoid. [Hint: see Ex. 5.12.] 

Problem 5.56 Prove the following uniqueness theorem: If the current density J is 
specified throughout a volume V, and either the potential A or the magnetic field B 
is specified on the surface S bounding V, then the magnetic field itself is uniquely 
determined throughout V. [Hint: First use the divergence theorem to show that 

j {(V xU)· (V x V)- U · [V x (V x V)]} d-e= f [U x (V x V)] · da, 

for arbitrary vector functions U and V.] 

Problem 5.57 A magnetic dipole m = -m0 z is situated at the origin, in an other­
wise uniform magnetic field B = B0 z. Show that there exists a spherical surface, 
centered at the origin, through which no magnetic field lines pass. Find the radius 
of this sphere, and sketch the field lines, inside and out. 

28R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds, Section 4.5 (New York: Macmillan, 
1968). 
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Problem 5.58 A thin uniform donut, carrying charge Q and mass M, rotates about 
its axis as shown in Fig. 5.64. 

(a) Find the ratio of its magnetic dipole moment to its angular momentum. This is 
called the gyromagnetic ratio (or magnetomechanical ratio). 

(b) What is the gyromagnetic ratio for a uniform spinning sphere? [This requires 
no new calculation; simply decompose the sphere into infinitesimal rings, and 
apply the result of part (a).] 

(c) According to quantum mechanics, the angular momentum of a spinning elec­
tron is tli, where h is Planck's constant. What, then, is the electron's mag­
netic dipole moment, in A· m2? [This semiclassical value is actually off by a 
factor of almost exactly 2. Dirac's relativistic electron theory got the 2 right, 
and Feynman, Schwinger, and Tomonaga later calculated tiny further correc­
tions. The determination of the electron's magnetic dipole moment remains the 
finest achievement of quantum electrodynamics, and exhibits perhaps the most 
stunningly precise agreement between theory and experiment in all of physics. 
Incidentally, the quantity (ehj2m), where e is the charge of the electron and m 
is its mass, is called the Bohr magneton.] 

z 

FIGURE5.64 

• Problem 5.59 

(a) Prove that the average magnetic field, over a sphere of radius R, due to steady 
currents inside the sphere, is 

JLo2m 
Bave = 41r Jii• (5.93) 

where m is the total dipole moment of the sphere. Contrast the electrostatic 
result, Eq. 3.105. [This is tough, so I'll give you a start: 

Bave = ~~Bdr. 
3rr R3 

Write Bas (V x A), and apply Prob. 1.61(b). Now put in Eq. 5.65, and do the 
surface integral first, showing that 

f 1 4 I 

-;;; da = 3rrr 

(see Fig. 5.65). Use Eq. 5.90, if you like.] 

(b) Show that the average magnetic field due to steady currents outside the sphere 
is the same as the field they produce at the center. 
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FIGURE5.65 

Problem 5.60 A uniformly charged solid sphere of radius R carries a total charge 
Q, and is set spinning with angular velocity w about the z axis. 

(a) What is the magnetic dipole moment of the sphere? 

(b) Find the average magnetic field within the sphere (see Prob. 5.59). 

(c) Find the approximate vector potential at a point (r, B) where r » R. 

(d) Find the exact potential at a point (r, B) outside the sphere, and check that it is 
consistent with (c). [Hint: refer to Ex. 5.11.] 

(e) Find the magnetic field at a point (r, B) inside the sphere (Prob. 5.30), and check 
that it is consistent with (b). 

Problem 5.61 Using Eq. 5.88, calculate the average magnetic field of a dipole over 
a sphere of radius R centered at the origin. Do the angular integrals first. Compare 
your answer with the general theorem in Prob. 5.59. Explain the discrepancy, and 
indicate how Eq. 5.89 can be corrected to resolve the ambiguity at r = 0. (If you 
get stuck, refer to Prob. 3.48.) 

Evidently the true field of a magnetic dipole is29 

J.Lo 1 [ A A ] 2J.Lo 3 Bdip(r) = 
4

rr -;:3 3(m · r)r- m + -
3
- mo (r). (5.94) 

Compare the electrostatic analog, Eq. 3.106. 

Problem 5.62 A thin glass rod of radius R and length L carries a uniform surface 
charge a. It is set spinning about its axis, at an angular velocity w. Find the magnetic 
field at a distances » R from the axis, in the xy plane (Fig. 5.66). [Hint: treat it as 
a stack of magnetic dipoles.] [Answer: J.LoWa LR3 j4[s2 + (L/2)2] 312] 

29The delta-function term is responsible for the hyperfine splitting in atomic spectra-see, for exam­
ple, D. J. Griffiths, Am. J. Phys. 50, 698 (1982). 
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FIGURE5.66 



CHAPTER 

6 

266 

Magnetic Fields in Matter 

6.1 • MAGNETIZATION 

6.1.1 • Diamagnets, Paramagnets, Ferromagnets 

If you ask the average person what "magnetism" is, you will probably be told 
about refrigerator decorations, compass needles, and the North Pole-none of 
which has any obvious connection with moving charges or current-carrying wires. 
Yet all magnetic phenomena are due to electric charges in motion, and in fact, if 
you could examine a piece of magnetic material on an atomic scale you would 
find tiny currents: electrons orbiting around nuclei and spinning about their axes. 
For macroscopic purposes, these current loops are so small that we may treat them 
as magnetic dipoles. Ordinarily, they cancel each other out because of the random 
orientation of the atoms. But when a magnetic field is applied, a net alignment of 
these magnetic dipoles occurs, and the medium becomes magnetically polarized, 
or magnetized. 

Unlike electric polarization, which is almost always in the same direction as E, 
some materials acquire a magnetization parallel to B (paramagnets) and some 
opposite to B (diamagnets). A few substances (called ferromagnets, in defer­
ence to the most common example, iron) retain their magnetization even after the 
external field has been removed-for these, the magnetization is not determined 
by the present field but by the whole magnetic "history" of the object. Permanent 
magnets made of iron are the most familiar examples of magnetism, but from a 
theoretical point of view they are the most complicated; I'll save ferromagnetism 
for the end of the chapter, and begin with qualitative models of paramagnetism 
and diamagnetism. 

6.1.2 • Torques and Forces on Magnetic Dipoles 

A magnetic dipole experiences a torque in a magnetic field, just as an electric 
dipole does in an electric field. Let's calculate the torque on a rectangular current 
loop in a uniform field B. (Since any current loop could be built up from infinites­
imal rectangles, with all the "internal" sides canceling, as indicated in Fig. 6.1, 
there is no real loss of generality here; but if you prefer to start from scratch with 
an arbitrary shape, see Prob. 6.2.) Center the loop at the origin, and tilt it an angle 
() from the z axis towards the y axis (Fig. 6.2). Let B point in the z direction. The 
forces on the two sloping sides cancel (they tend to stretch the loop, but they don't 
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FIGURE6.1 

rotate it). The forces on the "horizontal" sides are likewise equal and opposite (so 
the netforce on the loop is zero), but they do generate a torque: 

N = aFsinOi. 

The magnitude of the force on each of these segments is 

F = IbB, 

and therefore 

N = IabB sinO i = mB sinO i, 

or 

N=mxB, (6.1) 

where m = I ab is the magnetic dipole moment of the loop. Equation 6.1 gives 
the torque on any localized current distribution, in the presence of a uniform field; 
in a nonuniform field it is the exact torque (about the center) for a perfect dipole 
of infinitesimal size. 

z z 
m 

F --
y 

F 
y -

(a) (b) 

FIGURE6.2 
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Notice that Eq. 6.1 is identical in form to the electrical analog, Eq. 4.4: 
N = p x E. In particular, the torque is again in such a direction as to line the 
dipole up parallel to the field. It is this torque that accounts for paramagnetism. 
Since every electron constitutes a magnetic dipole (picture it, if you wish, as a 
tiny spinning sphere of charge), you might expect paramagnetism to be a univer­
sal phenomenon. Actually, quantum mechanics (specifically, the Pauli exclusion 
principle) tends to lock the electrons within a given atom together in pairs with 
opposing spins, 1 and this effectively neutralizes the torque on the combination. 
As a result, paramagnetism most often occurs in atoms or molecules with an 
odd number of electrons, where the "extra" unpaired member is subject to the 
magnetic torque. Even here, the alignment is far from complete, since random 
thermal collisions tend to destroy the order. 

In a uniform field, the net force on a current loop is zero: 

F = I f (dl x B) = I (f dl) x B = 0; 

the constant B comes outside the integral, and the net displacement f di around a 
closed loop vanishes. In a nonuniform field this is no longer the case. For example, 
suppose a circular wire ring of radius R, carrying a current I, is suspended above 
a short solenoid in the "fringing" region (Fig. 6.3). Here B has a radial component, 
and there is a net downward force on the loop (Fig. 6.4): 

F = 2n I R B cos 0. (6.2) 

For an infinitesimal loop, with dipole moment m, in a field B, the force is 

F = V(m ·B) (6.3) 

B B 

F F 

FIGURE6.3 FIGURE6.4 

1This is not always true for the outermost electrons in unfilled shells. 
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(see Prob. 6.4). Once again the magnetic formula is identical to its electrical 
"twin," if we write the latter in the form F = V (p ·E). (See footnote to Eq. 4.5.) 

If you're starting to get a sense of deja vu, perhaps you will have more respect 
for those early physicists who thought magnetic dipoles consisted of positive and 
negative magnetic "charges" (north and south "poles," they called them), sepa­
rated by a small distance, just like electric dipoles (Fig. 6.5(a)). They wrote down 
a "Coulomb's law" for the attraction and repulsion of these poles, and devel­
oped the whole of magnetostatics in exact analogy to electrostatics. It's not a bad 
model, for many purposes-it gives the correct field of a dipole (at least, away 
from the origin), the right torque on a dipole (at least, on a stationary dipole), 
and the proper force on a dipole (at least, in the absence of external currents). But 
it's bad physics, because there's no such thing as a single magnetic north pole or 
south pole. If you break a bar magnet in half, you don't get a north pole in one 
hand and a south pole in the other; you get two complete magnets. Magnetism 
is not due to magnetic monopoles, but rather to moving electric charges; mag­
netic dipoles are tiny current loops (Fig. 6.5(c)), and it's an extraordinary thing, 
really, that the formulas involving m bear any resemblance to the corresponding 
formulas for p. Sometimes it is easier to think in terms of the "Gilbert" model of 
a magnetic dipole (separated monopoles), instead of the physically correct "Am­
pere" model (current loop). Indeed, this picture occasionally offers a quick and 
clever solution to an otherwise cumbersome problem (you just copy the corre­
sponding result from electrostatics, changing p tom, 1/Eo to J.Lo, and E to B). But 
whenever the close-up features of the dipole come into play, the two models can 
yield strikingly different answers. My advice is to use the Gilbert model, if you 
like, to get an intuitive "feel" for a problem, but never rely on it for quantitative 
results. 

N + 

m 
PI tl 

s 
(a) Magnetic dipole (b) Electric dipole (c) Magnetic dipole 

(Gilbert model) (Ampere model) 

FIGURE6.5 

Problem 6.1 Calculate the torque exerted on the square loop shown in Fig. 6.6, due 
to the circular loop (assume r is much larger than a or b). If the square loop is free 
to rotate, what will its equilibrium orientation be? 
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~~-------------~~ 
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r 

FIGURE6.6 

Problem 6.2 Starting from the Lorentz force law, in the form ofEq. 5.16, show that 
the torque on any steady current distribution (not just a square loop) in a uniform 
field B is m x B. 

Problem 6.3 Find the force of attraction between two magnetic dipoles, m 1 and 
m2, oriented as shown in Fig. 6.7, a distance r apart, (a) using Eq. 6.2, and (b) using 
Eq.6.3. 

z 
I 

E ~ 

r E y 
X 

FIGURE6.7 FIGURE6.8 

Problem 6.4 Derive Eq. 6.3. [Here's one way to do it: Assume the dipole is an in­
finitesimal square, of side E (if it's not, chop it up into squares, and apply the argu­
ment to each one). Choose axes as shown in Fig. 6.8, and calculate F = I J (dl x B) 
along each of the four sides. Expand B in a Taylor series-on the right side, for in­
stance, 

"' aBI B = B(O, E, z) = B(O, 0, z) + E - . 
ay (O,O,z) 

For a more sophisticated method, see Prob. 6.22.] 

Problem 6.5 A uniform current density J = J0 i fills a slab straddling the yz plane, 
from x = -a to x = +a. A magnetic dipole m = m0 i is situated at the origin. 

(a) Find the force on the dipole, using Eq. 6.3. 

(b) Do the same for a dipole pointing in they direction: m = m0y. 

(c) In the electrostatic case, the expressions F = V(p ·E) and F = (p · V)E are 
equivalent (prove it), but this is not the case for the magnetic analogs (explain 
why). As an example, calculate (m · V)B for the configurations in (a) and (b). 



6.1 Magnetization 271 

6.1.3 • Effect of a Magnetic Field on Atomic Orbits 

Electrons not only spin; they also revolve around the nucleus-for simplicity, let's 
assume the orbit is a circle of radius R (Fig. 6.9). Although technically this orbital 
motion does not constitute a steady current, in practice the period T = 2rr R I v is 
so short that unless you blink awfully fast, it's going to look like a steady current: 

-e ev 
1= - =-- . 

T 2nR 

(The minus sign accounts for the negative charge of the electron.) Accordingly, 
the orbital dipole moment (In R 2 ) is 

1 A 

m = - 2evRz. (6.4) 

Like any other magnetic dipole, this one is subject to a torque (m x B) when 
you turn on a magnetic field. But it's a lot harder to tilt the entire orbit than it is 
the spin, so the orbital contribution to paramagnetism is small. There is, however, 
a more significant effect on the orbital motion: The electron speeds up or slows 
down, depending on the orientation of B. For whereas the centripetal acceleration 
v2 I R is ordinarily sustained by electrical forces alone, 2 

e2 v2 
--- -m -
4rrEo R 2 - e R ' 

(6.5) 

in the presence of a magnetic field there is an additional force, -e(v x B). For 
the sake of argument, let's say that B is perpendicular to the plane of the orbit, as 
shown in Fig. 6.10; then 

1 e2 v2 

--- + evB =me- · 
4rrEo R2 R 

(6.6) 

Under these conditions, the new speed vis greater than v: 

FIGURE6.9 

2To avoid confusion with the magnetic dipole moment m, I'll write the electron mass with 
subscript: me. 
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B 
B B 

------e ~ 
FIGURE6.10 

or, assuming the change !l. v = ii - v is small, 

eRB 
!l.v = --. 

2me 

When B is turned on, then, the electron speeds up.3 

(6.7) 

A change in orbital speed means a change in the dipole moment (Eq. 6.4): 

1 e2R2 

!l.m = - - e(!l.v)R z = - --B. (6.8) 
2 4me 

Notice that the change in m is opposite to the direction ofB. (An electron circling 
the other way would have a dipole moment pointing upward, but such an orbit 
would be slowed down by the field, so the change is still opposite to B.) Ordi­
narily, the electron orbits are randomly oriented, and the orbital dipole moments 
cancel out. But in the presence of a magnetic field, each atom picks up a little 
"extra" dipole moment, and these increments are all antiparallel to the field. This 
is the mechanism responsible for diamagnetism. It is a universal phenomenon, 
affecting all atoms. However, it is typically much weaker than paramagnetism, 
and is therefore observed mainly in atoms with even numbers of electrons, where 
paramagnetism is usually absent. 

In deriving Eq. 6.8, I assumed that the orbit remains circular, with its original 
radius R. I cannot offer a justification for this at the present stage. If the atom 
is stationary while the field is turned on, then my assumption can be proved­
this is not magnetostatics, however, and the details will have to await Chapter 7 
(see Pro b. 7 .52). If the atom is moved into the field, the situation is enormously 
more complicated. But never mind-I'm only trying to give you a qualitative 
account of diamagnetism. Assume, if you prefer, that the velocity remains the 
same while the radius changes-the formula (Eq. 6.8) is altered (by a factor of 2), 
but the qualitative conclusion is unaffected. The truth is that this classical model is 
fundamentally flawed (diamagnetism is really a quantum phenomenon), so there's 

31 said (Eq. 5.11) that magnetic fields do no work, and are incapable of speeding a particle up. I stand 
by that. However, as we shall see in Chapter 7, a changing magnetic field induces an electric field, and 
it is the latter that accelerates the electrons in this instance. 
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not much point in refining the details.4 What is important is the empirical fact 
that in diamagnetic materials the induced dipole moments point opposite to the 
magnetic field. 

6.1.4 • Magnetization 

In the presence of a magnetic field, matter becomes magnetized; that is, upon 
microscopic examination, it will be found to contain many tiny dipoles, with a net 
alignment along some direction. We have discussed two mechanisms that account 
for this magnetic polarization: (1) paramagnetism (the dipoles associated with the 
spins of unpaired electrons experience a torque tending to line them up parallel 
to the field) and (2) diamagnetism (the orbital speed of the electrons is altered in 
such a way as to change the orbital dipole moment in a direction opposite to the 
field). Whatever the cause, we describe the state of magnetic polarization by the 
vector quantity 

M = magnetic dipole moment per unit volume. (6.9) 

M is called the magnetization; it plays a role analogous to the polarization 
P in electrostatics. In the following section, we will not worry about how the 
magnetization got there-it could be paramagnetism, diamagnetism, or even 
ferromagnetism-we shall take Mas given, and calculate the field this magneti­
zation itself produces. 

Incidentally, it may have surprised you to learn that materials other than the 
famous ferromagnetic trio (iron, nickel, and cobalt) are affected by a magnetic 
field at all. You cannot, of course, pick up a piece of wood or aluminum with a 
magnet. The reason is that diamagnetism and paramagnetism are extremely weak: 
It takes a delicate experiment and a powerful magnet to detect them at all. If you 
were to suspend a piece of paramagnetic material above a solenoid, as in Fig. 6.3, 
the induced magnetization would be upward, and hence the force downward. By 
contrast, the magnetization of a diamagnetic object would be downward and the 
force upward. In general, when a sample is placed in a region of nonuniform field, 
the paramagnet is attracted into the field, whereas the diamagnet is repelled away. 
But the actual forces are pitifully weak-in a typical experimental arrangement 
the force on a comparable sample of iron would be 104 or 105 times as great. 
That's why it was reasonable for us to calculate the field inside a piece of copper 
wire, say, in Chapter 5, without worrying about the effects of magnetization.5 

4S. L. O'Dell and R. K. P. Zia,Am. J. Phys. 54, 32, (1986); R. Peierls, Surprises in Theoretical Physics, 
Section 4.3 (Princeton, N.J.: Princeton University Press, 1979); R. P. Feynman, R. B. Leighton, and 
M. Sands, The Feynman Lectures on Physics, Vol. 2, Sec. 34-36 (New York: Addison-Wesley, 1966). 
5In 1997 Andre Geim managed to levitate a live frog (diamagnetic) for 30 minutes; he was awarded the 
2000 Ig Nobel prize for this achievement, and later (2010) the Nobel prize for research on graphene. 
SeeM. V. Berry and A. K. Geim, Eur. J. Phys. 18, 307 (1997) and Geim, Physics Today, September 
1998, p. 36. 
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Problem 6.6 Of the following materials, which would you expect to be paramag­
netic and which diamagnetic: aluminum, copper, copper chloride (CuCh), carbon, 
lead, nitrogen (N2), salt (NaCl), sodium, sulfur, water? (Actually, copper is slightly 
diamagnetic; otherwise they're all what you'd expect.) 

6.2 • THE FIELD OF A MAGNETIZED OBJECT 

6.2.1 • Bound Currents 

Suppose we have a piece of magnetized material; the magnetic dipole moment per 
unit volume, M, is given. What field does this object produce? Well, the vector 
potential of a single dipole misgiven by Eq. 5.85: 

A(r) = JLo m x ..£. 
4n ~J-2 

(6.10) 

In the magnetized object, each volume element d r' carries a dipole moment 
Mdr', so the total vector potential is (Fig. 6.11) 

A(r) = JLo J M(r'; x ,£ dr'. 
4n "' 

(6.11) 

That does it, in principle. But, as in the electrical case (Sect. 4.2.1), the integral 
can be cast in a more illuminating form by exploiting the identity 

'1 ,£ V - = - . 
"' "'2 

With this, 

A(r) = :; f [ M(r') x ( V' ~)] dr'. 

Integrating by parts, using product rule 7, gives 

A(r) = :; {/ ~[V' x M(r')] dr'- f V' x [M~r')] dr'}. 

FIGURE6.11 
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Problem 1.61 (b) invites us to express the latter as a surface integral, 

A(r) = J-Lo j ![V' x M(r')] dr' + J-Lo J. ![M(r') x da']. 
4n ~ 4n r ~ (6.12) 

The first term looks just like the potential of a volume current, 

I Jb = v X M, I (6.13) 

while the second looks like the potential of a surface current, 

(6.14) 

where ii is the normal unit vector. With these definitions, 

A(r) = J-Lo { Jb(r') dr' + J-Lo J. Kb(r') da'. 
4n lv ~ 4n rs ~ 

(6.15) 

What this means is that the potential (and hence also the field) of a magnetized 
object is the same as would be produced by a volume current Jb = V x M 
throughout the material, plus a surface current Kb = M x ii, on the boundary. 
Instead of integrating the contributions of all the infinitesimal dipoles, using 
Eq. 6.11, we first determine the bound currents, and then find the field they 
produce, in the same way we would calculate the field of any other volume and 
surface currents. Notice the striking parallel with the electrical case: there the field 
of a polarized object was the same as that of a bound volume charge Ph = - V · P 
plus a bound surface charge ab = P · ii. 

Example 6.1. Find the magnetic field of a uniformly magnetized sphere. 

Solution 
Choosing the z axis along the direction ofM (Fig. 6.12), we have 

Jb = V x M = 0, Kb = M x ii = M sinO~. 

z 

y 

FIGURE6.12 
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Now, a rotating spherical shell, of uniform surface charge u, corresponds to a 
surface current density 

K = uv = uwR sinO~. 

It follows, therefore, that the field of a uniformly magnetized sphere is identi­
cal to the field of a spinning spherical shell, with the identification u Rm ---+ M. 
Referring back to Ex. 5.11, I conclude that 

2 
B = ""jJ.LoM, (6.16) 

inside the sphere, while the field outside is the same as that of a perfect dipole, 

4 3 
m = 3nR M. 

Notice that the internal field is uniform, like the electric field inside a uniformly 
polarized sphere (Eq. 4.14), although the actual formulas for the two cases are 
curiously different(~ in place of -t).6 The external fields are also analogous: 
pure dipole in both instances. 

Problem 6.7 An infinitely long circular cylinder carries a uniform magnetization 
M parallel to its axis. Find the magnetic field (due to M) inside and outside the 
cylinder. 

Problem 6.8 A long circular cylinder of radius R carries a magnetization M = 
ks2 ~. where k is a constant, s is the distance from the axis, and ~ is the usual 
azimuthal unit vector (Fig. 6.13). Find the magnetic field due to M, for points inside 
and outside the cylinder. 

z 

FIGURE6.13 FIGURE6.14 

6It is no accident that the same factors appear in the "contact" term for the fields of electric and 
magnetic dipoles (Eqs. 3.106 and 5.94). In fact, one good way to model a perfect dipole is to take the 
limit (R ---+ 0) of a polarized/magnetized sphere. 
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Problem 6.9 A short circular cylinder of radius a and length L carries a "frozen-in" 
uniform magnetization M parallel to its axis. Find the bound current, and sketch the 
magnetic field of the cylinder. (Make three sketches: one for L » a, one for L « a, 
and one for L RJ a.) Compare this bar magnet with the bar electret of Prob. 4.11. 

Problem 6.10 An iron rod of length L and square cross section (side a) is given 
a uniform longitudinal magnetization M, and then bent around into a circle with a 
narrow gap (width w), as shown in Fig. 6.14. Find the magnetic field at the center 
of the gap, assuming w « a « L. [Hint: treat it as the superposition of a complete 
torus plus a square loop with reversed current.] 

6.2.2 • Physical Interpretation of Bound Currents 

In the last section, we found that the field of a magnetized object is identical to the 
field that would be produced by a certain distribution of "bound" currents, Jb and 
Kb. I want to show you how these bound currents arise physically. This will be a 
heuristic argument-the rigorous derivation has already been given. Figure 6.15 
depicts a thin slab of uniformly magnetized material, with the dipoles represented 
by tiny current loops. Notice that all the "internal" currents cancel: every time 
there is one going to the right, a contiguous one is going to the left. However, at 
the edge there is no adjacent loop to do the canceling. The whole thing, then, is 
equivalent to a single ribbon of current I flowing around the boundary (Fig. 6.16). 

What is this current, in terms of M? Say that each of the tiny loops has area a 
and thickness t (Fig. 6.17). In terms of the magnetization M, its dipole moment 

FIGURE6.15 

M 

FIGURE6.16 
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FIGURE6.17 

is m = Mat. In terms of the circulating current I, however, m = I a. Therefore 
I= Mt, so the surface current is Kb =I jt = M. Using the outward-drawn unit 
vector ii (Fig. 6.16), the direction of Kb is conveniently indicated by the cross 
product: 

Kb = M X ii. 
(This expression also records the fact that there is no current on the top or bottom 
surface of the slab; hereM is parallel to ii, so the cross product vanishes.) 

This bound surface current is exactly what we obtained in Sect. 6.2.1. It is a 
peculiar kind of current, in the sense that no single charge makes the whole trip­
on the contrary, each charge moves only in a tiny little loop within a single atom. 
Nevertheless, the net effect is a macroscopic current flowing over the surface of 
the magnetized object. We call it a "bound" current to remind ourselves that every 
charge is attached to a particular atom, but it's a perfectly genuine current, and it 
produces a magnetic field in the same way any other current does. 

When the magnetization is nonuniform, the internal currents no longer cancel. 
Figure 6.18(a) shows two adjacent chunks of magnetized material, with a larger 
arrow on the one to the right suggesting greater magnetization at that point. On 
the surface where they join, there is a net current in the x direction, given by 

aMz 
Ix = [Mz(Y + dy)- Mz(Y)] dz = - dy dz. ay 

The corresponding volume current density is therefore 

aMz 
(Jb)x = --ay· 

z Mz(y + dy) z 

[~ M,~~ dz~ }dz 
My(z) 

.......__...... ............... 
dy dy 

y 

X (a) X (b) 

FIGURE6.18 

y 
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By the same token, a nonuniform magnetization in they direction would con­
tribute an amount -aMyjaz (Fig. 6.18(b)), so 

aMz aMy 
(Jb)x = - - --. 

ay az 

In general, then, 

Jb = v X M, 

consistent, again, with the result of Sect. 6.2.1. 
Incidentally, like any other steady current, Jb should obey the conservation law 

5.33: 

v ·Jb = 0. 

Does it? Yes, for the divergence of a curl is always zero. 

6.2.3 • The Magnetic Field Inside Matter 

Like the electric field, the actual microscopic magnetic field inside matter fluc­
tuates wildly from point to point and instant to instant. When we speak of "the" 
magnetic field in matter, we mean the macroscopic field: the average over regions 
large enough to contain many atoms. (The magnetization M is "smoothed out" in 
the same sense.) It is this macroscopic field that one obtains when the methods of 
Sect. 6.2.1 are applied to points inside magnetized material, as you can prove for 
yourself in the following problem. 

Problem 6.11 In Sect, 6.2.1, we began with the potential of a perfect dipole 
(Eq. 6.10), whereas in fact we are dealing with physical dipoles. Show, by the 
method of Sect. 4.2.3, that we nonetheless get the correct macroscopic field. 

6.3 • THE AUXILIARY FIELD H 

6.3.1 • Ampere's Law in Magnetized Materials 

In Sect. 6.2, we found that the effect of magnetization is to establish bound cur­
rents Jb = V x M within the material and Kb = M x ii on the surface. The field 
due to magnetization of the medium is just the field produced by these bound cur­
rents. We are now ready to put everything together: the field attributable to bound 
currents, plus the field due to everything else-which I shall call the free current. 
The free current might flow through wires imbedded in the magnetized substance 
or, if the latter is a conductor, through the material itself. In any event, the total 
current can be written as 

(6.17) 

There is no new physics in Eq. 6.17; it is simply a convenience to separate the 
current into these two parts, because they got there by quite different means: the 
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free current is there because somebody hooked up a wire to a battery-it involves 
actual transport of charge; the bound current is there because of magnetization-it 
results from the conspiracy of many aligned atomic dipoles. 

In view ofEqs. 6.13 and 6.17, Ampere's law can be written 

1 
- (V X B) = J = J f + Jb = J f + (V X M), 
f-Lo 

or, collecting together the two curls: 

V x ( :
0 
B - M) = J f. 

The quantity in parentheses is designated by the letter H: 

In terms of H, then, Ampere's law reads 

or, in integral form, 

f H • dl =/fern;' 

where I fern; is the total free current passing through the Amperian loop. 

(6.18) 

(6.19) 

(6.20) 

H plays a role in magnetostatics analogous to D in electrostatics: Just as D 
allowed us to write Gauss's law in terms of the free charge alone, H permits us to 
express Ampere's law in terms of the free current alone-and free current is what 
we control directly. Bound current, like bound charge, comes along for the ride­
the material gets magnetized, and this results in bound currents; we cannot turn 
them on or off independently, as we can free currents. In applying Eq. 6.20, all 
we need to worry about is the free current, which we know about because we put 
it there. In particular, when symmetry permits, we can calculate H immediately 
from Eq. 6.20 by the usual Ampere's law methods. (For example, Probs. 6.7 and 
6.8 can be done in one line by noting that H = 0.) 

Example 6.2. A long copper rod of radius R carries a uniformly distributed 
(free) current I (Fig. 6.19). Find H inside and outside the rod. 

Solution 
Copper is weakly diamagnetic, so the dipoles will line up opposite to the field. 
This results in a bound current running anti parallel to I, within the wire, and 
parallel to I along the surface (Fig. 6.20). Just how great these bound currents will 
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Amperian loop 

FIGURE6.19 

ebB 
Cj__:)M 
~H 

FIGURE6.20 
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be we are not yet in a position to say-but in order to calculate H, it is sufficient 
to realize that all the currents are longitudinal, so B, M, and therefore also H, are 
circumferential. Applying Eq. 6.20 to an Amperian loop of radius s < R, 

so, inside the wire, 

Outside the wire 

ns2 

H(2ns) =IF = I -
2

, 
JODC Jr R 

I A 

H= --sf/J 
2n R2 

I A 

H= - f/J 
2ns 

(s:::; R). 

(s ~ R). 

In the latter region (as always, in empty space) M = 0, so 

J.Loi A 

B=J.LoH= - f/J 
2ns 

(s ~ R), 

(6.21) 

(6.22) 

the same as for a nonmagnetized wire (Ex. 5.7). Inside the wire B cannot be 
determined at this stage, since we have no way of knowing M (though in practice 
the magnetization in copper is so slight that for most purposes we can ignore it 
altogether). 

As it turns out, H is a more useful quantity than D. In the laboratory, you 
will frequently hear people talking about H (more often even than B), but you 
will never hear anyone speak of D (only E). The reason is this: To build an 
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electromagnet you run a certain (free) current through a coil. The current is the 
thing you read on the dial, and this determines H (or at any rate, the line in­
tegral of H); B depends on the specific materials you used and even, if iron is 
present, on the history of your magnet. On the other hand, if you want to set up 
an electric field, you do not plaster a known free charge on the plates of a par­
allel plate capacitor; rather, you connect them to a battery of known voltage. It's 
the potential difference you read on your dial, and that determines E (or rather, 
the line integral of E); D depends on the details of the dielectric you're using. If 
it were easy to measure charge, and hard to measure potential, then you'd find 
experimentalists talking about D instead of E. So the relative familiarity of H, 
as contrasted with D, derives from purely practical considerations; theoretically, 
they're on an equal footing. 

Many authors call H, not B, the "magnetic field." Then they have to invent a 
new word forB: the "flux density," or magnetic "induction" (an absurd choice, 
since that term already has at least two other meanings in electrodynamics). Any­
way, B is indisputably the fundamental quantity, so I shall continue to call it the 
"magnetic field," as everyone does in the spoken language. H has no sensible 
name: just call it "H."7 

Problem 6.12 An infinitely long cylinder, of radius R, carries a "frozen-in" magne­
tization, parallel to the axis, 

M = ksi, 

where k is a constant and s is the distance from the axis; there is no free current 
anywhere. Find the magnetic field inside and outside the cylinder by two different 
methods: 

(a) As in Sect. 6.2, locate all the bound currents, and calculate the field they 
produce. 

(b) Use Ampere's law (in the form of Eq. 6.20) to find D, and then get B from 
Eq. 6.18. (Notice that the second method is much faster, and avoids any explicit 
reference to the bound currents.) 

Problem 6.13 Suppose the field inside a large piece of magnetic material is B0, so 
that Do = (1/ JLo)B0 - M, where M is a "frozen-in" magnetization. 

(a) Now a small spherical cavity is hollowed out of the material (Fig. 6.21). Find 
the field at the center of the cavity, in terms of B0 and M. Also find D at the 
center of the cavity, in terms of D 0 and M. 

(b) Do the same for a long needle-shaped cavity running parallel to M. 

(c) Do the same for a thin wafer-shaped cavity perpendicular toM. 

7For those who disagree, I quote A. Sommerfeld's Electrodynamics (New York: Academic Press, 
1952), p. 45: "The unhappy term 'magnetic field' for H should be avoided as far as possible. It seems 
to us that this term has led into error none less than Maxwell himself ... " 
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(a) Sphere (b) Needle (c) Wafer 

FIGURE6.21 

Assume the cavities are small enough so M, B0 , and 8 0 are essentially constant. 
Compare Prob. 4.16. [Hint: Carving out a cavity is the same as superimposing an 
object of the same shape but opposite magnetization.] 

6.3.2 • A Deceptive Parallel 

Equation 6.19 looks just like Ampere's original law (Eq. 5.56), except that the 
total current is replaced by the free current, and B is replaced by tt0H. As in the 
case of D, however, I must warn you against reading too much into this corre­
spondence. It does not say that ttoH is "just like B, only its source is J f instead of 
J ." For the curl alone does not determine a vector field-you must also know the 
divergence. And whereas V · B = 0, the divergence of H is not, in general, zero. 
In fact, from Eq. 6.18 

V·H=-V·M. (6.23) 

Only when the divergence of M vanishes is the parallel between B and ttoH 
faithful. 

If you think I'm being pedantic, consider the example of the bar magnet-a 
short cylinder of iron that carries a permanent uniform magnetization M parallel 
to its axis. (See Probs. 6.9 and 6.14.) In this case there is no free current any­
where, and a naive application ofEq. 6.20 might lead you to suppose that H = 0, 
and hence that B = ttoM inside the magnet and B = 0 outside, which is non­
sense. It is quite true that the curl of H vanishes everywhere, but the divergence 
does not. (Can you see where V · M f= 0?) Advice: When you are asked to find 
B or H in a problem involving magnetic materials, first look for symmetry. If the 
problem exhibits cylindrical, plane, solenoidal, or toroidal symmetry, then you 
can get H directly from Eq. 6.20 by the usual Ampere's law methods. (Evidently, 
in such cases V · M is automatically zero, since the free current alone determines 
the answer.) If the requisite symmetry is absent, you'll have to think of another 
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approach, and in particular you must not assume that H is zero just because there 
is no free current in sight. 

6.3.3 • Boundary Conditions 

The magnetostatic boundary conditions of Sect. 5.4.2 can be rewritten in terms of 
Hand the free current. From Eq. 6.23 it follows that 

(6.24) 

while Eq. 6.19 says 

H ll Hll K A 

above- below = f X n. (6.25) 

In the presence of materials, these are sometimes more useful than the correspond­
ing boundary conditions on B (Eqs. 5.74 and 5.76): 

(6.26) 

and 

B~bove - B~elow = /Lo(K X ii). (6.27) 

You might want to check them, for Ex. 6.2 or Prob. 6.14. 

Problem 6.14 For the bar magnet of Pro b. 6.9, make careful sketches of M, B, and 
H, assuming Lis about 2a. Compare Prob. 4.17. 

Problem 6.15lf J1 = 0 everywhere, the curl ofH vanishes (Eq. 6.19), and we can 
express H as the gradient of a scalar potential W: 

H=-VW. 

According to Eq. 6.23, then, 

soW obeys Poisson's equation, with V ·Mas the "source." This opens up all the 
machinery of Chapter 3. As an example, find the field inside a uniformly magne­
tized sphere (Ex. 6.1) by separation of variables. [Hint: V · M = 0 everywhere ex­
cept at the surface (r = R), so W satisfies Laplace's equation in the regions r < R 
and r > R; use Eq. 3.65, and from Eq. 6.24 figure out the appropriate boundary 
condition on W.] 

6.4 • LINEAR AND NONLINEAR MEDIA 

6.4.1 • Magnetic Susceptibility and Permeability 

In paramagnetic and diamagnetic materials, the magnetization is sustained by the 
field; when B is removed, M disappears. In fact, for most substances the mag­
netization is proportional to the field, provided the field is not too strong. For 
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notational consistency with the electrical case (Eq. 4.30), I should express the 
proportionality thus: 

1 
M = - XmB (incorrect!). 

f-Lo 

But custom dictates that it be written in terms of H, instead of B: 

(6.28) 

(6.29) 

The constant of proportionality Xm is called the magnetic susceptibility; it is a 
dimensionless quantity that varies from one substance to another-positive for 
paramagnets and negative for diamagnets. Typical values are around w-5 (see 
Table 6.1). 

Materials that obey Eq. 6.29 are called linear media. In view ofEq. 6.18, 

B = J-Lo(H + M) = J-Lo(1 + Xm)H, (6.30) 

for linear media. Thus B is also proportional to H:8 

B = J-LH, (6.31) 

where 

J-L = J-Lo(1 + Xm). (6.32) 

J-L is called the permeability of the material.9 In a vacuum, where there is no 
matter to magnetize, the susceptibility Xm vanishes, and the permeability is J-Lo. 
That's why J-Lo is called the permeability of free space. 

Material Susceptibility Material Susceptibility 

Diamagnetic: Paramagnetic: 
Bismuth -1.7 x w-4 Oxygen (02) 1.7 x w-6 

Gold -3.4 X 10-S Sodium 8.5 x w-6 

Silver -2.4 X 10-S Aluminum 2.2 X 10-S 
Copper -9.7 x w-6 Tungsten 7.0 X 10-S 
Water -9.0 x w-6 Platinum 2.7 x w-4 

Carbon Dioxide -1.1 X 10-S Liquid Oxygen 3.9 x w-3 

( -200° C) 
Hydrogen (H2) -2.1 x w-9 Gadolinium 4.8 x w-1 

TABLE 6.1 Magnetic Susceptibilities (unless otherwise specified, values are for 1 atm, 
20° C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press, 
Inc., 2010) and other references. 

8Physically, therefore, Eq. 6.28 would say exactly the same as Eq. 6.29, only the constant Xm would 
have a different value. Equation 6.29 is a little more convenient, because experimentalists find it 
handier to work with H than B. 
9If you factor out J-Lo, what's left is called the relative permeability: J-Lr = 1 + Xm = JL/ 1-LO· By the 
way, formulas for H in terms of B (Eq. 6.31, in the case of linear media) are called constitutive 
relations, just like those for D in terms of E. 
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Example 6.3. An infinite solenoid (n turns per unit length, current I) is filled 
with linear material of susceptibility Xm. Find the magnetic field inside the 
solenoid. 

FIGURE6.22 

Solution 
Since B is due in part to bound currents (which we don't yet know), we cannot 
compute it directly. However, this is one of those symmetrical cases in which we 
can get H from the free current alone, using Ampere's law in the form ofEq. 6.20: 

H =nlz 

(Fig. 6.22). According to Eq. 6.31, then, 

B = JLo(l + Xm)nl z. 
If the medium is paramagnetic, the field is slightly enhanced; if it's diamagnetic, 
the field is somewhat reduced. This reflects the fact that the bound surface current 

Kb = M X :ii = Xm (H X :ii) = xmnl ~ 

is in the same direction as I, in the former case (Xm > 0), and opposite in the 
latter (Xm < 0). 

You might suppose that linear media escape the defect in the parallel between 
B and H: since M and H are now proportional to B, does it not follow that 
their divergence, like B's, must always vanish? Unfortunately, it does not;10 at 
the boundary between two materials of different permeability, the divergence of 
M can actually be infinite. For instance, at the end of a cylinder of linear para­
magnetic material, M is zero on one side but not on the other. For the "Gaussian 
pillbox" shown in Fig. 6.23, j M · da f. 0, and hence, by the divergence theorem, 
V · M cannot vanish everywhere within it. 

10Formally, V · H = V · (f;:B) = f;: V · B + B · V (f;:) = B · V (f;: ). soH is not divergenceless (in 

general) at points where IL is changing. 
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Gaussian pillbox 

M=) --.., 
Vacuum 1 

Paramagnet 

FIGURE6.23 
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Incidentally, the volume bound current density in a homogeneous linear mate­
rial is proportional to the free current density: 

Jb = V x M = V x (xmH) = XmJJ· (6.33) 

In particular, unless free current actually flows through the material, all bound 
current will be at the surface. 

Problem 6.16 A coaxial cable consists of two very long cylindrical tubes, separated 
by linear insulating material of magnetic susceptibility Xm. A current I flows down 
the inner conductor and returns along the outer one; in each case, the current dis­
tributes itself uniformly over the surface (Fig. 6.24). Find the magnetic field in the 
region between the tubes. As a check, calculate the magnetization and the bound 
currents, and confirm that (together, of course, with the free currents) they generate 
the correct field. 

FIGURE6.24 

Problem 6.17 A current I flows down a long straight wire of radius a. If the wire 
is made of linear material (copper, say, or aluminum) with susceptibility Xm, and 
the current is distributed uniformly, what is the magnetic field a distance s from the 
axis? Find all the bound currents. What is the net bound current flowing down the 
wire? 

Problem 6.18 A sphere of linear magnetic material is placed in an otherwise uni­
form magnetic field B0 • Find the new field inside the sphere. [Hint: See Prob. 6.15 
or Prob. 4.23.] 

Problem 6.19 On the basis of the na'ive model presented in Sect. 6.1.3, estimate 
the magnetic susceptibility of a diamagnetic metal such as copper. Compare your 
answer with the empirical value in Table 6.1, and comment on any discrepancy. 
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6.4.2 • Ferromagnetism 

In a linear medium, the alignment of atomic dipoles is maintained by a magnetic 
field imposed from the outside. Ferromagnets-which are emphatically not lin­
ear11-require no external fields to sustain the magnetization; the alignment is 
"frozen in." Like paramagnetism, ferromagnetism involves the magnetic dipoles 
associated with the spins of unpaired electrons. The new feature, which makes fer­
romagnetism so different from paramagnetism, is the interaction between nearby 
dipoles: In a ferromagnet, each dipole "likes" to point in the same direction as its 
neighbors. The reason for this preference is essentially quantum mechanical, and 
I shall not endeavor to explain it here; it is enough to know that the correlation is 
so strong as to align virtually 100% of the unpaired electron spins. If you could 
somehow magnify a piece of iron and "see" the individual dipoles as tiny arrows, 
it would look something like Fig. 6.25, with all the spins pointing the same way. 

But if that is true, why isn't every wrench and nail a powerful magnet? The 
answer is that the alignment occurs in relatively small patches, called domains. 
Each domain contains billions of dipoles, all lined up (these domains are actually 
visible under a microscope, using suitable etching techniques-see Fig. 6.26), but 
the domains themselves are randomly oriented. The household wrench contains an 
enormous number of domains, and their magnetic fields cancel, so the wrench as 
a whole is not magnetized. (Actually, the orientation of domains is not completely 
random; within a given crystal, there may be some preferential alignment along 
the crystal axes. But there will be just as many domains pointing one way as 
the other, so there is still no large-scale magnetization. Moreover, the crystals 
themselves are randomly oriented within any sizable chunk of metal.) 

How, then, would you produce a permanent magnet, such as they sell in 
toy stores? If you put a piece of iron into a strong magnetic field, the torque 
N = m x B tends to align the dipoles parallel to the field. Since they like to stay 
parallel to their neighbors, most of the dipoles will resist this torque. However, 

FIGURE6.25 

11 In this sense, it is misleading to speak of the susceptibility or permeability of a ferromagnet. The 
terms are used for such materials, but they refer to the proportionality factor between a differential 
increase in Hand the resulting differential change in M (or B); moreover, they are not constants, but 
functions of H. 
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Ferromagnetic domains. (Photo courtesy of R. W. DeBlois) 

FIGURE6.26 

at the boundary between two domains, there are competing neighbors, and the 
torque will throw its weight on the side of the domain most nearly parallel to the 
field; this domain will win some converts, at the expense of the less favorably ori­
ented one. The net effect of the magnetic field, then, is to move the domain bound­
aries. Domains parallel to the field grow, and the others shrink. If the field is strong 
enough, one domain takes over entirely, and the iron is said to be saturated. 

It turns out that this process (the shifting of domain boundaries in response to 
an external field) is not entirely reversible: When the field is switched off, there 
will be some return to randomly oriented domains, but it is far from complete­
there remains a preponderance of domains in the original direction. You now have 
a permanent magnet. 

A simple way to accomplish this, in practice, is to wrap a coil of wire around 
the object to be magnetized (Fig. 6.27). Run a current I through the coil; this pro­
vides the external magnetic field (pointing to the left in the diagram). As you in­
crease the current, the field increases, the domain boundaries move, and the mag­
netization grows. Eventually, you reach the saturation point, with all the dipoles 
aligned, and a further increase in current has no effect on M (Fig. 6.28, point b). 

Now suppose you reduce the current. Instead of retracing the path back to 
M = 0, there is only a partial return to randomly oriented domains; M decreases, 
but even with the current off there is some residual magnetization (point c). The 
wrench is now a permanent magnet. If you want to eliminate the remaining mag­
netization, you'll have to run a current backwards through the coil (a negative/). 
Now the external field points to the right, and as you increase I (negatively), 
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FIGURE6.27 

M drops down to zero (point d). If you turn I still higher, you soon reach sat­
uration in the other direction-all the dipoles now pointing to the right (e). At 
this stage, switching off the current will leave the wrench with a permanent mag­
netization to the right (point f). To complete the story, turn I on again in the 
positive sense: M returns to zero (point g), and eventually to the forward satura­
tion point (b). 

The path we have traced out is called a hysteresis loop. Notice that the mag­
netization of the wrench depends not only on the applied field (that is, on/), but 
also on its previous magnetic "history."12 For instance, at three different times in 
our experiment the current was zero (a, c, and f), yet the magnetization was dif­
ferent for each of them. Actually, it is customary to draw hysteresis loops as plots 
of B against H, rather than M against I. (If our coil is approximated by a long 
solenoid, with n turns per unit length, then H = ni, so H and I are proportional. 
Meanwhile, B = JLo (H + M), but in practice M is huge compared to H, so to all 
intents and purposes B is proportional toM.) 

To make the units consistent (teslas), I have plotted (JLoH) horizontally 
(Fig. 6.29); notice, however, that the vertical scale is 104 times greater than the 
horizontal one. Roughly speaking, JLoH is the field our coil would have produced 
in the absence of any iron; B is what we actually got, and compared to JLoH, it is 
gigantic. A little current goes a long way, when you have ferromagnetic materials 

(Saturation) 

M 

(Permanent 
Magnet) 

---=::::::o-• (Saturation) 

(Permanent 
Magnet) 

FIGURE6.28 

b 

I 

12Etymologically, the word hysteresis has nothing to do with the word history-nor with the word 
hysteria. It derives from a Greek verb meaning "lag behind." 
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around. That's why anyone who wants to make a powerful electromagnet will 
wrap the coil around an iron core. It doesn't take much of an external field to 
move the domain boundaries, and when you do that, you have all the dipoles in 
the iron working with you. 

One final point about ferromagnetism: It all follows, remember, from the 
fact that the dipoles within a given domain line up parallel to one another. Ran­
dom thermal motions compete with this ordering, but as long as the temperature 
doesn't get too high, they cannot budge the dipoles out of line. It's not surprising, 
though, that very high temperatures do destroy the alignment. What is surprising 
is that this occurs at a precise temperature (770° C, for iron). Below this temper­
ature (called the Curie point), iron is ferromagnetic; above, it is paramagnetic. 
The Curie point is rather like the boiling point or the freezing point in that there is 
no gradual transition from ferro- to para-magnetic behavior, any more than there 
is between water and ice. These abrupt changes in the properties of a substance, 
occurring at sharply defined temperatures, are known in statistical mechanics as 
phase transitions. 

Problem 6.20 How would you go about demagnetizing a permanent magnet (such 
as the wrench we have been discussing, at point c in the hysteresis loop)? That is, 
how could you restore it to its original state, with M = 0 at I = 0? 

Problem 6.21 

(a) Show that the energy of a magnetic dipole in a magnetic field B is 

I U=-m·B. I (6.34) 

[Assume that the magnitude of the dipole moment is fixed, and all you have 
to do is move it into place and rotate it into its final orientation. The energy re­
quired to keep the current flowing is a different problem, which we will confront 
in Chapter 7.] Compare Eq. 4.6. 
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r 

FIGURE6.30 

(b) Show that the interaction energy of two magnetic dipoles separated by a dis­
placement r is given by 

u = /1-o _!_[mt . mz - 3(mt . r)(mz. r)]. (6.35) 
4rr r 3 

Compare Eq. 4.7. 

(c) Express your answer to (b) in terms of the angles (}1 and (}2 in Fig. 6.30, and use 
the result to find the stable configuration two dipoles would adopt if held a fixed 
distance apart, but left free to rotate. 

(d) Suppose you had a large collection of compass needles, mounted on pins at 
regular intervals along a straight line. How would they point (assuming the 
earth's magnetic field can be neglected)? [A rectangular array of compass nee­
dles aligns itself spontaneously, and this is sometimes used as a demonstration 
of "ferromagnetic" behavior on a large scale. It's a bit of a fraud, however, since 
the mechanism here is purely classical, and much weaker than the quantum me­
chanical exchange forces that are actually responsible for ferromagnetism. 13 ] 

More Problems on Chapter 6 

Problem 6.22 In Prob. 6.4, you calculated the force on a dipole by "brute force." 
Here's a more elegant approach. First write B(r) as a Taylor expansion about the 
center of the loop: 

B(r) ~ B(r0) + [ (r - ro) · V o]B(ro), 

where r0 is the position of the dipole and V 0 denotes differentiation with respect to 
r0 . Put this into the Lorentz force law (Eq. 5.16) to obtain 

F =If dl x [(r · V0)B(r0)]. 

Or, numbering the Cartesian coordinates from 1 to 3: 

where Eijk is the Levi-Civita symbol (+1 if ijk = 123, 231, or 312; -1 if ijk = 
132, 213, or 321; 0 otherwise), in terms of which the cross-product can be written 
(Ax B); = L~,k=l EijkAjBk. Use Eq. 1.108 to evaluate the integral. Note that 

3 

L EijkEJjm = OiJOkm - O;mOkJ, 

j=l 

where oii is the Kronecker delta (Prob. 3.52). 

13For an intriguing exception, see B. Parks, Am. J. Phys. 74, 351 (2006), Section II. 
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(a) (b) 

FIGURE6.31 

Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne­
tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). 
Treat the magnets as dipoles, with mass ma and dipole moment m. 

(a) If you put two back-to-hack magnets on the rod, the upper one will "float"-the 
magnetic force upward balancing the gravitational force downward. At what 
height (z) does it float? 

(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of 
the two heights? (Determine the actual number, to three significant digits.) 
[Answer: (a) [3JL0m2 j21l'mag] 114; (b) 0.8501] 

Problem 6.24 Imagine two charged magnetic dipoles (charge q, dipole moment m), 
constrained to move on the z axis (same as Problem 6.23(a), but without gravity). 
Electrically they repel, but magnetically (if both m's point in the z direction) they 
attract. 

(a) Find the equilibrium separation distance. 

(b) What is the equilibrium separation for two electrons in this orientation. 
[Answer: 4.72 X w-13 m.] 

(c) Does there exist, then, a stable bound state of two electrons? 

Problem 6.25 Notice the following parallel: 

{ 
V ·D = 0, 
V ·B=O, 

v X E = 0, 
v X H= 0, 

EoE = D-P, 
JLoH = B - JLoM, 

(no free charge); 
(no free current). 

Thus, the transcription D ~ B, E ~ H, P ~ JLoM, Eo ~ J.Lo turns an electrostatic 
problem into an analogous magnetostatic one. Use this, together with your knowl­
edge of the electrostatic results, to rederive 

(a) the magnetic field inside a uniformly magnetized sphere (Eq. 6.16); 

(b) the magnetic field inside a sphere of linear magnetic material in an otherwise 
uniform magnetic field (Prob. 6.18); 
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(c) the average magnetic field over a sphere, due to steady currents within the 
sphere (Eq. 5.93). 

Problem 6.26 Compare Eqs. 2.15, 4.9, and 6.11. Notice that if p, P, and M are 
uniform, the same integral is involved in all three: 

! 4 1 

-;;; dr: . 

Therefore, if you happen to know the electric field of a uniformly charged object, 
you can immediately write down the scalar potential of a uniformly polarized ob­
ject, and the vector potential of a uniformly magnetized object, of the same shape. 
Use this observation to obtain V inside and outside a uniformly polarized sphere 
(Ex. 4.2), and A inside and outside a uniformly magnetized sphere (Ex. 6.1). 

FIGURE6.32 

Problem 6.27 At the interface between one linear magnetic material and another, 
the magnetic field lines bend (Fig. 6.32). Show that tan f)zj tan fh = t-L2/ f:-Lt, assum­
ing there is no free current at the boundary. Compare Eq. 4.68. 

Problem 6.28 A magnetic dipole m is imbedded at the center of a sphere (radius 
R) oflinear magnetic material (permeability f:-L). Show that the magnetic field inside 
the sphere (0 < r ~ R) is 

_!!__ {_!_[3(m. r)r- m] + 2(/-Lo- t-L)m}. 
4Jr r3 (2/-Lo + t-L)R 3 

What is the field outside the sphere? 

Problem 6.29 You are asked to referee a grant application, which proposes to deter­
mine whether the magnetization of iron is due to "Ampere" dipoles (current loops) 
or "Gilbert" dipoles (separated magnetic monopoles). The experiment will involve 
a cylinder of iron (radius R and length L = lOR), uniformly magnetized along the 
direction of its axis. If the dipoles are Ampere-type, the magnetization is equivalent 
to a surface bound current Kb = M ~; if they are Gilbert-type, the magnetization is 
equivalent to surface monopole densities ub = ±M at the two ends. Unfortunately, 
these two configurations produce identical magnetic fields, at exterior points. How­
ever, the interior fields are radically different-in the first case B is in the same 
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general direction as M, whereas in the second it is roughly opposite to M. The ap­
plicant proposes to measure this internal field by carving out a small cavity and 
finding the torque on a tiny compass needle placed inside. 

Assuming that the obvious technical difficulties can be overcome, and that the 
question itself is worthy of study, would you advise funding this experiment? If so, 
what shape cavity would you recommend? If not, what is wrong with the proposal? 
[Hint: Refer to Probs. 4.11, 4.16, 6.9, and 6.13.] 



CHAPTER 

7 

296 

Electrodynamics 

7.1 • ELECTROMOTIVE FORCE 

7 .1.1 • Ohm's Law 

To make a current flow, you have to push on the charges. How fast they move, 
in response to a given push, depends on the nature of the material. For most sub­
stances, the current density J is proportional to the force per unit charge, f: 

J= af. (7.1) 

The proportionality factor a (not to be confused with surface charge) is an empir­
ical constant that varies from one material to another; it's called the conductivity 
of the medium. Actually, the handbooks usually list the reciprocal of a, called 
the resistivity: p = 1/a (not to be confused with charge density-I'm sorry, but 
we're running out of Greek letters, and this is the standard notation). Some typical 
values are listed in Table 7.1. Notice that even insulators conduct slightly, though 
the conductivity of a metal is astronomically greater; in fact, for most purposes 
metals can be regarded as perfect conductors, with a = oo, while for insulators 
we can pretend a = 0. 

In principle, the force that drives the charges to produce the current could be 
anything-chemical, gravitational, or trained ants with tiny harnesses. For our 
purposes, though, it's usually an electromagnetic force that does the job. In this 
case Eq. 7.1 becomes 

J = a(E + v x B). (7.2) 

Ordinarily, the velocity of the charges is sufficiently small that the second term 
can be ignored: 

J=aE. (7.3) 

(However, in plasmas, for instance, the magnetic contribution to f can be signif­
icant.) Equation 7.3 is called Ohm's law, though the physics behind it is really 
contained in Eq. 7.1, of which 7.3 is just a special case. 

I know: you're confused because I said E = 0 inside a conductor (Sect. 2.5.1). 
But that's for stationary charges (J = 0). Moreover, for peifect conductors 
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Material Resistivity Material Resistivity 

Conductors: Semiconductors: 
Silver 1.59 X 10-S Sea water 0.2 
Copper 1.68 X 10-S Germanium 0.46 
Gold 2.21 X 10-S Diamond 2.7 
Aluminum 2.65 X 10-S Silicon 2500 
Iron 9.61 X 10-S Insulators: 
Mercury 9.61 x 10-7 Water (pure) 8.3 X 103 

Nichrome 1.08 x 10-6 Glass 109- 1014 

Manganese 1.44 x 10-6 Rubber 1013 - 1015 

Graphite 1.6 x 10-5 Teflon 1022- 1024 

TABLE 7.1 Resistivities, in ohm-meters (all values are for 1 atm, 20° C). Data from 
Handbook of Chemistry and Physics, 91st ed. (Boca Raton, Fla.: CRC Press, 2010) and 

other references. 

E = J j a = 0 even if current is flowing. In practice, metals are such good con­
ductors that the electric field required to drive current in them is negligible. Thus 
we routinely treat the connecting wires in electric circuits (for example) as equipo­
tentials. Resistors, by contrast, are made from poorly conducting materials. 

Example 7.1. A cylindrical resistor of cross-sectional area A and length L is 
made from material with conductivity a. (See Fig. 7.1; as indicated, the cross 
section need not be circular, but I do assume it is the same all the way down.) If we 
stipulate that the potential is constant over each end, and the potential difference 
between the ends is V, what current flows? 

L 

FIGURE7.1 

Solution 
As it turns out, the electric field is uniform within the wire (I'll prove this in a 
moment). It follows from Eq. 7.3 that the current density is also uniform, so 

a A 
I= JA = aEA = - V. 

L 
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Example 7.2. Two long coaxial metal cylinders (radii a and b) are separated 
by material of conductivity a (Fig. 7 .2). If they are maintained at a potential 
difference V, what current flows from one to the other, in a length L? 

(J __________ f~--------------
a) J 1 _________________________ J 

L 

FIGURE7.2 

Solution 
The field between the cylinders is 

A A 

E= --S, 
2nE0s 

where A is the charge per unit length on the inner cylinder. The current is therefore 

I = f J · da = a f E · da = ~ AL. 

(The integral is over any surface enclosing the inner cylinder.) Meanwhile, the 
potential difference between the cylinders is 

V = - fa E · dl = _ A_ ln (!!_) , 
Jb 2nEo a 

so 

2na L 
I= V. 

ln (bja) 

As these examples illustrate, the total current flowing from one electrode to 
the other is proportional to the potential difference between them: 

I v =IR. I (7.4) 

This, of course, is the more familiar version of Ohm's law. The constant of propor­
tionality R is called the resistance; it's a function of the geometry of the arrange­
ment and the conductivity of the medium between the electrodes. (In Ex. 7.1, 
R = (Lja A); in Ex. 7.2, R = ln (bja)j2na L.) Resistance is measured in ohms 
(Q): an ohm is a volt per ampere. Notice that the proportionality between V and I 
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is a direct consequence ofEq. 7.3: if you want to double V, you simply double the 
charge on the electrodes-that doubles E, which (for an ohmic material) doubles 
J, which doubles I. 

For steady currents and uniform conductivity, 

1 
V · E = - V · J = 0, 

(]' 
(7.5) 

(Eq. 5.33), and therefore the charge density is zero; any unbalanced charge re­
sides on the surface. (We proved this long ago, for the case of stationary charges, 
using the fact that E = 0; evidently, it is still true when the charges are allowed 
to move.) It follows, in particular, that Laplace's equation holds within a homo­
geneous ohmic material carrying a steady current, so all the tools and tricks of 
Chapter 3 are available for calculating the potential. 

Example 7.3. I asserted that the field in Ex. 7.1 is uniform. Let's prove it. 

Solution 
Within the cylinder V obeys Laplace's equation. What are the boundary condi­
tions? At the left end the potential is constant-we may as well set it equal to 
zero. At the right end the potential is likewise constant-call it V0 • On the cylin­
drical surface, J · ii = 0, or else charge would be leaking out into the surround­
ing space (which we take to be nonconducting). Therefore E · ii = 0, and hence 
a V 1 an = 0. With V or its normal derivative specified on all surfaces, the poten­
tial is uniquely determined (Prob. 3.5). But it's easy to guess one potential that 
obeys Laplace's equation and fits these boundary conditions: 

V( ) = Voz 
z L ' 

where z is measured along the axis. The uniqueness theorem guarantees that this 
is the solution. The corresponding field is 

which is indeed uniform. 

VoA 
E= -VV = - - z 

L ' 

D 

Contrast the enormously more difficult problem that arises if the conducting 
material is removed, leaving only a metal plate at either end (Fig. 7 .3). Evidently 

V=O 

FIGURE7.3 
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in the present case charge arranges itself over the surface of the wire in just such 
a way as to produce a nice uniform field within.1 

I don't suppose there is any formula in physics more familiar than Ohm's law, 
and yet it's not really a true law, in the sense of Coulomb's or Ampere's; rather, 
it is a "rule of thumb" that applies pretty well to many substances. You're not 
going to win a Nobel prize for finding an exception. In fact, when you stop to 
think about it, it's a little surprising that Ohm's law ever holds. After all, a given 
field E produces a force qE (on a charge q), and according to Newton's second 
law, the charge will accelerate. But if the charges are accelerating, why doesn't 
the current increase with time, growing larger and larger the longer you leave 
the field on? Ohm's law implies, on the contrary, that a constant field produces a 
constant current, which suggests a constant velocity. Isn't that a contradiction to 
Newton's law? 

No, for we are forgetting the frequent collisions electrons make as they pass 
down the wire. It's a little like this: Suppose you're driving down a street with 
a stop sign at every intersection, so that, although you accelerate constantly in 
between, you are obliged to start all over again with each new block. Your average 
speed is then a constant, in spite of the fact that (save for the periodic abrupt stops) 
you are always accelerating. If the length of a block is ).. and your acceleration is 
a, the time it takes to go a block is 

t=f§, 
and hence your average velocity is 

Vave = ~at = .j¥. 
But wait! That's no good either! It says that the velocity is proportional to the 

square root of the acceleration, and therefore that the current should be propor­
tional to the square root of the field! There's another twist to the story: In practice, 
the charges are already moving very fast because of their thermal energy. But the 
thermal velocities have random directions, and average to zero. The drift velocity 
we are concerned with is a tiny extra bit (Prob. 5.20). So the time between col­
lisions is actually much shorter than we supposed; if we assume for the sake of 
argument that all charges travel the same distance ).. between collisions, then 

and therefore 

).. t= ---, 
Vthermal 

1 aJ. 
Vave = - at = ---

2 2vthermal 

1Calculating this surface charge is not easy. See, for example, J.D. Jackson, Am. J. Phys. 64, 855 
(1996). Nor is it a simple matter to determine the field outside the wire-see Prob. 7.43. 
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If there are n molecules per unit volume, and f free electrons per molecule, each 
with charge q and mass m, the current density is 

njq}.. F ( nj}..q2 
) 

J = nfqVave = = E. 
2Vthennal m 2m Vfuermal 

(7.6) 

I don't claim that the term in parentheses is an accurate formula for the con­
ductivity, 2 but it does indicate the basic ingredients, and it correctly predicts that 
conductivity is proportional to the density of the moving charges and (ordinarily) 
decreases with increasing temperature. 

As a result of all the collisions, the work done by the electrical force is con­
verted into heat in the resistor. Since the work done per unit charge is V and the 
charge flowing per unit time is I, the power delivered is 

I p = vI= I 2 R. I (7.7) 

This is the Joule heating law. With I in amperes and R in ohms, P comes out in 
watts Goules per second). 

Problem 7.1 Two concentric metal spherical shells, of radius a and b, respectively, 
are separated by weakly conducting material of conductivity u (Fig. 7 .4a). 

(a) If they are maintained at a potential difference V, what current flows from one 
to the other? 

(b) What is the resistance between the shells? 

(c) Notice that if b »a the outer radius (b) is irrelevant. How do you account 
for that? Exploit this observation to determine the current flowing between two 
metal spheres, each of radius a, immersed deep in the sea and held quite far apart 
(Fig. 7 .4b ), if the potential difference between them is V. (This arrangement can 
be used to measure the conductivity of sea water.) 

(a) (b) 

FIGURE7.4 

2This classical model (due to Drude) bears little resemblance to the modern quantum theory of con­
ductivity. See, for instance, D. Park's Introduction to the Quantum Theory, 3rd ed., Chap. 15 (New 
York: McGraw-Hill, 1992). 
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Problem 7.2 A capacitor C has been charged up to potential V0 ; at time t = 0, it is 
connected to a resistor R, and begins to discharge (Fig. 7.5a). 

R 

(a) (b) 

FIGURE7.5 

(a) Determine the charge on the capacitor as a function of time, Q(t). What is the 
current through the resistor, I (t)? 

(b) What was the original energy stored in the capacitor (Eq. 2.55)? By integrating 
Eq. 7.7, confirm that the heat delivered to the resistor is equal to the energy lost 
by the capacitor. 

Now imagine charging up the capacitor, by connecting it (and the resistor) to 
a battery of voltage V0 , at timet = 0 (Fig. 7.5b). 

(c) Again, determine Q(t) and I(t). 

(d) Find the total energy output of the battery (j Vol dt). Determine the heat de­
livered to the resistor. What is the final energy stored in the capacitor? What 
fraction of the work done by the battery shows up as energy in the capacitor? 
[Notice that the answer is independent of R !] 

Problem 7.3 

(a) Two metal objects are embedded in weakly conducting material of conductivity 
a (Fig. 7 .6). Show that the resistance between them is related to the capacitance 
of the arrangement by 

R=~. 
aC 

(b) Suppose you connected a battery between 1 and 2, and charged them up to 
a potential difference V0• If you then disconnect the battery, the charge will 
gradually leak off. Show that V (t) = V0e-tf'r, and find the time constant, r, in 
terms of Eo and a. 

FIGURE7.6 
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Problem 7.4 Suppose the conductivity of the material separating the cylinders in 
Ex. 7.2 is not uniform; specifically, a(s) = kjs, for some constant k. Find there­
sistance between the cylinders. [Hint: Because a is a function of position, Eq. 7.5 
does not hold, the charge density is not zero in the resistive medium, and E does 
not go like 1/s. But we do know that for steady currents I is the same across each 
cylindrical surface. Take it from there.] 

7 .1.2 • Electromotive Force 

If you think about a typical electric circuit-a battery hooked up to a light bulb, 
say (Fig. 7. 7)-a perplexing question arises: In practice, the current is the same all 
the way around the loop; why is this the case, when the only obvious driving force 
is inside the battery? Off hand, you might expect a large current in the battery and 
none at all in the lamp. Who's doing the pushing, in the rest of the circuit, and how 
does it happen that this push is exactly right to produce the same current in each 
segment? What's more, given that the charges in a typical wire move (literally) 
at a snail's pace (see Prob. 5.20), why doesn't it take half an hour for the current 
to reach the light bulb? How do all the charges know to start moving at the same 
instant? 

Answer: If the current were not the same all the way around (for instance, dur­
ing the first split second after the switch is closed), then charge would be piling up 
somewhere, and-here's the crucial point-the electric field of this accumulating 
charge is in such a direction as to even out the flow. Suppose, for instance, that 
the current into the bend in Fig. 7.8 is greater than the current out. Then charge 
piles up at the "knee," and this produces a field aiming away from the kink. 3 This 
field opposes the current flowing in (slowing it down) and promotes the current 
flowing out (speeding it up) until these currents are equal, at which point there is 
no further accumulation of charge, and equilibrium is established. It's a beautiful 
system, automatically self-correcting to keep the current uniform, and it does it 
all so quickly that, in practice, you can safely assume the current is the same all 
around the circuit, even in systems that oscillate at radio frequencies. 

FIGURE7.7 FIGURE7.8 

3The amount of charge involved is surprisingly small-see W. G. V. Rosser, Am. J. Phys. 38, 265 
(1970); nevertheless, the resulting field can be detected experimentally-seeR. Jacobs, A. de Salazar, 
and A. Nassar, Am. J. Phys. 78, 1432 (2010). 
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There are really two forces involved in driving current around a circuit: the 
source, f8 , which is ordinarily confined to one portion of the loop (a battery, say), 
and an electrostatic force, which serves to smooth out the flow and communicate 
the influence of the source to distant parts of the circuit: 

f= fs +E. (7.8) 

The physical agency responsible for fs can be many different things: in a battery 
it's a chemical force; in a piezoelectric crystal mechanical pressure is converted 
into an electrical impulse; in a thermocouple it's a temperature gradient that does 
the job; in a photoelectric cell it's light; and in a Van de Graaff generator the 
electrons are literally loaded onto a conveyer belt and swept along. Whatever the 
mechanism, its net effect is determined by the line integral off around the circuit: 

(7.9) 

(Because rj E · dl = 0 for electrostatic fields, it doesn't matter whether you use 
for f 8 .) £ is called the electromotive force, or emf, of the circuit. It's a lousy 
term, since this is not aforce at all-it's the integral of aforce per unit charge. 
Some people prefer the word electromotance, but emf is so established that I 
think we'd better stick with it. 

Within an ideal source of emf (a resistanceless battery,4 for instance), the net 
force on the charges is zero (Eq. 7.1 with a = oo), so E = -f8 • The potential 
difference between the terminals (a and b) is therefore 

V = - 1b E · dl = 1b fs • dl = f fs • dl = £ (7.10) 

(we can extend the integral to the entire loop because fs = 0 outside the source). 
The function of a battery, then, is to establish and maintain a voltage difference 
equal to the electromotive force (a 6 V battery, for example, holds the positive ter­
minal6 V above the negative terminal). The resulting electrostatic field drives cur­
rent around the rest of the circuit (notice, however, that inside the battery fs drives 
current in the direction opposite to E).5 

Because it's the line integral of f 8 , £ can be interpreted as the work done per 
unit charge, by the source-indeed, in some books electromotive force is defined 
this way. However, as you'll see in the next section, there is some subtlety in­
volved in this interpretation, so I prefer Eq. 7.9. 

4 Real batteries have a certain internal resistance, r, and the potential difference between their termi­
nals is E - I r, when a current I is flowing. For an illuminating discussion of how batteries work, see 
D. Roberts, Am. J. Phys. 51, 829 (1983). 
5Current in an electric circuit is somewhat analogous to the flow of water in a closed system of pipes, 
with gravity playing the role of the electrostatic field, and a pump (lifting the water up against gravity) 
in the role of the battery. In this story height is analogous to voltage. 
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Problem 7.5 A battery of emf e and internal resistance r is hooked up to a variable 
"load" resistance, R. If you want to deliver the maximum possible power to the 
load, what resistance R should you choose? (You can't change e and r, of course.) 

FIGURE7.9 

Problem 7.6 A rectangular loop of wire is situated so that one end (height h) is 
between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the 
field E. The other end is way outside, where the field is essentially zero. What 
is the emf in this loop? If the total resistance is R, what current flows? Explain. 
[Warning: This is a trick question, so be careful; if you have invented a perpetual 
motion machine, there's probably something wrong with it.] 

7 .1.3 • Motional emf 

In the last section, I listed several possible sources of electromotive force, batteries 
being the most familiar. But I did not mention the commonest one of all: the 
generator. Generators exploit motional emfs, which arise when you move a wire 
through a magnetic field. Figure 7.10 suggests a primitive model for a generator. 
In the shaded region there is a uniform magnetic field B, pointing into the page, 
and the resistor R represents whatever it is (maybe a light bulb or a toaster) we're 
trying to drive current through. If the entire loop is pulled to the right with speed v, 
the charges in segment ab experience a magnetic force whose vertical component 
q v B drives current around the loop, in the clockwise direction. The emf is 

E = f fmag · dl = vBh, (7.11) 

where h is the width of the loop. (The horizontal segments be and ad contribute 
nothing, since the force there is perpendicular to the wire.) 

Notice that the integral you perform to calculate E (Eq. 7.9 or 7.11) is carried 
out at one instant of time-take a "snapshot" of the loop, if you like, and work 

a d 

FIGURE7.10 
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from that. Thus dl, for the segment ab in Fig. 7.1 0, points straight up, even though 
the loop is moving to the right. You can't quarrel with this-it's simply the way 
emf is defined-but it is important to be clear about it. 

In particular, although the magnetic force is responsible for establishing the 
emf, it is not doing any work-magnetic forces never do work. Who, then, is 
supplying the energy that heats the resistor? Answer: The person who's pulling on 
the loop. With the current flowing, the free charges in segment ab have a vertical 
velocity (call it u) in addition to the horizontal velocity v they inherit from the 
motion of the loop. Accordingly, the magnetic force has a component quB to the 
left. To counteract this, the person pulling on the wire must exert a force per unit 
charge 

fpull = uB 

to the right (Fig. 7.11). This force is transmitted to the charge by the structure of 
the wire. 

Meanwhile, the particle is actually moving in the direction of the resultant ve­
locity w, and the distance it goes is (h/ cos 0). The work done per unit charge is 
therefore 

f fpull · dl = (uB) ( - h- ) sinO= vBh = £ 
cosO 

(sin 0 coming from the dot product). As it turns out, then, the work done per unit 
charge is exactly equal to the emf, though the integrals are taken along entirely 
different paths (Fig. 7.12), and completely different forces are involved. To calcu­
late the emf, you integrate around the loop at one instant, but to calculate the work 
done you follow a charge in its journey around the loop; fpull contributes nothing to 
the emf, because it is perpendicular to the wire, whereas fmag contributes nothing 
to work because it is perpendicular to the motion of the charge.6 

There is a particularly nice way of expressing the emf generated in a moving 
loop. Let <I> be the flux of B through the loop: 

<I>= J B · da. (7.12) 

FIGURE7.11 

6For further discussion, see E. P. Mosca, Am. J. Phys. 42, 295 (1974). 
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b c b c 

h 

a' 

a d a a' d 

(a) Integration path for computing 
£ (follow the wire at one instant 
of time). 

(b) Integration path for calculating work 
done (follow the charge around the loop). 

FIGURE7.12 

For the rectangular loop in Fig. 7 .10, 

<I>= Bhx. 

As the loop moves, the flux decreases: 

d<l> dx 
- = Bh - = -Bhv. 
dt dt 

(The minus sign accounts for the fact that dx f d t is negative.) But this is precisely 
the emf (Eq. 7.11); evidently the emf generated in the loop is minus the rate of 
change of flux through the loop: 

(7.13) 

This is the flux rule for motional emf. 
Apart from its delightful simplicity, the flux rule has the virtue of applying to 

nonrectangular loops moving in arbitrary directions through nonuniform mag­
netic fields; in fact, the loop need not even maintain a fixed shape. 

Proof. Figure 7.13 shows a loop of wire at timet, and also a short time dt later. 
Suppose we compute the flux at timet, using surfaceS, and the flux at time 
t + dt, using the surface consisting of S plus the "ribbon" that connects the new 
position of the loop to the old. The change in flux, then, is 

d<l> = <l>(t + dt)- <l>(t) = <l>nbbon = { B · da. 
}ribbon 

Focus your attention on point P: in timed t, it moves to P'. Let v be the velocity of 
the wire, and u the velocity of a charge down the wire; w = v + u is the resultant 
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SurfaceS 

Ribbon 

pfjdl ~------ ,. ... ..-B 
e --- .,...-"' 

vdt ~"' da 
P' 

Loop at Loop at 
time t time ( t + dt) 

Enlargement of da 

FIGURE7.13 

velocity of a charge at P. The infinitesimal element of area on the ribbon can be 
written as 

da = (v x dl)dt 

(see inset in Fig. 7 .13). Therefore 

dcf> f - = B · (v x dl). 
dt 

Since w = (v + u) and u is parallel to dl, we can just as well write this as 

dcf> = 1 B . (w x dl). 
dt j 

Now, the scalar triple-product can be rewritten: 

so 

B · (w x dl) = -(w x B)· dl, 

dcf> =- 1 (w x B)· dl. 
dt j 

But (w x B) is the magnetic force per unit charge, fmag• so 

dcf> = - 1 fmag · dl, 
dt j 

and the integral of fmag is the emf: 

C' = - dcf> 
" dt . D 

There is a sign ambiguity in the definition of emf (Eq. 7.9): Which way around 
the loop are you supposed to integrate? There is a compensatory ambiguity in the 
definition of .flux (Eq. 7.12): Which is the positive direction for da? In applying 
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B (into page) 

FIGURE7.14 

the flux rule, sign consistency is governed (as always) by your right hand: If your 
fingers define the positive direction around the loop, then your thumb indicates 
the direction of da. Should the emf come out negative, it means the current will 
flow in the negative direction around the circuit. 

The flux rule is a nifty short-cut for calculating motional emfs. It does not con­
tain any new physics-just the Lorentz force law. But it can lead to error or ambi­
guity if you're not careful. The flux rule assumes you have a single wire loop-it 
can move, rotate, stretch, or distort (continuously), but beware of switches, sliding 
contacts, or extended conductors allowing a variety of current paths. A standard 
"flux rule paradox" involves the circuit in Figure 7.14. When the switch is thrown 
(from a to b) the flux through the circuit doubles, but there's no motional emf 
(no conductor moving through a magnetic field), and the ammeter (A) records no 
current. 

Example 7 .4. A metal disk of radius a rotates with angular velocity w about a 
vertical axis, through a uniform field B, pointing up. A circuit is made by connect­
ing one end of a resistor to the axle and the other end to a sliding contact, which 
touches the outer edge of the disk (Fig. 7.15). Find the current in the resistor. 

(Sliding contact) 

FIGURE7.15 

Solution 
The speed of a point on the disk at a distance s from the axis is v = ws, so the 
force per unit charge is fmag = v x B = ws Bs. The emf is therefore 

1a loa wBa2 
£ = fmagds = wB sds = --, 

0 0 2 



310 Chapter 7 Electrodynamics 

and the current is 

£ wBa2 
[- - - -­- R- 2R . 

Example 7.4 (the Faraday disk, or Faraday dynamo) involves a motional 
emf that you can't calculate (at least, not directly) from the flux rule. The flux rule 
assumes the current flows along a well-defined path, whereas in this example the 
current spreads out over the whole disk. It's not even clear what the "flux through 
the circuit" would mean in this context. 

Even more tricky is the case of eddy currents. Take a chunk of aluminum 
(say), and shake it around in a nonuniform magnetic field. Currents will be gen­
erated in the material, and you will feel a kind of "viscous drag" -as though you 
were pulling the block through molasses (this is the force I called fpu11 in the dis­
cussion of motional emf). Eddy currents are notoriously difficult to calculate,7 but 
easy and dramatic to demonstrate. You may have witnessed the classic experiment 
in which an aluminum disk mounted as a pendulum on a horizontal axis swings 
down and passes between the poles of a magnet (Fig. 7.16a). When it enters the 
field region it suddenly slows way down. To confirm that eddy currents are re­
sponsible, one repeats the demonstration using a disk that has many slots cut in it, 
to prevent the flow of large-scale currents (Fig. 7.16b). This time the disk swings 
freely, unimpeded by the field. 

(a) (b) 

FIGURE7.16 

Problem 7.7 A metal bar of mass m slides frictionlessly on two parallel conducting 
rails a distance l apart (Fig. 7 .17). A resistor R is connected across the rails, and a 
uniform magnetic field B, pointing into the page, fills the entire region. 

7 See, for example, W. M. Saslow, Am. J. Phys., 60, 693 (1992). 



7.1 Electromotive Force 311 
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m 

FIGURE7.17 

(a) If the bar moves to the right at speed v, what is the current in the resistor? In 
what direction does it flow? 

(b) What is the magnetic force on the bar? In what direction? 

(c) If the bar starts out with speed v0 at time t = 0, and is left to slide, what is its 
speed at a later time t? 

(d) The initial kinetic energy of the bar was, of course, ~mv02 • Check that the en­
ergy delivered to the resistor is exactly ~mv02 • 

Problem 7.8 A square loop of wire (side a) lies on a table, a distances from a very 
long straight wire, which carries a current I, as shown in Fig. 7.18. 

a 

I 

FIGURE7.18 

(a) Find the flux of B through the loop. 

(b) If someone now pulls the loop directly away from the wire, at speed v, what 
emf is generated? In what direction (clockwise or counterclockwise) does the 
current flow? 

(c) What if the loop is pulled to the right at speed v? 

Problem 7.9 An infinite number of different surfaces can be fit to a given boundary 
line, and yet, in defining the magnetic flux through a loop, ct> = J B · da, I never 
specified the particular surface to be used. Justify this apparent oversight. 

Problem 7.10 A square loop (side a) is mounted on a vertical shaft and rotated at 
angular velocity w (Fig. 7.19). A uniform magnetic field B points to the right. Find 
the e(t) for this alternating current generator. 

Problem 7.11 A square loop is cut out of a thick sheet of aluminum. It is then placed 
so that the top portion is in a uniform magnetic field B, and is allowed to fall under 
gravity (Fig. 7 .20). (In the diagram, shading indicates the field region; B points into 
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the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the 
terminal velocity of the loop (in m/s ). Find the velocity of the loop as a function of 
time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity? 
What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note: 
The dimensions of the loop cancel out; determine the actual numbers, in the units 
indicated.] 

----B --
+ 

FIGURE7.19 FIGURE7.20 

7.2 • ELECTROMAGNETIC INDUCTION 

7 .2.1 • Faraday's Law 

In 1831 Michael Faraday reported on a series of experiments, including three that 
(with some violence to history) can be characterized as follows: 

Experiment 1. He pulled a loop of wire to the right through a magnetic field 
(Fig. 7.21a). A current flowed in the loop. 

Experiment 2. He moved the magnet to the left, holding the loop still (Fig. 7.21b). 
Again, a current flowed in the loop. 

Experiment 3. With both the loop and the magnet at rest (Fig. 7 .21c), he changed 
the strength of the field (he used an electromagnet, and varied the current 
in the coil). Once again, current flowed in the loop. 

B (in) 

(a) 

v v 
===--=== 

B (in) 

(b) 
changing 

magnetic field 

FIGURE7.21 

B 

(c) 
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The first experiment, of course, is a straightforward case of motional emf; 
according to the flux rule: 

C' = - dct> 
c- dt . 

I don't think it will surprise you to learn that exactly the same emf arises in Ex­
periment 2-all that really matters is the relative motion of the magnet and the 
loop. Indeed, in the light of special relativity it has to be so. But Faraday knew 
nothing of relativity, and in classical electrodynamics this simple reciprocity is a 
remarkable coincidence. For if the loop moves, it's a magnetic force that sets up 
the emf, but if the loop is stationary, the force cannot be magnetic-stationary 
charges experience no magnetic forces. In that case, what is responsible? What 
sort of field exerts a force on charges at rest? Well, electric fields do, of course, 
but in this case there doesn't seem to be any electric field in sight. 

Faraday had an ingenious inspiration: 

A changing magnetic field induces an electric field. 

It is this induced8 electric field that accounts for the emf in Experiment 2.9 Indeed, 
if (as Faraday found empirically) the emf is again equal to the rate of change of 
the flux, 

(7 .14) 

then E is related to the change in B by the equation 

f E · dl = - J ~~ . da. (7.15) 

This is Faraday's law, in integral form. We can convert it to differential form by 
applying Stokes' theorem: 

aB 
V xE= - - . at (7.16) 

8"Induce" is a subtle and slippery verb. It carries a faint odor of causation ("produce" would make 
this explicit) without quite committing itself. There is a sterile ongoing debate in the literature as to 
whether a changing magnetic field should be regarded as an independent "source" of electric fields 
(along with electric charge)-after all, the magnetic field itself is due to electric currents. It's like 
asking whether the postman is the "source" of my mail. Well, sure-he delivered it to my door. On the 
other hand, Grandma wrote the letter. Ultimately, p and J are the sources of all electromagnetic fields, 
and a changing magnetic field merely delivers electromagnetic news from currents elsewhere. But it 
is often convenient to think of a changing magnetic field "producing" an electric field, and it won't 
hurt you as long as you understand that this is the condensed version of a more complicated story. For 
a nice discussion, seeS. E. Hill, Phys. Teach. 48,410 (2010). 
9You might argue that the magnetic field in Experiment 2 is not really changing-just moving. What 
I mean is that if you sit at a fixed location, the field you experience changes as the magnet passes by. 
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Note that Faraday's law reduces to the old rule :fE · dl = 0 (or, in differential 
form, V x E = 0) in the static case (constant B) as, of course, it should. 

In Experiment 3, the magnetic field changes for entirely different reasons, but 
according to Faraday's law an electric field will again be induced, giving rise to 
an emf -d <I> j d t. Indeed, one can subsume all three cases (and for that matter any 
combination of them) into a kind of universal flux rule: 

Whenever (and for whatever reason) the magnetic flux through a 
loop changes, an emf 

will appear in the loop. 

E =- d<l> 
dt 

(7.17) 

Many people call this "Faraday's law." Maybe I'm overly fastidious, but I find this 
confusing. There are really two totally different mechanisms underlying Eq. 7.17, 
and to identify them both as "Faraday's law" is a little like saying that because 
identical twins look alike we ought to call them by the same name. In Faraday's 
first experiment it's the Lorentz force law at work; the emf is magnetic. But in the 
other two it's an electric field (induced by the changing magnetic field) that does 
the job. Viewed in this light, it is quite astonishing that all three processes yield 
the same formula for the emf. In fact, it was precisely this "coincidence" that led 
Einstein to the special theory of relativity-he sought a deeper understanding of 
what is, in classical electrodynamics, a peculiar accident. But that's a story for 
Chapter 12. In the meantime, I shall reserve the term "Faraday's law" for electric 
fields induced by changing magnetic fields, and I do not regard Experiment 1 as 
an instance of Faraday's law. 

Example 7.5. A long cylindrical magnet of length L and radius a carries a uni­
form magnetization M parallel to its axis. It passes at constant velocity v through 
a circular wire ring of slightly larger diameter (Fig. 7.22). Graph the emf induced 
in the ring, as a function of time. 

L 

FIGURE7.22 

Solution 
The magnetic field is the same as that of a long solenoid with surface current 

Kb = M ~. So the field inside is B = J.LoM, except near the ends, where it starts 
to spread out. The flux through the ring is zero when the magnet is far away; it 
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builds up to a maximum of J-LoMna 2 as the leading end passes through; and it 
drops back to zero as the trailing end emerges (Fig. 7.23a). The emf is (minus) 
the derivative of <I> with respect to time, so it consists of two spikes, as shown in 
Fig. 7.23b. 

Llv 

(a) 

FIGURE7.23 

Keeping track of the signs in Faraday's law can be a real headache. For in­
stance, in Ex. 7.5 we would like to know which way around the ring the induced 
current flows. In principle, the right-hand rule does the job (we called <I> positive 
to the left, in Fig. 7 .22, so the positive direction for current in the ring is counter­
clockwise, as viewed from the left; since the first spike in Fig. 7.23b is negative, 
the first current pulse flows clockwise, and the second counterclockwise). But 
there's a handy rule, called Lenz's law, whose sole purpose is to help you get the 
directions right: 10 

Nature abhors a change in flux. 

The induced current will flow in such a direction that the flux it produces tends 
to cancel the change. (As the front end of the magnet in Ex. 7.5 enters the ring, 
the flux increases, so the current in the ring must generate a field to the right-it 
therefore flows clockwise.) Notice that it is the change in flux, not the flux it­
self, that nature abhors (when the tail end of the magnet exits the ring, the flux 
drops, so the induced current flows counterclockwise, in an effort to restore it). 
Faraday induction is a kind of "inertial" phenomenon: A conducting loop "likes" 
to maintain a constant flux through it; if you try to change the flux, the loop re­
sponds by sending a current around in such a direction as to frustrate your efforts. 
(It doesn't succeed completely; the flux produced by the induced current is typi­
cally only a tiny fraction of the original. All Lenz's law tells you is the direction of 
the flow.) 

10Lenz's law applies to motional emfs, too, but for them it is usually easier to get the direction of the 
current from the Lorentz force law. 
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Example 7 .6. The "jumping ring" demonstration. If you wind a solenoidal 
coil around an iron core (the iron is there to beef up the magnetic field), place 
a metal ring on top, and plug it in, the ring will jump several feet in the air 
(Fig. 7.24). Why? 

~rr 
c::> ring 

solenoid 

FIGURE7.24 

Solution 
Before you turned on the current, the flux through the ring was zero. Afterward a 
flux appeared (upward, in the diagram), and the emf generated in the ring led to a 
current (in the ring) which, according to Lenz's law, was in such a direction that 
its field tended to cancel this new flux. This means that the current in the loop is 
opposite to the current in the solenoid. And opposite currents repel, so the ring 
flies off. 11 

Problem 7.12 A long solenoid, of radius a, is driven by an alternating current, so 
that the field inside is sinusoidal: B(t) = B0 cos(wt) z. A circular loop of wire, of 
radius aj2 and resistance R, is placed inside the solenoid, and coaxial with it. Find 
the current induced in the loop, as a function of time. 

Problem 7.13 A square loop of wire, with sides of length a, lies in the first quadrant 
of the xy plane, with one comer at the origin. In this region, there is a nonuniform 
time-dependent magnetic field B(y, t) = ky3t 2 z (where k is a constant). Find the 
emf induced in the loop. 

Problem 7.14 As a lecture demonstration a short cylindrical bar magnet is dropped 
down a vertical aluminum pipe of slightly larger diameter, about 2 meters long. It 
takes several seconds to emerge at the bottom, whereas an otherwise identical piece 
of unmagnetized iron makes the trip in a fraction of a second. Explain why the 
magnet falls more slowly.12 

11 For further discussion of the jumping ring (and the related "floating ring"), see C. S. Schneider and 
J.P. Ertel, Am. J. Phys. 66, 686 (1998); P. J. H. Tjossem and E. C. Brost, Am. J. Phys. 79, 353 (2011). 
12For a discussion of this amazing demonstration seeK. D. Hahn et al., Am. J. Phys. 66, 1066 (1998) 
and G. Donoso, C. L. Ladera, and P. Martin, Am. J. Phys. 79, 193 (2011). 
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7.2.2 • The Induced Electric Field 

Faraday's law generalizes the electrostatic rule V x E = 0 to the time-dependent 
regime. The divergence ofE is still given by Gauss's law (V · E = l..p). IfE is a 

Eo 
pure Faraday field (due exclusively to a changing B, with p = 0), then 

V·E=O, 
aB 

VxE=-­
at 

This is mathematically identical to magnetostatics, 

V · B = 0, V x B = JLoJ. 

Conclusion: Faraday-induced electric fields are determined by -(aBjat) in ex­
actly the same way as magnetostatic fields are determined by JLoJ. The analog to 
Biot-Savart is13 is 

E = _ _ 1 J (aB;at) x 4 dr = _ _ 1 ~ J B x 4 dr, 
4n ~J-2 4n at ~J-2 

(7.18) 

and if symmetry permits, we can use all the tricks associated with Ampere's law 
in integral form (j B · dl = JLolenc), only now it's Faraday's law in integral form: 

(7.19) 

The rate of change of (magnetic) flux through the Amperian loop plays the role 
formerly assigned to JLolenc· 

Example 7.7. A uniform magnetic field B(t), pointing straight up, fills the 
shaded circular region of Fig. 7 .25. If B is changing with time, what is the in­
duced electric field? 

Solution 
E points in the circumferential direction, just like the magnetic field inside a long 
straight wire carrying a uniform current density. Draw an Amperian loop of radius 
s, and apply Faraday's law: 

f dct> d ( 2 ) 2 dB E · dl = E(2ns) = - - = - - ns B(t) = -ns - . 
~ ~ ~ 

Therefore 

s dB A 

E = -2dtq,. 

IfB is increasing, E runs clockwise, as viewed from above. 

13Magnetostatics holds only for time-independent currents, but there is no such restriction on aBjat. 
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B(t) 

Amperianloop 

FIGURE 7.25 

Rotation 
direction 

dl 

FIGURE7.26 

Example 7.8. A line charge).. is glued onto the rim of a wheel of radius b, which 
is then suspended horizontally, as shown in Fig. 7 .26, so that it is free to rotate (the 
spokes are made of some nonconducting material-wood, maybe). In the central 
region, out to radius a, there is a uniform magnetic field B0, pointing up. Now 
someone turns the field off. What happens? 

Solution 
The changing magnetic field will induce an electric field, curling around the axis 
of the wheel. This electric field exerts a force on the charges at the rim, and the 
wheel starts to turn. According to Lenz's law, it will rotate in such a direction that 
its field tends to restore the upward flux. The motion, then, is counterclockwise, 
as viewed from above. 

Faraday's law, applied to the loop at radius b, says 

f dct> 2 dB 
E · dl = E(2nb) = - - = -na - , 

dt dt 
or E =- a2 dB~-

2b dt 

The torque on a segment of length dl is (r x F), or b)..E dl. The total torque on 
the wheel is therefore 

N =b).. - -- dl = -b)..na -( 
a

2 
dB) f 2 dB 

2b dt dt' 

and the angular momentum imparted to the wheel is 

j Ndt = -}...na2b L: dB= )..na2bB0 . 

It doesn't matter how quickly or slowly you tum off the field; the resulting angular 
velocity of the wheel is the same regardless. (If you find yourself wondering where 
the angular momentum came from, you're getting ahead of the story! Wait for the 
next chapter.) 

Note that it's the electric field that did the rotating. To convince you of this, 
I deliberately set things up so that the magnetic field is zero at the location of 
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the charge. The experimenter may tell you she never put in any electric field-all 
she did was switch off the magnetic field. But when she did that, an electric field 
automatically appeared, and it's this electric field that turned the wheel. 

I must warn you, now, of a small fraud that tarnishes many applications of 
Faraday's law: Electromagnetic induction, of course, occurs only when the mag­
netic fields are changing, and yet we would like to use the apparatus of mag­
netostatics (Ampere's law, the Biot-Savart law, and the rest) to calculate those 
magnetic fields. Technically, any result derived in this way is only approximately 
correct. But in practice the error is usually negligible, unless the field fluctuates 
extremely rapidly, or you are interested in points very far from the source. Even 
the case of a wire snipped by a pair of scissors (Prob. 7.18) is static enough for 
Ampere's law to apply. This regime, in which magnetostatic rules can be used to 
calculate the magnetic field on the right hand side of Faraday's law, is called 
quasistatic. Generally speaking, it is only when we come to electromagnetic 
waves and radiation that we must worry seriously about the breakdown of mag­
netostatics itself. 

Example 7.9. An infinitely long straight wire carries a slowly varying current 
I (t). Determine the induced electric field, as a function of the distances from the 
wire.14 

Solution 

r--------
I 
I 1 

I 
I 
I 

:-Amperian loop 

I I 

---- __ J 
so s 

I 

FIGURE7.27 

In the quasistatic approximation, the magnetic field is (J-Lol j2n s), and it circles 
around the wire. Like the B-field of a solenoid, E here runs parallel to the axis. 
For the rectangular "Amperian loop" in Fig. 7.27, Faraday's law gives: 

fE·dl E(s0 )1- E(s)l = _!!.__ J B · da 
dt 

J-Lol dl 1s 1 , J-Lol dl 
- -- - ds = - --(Ins -lnso). 

2rr dt so s' 2n dt 

14This example is artificial, and not just in the obvious sense of involving infinite wires, but in a more 
subtle respect. It assumes that the current is the same (at any given instant) all the way down the 
line. This is a safe assumption for the short wires in typical electric circuits, but not for long wires 
(transmission lines), unless you supply a distributed and synchronized driving mechanism. But never 
mind-the problem doesn't inquire how you would produce such a current; it only asks what fields 
would result if you did. Variations on this problem are discussed by M. A. Heald, Am. J. Phys. 54, 
1142 (1986). 
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Thus 

E(s) = --Ins+ K z, [ 
J..Lo di J A 

2n dt 
(7.20) 

where K is a constant (that is to say, it is independent of s-it might still be a 
function oft). The actual value of K depends on the whole history of the function 
I (t)-we'll see some examples in Chapter 10. 

Equation 7.20 has the peculiar implication that E blows up as s goes to infin­
ity. That can't be true ... What's gone wrong? Answer: We have overstepped the 
limits of the quasistatic approximation. As we shall see in Chapter 9, electromag­
netic "news" travels at the speed of light, and at large distances B depends not 
on the current now, but on the current as it was at some earlier time (indeed, a 
whole range of earlier times, since different points on the wire are different dis­
tances away). If r is the time it takes I to change substantially, then the quasistatic 
approximation should hold only for 

s « cr, (7.21) 

and hence Eq. 7.20 simply does not apply, at extremely large s. 

Problem 7.15 A long solenoid with radius a and n turns per unit length carries a 
time-dependent current I (t) in the ~ direction. Find the electric field (magnitude 
and direction) at a distance s from the axis (both inside and outside the solenoid), 
in the quasistatic approximation. 

Problem 7.16 An alternating current I = I 0 cos (wt) flows down a long straight 
wire, and returns along a coaxial conducting tube of radius a. 

(a) In what direction does the induced electric field point (radial, circumferential, 
or longitudinal)? 

(b) Assuming that the field goes to zero ass---+ oo, find E(s, t). 15 

Problem 7.17 A long solenoid of radius a, carrying n turns per unit length, is looped 
by a wire with resistance R, as shown in Fig. 7.28. 

R 

FIGURE7.28 

15This is not at all the way electric fields actually behave in coaxial cables, for reasons suggested in 
the previous footnote. See Sect. 9.5.3, or J. G. Cherveniak:, Am. J. Phys., 54, 946 (1986), for a more 
realistic treatment. 
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(a) If the current in the solenoid is increasing at a constant rate (dl jdt = k), what 
current flows in the loop, and which way (left or right) does it pass through the 
resistor? 

(b) If the current I in the solenoid is constant but the solenoid is pulled out of the 
loop (toward the left, to a place far from the loop), what total charge passes 
through the resistor? 

Problem 7.18 A square loop, side a, resistance R, lies a distances from an infinite 
straight wire that carries current I (Fig. 7.29). Now someone cuts the wire, so I 
drops to zero. In what direction does the induced current in the square loop flow, 
and what total charge passes a given point in the loop during the time this current 
flows? If you don't like the scissors model, turn the current down gradually: 

I(t) = { (1- at)!, 
0, 

a 

I 

FIGURE7.29 

for 0 ::: t ::: 1/ot, 
fort > 1/ot. 

Problem 7.19 A toroidal coil has a rectangular cross section, with inner radius a, 
outer radius a+ w, and height h. It carries a total of N tightly wound turns, and 
the current is increasing at a constant rate (dl jdt = k). If w and h are both much 
less than a, find the electric field at a point z above the center of the toroid. [Hint: 
Exploit the analogy between Faraday fields and magnetostatic fields, and refer to 
Ex. 5.6.] 

Problem 7.20 Where is aBjat nonzero, in Figure 7.21(b)? Exploit the analogy 
between Faraday's law and Ampere's law to sketch (qualitatively) the electric field. 

Problem 7.21 Imagine a uniform magnetic field, pointing in the z direction and 
filling all space (B = B0 z). A positive charge is at rest, at the origin. Now somebody 
turns off the magnetic field, thereby inducing an electric field. In what direction does 
the charge move?16 

7.2.3 • Inductance 

Suppose you have two loops of wire, at rest (Fig. 7 .30). If you run a steady current 
II around loop 1, it produces a magnetic field B1. Some of the field lines pass 

16This paradox was suggested by Tom Colbert. Refer to Problem 2.55. 



322 Chapter 7 Electrodynamics 

dl2 

~ Loop2 

Bl Bl 

Loop 1 

FIGURE7.30 FIGURE7.31 

through loop 2; let <1>2 be the flux of B1 through 2. You might have a tough time 
actually calculating B1, but a glance at the Biot-Savart law, 

f.-to f dl1 x ..£ B1 = - h ---, 
4n ~t-2 

reveals one significant fact about this field: It is proportional to the current h. 
Therefore, so too is the flux through loop 2: 

<1>2 = J B1 · da2. 

Thus 

(7.22) 

where M21 is the constant of proportionality; it is known as the mutual induc­
tance of the two loops. 

There is a cute formula for the mutual inductance, which you can derive by 
expressing the flux in terms of the vector potential, and invoking Stokes' theorem: 

<1>2 = J B1 · da2 = J (V x A1) · da2 = f A1 · dh. 

Now, according to Eq. 5.66, 

and hence 

Evidently 

(7.23) 
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This is the Neumann formula; it involves a double line integral-one integration 
around loop 1, the other around loop 2 (Fig. 7.31). It's not very useful for practical 
calculations, but it does reveal two important things about mutual inductance: 

1. M21 is a purely geometrical quantity, having to do with the sizes, shapes, 
and relative positions of the two loops. 

2. The integral in Eq. 7.23 is unchanged if we switch the roles of loops 1 and 
2; it follows that 

(7.24) 

This is an astonishing conclusion: Whatever the shapes and positions of the 
loops, the flux through 2 when we run a current I around 1 is identical to 
the flux through 1 when we send the same current I around 2. We may as 
well drop the subscripts and call them both M. 

Example 7.10. A short solenoid (length 1 and radius a, with n1 turns per unit 
length) lies on the axis of a very long solenoid (radius b, n2 turns per unit length) 
as shown in Fig. 7 .32. Current I flows in the short solenoid. What is the flux 
through the long solenoid? 

FIGURE7.32 

Solution 
Since the inner solenoid is short, it has a very complicated field; moreover, it puts 
a different flux through each tum of the outer solenoid. It would be a miserable 
task to compute the total flux this way. However, if we exploit the equality of the 
mutual inductances, the problem becomes very easy. Just look at the reverse situ­
ation: run the current I through the outer solenoid, and calculate the flux through 
the inner one. The field inside the long solenoid is constant: 

(Eq. 5.59), so the flux through a single loop of the short solenoid is 

Brra2 = J.lonzirra2
• 

There are n 11 turns in all, so the total flux through the inner solenoid is 

<I>= J.lorra2n1nzll. 
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This is also the flux a current I in the short solenoid would put through the long 
one, which is what we set out to find. Incidentally, the mutual inductance, in this 
case, is 

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will 
vary accordingly, and Faraday's law says this changing flux will induce an emf in 
loop 2: 

£2 = _ dcfJ2 = -Mdh. 
dt dt 

(7.25) 

(In quoting Eq. 7.22-which was based on the Biot-Savart law-I am tacitly 
assuming that the currents change slowly enough for the system to be consid­
ered quasistatic.) What a remarkable thing: Every time you change the current 
in loop 1, an induced current flows in loop 2---even though there are no wires 
connecting them! 

Come to think of it, a changing current not only induces an emf in any nearby 
loops, it also induces an emf in the source loop itself (Fig 7 .33). Once again, the 
field (and therefore also the flux) is proportional to the current: 

cfJ = LI. (7.26) 

The constant of proportionality L is called the self inductance (or simply the 
inductance) of the loop. As with M, it depends on the geometry (size and shape) 
of the loop. If the current changes, the emf induced in the loop is 

(7.27) 

Inductance is measured in henries (H); a henry is a volt-second per ampere. 

FIGURE7.33 
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Example 7.11. Find the self-inductance of a toroidal coil with rectangular cross 
section (inner radius a, outer radius b, height h), that carries a total of N turns. 

Solution 
The magnetic field inside the toroid is (Eq. 5.60) 

Axis 

B = J.loN I 
2ns 

a 

s 
b 

FIGURE7.34 

The flux through a single tum (Fig. 7.34) is 

I 
I 

h 

ds 

B ·da = --h - ds = --- In - . f J.loN I 1b 1 J.loN Ih (b) 
2n aS 2n a 

The total flux is N times this, so the self-inductance (Eq. 7 .26) is 

L = J.loN2h In(!!_) . 
2n a 

(7.28) 

Inductance (like capacitance) is an intrinsically positive quantity. Lenz's law, 
which is enforced by the minus sign in Eq. 7.27, dictates that the emf is in such 
a direction as to oppose any change in current. For this reason, it is called a 
back emf. Whenever you try to alter the current in a wire, you must fight against 
this back emf. Inductance plays somewhat the same role in electric circuits that 
mass plays in mechanical systems: The greater L is, the harder it is to change 
the current, just as the larger the mass, the harder it is to change an object's 
velocity. 

Example 7 .12. Suppose a current I is flowing around a loop, when someone 
suddenly cuts the wire. The current drops "instantaneously" to zero. This gen­
erates a whopping back emf, for although I may be small, di jdt is enormous. 
(That's why you sometimes draw a spark when you unplug an iron or toaster­
electromagnetic induction is desperately trying to keep the current going, even if 
it has to jump the gap in the circuit.) 

Nothing so dramatic occurs when you plug in a toaster or iron. In this case in­
duction opposes the sudden increase in current, prescribing instead a smooth and 
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continuous buildup. Suppose, for instance, that a battery (which supplies a con­
stant emf Eo) is connected to a circuit of resistance R and inductance L (Fig. 7 .35). 
What current flows? 

R 

FIGURE7.35 

Solution 
The total emf in this circuit is Eo from the battery plus -L(dl jdt) from the in­
ductance. Ohm's law, then, says17 

dl 
Eo- L dt =JR. 

This is a first-order differential equation for I as a function of time. The general 
solution, as you can show for yourself, is 

l(t) =Eo +ke-(RfL)t, 
R 

where k is a constant to be determined by the initial conditions. In particular, if 
you close the switch at timet = 0, so I (0) = 0, then k = -E0 j R, and 

l(t) = Eo [1- e-(RfL)t]. (7.29) 
R 

This function is plotted in Fig. 7 .36. Had there been no inductance in the circuit, 
the current would have jumped immediately to Eo/ R. In practice, every circuit 
has some self-inductance, and the current approaches Eo/ R asymptotically. The 
quantity r = L j R is the time constant; it tells you how long the current takes to 
reach a substantial fraction (roughly two-thirds) of its final value. 

EJ~ p--------------
~ . 

LIR 2LIR 3LIR t 

FIGURE7.36 

17Notice that -L(dl fdt) goes on the left side of the equation-it is part of the emf that establishes 
the voltage across the resistor. 
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Problem 7.22 A small loop of wire (radius a) is held a distance z above the center 
of a large loop (radius b), as shown in Fig. 7.37. The planes of the two loops are 
parallel, and perpendicular to the common axis. 

(a) Suppose current I flows in the big loop. Find the flux through the little loop. 
(The little loop is so small that you may consider the field of the big loop to be 
essentially constant.) 

(b) Suppose current I flows in the little loop. Find the flux through the big loop. 
(The little loop is so small that you may treat it as a magnetic dipole.) 

(c) Find the mutual inductances, and confirm that M12 = M21· 

Problem 7.23 A square loop of wire, of side a, lies midway between two long wires, 
3a apart, and in the same plane. (Actually, the long wires are sides of a large rectan­
gular loop, but the short ends are so far away that they can be neglected.) A clock­
wise current I in the square loop is gradually increasing: di fdt = k (a constant). 
Find the emf induced in the big loop. Which way will the induced current flow? 

Problem 7.24 Find the self-inductance per unit length of a long solenoid, of radius 
R, carrying n turns per unit length. 

c_. ___ d____Lt______..) 

FIGURE7.37 FIGURE 7.38 

Problem 7.25 Try to compute the self-inductance of the "hairpin" loop shown in 
Fig. 7.38. (Neglect the contribution from the ends; most of the flux comes from 
the long straight section.) You'll run into a snag that is characteristic of many self­
inductance calculations. To get a definite answer, assume the wire has a tiny radius E, 

and ignore any flux through the wire itself. 

Problem 7.26 An alternating current I (t) = I 0 cos(wt) (amplitude 0.5 A, frequency 
60Hz) flows down a straight wire, which runs along the axis of a toroidal coil with 
rectangular cross section (inner radius 1 em, outer radius 2 em, height 1 em, 1000 
turns). The coil is connected to a 500 n resistor. 

(a) In the quasistatic approximation, what emf is induced in the toroid? Find the 
current, IR(t), in the resistor. 

(b) Calculate the back emf in the coil, due to the current I R (t). What is the ratio of 
the amplitudes of this back emf and the "direct" emf in (a)? 

Problem 7.27 A capacitor C is charged up to a voltage V and connected to an 
inductor L, as shown schematically in Fig. 7.39. At timet= 0, the switch S is 
closed. Find the current in the circuit as a function of time. How does your answer 
change if a resistor R is included in series with C and L? 
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L 

FIGURE7.39 

7 .2.4 • Energy in Magnetic Fields 

It takes a certain amount of energy to start a current flowing in a circuit. I'm not 
talking about the energy delivered to the resistors and converted into heat-that 
is irretrievably lost, as far as the circuit is concerned, and can be large or small, 
depending on how long you let the current run. What I am concerned with, rather, 
is the work you must do against the back emf to get the current going. This is 
ajixed amount, and it is recoverable: you get it back when the current is turned 
off. In the meantime, it represents energy latent in the circuit; as we'll see in a 
moment, it can be regarded as energy stored in the magnetic field. 

The work done on a unit charge, against the back emf, in one trip around the 
circuit is -£ (the minus sign records the fact that this is the work done by you 
against the emf, not the work done by the emf). The amount of charge per unit 
time passing down the wire is I. So the total work done per unit time is 

dW di 
- =-£I=LI- . 
dt dt 

If we start with zero current and build it up to a final value I, the work done 
(integrating the last equation over time) is 

(7.30) 

It does not depend on how long we take to crank up the current, only on the 
geometry of the loop (in the form of L) and the final current I. 

There is a nicer way to write W, which has the advantage that it is readily 
generalized to surface and volume currents. Remember that the flux <1> through 
the loop is equal to LI (Eq. 7.26). On the other hand, 

<1> = f B · da = f (V x A) · da = fA · dl, 

where the line integral is around the perimeter of the loop. Thus 

LI =fA ·dl, 
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and therefore 

W =~If A· dl = ~ f (A· I) dl. 

In this form, the generalization to volume currents is obvious: 

W = ~ {(A· J) dr. 
2 lv 

329 

(7.31) 

(7.32) 

But we can do even better, and express W entirely in terms of the magnetic 
field: Ampere's law, V x B = J.LoJ, lets us eliminate J: 

w = -
1
- JA · (V x B)dr. 

2J.Lo 
(7.33) 

Integration by parts transfers the derivative from B to A; specifically, product rule 
6 states that 

V ·(Ax B)= B · (V x A)- A· (V x B), 

so 

A· (V x B)= B · B- V ·(Ax B). 

Consequently, 

W = 2~0 [! B
2 

dr - f V · (A x B) dr] 

= -
1 

[ { B 2 dr - J. (A x B) · da] , 
2J.Lo lv rs (7.34) 

where S is the surface bounding the volume V. 
Now, the integration in Eq. 7.32 is to be taken over the entire volume occupied 

by the current. But any region larger than this will do just as well, for J is zero 
out there anyway. In Eq. 7.34, the larger the region we pick the greater is the 
contribution from the volume integral, and therefore the smaller is that of the 
surface integral (this makes sense: as the surface gets farther from the current, 
both A and B decrease). In particular, if we agree to integrate over all space, then 
the surface integral goes to zero, and we are left with 

W= - B dr. 1 1 2 

2J.Lo all space 
(7.35) 

In view of this result, we say the energy is "stored in the magnetic field," in 
the amount (B 2 f2J.Lo) per unit volume. This is a nice way to think of it, though 
someone looking at Eq. 7.32 might prefer to say that the energy is stored in the 
current distribution, in the amount t (A · J) per unit volume. The distinction is 
one of bookkeeping; the important quantity is the total energy W, and we need 
not worry about where (if anywhere) the energy is "located." 
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You might find it strange that it takes energy to set up a magnetic field-after 
all, magnetic fields themselves do no work. The point is that producing a magnetic 
field, where previously there was none, requires changing the field, and a chang­
ing B-field, according to Faraday, induces an electric field. The latter, of course, 
can do work. In the beginning, there is no E, and at the end there is no E; but in 
between, while B is building up, there is an E, and it is against this that the work 
is done. (You see why I could not calculate the energy stored in a magnetostatic 
field back in Chapter 5.) In the light of this, it is extraordinary how similar the 
magnetic energy formulas are to their electrostatic counterparts: 18 

1 J Eo J 2 
Welec = 2 (Vp)dr = 2 E dr, (2.43 and 2.45) 

1 f 1 f 2 Wmag = - (A·J)dr = - B dr. 
2 2JLo 

(7 .32 and 7 .35) 

Example 7.13. A long coaxial cable carries current I (the current flows down the 
surface of the inner cylinder, radius a, and back along the outer cylinder, radius 
b) as shown in Fig. 7 .40. Find the magnetic energy stored in a section of length l. 

b 

FIGURE7.40 

Solution 
According to Ampere's law, the field between the cylinders is 

JLol A 

B= - ,P. 
2ns 

Elsewhere, the field is zero. Thus, the energy per unit volume is 

1 (JLol )
2 

2JLo 2ns 

The energy in a cylindrical shell of length l, radius s, and thickness ds, then, is 

( 
JLo/2 ) 2n Is ds = JLol2l (ds) . 
8n2s2 4n s 

18For an illuminating confirmation of Eq. 7.35, using the method of Prob. 2.44, see T. H. Boyer, 
Am. J. Phys. 69, 1 (2001). 
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Integrating from a to b, we have: 

W = J.Lol
2
l ln (!!_) . 

4n a 

By the way, this suggests a very simple way to calculate the self-inductance of 
the cable. According to Eq. 7.30, the energy can also be written as !LI2 . Com­
paring the two expressions, 19 

L = J.Lol ln (!!_) . 
2n a 

This method of calculating self-inductance is especially useful when the current 
is not confined to a single path, but spreads over some surface or volume, so that 
different parts of the current enclose different amounts of flux. In such cases, it 
can be very tricky to get the inductance directly from Eq. 7.26, and it is best to let 
Eq. 7.30 define L. 

Problem 7.28 Find the energy stored in a section of length l of a long solenoid 
(radius R, current I, n turns per unit length), (a) using Eq. 7.30 (you found Lin 
Prob. 7.24); (b) using Eq. 7.31 (we worked out A in Ex. 5.12); (c) using Eq. 7.35; 
(d) using Eq. 7.34 (take as your volume the cylindrical tube from radius a < Rout 
to radius b > R). 

Problem 7.29 Calculate the energy stored in the toroidal coil of Ex. 7.11, by apply­
ing Eq. 7.35. Use the answer to check Eq. 7.28. 

Problem 7.30 A long cable carries current in one direction uniformly distributed 
over its (circular) cross section. The current returns along the surface (there is a 
very thin insulating sheath separating the currents). Find the self-inductance per 
unit length. 

Problem 7.31 Suppose the circuit in Fig. 7.41 has been connected for a long time 
when suddenly, at time t = 0, switch S is thrown from A to B, bypassing the battery. 

A 

B 

FIGURE7.41 

L 

R 

19Notice the similarity to Eq. 7.28-in a sense, the rectangular toroid is a short coaxial cable, turned 
on its side. 
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(a) What is the current at any subsequent timet? 

(b) What is the total energy delivered to the resistor? 

(c) Show that this is equal to the energy originally stored in the inductor. 

Problem 7.32 Two tiny wire loops, with areas a1 and a2, are situated a displacement 
-t apart (Fig. 7 .42). 

FIGURE7.42 

(a) Find their mutual inductance. [Hint: Treat them as magnetic dipoles, and use 
Eq. 5.88.] Is your formula consistent with Eq. 7.24? 

(b) Suppose a current / 1 is flowing in loop 1, and we propose to turn on a current 
h in loop 2. How much work must be done, against the mutually induced emf, 
to keep the current / 1 flowing in loop 1? In light of this result, comment on 
Eq. 6.35. 

Problem 7.33 An infinite cylinder of radius R carries a uniform surface charge a. 
We propose to set it spinning about its axis, at a final angular velocity w f. How much 
work will this take, per unit length? Do it two ways, and compare your answers: 

(a) Find the magnetic field and the induced electric field (in the quasistatic approx­
imation), inside and outside the cylinder, in terms of w, w, and s (the distance 
from the axis). Calculate the torque you must exert, and from that obtain the 
work done per unit length (W = f N dcp ). 

(b) Use Eq. 7.35 to determine the energy stored in the resulting magnetic field. 

7.3 • MAXWELL'S EQUATIONS 

7 .3.1 • Electrodynamics Before Maxwell 

So far, we have encountered the following laws, specifying the divergence and 
curl of electric and magnetic fields: 

(i) V·E 
1 

= - p (Gauss's law), 
Eo 

(ii) V·B =0 (no name), 

aB 
(iii) V xE= - - (Faraday's law), at 
(iv) V x B = JLoJ (Ampere's law). 
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These equations represent the state of electromagnetic theory in the mid-nineteenth 
century, when Maxwell began his work. They were not written in so compact a 
form, in those days, but their physical content was familiar. Now, it happens that 
there is a fatal inconsistency in these formulas. It has to do with the old rule that 
divergence of curl is always zero. If you apply the divergence to number (iii), 
everything works out: 

V · (V x E)= V · - - = - - (V ·B). ( aB) a 
at at 

The left side is zero because divergence of curl is zero; the right side is zero by 
virtue of equation (ii). But when you do the same thing to number (iv), you get 
into trouble: 

V · (V x B)= J.Lo(V ·J); (7.36) 

the left side must be zero, but the right side, in general, is not. For steady currents, 
the divergence of J is zero, but when we go beyond magnetostatics Ampere's law 
cannot be right. 

There's another way to see that Ampere's law is bound to fail for nonsteady 
currents. Suppose we're in the process of charging up a capacitor (Fig. 7 .43). In 
integral form, Ampere's law reads 

f B · dl = J.Lolenc· 

I want to apply it to the Amperian loop shown in the diagram. How do I deter­
mine Ienc? Well, it's the total current passing through the loop, or, more precisely, 
the current piercing a surface that has the loop for its boundary. In this case, the 
simplest surface lies in the plane of the loop--the wire punctures this surface, so 
Ienc = I. Fine-but what if I draw instead the balloon-shaped surface in Fig. 7.43? 
No current passes through this surface, and I conclude that Ienc = 0! We never 
had this problem in magnetostatics because the conflict arises only when charge 

~....--.,---' 
Capacitor 

Battery 

/ Amperian loop 

I 

FIGURE7.43 
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is piling up somewhere (in this case, on the capacitor plates). But for nonsteady 
currents (such as this one) "the current enclosed by the loop" is an ill-defined 
notion; it depends entirely on what surface you use. (If this seems pedantic to 
you-"obviously one should use the plane surface"-remember that the Ampe­
rian loop could be some contorted shape that doesn't even lie in a plane.) 

Of course, we had no right to expect Ampere's law to hold outside of magne­
tostatics; after all, we derived it from the Biot-Savart law. However, in Maxwell's 
time there was no experimental reason to doubt that Ampere's law was of wider 
validity. The flaw was a purely theoretical one, and Maxwell fixed it by purely 
theoretical arguments. 

7 .3.2 • How Maxwell Fixed Ampere's Law 

The problem is on the right side of Eq. 7.36, which should be zero, but isn't. 
Applying the continuity equation (5.29) and Gauss's law, the offending term can 
be rewritten: 

ap a ( aE) v. J =-at=- a/EoV. E)= -V. Eoat . 

If we were to combine Eo(aEjat) with J, in Ampere's law, it would be just right 
to kill off the extra divergence: 

aE 
V x B = JLoJ + JLoEo - . 

at 
(7.37) 

(Maxwell himself had other reasons for wanting to add this quantity to Ampere's 
law. To him, the rescue of the continuity equation was a happy dividend rather than 
a primary motive. But today we recognize this argument as a far more compelling 
one than Maxwell's, which was based on a now-discredited model ofthe ether.)20 

Such a modification changes nothing, as far as magnetostatics is concerned: 
when E is constant, we still have V x B = JLoJ. In fact, Maxwell's term is hard 
to detect in ordinary electromagnetic experiments, where it must compete for at­
tention with J-that's why Faraday and the others never discovered it in the lab­
oratory. However, it plays a crucial role in the propagation of electromagnetic 
waves, as we'll see in Chapter 9. 

Apart from curing the defect in Ampere's law, Maxwell's term has a cer­
tain aesthetic appeal: Just as a changing magnetic field induces an electric field 
(Faraday's law), so21 

A changing electric field induces a magnetic field. 

2°For the history of this subject, see A. M. Bork, Am. J. Phys. 31, 854 (1963). 
21 See footnote 8 (page 313) for commentary on the word "induce." The same issue arises here: Should 
a changing electric field be regarded as an independent source of magnetic field (along with current)? 
In a proximate sense it does function as a source, but since the electric field itself was produced by 
charges and currents, they alone are the "ultimate" sources of E and B. See S. E. Hill, Phys. Teach. 
49, 343 (2011); for a contrary view, see C. Savage, Phys. Teach. 50, 226 (2012). 
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Of course, theoretical convenience and aesthetic consistency are only suggestive­
there might, after all, be other ways to doctor up Ampere's law. The real confir­
mation of Maxwell's theory came in 1888 with Hertz's experiments on electro­
magnetic waves. 

Maxwell called his extra term the displacement current: 

(7.38) 

(It's a misleading name; Eo(aEjat) has nothing to do with current, except that it 
adds to J in Ampere's law.) Let's see now how displacement current resolves the 
paradox of the charging capacitor (Fig. 7 .43). If the capacitor plates are very close 
together (I didn't draw them that way, but the calculation is simpler if you assume 
this), then the electric field between them is 

1 1 Q 
E= - a= --

Eo Eo A' 

where Q is the charge on the plate and A is its area. Thus, between the plates 

aE 1 dQ 1 
- = -- = - I. 
at EoA dt EoA 

Now, Eq. 7.37 reads, in integral form, 

f B · dl = ~-toienc + J-LoEo J ( ~~) · da. (7.39) 

If we choose the flat surface, then E = 0 and Ienc = I. If, on the other hand, we 
use the balloon-shaped surface, then Ienc = 0, but j(aEjat) · da =I /Eo. So we 
get the same answer for either surface, though in the first case it comes from the 
conduction current, and in the second from the displacement current. 

Example 7.14. Imagine two concentric metal spherical shells (Fig. 7.44). 

The inner one (radius a) carries a charge Q(t), and the outer one (radius b) an 
opposite charge- Q(t). The space between them is filled with Ohmic material of 
conductivity a, so a radial current flows: 

1 Q A 

J=aE=a--- r; 
4nE0 r 2 

. f aQ I= -Q = J · da = - . 
Eo 

This configuration is spherically symmetrical, so the magnetic field has to be zero 
(the only direction it could possibly point is radial, and V · B = 0 ::::} j B · da = 
B(4nr2

) = 0, soB = 0). What? I thought currents produce magnetic fields! Isn't 
that what Biot-Savart and Ampere taught us? How can there be a J with no 
accompanying B? 
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FIGURE7.44 

Solution 
This is not a static configuration: Q, E, and J are all functions of time; Ampere 
and Biot-Savart do not apply. The displacement current 

aE 1 Q A Q A 

la =Eo- = -- r = -u--- r at 4n r 2 4JI"Eor2 

exactly cancels the conduction current (in Eq. 7 .37), and the magnetic field 
(determined by V · B = 0, V x B = 0) is indeed zero. 

Problem 7.34 A fat wire, radius a, carries a constant current I, uniformly dis­
tributed over its cross section. A narrow gap in the wire, of width w «a, forms 
a parallel-plate capacitor, as shown in Fig. 7.45. Find the magnetic field in the gap, 
at a distance s < a from the axis. 

+cr --cr 
I-

FIGURE7.45 

I-

Problem 7.35 The preceding problem was an artificial model for the charging ca­
pacitor, designed to avoid complications associated with the current spreading out 
over the surface of the plates. For a more realistic model, imagine thin wires that 
connect to the centers of the plates (Fig. 7.46a). Again, the current I is constant, 
the radius of the capacitor is a, and the separation of the plates is w « a. Assume 
that the current flows out over the plates in such a way that the surface charge is 
uniform, at any given time, and is zero at t = 0. 

(a) Find the electric field between the plates, as a function oft. 

(b) Find the displacement current through a circle of radius s in the plane mid­
way between the plates. Using this circle as your "Amperian loop," and the flat 
surface that spans it, find the magnetic field at a distance s from the axis. 
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I 

(b) 

FIGURE7.46 

(c) Repeat part (b), but this time use the cylindrical surface in Fig. 7.46(b), which 
is open at the right end and extends to the left through the plate and terminates 
outside the capacitor. Notice that the displacement current through this surface 
is zero, and there are two contributions to Ienc. 22 

Problem 7.36 Refer to Prob. 7.16, to which the correct answer was 

J.Loiow . (a) A E(s, t) = -- sm(wt) ln - z. 
2rr s 

(a) Find the displacement current density Jd· 

(b) Integrate it to get the total displacement current, 

Id = J Jd · da. 

(c) Compare Id and I. (What's their ratio?) If the outer cylinder were, say, 2 mm in 
diameter, how high would the frequency have to be, for Id to be 1% of I? [This 
problem is designed to indicate why Faraday never discovered displacement 
currents, and why it is ordinarily safe to ignore them unless the frequency is 
extremely high.] 

7 .3.3 • Maxwell's Equations 

In the last section we put the finishing touches on Maxwell's equations: 

(i) V·E 
1 

= - p (Gauss's law), 
Eo 

(ii) V·B =0 (no name), 

aB (7.40) (iii) V xE= - - (Faraday's law), at 

(iv) 
aE 

V x B = J-LoJ + J-LoEo -at (Ampere's law with 

Maxwell's correction). 

22This problem raises an interesting quasi-philosophical question: If you measure B in the laboratory, 
have you detected the effects of displacement current (as (b) would suggest), or merely confirmed the 
effects of ordinary currents (as (c) implies)? See D. F. Bartlett, Am. J. Phys. 58, 1168 (1990). 
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Together with the force law, 

F = q(E + v X B), (7.41) 

they summarize the entire theoretical content of classical electrodynamics23 (save 
for some special properties of matter, which we encountered in Chapters 4 and 6). 
Even the continuity equation, 

ap 
V·J=- ­

at' 
(7.42) 

which is the mathematical expression of conservation of charge, can be derived 
from Maxwell's equations by applying the divergence to number (iv). 

I have written Maxwell's equations in the traditional way, which emphasizes 
that they specify the divergence and curl of E and B. In this form, they reinforce 
the notion that electric fields can be produced either by charges (p) or by changing 
magnetic fields (aBjat), and magnetic fields can be produced either by currents 
(J) or by changing electric fields (aEjat). Actually, this is misleading, because 
aBjat and aEjat are themselves due to charges and currents. I think it is logically 
preferable to write 

. 1 
(1) V · E = - p, 

Eo 

(ii) V · B = 0, 

(iii) 

(iv) 

aB I V xE+ - =0, 
at 

v X B- f.LoEo aE = f.LoJ, 
at 

(7.43) 

with the fields (E and B) on the left and the sources (p and J) on the right. This 
notation emphasizes that all electromagnetic fields are ultimately attributable to 
charges and currents. Maxwell's equations tell you how charges produce fields; 
reciprocally, the force law tells you how fields affect charges. 

Problem 7.37 Suppose 

1 q A 

E(r, t) = -- 2 e(r- vt)r; B(r, t) = 0 
4rrEo r 

(The theta function is defined in Pro b. 1.46b ). Show that these fields satisfy all of 
Maxwell's equations, and determine p and J. Describe the physical situation that 
gives rise to these fields. 

7 .3.4 • Magnetic Charge 

There is a pleasing symmetry to Maxwell's equations; it is particularly striking in 
free space, where p and J vanish: 

V·E=O, 

V·B=O, 

V x E =- aB } 
at' 

aE 
V x B = f.LoEo - . 

at 
23Like any differential equations, Maxwell's must be supplemented by suitable boundary conditions. 
Because these are typically "obvious" from the context (e.g. E and B go to zero at large distances from 
a localized charge distribution), it is easy to forget that they play an essential role. 
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If you replace E by B and B by - JLoEoE, the first pair of equations turns into the 
second, and vice versa. This symmetry24 between E and B is spoiled, though, by 
the charge term in Gauss's law and the current term in Ampere's law. You can't 
help wondering why the corresponding quantities are "missing" from V · B = 0 
and V x E = -aBjat. What if we had 

. 1 
(1) V · E = - pe, 

Eo 

(ii) V · B = JLoPm, 

... aB } (111) V x E = -JLoJm- at' 

aE 
(iv) V x B = JLoJe + JLoEo - . 

at 

(7.44) 

Then Prn would represent the density of magnetic "charge," and Pe the density of 
electric charge; Jm would be the current of magnetic charge, and Je the current of 
electric charge. Both charges would be conserved: 

apm 
V·J =- -

m at ' 
ape 

and V ·Je = - - . 
at 

(7.45) 

The former follows by application of the divergence to (iii), the latter by taking 
the divergence of (iv). 

In a sense, Maxwell's equations beg for magnetic charge to exist-it would fit 
in so nicely. And yet, in spite of a diligent search, no one has ever found any.25 

As far as we know, Prn is zero everywhere, and so is Jm; B is not on equal foot­
ing withE: there exist stationary sources forE (electric charges) but none for B. 
(This is reflected in the fact that magnetic multi pole expansions have no monopole 
term, and magnetic dipoles consist of current loops, not separated north and south 
"poles.") Apparently God just didn't make any magnetic charge. (In quantum elec­
trodynamics, by the way, it's a more than merely aesthetic shame that magnetic 
charge does not seem to exist: Dirac showed that the existence of magnetic charge 
would explain why electric charge is quantized. See Prob. 8.19.) 

Problem 7.38 Assuming that "Coulomb's law" for magnetic charges (qm) reads 

F = fLo qmt qm2 ..£, 
41l' ~z,2 

(7.46) 

work out the force law for a monopole qm moving with velocity v through electric 
and magnetic fields E and B.26 

Problem 7.39 Suppose a magnetic monopole qm passes through a resistanceless 
loop of wire with self-inductance L. What current is induced in the loop?27 

24Don't be distracted by the pesky constants J.Lo and Eo; these are present only because the SI system 
measures E and B in different units, and would not occur, for instance, in the Gaussian system. 
25For an extensive bibliography, see A. S. Goldhaber and W. P. Trower, Am. J. Phys. 58, 429 (1990). 
26For interesting commentary, see W. Rindler, Am. J. Phys. 57, 993 (1989). 
27This is one of the methods used to search for monopoles in the laboratory; see B. Cabrera, Phys. 
Rev. Lett. 48, 1378 (1982). 



340 Chapter 7 Electrodynamics 

7 .3.5 • Maxwell's Equations in Matter 

Maxwell's equations in the form 7.40 are complete and correct as they stand. 
However, when you are working with materials that are subject to electric and 
magnetic polarization there is a more convenient way to write them. For inside 
polarized matter there will be accumulations of "bound" charge and current, over 
which you exert no direct control. It would be nice to reformulate Maxwell's 
equations so as to make explicit reference only to the "free" charges and currents. 

We have already learned, from the static case, that an electric polarization P 
produces a bound charge density 

Pb = -V ·P (7.47) 

(Eq. 4.12). Likewise, a magnetic polarization (or "magnetization") M results in a 
bound current 

(7.48) 

(Eq. 6.13). There's just one new feature to consider in the nonstatic case: Any 
change in the electric polarization involves a flow of (bound) charge (call it Jp), 
which must be included in the total current. For suppose we examine a tiny chunk 
of polarized material (Fig. 7.47). The polarization introduces a charge density 
ab = Pat one end and -ab at the other (Eq. 4.11). If P now increases a bit, the 
charge on each end increases accordingly, giving a net current 

aab ap 
dl = - da1.. = - da1... 

at at 

The current density, therefore, is 

(7.49) 

This polarization current has nothing to do with the bound current Jb. The 
latter is associated with magnetization of the material and involves the spin and 
orbital motion of electrons; J P• by contrast, is the result of the linear motion of 
charge when the electric polarization changes. If P points to the right, and is 
increasing, then each plus charge moves a bit to the right and each minus charge 
to the left; the cumulative effect is the polarization current J P. We ought to check 
that Eq. 7.49 is consistent with the continuity equation: 

aP a apb 
V · J = V · - = - (V · P) = - - . 

P at at at 

FIGURE7.47 
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Yes: The continuity equation is satisfied; in fact, J P is essential to ensure the 
conservation of bound charge. (Incidentally, a changing magnetization does not 
lead to any analogous accumulation of charge or current. The bound current 
Jb = V x M varies in response to changes in M, to be sure, but that's about it.) 

In view of all this, the total charge density can be separated into two parts: 

p = p f + Ph = p f - V · P, 

and the current density into three parts: 

aP 
J = Jj + Jb + Jp = Jj + v X M + - . at 

Gauss's law can now be written as 

or 

where, as in the static case, 

1 
V · E = - (p f - V · P), 

Eo 

V .n = Pi• 

D = EoE+P. 

Meanwhile, Ampere's law (with Maxwell's term) becomes 

v X B = J.Lo (Jf + v X M + aP) + J.LoEo aE' at at 
or 

where, as before, 

an v X H=Jj+ - , at 

1 
H= - B-M. 

J.Lo 

(7.50) 

(7.51) 

(7.52) 

(7.53) 

(7.54) 

(7.55) 

Faraday's law and V · B = 0 are not affected by our separation of charge and 
current into free and bound parts, since they do not involve p or J. 

In terms of free charges and currents, then, Maxwell's equations read 

(i) V · D = Pi• (iii) 

(ii) V · B = 0, (iv) 

an 
V xE= - -at ' 

an 
V xH=J1 + - . at 

(7.56) 

Some people regard these as the "true" Maxwell's equations, but please under­
stand that they are in no way more "general" than Eq. 7 .40; they simply reflect a 
convenient division of charge and current into free and nonfree parts. And they 
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have the disadvantage of hybrid notation, since they contain both E and D, both 
B and H. They must be supplemented, therefore, by appropriate constitutive 
relations, giving D and H in terms of E and B. These depend on the nature of 
the material; for linear media 

so 

p = EoXeE, and M = XmH, 

D=EE, 
1 

and H = - B, 
f.-l 

(7.57) 

(7.58) 

where E = Eo(l + Xe) and f.-l = f.-lo(l + Xm). Incidentally, you'll remember that 
D is called the electric "displacement"; that's why the second term in the 
Ampere/Maxwell equation (iv) came to be called the displacement current. 
In this context, 

(7.59) 

Problem 7.40 Sea water at frequency v = 4 x 108 Hz has permittivity E = 81E0 , 

permeability f.L = f.Lo, and resistivity p = 0.23 Q · m. What is the ratio of conduc­
tion current to displacement current? [Hint: Consider a parallel-plate capacitor im­
mersed in sea water and driven by a voltage V0 cos (2rrvt).] 

7 .3.6 • Boundary Conditions 

In general, the fields E, B, D, and H will be discontinuous at a boundary between 
two different media, or at a surface that carries a charge density a or a current den­
sity K. The explicit form of these discontinuities can be deduced from Maxwell's 
equations (7 .56), in their integral form 

(i) t D·da= Qfenc } 

t B·da=O 

over any closed surface S. 

(ii) 

(iii) J. E · dl = - ~ { B · da } rp dt ls 

(iv) J. H · dl = I'" + ~ { D · da rp Jenc dt ls 

for any surface S 
bounded by the 
closed loop P. 

Applying (i) to a tiny, wafer-thin Gaussian pillbox extending just slightly into 
the material on either side of the boundary (Fig. 7 .48), we obtain: 

D1 ·a-D2 ·a=ata. 

(The positive direction for a is from 2 toward l. The edge of the wafer con­
tributes nothing in the limit as the thickness goes to zero; nor does any volume 
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FIGURE7.48 

charge density.) Thus, the component of D that is perpendicular to the interface is 
discontinuous in the amount 

I nt - nt = "1. I 

Identical reasoning, applied to equation (ii), yields 

I nt- nt = o. l 
Turning to (iii), a very thin Amperian loop straddling the surface gives 

Et · I - E2 · I = - !:.._ { B · da. 
dt ls 

(7.60) 

(7.61) 

But in the limit as the width of the loop goes to zero, the flux vanishes. (I have 
already dropped the contribution of the two ends to j E · di, on the same grounds.) 
Therefore, 

(7.62) 

That is, the components of E parallel to the interface are continuous across the 
boundary. By the same token, (iv) implies 

where I !ene is the free current passing through the Amperian loop. No volume 
current density will contribute (in the limit of infinitesimal width), but a surface 
current can. In fact, if :ii is a unit vector perpendicular to the interface (pointing 
from 2 toward 1), so that (ii xI) is normal to the Amperian loop (Fig. 7.49), then 

I fene = K f · (:ii x I) = (K f x :ii) · I, 
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FIGURE7.49 

and hence 

H ll Hll K A 1- 2 = f x n. (7.63) 

So the parallel components of H are discontinuous by an amount proportional to 
the free surface current density. 

Equations 7.60-63 are the general boundary conditions for electrodynamics. In 
the case of linear media, they can be expressed in terms of E and B alone: 

(iii) E ll -Ell_ O } 1 2- ' 

1 II 1 II A - B1 - - B2 =K1 xn. 
/11 /12 

(7.64) 
(ii) Bt - Bf = 0, (iv) 

In particular, if there is no free charge or free current at the interface, then 

( ... ) Ell - Ell - 0 
111 1 2- ' 

(iv) _!_B~ - _!_B~ = 0. 
/11 /12 

(7.65) 
(ii) Bt - Bf = 0, 

As we shall see in Chapter 9, these equations are the basis for the theory of reflec­
tion and refraction. 

More Problems on Chapter 7 

Problem 7.41 Two long, straight copper pipes, each of radius a, are held a dis­
tance 2d apart (see Fig. 7.50). One is at potential V0 , the other at-V0 • The space 
surrounding the pipes is filled with weakly conducting material of conductivity u. 
Find the current per unit length that flows from one pipe to the other. [Hint: Refer 
to Prob. 3.12.] 
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FIGURE 7.50 

Problem 7.42 A rare case in which the electrostatic field E for a circuit can actually 
be calculated is the following:28 Imagine an infinitely long cylindrical sheet, of 
uniform resistivity and radius a. A slot (corresponding to the battery) is maintained 
at ± V0j2, at ¢ = ±Jl', and a steady current flows over the surface, as indicated in 
Fig. 7.51. According to Ohm's law, then, 

Vo¢ 
V(a, ¢) = ~· (-Jl' < ¢ < +Jl'). 

z 

FIGURE7.51 

(a) Use separation of variables in cylindrical coordinates to determine V(s, ¢)in­
side and outside the cylinder. [Answer: (Vo/:7l')tan-1[(ssin¢)/(a +scos¢)], 
(s <a); (Vo/:7l')tan-1[(asin¢)/(s +acos¢)], (s >a)] 

(b) Find the surface charge density on the cylinder. [Answer: (Eo V0 j:7l'a) tan(¢/2)] 

Problem 7.43 The magnetic field outside a long straight wire carrying a steady 
current I is 

f.Lo I A 

B = 2:7l' -;l/J· 

The electric field inside the wire is uniform: 

Ip A 

E= - Z, 
Jl'a2 

28M. A. Heald, Am. J. Phys. 52, 522 (1984). See also J. A. Hernandes and A. K. T. Assis, Phys. Rev. E 
68, 046611 (2003). 
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where p is the resistivity and a is the radius (see Exs. 7.1 and 7 .3). Question: What is 
the electric field outside the wire?29 The answer depends on how you complete the 
circuit. Suppose the current returns along a perfectly conducting grounded coax­
ial cylinder of radius b (Fig. 7.52). In the region a < s < b, the potential V(s, z) 
satisfies Laplace's equation, with the boundary conditions 

(i) V(a, z) = - Ip~; (ii) V(b, z) = 0. 
rra 

-I 

I-

FIGURE7.52 

z 

This does not suffice to determine the answer-we still need to specify boundary 
conditions at the two ends (though for a long wire it shouldn't matter much). In the 
literature, it is customary to sweep this ambiguity under the rug by simply stipulat­
ing that V(s, z) is proportional to z: V(s, z) = zf(s). On this assumption: 

(a) Determine f(s). 

(b) Find E(s, z). 

(c) Calculate the surface charge density a(z) on the wire. 

[Answer: V = (-I zpjrra2 )[ln(s jb)j ln(ajb)] This is a peculiar result, since Es and 
a (z) are not independent of z-as one would certainly expect for a truly infinite 
wire.] 

Problem 7.44 In a perfect conductor, the conductivity is infinite, so E = 0 
(Eq. 7.3), and any net charge resides on the surface (just as it does for an imperfect 
conductor, in electrostatics). 

(a) Show that the magnetic field is constant (aBjat = 0), inside a perfect 
conductor. 

(b) Show that the magnetic flux through a perfectly conducting loop is constant. 

A superconductor is a perfect conductor with the additional property that 
the (constant) B inside is in fact zero. (This "flux exclusion" is known as the 
Meissner effect. 30) 

29This is a famous problem, first analyzed by Sommerfeld, and is known in its most recent incarna­
tion as Merzbacher's puzzle. A. Sommerfeld, Electrodynamics, p. 125 (New York: Academic Press, 
1952); E. Merzbacher, Am. J. Phys. 48, 178 (1980); further references in R. N. Varnay and L. H. Fisher, 
Am. J. Phys. 52, 1097 (1984). 
30The Meissner effect is sometimes referred to as "perfect diamagnetism," in the sense that the field 
inside is not merely reduced, but canceled entirely. However, the surface currents responsible for this 
are free, not bound, so the actual mechanism is quite different. 
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(c) Show that the current in a superconductor is confined to the surface. 

(d) Superconductivity is lost above a certain critical temperature (Tc), which varies 
from one material to another. Suppose you had a sphere (radius a) above its 
critical temperature, and you held it in a uniform magnetic field B0z while cool­
ing it below Tc. Find the induced surface current density K, as a function of the 
polar angle (). 

Problem 7.45 A familiar demonstration of superconductivity (Prob. 7.44) is the lev­
itation of a magnet over a piece of superconducting material. This phenomenon can 
be analyzed using the method of images.31 Treat the magnet as a perfect dipole m, 
a height z above the origin (and constrained to point in the z direction), and pretend 
that the superconductor occupies the entire half-space below the xy plane. Because 
of the Meissner effect, B = 0 for z ::::; 0, and since B is divergenceless, the normal 
(z) component is continuous, so Bz = 0 just above the surface. This boundary con­
dition is met by the image configuration in which an identical dipole is placed at 
-z, as a stand-in for the superconductor; the two arrangements therefore produce 
the same magnetic field in the region z > 0. 

(a) Which way should the image dipole point ( +z or -z)? 

(b) Find the force on the magnet due to the induced currents in the superconductor 
(which is to say, the force due to the image dipole). Set it equal to Mg (where 
M is the mass of the magnet) to determine the height h at which the magnet will 
"float." [Hint: Refer to Prob. 6.3.] 

(c) The induced current on the surface of the superconductor (the xy plane) can 
be determined from the boundary condition on the tangential component of B 
(Eq. 5.76): B = J.Lo(K X z). Using the field you get from the image configura­
tion, show that 

K= 
3mrh A 

2rr(r2 + h2)5/2 "'· 

where r is the distance from the origin. 

Problem 7.46 If a magnetic dipole levitating above an infinite superconducting 
plane (Pro b. 7 .45) is free to rotate, what orientation will it adopt, and how high 
above the surface will it float? 

Problem 7.47 A perfectly conducting spherical shell of radius a rotates about the 
z axis with angular velocity w, in a uniform magnetic field B = B0 Z. Calculate the 
emf developed between the "north pole" and the equator. [Answer: k B0wa2

] 

Problem 7.48 Refer to Prob. 7.11 (and use the result ofProb. 5.42): How long does 
is take a falling circular ring (radius a, mass m, resistance R) to cross the bottom of 
the magnetic field B, at its (changing) terminal velocity? 

31 W. M. Saslow, Am. J. Phys. 59, 16 (1991). 



348 Chapter 7 Electrodynamics 

Problem 7.49 

(a) Referring to Prob. 5.52(a) and Eq. 7.18, show that 

a A 
E=--

Bt ' 
(7.66) 

for Faraday-induced electric fields. Check this result by taking the divergence 
and curl of both sides. 

(b) A spherical shell of radius R carries a uniform surface charge a. It spins about 
a fixed axis at an angular velocity w(t) that changes slowly with time. Find the 
electric field inside and outside the sphere. [Hint: There are two contributions 
here: the Coulomb field due to the charge, and the Faraday field due to the 
changing B. Refer to Ex. 5.11.] 

Problem 7.50 Electrons undergoing cyclotron motion can be sped up by increasing 
the magnetic field; the accompanying electric field will impart tangential acceler­
ation. This is the principle of the betatron. One would like to keep the radius of 
the orbit constant during the process. Show that this can be achieved by designing 
a magnet such that the average field over the area of the orbit is twice the field at 
the circumference (Fig. 7.53). Assume the electrons start from rest in zero field, 
and that the apparatus is symmetric about the center of the orbit. (Assume also that 
the electron velocity remains well below the speed of light, so that nonrelativis­
tic mechanics applies.) [Hint: Differentiate Eq. 5.3 with respect to time, and use 
F=ma=qE.] 

z 

y 

FIGURE7.53 FIGURE7.54 

Problem 7.51 An infinite wire carrying a constant current I in the z direction is 
moving in they direction at a constant speed v. Find the electric field, in the qua­
sistatic approximation, at the instant the wire coincides with the z axis (Fig. 7.54). 
[Answer: - (J.Lol v j2rr s) cos t/J z] 

Problem 7.52 An atomic electron (charge q) circles about the nucleus (charge Q) 

in an orbit of radius r; the centripetal acceleration is provided, of course, by the 
Coulomb attraction of opposite charges. Now a small magnetic field dB is slowly 
turned on, perpendicular to the plane of the orbit. Show that the increase in kinetic 
energy, dT, imparted by the induced electric field, is just right to sustain circular 
motion at the same radius r. (That's why, in my discussion of diamagnetism, 
I assumed the radius is fixed. See Sect. 6.1.3 and the references cited there.) 
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B 

A 

FIGURE7.55 

Problem 7.53 The current in a long solenoid is increasing linearly with time, so the 
flux is proportional tot: <I> = at. Two voltmeters are connected to diametrically op­
posite points (A and B), together with resistors (R1 and R2), as shown in Fig. 7.55. 
What is the reading on each voltmeter? Assume that these are ideal voltmeters 
that draw negligible current (they have huge internal resistance), and that a volt­
meter registers - J: E · dl between the terminals and through the meter. [Answer: 
Yt = aRtf(Rt + Rz); Vz = -aRzf(Rt + Rz). Notice that Yt "# Vz, even though 
they are connected to the same points!32] 

FIGURE 7.56 

Problem 7.54 A circular wire loop (radius r, resistance R) encloses a region of uni­
form magnetic field, B, perpendicular to its plane. The field (occupying the shaded 
region in Fig. 7.56) increases linearly with time (B =at). An ideal voltmeter (infi­
nite internal resistance) is connected between points P and Q. 

(a) What is the current in the loop? 

(b) What does the voltmeter read? [Answer: ar2 /2] 

Problem 7.55 In the discussion of motional emf (Sect. 7.1.3) I assumed that the 
wire loop (Fig. 7.10) has a resistance R; the current generated is then I = vBhj R. 
But what if the wire is made out of perfectly conducting material, so that R is zero? 
In that case, the current is limited only by the back emf associated with the self­
inductance L of the loop (which would ordinarily be negligible in comparison with 
I R). Show that in this regime the loop (mass m) executes simple harmonic motion, 
and find its frequency.33 [Answer: w = Bhj Jmr] 

32R. H. Romer, Am. J. Phys. 50, 1089 (1982). See also H. W. Nicholson, Am. J. Phys. 73, 1194 (2005); 
B. M. McGuyer, Am. J. Phys. 80, 101 (2012). 
33For a collection of related problems, see W. M. Saslow, Am. J. Phys. 55, 986 (1987), and R. H. 
Romer, Eur. J. Phys. 11, 103 (1990). 
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Problem 7.56 

(a) Use the Neumann formula (Eq. 7.23) to calculate the mutual inductance of the 
configuration in Fig. 7.37, assuming a is very small (a« b, a« z). Compare 
your answer to Pro b. 7 .22. 

(b) For the general case (not assuming a is small), show that 

where 

Primary 
(N1 turns) 

J.to'T(fJ r::z:o ( 15 2 ) M= -
2

- -vab{J 1+-gfJ + ... , 

FIGURE7.57 

Secondary 
(N2 turns) 

Problem 7.57 Two coils are wrapped around a cylindrical form in such a way that 
the same flux passes through every turn of both coils. (In practice this is achieved by 
inserting an iron core through the cylinder; this has the effect of concentrating the 
flux.) The primary coil has N1 turns and the secondary has N2 (Fig. 7.57). If the 
current I in the primary is changing, show that the emf in the secondary is given by 

£2 Nz 
£1 N1' 

(7.67) 

where £1 is the (back) emf of the primary. [This is a primitive transformer-a 
device for raising or lowering the emf of an alternating current source. By choosing 
the appropriate number of turns, any desired secondary emf can be obtained. If you 
think this violates the conservation of energy, study Prob. 7.58.] 

Problem 7.58 A transformer (Prob. 7.57) takes an input AC voltage of amplitude 
V1, and delivers an output voltage of amplitude V2, which is determined by the turns 
ratio (V2/V1 = N2/N1). If N2 > N1, the output voltage is greater than the input 
voltage. Why doesn't this violate conservation of energy? Answer: Power is the 
product of voltage and current; if the voltage goes up, the current must come down. 
The purpose of this problem is to see exactly how this works out, in a simplified 
model. 
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(a) In an ideal transformer, the same flux passes through all turns of the primary 
and of the secondary. Show that in this case M 2 = L 1L2, where M is the mutual 
inductance of the coils, and L1, L2 are their individual self-inductances. 

(b) Suppose the primary is driven with AC voltage ~n = V1 cos (wt), and the sec­
ondary is connected to a resistor, R. Show that the two currents satisfy the 
relations 

di1 dh 
L1 dt + M dt = V1 cos (wt); 

dh di1 
L2 - + M - =-hR. 

dt dt 

(c) Using the result in (a), solve these equations for I 1 (t) and h(t). (Assume I 1 has 
no DC component.) 

(d) Show that the output voltage CVout = hR) divided by the input voltage (Vm) is 
equal to the turns ratio: Voutf~n = N2/ N1. 

(e) Calculate the input power (Pin = Vrnh) and the output power (Pout = Vouth), 
and show that their averages over a full cycle are equal. 

Problem 7.59 An infinite wire runs along the z axis; it carries a current I (z) that is 
a function of z (but not oft), and a charge density A.(t) that is a function oft (but 
not of z). 

(a) By examining the charge flowing into a segment dz in a time dt, show that 
dA.fdt = -dijdz. If we stipulate that A.(O) = 0 and I(O) = 0, show that 
A.(t) = kt, I (z) = -kz, where k is a constant. 

(b) Assume for a moment that the process is quasistatic, so the fields are given 
by Eqs. 2.9 and 5.38. Show that these are in fact the exact fields, by confirm­
ing that all four of Maxwell's equations are satisfied. (First do it in differential 
form, for the region s > 0, then in integral form for the appropriate Gaussian 
cylinder/Amperian loop straddling the axis.) 

Problem 7.60 Suppose J(r) is constant in time but p(r, t) is not-conditions that 
might prevail, for instance, during the charging of a capacitor. 

(a) Show that the charge density at any particular point is a linear function of time: 

p(r, t) = p(r, 0) + p(r, O)t, 

where p(r, 0) is the time derivative of p at t = 0. [Hint: Use the continuity 
equation.] 

This is not an electrostatic or magnetostatic configuration;34 nevertheless, rather 
surprisingly, both Coulomb's law (Eq. 2.8) and the Biot-Savart law (Eq. 5.42) 
hold, as you can confirm by showing that they satisfy Maxwell's equations. In 
particular: 

34Some authors would regard this as magnetostatic, since B is independent oft. For them, the Biot­
Savart law is a general rule of magnetostatics, but V · J = 0 and V x B = ~-toJ apply only under the 
additional assumption that p is constant. In such a formulation, Maxwell's displacement term can 
(in this very special case) be derived from the Biot-Savart law, by the method of part (b). See D. F. 
Bartlett, Am. J. Phys. 58, 1168 (1990); D. J. Griffiths and M.A. Heald, Am. J. Phys. 59, 111 (1991). 
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(b) Show that 

B(r) = JLo I J(r') x ..£ dr' 
4rr ~J,2 

obeys Ampere's law with Maxwell's displacement current term. 

Problem 7.61 The magnetic field of an infinite straight wire carrying a steady cur­
rent I can be obtained from the displacement current term in the Ampere/Maxwell 
law, as follows: Picture the current as consisting of a uniform line charge ). mov­
ing along the z axis at speed v (so that I = A.v), with a tiny gap of length E, which 
reaches the origin at timet = 0. In the next instant (up tot= Ejv) there is no real 
current passing through a circular Amperian loop in the xy plane, but there is a 
displacement current, due to the "missing" charge in the gap. 

(a) Use Coulomb's law to calculate the z component of the electric field, for points 
in the xy plane a distances from the origin, due to a segment of wire with 
uniform density -A. extending from z1 = vt- E to z2 = vt. 

(b) Determine the flux of this electric field through a circle of radius a in the xy 
plane. 

(c) Find the displacement current through this circle. Show that Id is equal to I, in 
the limit as the gap width (E) goes to zero.35 

Problem 7.62 A certain transmission line is constructed from two thin metal "rib­
bons," of width w, a very small distance h « w apart. The current travels down 
one strip and back along the other. In each case, it spreads out uniformly over the 
surface of the ribbon. 

(a) Find the capacitance per unit length, C. 

(b) Find the inductance per unit length, £. 

(c) What is the product £C, numerically?[£ and C will, of course, vary from one 
kind of transmission line to another, but their product is a universal constant­
check, for example, the cable in Ex. 7.13-provided the space between the con­
ductors is a vacuum. In the theory of transmission lines, this product is related 
to the speed with which a pulse propagates down the line: v = 1 j ,.,fCC.] 

(d) If the strips are insulated from one another by a nonconducting material of per­
mittivity E and permeability JL, what then is the product £C? What is the propa­
gation speed? [Hint: see Ex. 4.6; by what factor does L change when an inductor 
is immersed in linear material of permeability JL ?] 

Problem 7.63 Prove Alfven's theorem: In a perfectly conducting fluid (say, a gas 
of free electrons), the magnetic flux through any closed loop moving with the fluid 
is constant in time. (The magnetic field lines are, as it were, "frozen" into the fluid.) 

(a) Use Ohm's law, in the form of Eq. 7.2, together with Faraday's law, to prove 
that if a = oo and J is finite, then 

aB 
- = V x (v x B). at 

35For a slightly different approach to the same problem, see W. K. Terry, Am. J. Phys. 50, 742 (1982). 
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P' 

FIGURE 7.58 

(b) LetS be the surface bounded by the loop (P) at time t, and S' a surface bounded 
by the loop in its new position (P') at timet+ dt (see Fig. 7.58). The change 
in flux is 

d(J) = 1 B(t + dt) · da- { B(t) . da. 
S' ls 

Use V · B = 0 to show that 

1 B(t + dt) · da + { B(t + dt) · da = { B(t + dt) · da 
s & h 

(where 'R is the "ribbon" joining P and P'), and hence that 

d(J) = dt { aB · da- { B(t + dt) · da 
ls at ]R-

(for infinitesimal dt). Use the method of Sect. 7.1.3 to rewrite the second inte­
gral as 

dt £ (B x v) · dl, 

and invoke Stokes' theorem to conclude that 

- = - - V x (v x B) · da. d(J) 1 (aB ) 
dt s at 

Together with the result in (a), this proves the theorem. 

Problem 7.64 

(a) Show that Maxwell's equations with magnetic charge (Eq. 7.44) are invariant 
under the duality transformation 

E' 
cB' 
cq; 
q~ 

Ecosa + cBsina, } 
cBcosa- Esina, 
cq. cos a+ qm s~a, 
qm cos a- cq. sma, 

(7.68) 

where c = 1/ ~and a is an arbitrary rotation angle in "EIB-space." Charge 
and current densities transform in the same way as q. and qm. [This means, in 
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particular, that if you know the fields produced by a configuration of electric 
charge, you can immediately (using a= 90°) write down the fields produced 
by the corresponding arrangement of magnetic charge.] 

(b) Show that the force law (Prob. 7.38) 

F = q.(E + V X B)+ qm ( B- : 2 V X E) (7.69) 

is also invariant under the duality transformation. 



Intermission 

All of our cards are now on the table, and in a sense my job is done. In the 
first seven chapters we assembled electrodynamics piece by piece, and now, with 
Maxwell's equations in their final form, the theory is complete. There are no 
more laws to be learned, no further generalizations to be considered, and (with 
perhaps one exception) no lurking inconsistencies to be resolved. If yours is a 
one-semester course, this would be a reasonable place to stop. 

But in another sense we have just arrived at the starting point. We are at last 
in possession of a full deck-it's time to deal. This is the fun part, in which one 
comes to appreciate the extraordinary power and richness of electrodynamics. In 
a full-year course there should be plenty of time to cover the remaining chapters, 
and perhaps to supplement them with a unit on plasma physics, say, or AC circuit 
theory, or even a little general relativity. But if you have room for only one topic, 
I'd recommend Chapter 9, on Electromagnetic Waves (you'll probably want to 
skim Chapter 8 as preparation). This is the segue to Optics, and is historically the 
most important application of Maxwell's theory. 

355 
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Conservation Laws 

8.1 . CHARGE AND ENERGY 

8.1.1 • The Continuity Equation 

In this chapter we study conservation of energy, momentum, and angular momen­
tum, in electrodynamics. But I want to begin by reviewing the conservation of 
charge, because it is the paradigm for all conservation laws. What precisely does 
conservation of charge tell us? That the total charge in the universe is constant? 
Well, sure-that's global conservation of charge. But local conservation of charge 
is a much stronger statement: If the charge in some region changes, then exactly 
that amount of charge must have passed in or out through the surface. The tiger 
can't simply rematerialize outside the cage; if it got from inside to outside it must 
have slipped through a hole in the fence. 

Formally, the charge in a volume V is 

Q(t) = fv p(r, t) dr, (8.1) 

and the current flowing out through the boundary Sis fs J · da, so local conser­
vation of charge says 

dQ =- J. J · da. 
dt rs (8.2) 

Using Eq. 8.1 to rewrite the left side, and invoking the divergence theorem on the 
right, we have 

{ ap dr = - { v . J dr, 
lv at lv 

and since this is true for any volume, it follows that 

~ 
~ 

(8.3) 

(8.4) 

This is the continuity equation-the precise mathematical statement of lo­
cal conservation of charge. It can be derived from Maxwell's equations­
conservation of charge is not an independent assumption; it is built into the laws 
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of electrodynamics. It serves as a constraint on the sources (p and J). They can't 
be just any old functions-they have to respect conservation of charge.1 

The purpose of this chapter is to develop the corresponding equations for local 
conservation of energy and momentum. In the process (and perhaps more impor­
tant) we will learn how to express the energy density and the momentum density 
(the analogs top), as well as the energy "current" and the momentum "current" 
(analogous to J). 

8.1.2 • Poynting's Theorem 

In Chapter 2, we found that the work necessary to assemble a static charge distri­
bution (against the Coulomb repulsion of like charges) is (Eq. 2.45) 

Eo J 2 We= 2 E dr, 

where E is the resulting electric field. Likewise, the work required to get currents 
going (against the back emf) is (Eq. 7.35) 

Wm= -
1
- JB 2 dr, 

2JLo 

where B is the resulting magnetic field. This suggests that the total energy stored 
in electromagnetic fields, per unit volume, is 

1 ( 2 1 2) u = - EoE + - B . 
2 JLo 

(8.5) 

In this section I will confirm Eq. 8.5, and develop the energy conservation law for 
electrodynamics. 

Suppose we have some charge and current configuration which, at time t, pro­
duces fields E and B. In the next instant, d t, the charges move around a bit. 
Question: How much work, dW, is done by the electromagnetic forces acting 
on these charges, in the interval dt? According to the Lorentz force law, the work 
done on a charge q is 

F · dl = q(E + v x B)· vdt = qE · vdt. 

In terms of the charge and current densities, q ---+ pd r: and pv ---+ J, 2 so the rate 
at which work is done on all the charges in a volume V is 

dW { 
dt = lv (E · J) dr:. (8.6) 

1The continuity equation is the only such constraint. Any functions p(r, t) and J(r, t) consistent 
with Eq. 8.4 constitute possible charge and current densities, in the sense of admitting solutions to 
Maxwell's equations. 
2This is a slippery equation: after all, if charges of both signs are present, the net charge density can 
be zero even when the current is not-in fact, this is the case for ordinary current-carrying wires. We 
should really treat the positive and negative charges separately, and combine the two to get Eq. 8.6, 
withJ = P+V+ + p_v_. 
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Evidently E · J is the work done per unit time, per unit volume-which is to 
say, the power delivered per unit volume. We can express this quantity in terms of 
the fields alone, using the Ampere-Maxwell law to eliminate J: 

1 aE 
E · J = - E · (V x B)- EoE · - . 

P,o at 

From product rule 6, 

V · (E x B) = B · (V x E) - E · (V x B). 

Invoking Faraday's law (V x E = -aBjat), it follows that 

aB 
E · (V x B)= -B ·at- V ·(Ex B). 

Meanwhile, 

aB 1 a 2 B· - = --(B) 
at 2 at ' 

so 

E · J = -~~ (EoE2 + _..!__B 2
) - _!_V ·(Ex B). 

2 at P,o P,o 

(8.7) 

(8.8) 

Putting this into Eq. 8.6, and applying the divergence theorem to the second 
term, we have 

dW = _!!:._ f ~ (EoE2 + _..!__B2) dr:- _..!..._ J. (Ex B)· da, 
dt dt lv 2 P,o P,o rs (8.9) 

where Sis the surface bounding V. This is Poynting's theorem; it is the "work­
energy theorem" of electrodynamics. The first integral on the right is the total 
energy stored in the fields, J u dr: (Eq. 8.5). The second term evidently represents 
the rate at which energy is transported out of V, across its boundary surface, by the 
electromagnetic fields. Poynting's theorem says, then, that the work done on the 
charges by the electromagnetic force is equal to the decrease in energy remaining 
in the .fields, less the energy that .flowed out through the surface. 

The energy per unit time, per unit area, transported by the fields is called the 
Poynting vector: 

1 s = - (EX B). 
f.-to 

(8.10) 

Specifically, S · da is the energy per unit time crossing the infinitesimal sur­
face da-the energy flux (so Sis the energy flux density).3 We will see many 

3If you're very fastidious, you'll notice a small gap in the logic here: We know from Eq. 8.9 that 
f S · da is the total power passing through a closed surface, but this does not prove that J S · da is 
the power passing through any open surface (there could be an extra term that integrates to zero over 
all closed surfaces). This is, however, the obvious and natural interpretation; as always, the precise 
location of energy is not really determined in electrodynamics (see Sect. 2.4.4). 
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applications of the Poynting vector in Chapters 9 and 11, but for the moment I am 
mainly interested in using it to express Poynting's theorem more compactly: 

dW = _!:.___ f u dr- J. S · da. 
dt dt lv rs (8.11) 

What if no work is done on the charges in V-what if, for example, we are in 
a region of empty space, where there is no charge? In that case dW fdt = 0, so 

and hence 

j ~; dr =-f S · da =- j (V. S)dr, 

au 
- = -V ·S. at (8.12) 

This is the "continuity equation" for energy-u (energy density) plays the role of 
p (charge density), and Stakes the part of J (current density). It expresses local 
conservation of electromagnetic energy. 

In general, though, electromagnetic energy by itself is not conserved (nor is 
the energy of the charges). Of course not! The fields do work on the charges, and 
the charges create fields-energy is tossed back and forth between them. In the 
overall energy economy, you must include the contributions of both the matter 
and the fields. 

Example 8.1. When current flows down a wire, work is done, which shows up 
as Joule heating of the wire (Eq. 7.7). Though there are certainly easier ways to 
do it, the energy per unit time delivered to the wire can be calculated using the 
Poynting vector. Assuming it's uniform, the electric field parallel to the wire is 

v 
E= ­

L' 

where V is the potential difference between the ends and L is the length of the 
wire (Fig. 8.1). The magnetic field is "circumferential"; at the surface (radius a) 
it has the value 

_j 

JLol 
B= -

2na 

I 

~-----L -----

FIGURES.l 
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Accordingly, the magnitude of the Poynting vector is 

1 V ~-toi VI 
S= ---- = --, 

J-to L 2na 2naL 

and it points radially inward. The energy per unit time passing in through the 
surface of the wire is therefore 

J S · da = S(2naL) = VI, 

which is exactly what we concluded, on much more direct grounds, in Sect. 7 .1.1. 4 

Problem 8.1 Calculate the power (energy per unit time) transported down the 
cables of Ex. 7.13 and Prob. 7 .62, assuming the two conductors are held at potential 
difference V, and carry current I (down one and back up the other). 

Problem 8.2 Consider the charging capacitor in Prob. 7.34. 

(a) Find the electric and magnetic fields in the gap, as functions of the distances 
from the axis and the time t. (Assume the charge is zero at t = 0.) 

(b) Find the energy density Uem and the Poynting vectorS in the gap. Note espe­
cially the direction of S. Check that Eq. 8.12 is satisfied. 

(c) Determine the total energy in the gap, as a function of time. Calculate the total 
power flowing into the gap, by integrating the Poynting vector over the appro­
priate surface. Check that the power input is equal to the rate of increase of 
energy in the gap (Eq. 8.9-in this case W = 0, because there is no charge in 
the gap). [If you're worried about the fringing fields, do it for a volume of radius 
b < a well inside the gap.] 

8.2 • MOMENTUM 

8.2.1 • Newton's Third Law in Electrodynamics 

Imagine a point charge q traveling in along the x axis at a constant speed v. 
Because it is moving, its electric field is not given by Coulomb's law; never­
theless, E still points radially outward from the instantaneous position of the 
charge (Fig. 8.2a), as we'll see in Chapter 10. Since, moreover, a moving point 
charge does not constitute a steady current, its magnetic field is not given by the 
Biot-Savart law. Nevertheless, it's a fact that B still circles around the axis in a 
manner suggested by the right-hand rule (Fig. 8.2b); again, the proof will come in 
Chapter 10. 

4What about energy flow down the wire? For a discussion, see M. K. Harbola, Am. J. Phys. 78, 1203 
(2010). For a more sophisticated geometry, see B. S. Davis and L. Kaplan, Am. J. Phys. 79, 1155 
(2011). 
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v 

X X 

(a) (b) 

FIGURE8.2 

Now suppose this charge encounters an identical one, proceeding in at the same 
speed along they axis. Of course, the electromagnetic force between them would 
tend to drive them off the axes, but let's assume that they're mounted on tracks, 
or something, so they're obliged to maintain the same direction and the same 
speed (Fig. 8.3). The electric force between them is repulsive, but how about the 
magnetic force? Well, the magnetic field of q1 points into the page (at the position 
of q2), so the magnetic force on q2 is toward the right, whereas the magnetic 
field of q2 is out of the page (at the position of q1), and the magnetic force on 
q1 is upward. The net electromagnetic force of ql on q2 is equal but not opposite 
to the force of q2 on q1. in violation of Newton's third law. In electrostatics and 
magnetostatics the third law holds, but in electrodynamics it does not. 

Well, that's an interesting curiosity, but then, how often does one actually use 
the third law, in practice? Answer: All the time! For the proof of conservation of 
momentum rests on the cancellation of internal forces, which follows from the 
third law. When you tamper with the third law, you are placing conservation of 
momentum in jeopardy, and there is hardly any principle in physics more sacred 
than that. 

Momentum conservation is rescued, in electrodynamics, by the realization 
that the fields themselves carry momentum. This is not so surprising when you 

y 

X 

FIGURE8.3 
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consider that we have already attributed energy to the fields. Whatever momen­
tum is lost to the particles is gained by the fields. Only when the field momentum 
is added to the mechanical momentum is momentum conservation restored. 

8.2.2 • Maxwell's Stress Tensor 

Let's calculate the total electromagnetic force on the charges in volume V: 

F = fv (E + v x B)pdr = fv (pE +J x B)dr. (8.13) 

The force per unit volume is 

f= pE+J X B. (8.14) 

As before, I propose to express this in terms of fields alone, eliminating p and 
J by using Maxwell's equations (i) and (iv): 

f = Eo(V · E)E + - V x B - Eo - x B. ( 1 aE) 
f.-to at 

Now 

a (aE ) ( aB) - (E X B) = - X B + E X - ' 
at at at 

and Faraday's law says 

so 

Thus 

aB 
- = -V xE 
at ' 

aE a 
- X B = - (EX B) +EX (V X E). 
at at 

1 a 
f =Eo [(V · E)E- Ex (V x E)]- - [B x (V x B)]- Eo - (E x B). 

f.-to at 
(8.15) 

Just to make things look more symmetrical, let's throw in a term (V · B)B; 
since V · B = 0, this costs us nothing. Meanwhile, product rule 4 says 

V(E2) = 2(E. V)E + 2E X (V X E), 

so 

1 
E X (V X E) = 2 v (E2

) - (E . V)E, 
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and the same goes for B. Therefore, 

1 
f =Eo [(V · E)E + (E · V)E] + - [(V · B)B + (B · V)B] 

/1-0 

1 ( 2 1 2) a - - V EoE + - B - Eo - (E x B). 
2 fl-o at 

363 

(8.16) 

Ugly! But it can be simplified by introducing the Maxwell stress tensor, 

(8.17) 

The indices i and j refer to the coordinates x, y, and z, so the stress tensor has a 
total of nine components (Txx. Tyy, Txz, Tyx. and so on). The Kronecker delta, 
Oij, is 1 if the indices are the same (8xx = Oyy = Ozz = 1) and zero otherwise 
(8xy = Oxz = Oyz = 0). Thus 

and so on. 
Because it carries two indices, where a vector has only one, Iij is sometimes 

written with a double arrow: 1f. One can form the dot product of 1f with a vector 
a, in two ways--on the left, and on the right: 

(8.18) 

The resulting object, which has one remaining index, is itself a vector. In particu­
lar, the divergence of 1f has as its jth component 

Thus the force per unit volume (Eq. 8.16) can be written in the much tidier form 

f = V · 1f - Eof.LO aS, at 
where Sis the Poynting vector (Eq. 8.10). 

(8.19) 
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The total electromagnetic force on the charges in V (Eq. 8.13) is 

F = J. if· da- Eo/1-o!!.._ { Sdr. 
~ dt}v 

(8.20) 

(I used the divergence theorem to convert the first term to a surface integral.) In 
the static case the second term drops out, and the electromagnetic force on the 
charge configuration can be expressed entirely in terms of the stress tensor at the 
boundary: 

F = i if· da (static). (8.21) 

Physically, if is the force per unit area (or stress) acting on the surface. More 
precisely, Iii is the force (per unit area) in the ith direction acting on an ele­
ment of surface oriented in the jth direction-"diagonal" elements (Txx• Tyy. Tzz) 
represent pressures, and "off-diagonal" elements (Txy. Txz, etc.) are shears. 

Example 8.2. Determine the net force on the "northern" hemisphere of a uni­
formly charged solid sphere of radius R and charge Q (the same as Prob. 2.47, 
only this time we'll use the Maxwell stress tensor and Eq. 8.21). 

z 
Bowl 

y 

FIGURE8.4 

Solution 
The boundary surface consists of two parts-a hemispherical "bowl" at radius R, 
and a circular disk at() = n /2 (Fig. 8.4). For the bowl, 

and 

In Cartesian components, 

da = R2 sinO dO dcfJ r 

1 Q A 

E= --- r. 
4nE0 R 2 

r = sin() cos cp i + sin() sin cp y + cos () z, 
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so 

( 
Q )2 . Tzx = EoEzEx =Eo 

2 
smO cosO cos¢, 

4nE0 R 

Tzy = EoEzEy =Eo ( Q 2
)

2 

sinO cosO sin¢, 
4nE0 R 

( )

2 
Eo 2 2 2 Eo Q 2 . 2 

Tzz = - (Ez- Ex- Ey) = - 2 (cos 0- sm 0). 
2 2 4rrE0R 

(8.22) 

The net force is obviously in the z-direction, so it suffices to calculate 

(]t . da) = Tzx dax + Tzy day + Tzz daz = Eo (-Q- ) 2 

sin 0 cos 0 dO d¢. 
z 2 4rrEoR 

The force on the "bowl" is therefore 

Fbowl =Eo (-Q- )2 

2rr frr/

2 

sinOcosOdO = -
1

- Q2

2
. 

2 4rrEoR } 0 4rrEo 8R 
(8.23) 

Meanwhile, for the equatorial disk, 

da = -rdrd¢z, (8.24) 

and (since we are now inside the sphere) 

1 Q 1 Q A • A 

E = --3 r= --3 r(cos¢x+ sm¢y). 
4rrEo R 4nEo R 

Thus 

( )

2 
Eo 2 2 2 Eo Q 2 

Tzz = - (Ez -Ex - Ey) = - - 3 r , 
2 2 4n~R 

and hence 

(]t · da) = Eo ( Q 
3 

)

2 

r 3 dr d¢. 
z 2 4rrEoR 

The force on the disk is therefore 

Fdisk = Eo ( Q )
2 

2rr {R r3dr = _ l _ _k_. 
2 4rrEoR3 } 0 4rrEo 16R2 

(8.25) 

Combining Eqs. 8.23 and 8.25, I conclude that the net force on the northern hemi­
sphere is 

1 3Q2 

F- ---­
- 4rrEo 16R2 · 

(8.26) 
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Incidentally, in applying Eq. 8.21, any volume that encloses all of the charge 
in question (and no other charge) will do the job. For example, in the present case 
we could use the whole region z > 0. In that case the boundary surface consists 
of the entire xy plane (plus a hemisphere at r = oo, but E = 0 out there, so it 
contributes nothing). In place of the "bowl," we now have the outer portion of the 
plane (r > R). Here 

(Eq. 8.22 with(} = n /2 and R ~ r ), and dais given by Eq. 8.24, so 

(if · da) = Eo (__g_) 2 

~ dr d¢, 
z 2 4nEo r 

and the contribution from the plane for r > R is 

Eo ( Q )
2 100 

1 1 Q2 - -- 2n - dr- ----
2 4nEo R r 3 - 4nE0 8R2 ' 

the same as for the bowl (Eq. 8.23). 

I hope you didn't get too bogged down in the details of Ex. 8.2. If so, take a 
moment to appreciate what happened. We were calculating the force on a solid 
object, but instead of doing a volume integral, as you might expect, Eq. 8.21 
allowed us to set it up as a suiface integral; somehow the stress tensor sniffs 
out what is going on inside. 

Problem 8.3 Calculate the force of magnetic attraction between the northern 
and southern hemispheres of a uniformly charged spinning spherical shell, with 
radius R, angular velocity w, and surface charge density a. [This is the same as 
Prob. 5.44, but this time use the Maxwell stress tensor and Eq. 8.21.] 

Problem8.4 

(a) Consider two equal point charges q, separated by a distance 2a. Construct the 
plane equidistant from the two charges. By integrating Maxwell's stress tensor 
over this plane, determine the force of one charge on the other. 

(b) Do the same for charges that are opposite in sign. 

8.2.3 • Conservation of Momentum 

According to Newton's second law, the force on an object is equal to the rate of 
change of its momentum: 

F = dPmech. 
dt 
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Equation 8.20 can therefore be written in the form5 

dPmech d 1 t ~ -- = -EoJ.Lo - Sdr + T · da, 
dt dt v s 

(8.27) 

where Pmech is the (mechanical) momentum of the particles in volume V. This 
expression is similar in structure to Poynting's theorem (Eq. 8.11), and it invites 
an analogous interpretation: The first integral represents momentum stored in the 
fields: 

p = J.LoEo i Sdr, (8.28) 

while the second integral is the momentum per unit time flowing in through the 
suiface. 

Equation 8.27 is the statement of conservation of momentum in electro­
dynamics: If the mechanical momentum increases, either the field momentum 
decreases, or else the fields are carrying momentum into the volume through the 
surface. The momentum density in the fields is evidently 

I g = J.LoEoS = Eo(E x B), I (8.29) 

and the momentum flux transported by the fields is -It (specifically, -It ·dais 
the electromagnetic momentum per unit time passing through the area da). 

If the mechanical momentum in V is not changing (for example, if we are 
talking about a region of empty space), then 

J ~; dr = f 1f · da = J V · 1f dr, 

and hence 

(8.30) 

This is the "continuity equation" for electromagnetic momentum, with g (momen­

tum density) in the role of p (charge density) and -It playing the part of J; it 
expresses the local conservation of field momentum. But in general (when there 
are charges around) the field momentum by itself, and the mechanical momentum 
by itself, are not conserved--charges and fields exchange momentum, and only 
the total is conserved. 

Notice that the Poynting vector has appeared in two quite different roles: S 
itself is the energy per unit area, per unit time, transported by the electromagnetic 
fields, while J.LoEoS is the momentum per unit volume stored in those fields.6 

5Let's assume the only forces acting are electromagnetic. You can include other forces if you like­
both here and in the discussion of energy conservation-but they are just a distraction from the essen­
tial story. 
6This is no coincidence-see R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures 
on Physics (Reading, Mass.: Addison-Wesley, 1964), Vol. IT, Section 27-6. 
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Similarly, if plays a dual role: if itself is the electromagnetic stress (force 
per unit area) acting on a surface, and -if describes the flow of momentum (it is 
the momentum current density) carried by the fields. 

Example 8.3. A long coaxial cable, of length l, consists of an inner conductor 
(radius a) and an outer conductor (radius b). It is connected to a battery at one end 
and a resistor at the other (Fig. 8.5). The inner conductor carries a uniform charge 
per unit length A., and a steady current I to the right; the outer conductor has the 
opposite charge and current. What is the electromagnetic momentum stored in the 
fields? 

.....-/ 

b 
+ + /~+ + + 

+ + + + + + 

.....-/ 

FIGURE8.5 

Solution 
The fields are 

1 ). A 

E= --- s, 
2nEo s 

The Poynting vector is therefore 

f.l-o I A 

B = -- lP· 
2n s 

+ z 
+ 

R 

So energy is flowing down the line, from the battery to the resistor. In fact, the 
power transported is 

f ).I 1b 1 ).I 
P = S · da = -

2
- 2 2ns ds = -- ln(bfa) =IV, 

4Jt Eo a S 2JtEo 

as it should be. 
The momentum in the fields is 

f f.l-oA.I A 1b 1 f.l-oA.Il A IVl A 

p = f.J-oEo Sdr = --
2 

z 2 12nsds = -- ln(bfa)z = -
2 

z. 
4n a s 2n c 

This is an astonishing result. The cable is not moving, E and B are static, and yet 
we are asked to believe that there is momentum in the fields. If something tells 
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you this cannot be the whole story, you have sound intuitions. But the resolution 
of this paradox will have to await Chapter 12 (Ex. 12.12). 

Suppose now that we turn up the resistance, so the current decreases. The 
changing magnetic field will induce an electric field (Eq. 7.20): 

E = --Ins+ K z. [ 
J.Lo di J A 

2n dt 

This field exerts a force on ±A.: 

[ 
J.Lo d I J A [ J.Lo d I J A J.LoA.l d I A F = A.l --Ina+ K z- A.l --lnb + K z = - --- ln(bfa) z. 
2n dt 2n dt 2n dt 

The total momentum imparted to the cable, as the current drops from I to 0, is 
therefore 

f J.LoA.Il A 

Pmech = Fdt = --ln(bfa)z, 
2n 

which is precisely the momentum originally stored in the fields. 

Problem 8.5 Imagine two parallel infinite sheets, carrying uniform surface charge 
+a (on the sheet at z =d) and -a (at z = 0). They are moving in they direction 
at constant speed v (as in Problem 5 .17). 

(a) What is the electromagnetic momentum in a region of area A? 

(b) Now suppose the top sheet moves slowly down (speed u) until it reaches the 
bottom sheet, so the fields disappear. By calculating the (magnetic) force on 
the charge (q =a A), show that the impulse delivered to the sheet is equal to 
the momentum originally stored in the fields. 

Problem 8.6 A charged parallel-plate capacitor (with uniform electric field 
E = E i) is placed in a uniform magnetic field B = B i, as shown in Fig. 8.6. 

z 

y 
A 

y 

FIGURE8.6 
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(a) Find the electromagnetic momentum in the space between the plates. 

(b) Now a resistive wire is connected between the plates, along the z axis, so that 
the capacitor slowly discharges. The current through the wire will experience 
a magnetic force; what is the total impulse delivered to the system, during the 
discharge?7 

Problem 8.7 Consider an infinite parallel-plate capacitor, with the lower plate (at 
z = -d/2) carrying surface charge density -a, and the upper plate (at z = +d/2) 
carrying charge density +a. 

(a) Determine all nine elements of the stress tensor, in the region between the 
plates. Display your answer as a 3 x 3 matrix: 

( 

Txx Txy Txz l 
Tyx Tyy Tyz 

Tzx Tzy Tzz 

(b) Use Eq. 8.21 to determine the electromagnetic force per unit area on the top 
plate. Compare Eq. 2.51. 

(c) What is the electromagnetic momentum per unit area, per unit time, crossing 
the xy plane (or any other plane parallel to that one, between the plates)? 

(d) Of course, there must be mechanical forces holding the plates apart-perhaps 
the capacitor is filled with insulating material under pressure. Suppose we sud­
denly remove the insulator; the momentum flux (c) is now absorbed by the 
plates, and they begin to move. Find the momentum per unit time delivered to 
the top plate (which is to say, the force acting on it) and compare your answer 
to (b). [Note: This is not an additional force, but rather an alternative way of 
calculating the same force-in (b) we got it from the force law, and in (d) we 
do it by conservation of momentum.] 

8.2.4 • Angular Momentum 

By now, the electromagnetic fields (which started out as mediators of forces 
between charges) have taken on a life of their own. They carry energy (Eq. 8.5) 

u = - EoE + - B , 1 ( 2 1 2) 
2 /10 

(8.31) 

and momentum (Eq. 8.29) 

g = Eo(E x B), (8.32) 

7There is much more to be said about this problem, so don't get too excited if your answers to (a) and 
(b) appear to be consistent. See D. Babson, et al., Am. J. Phys. 77, 826 (2009). 
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and, for that matter, angular momentum: 

i. = r x g =Eo [r x (Ex B)]. (8.33) 

Even perfectly static fields can harbor momentum and angular momentum, as 
long as E x B is nonzero, and it is only when these field contributions are included 
that the conservation laws are sustained. 

Example 8.4. Imagine a very long solenoid with radius R, n turns per unit 
length, and current I. Coaxial with the solenoid are two long cylindrical (non­
conducting) shells of length l-one, inside the solenoid at radius a, carries a 
charge + Q, uniformly distributed over its surface; the other, outside the solenoid 
at radius b, carries charge - Q (see Fig. 8.7; 1 is supposed to be much greater 
than b). When the current in the solenoid is gradually reduced, the cylinders begin 
to rotate, as we found in Ex. 7 .8. Question: Where does the angular momentum 
come from?8 

FIGURE8.7 

Solution 
It was initially stored in the fields. Before the current was switched off, there was 
an electric field, 

Q 1 A 

E = --- s (a < s <b), 
2nEol s 

in the region between the cylinders, and a magnetic field, 

B = J-tonl z (s < R), 

8This is a variation on the "Feynman disk paradox" (R. P. Feynman, R. B. Leighton, and M. Sands, 
The Feynman Lectures, vol2, pp. 17-5 (Reading, Mass.: Addison-Wesley, 1964) suggested by F. L. 
Boos, Jr. (Am. J. Phys. 52, 756 (1984)). A similar model was proposed earlier by R. H. Romer (Am. J. 
Phys. 34, 772 (1966)). For further references, see T.-C. E. Ma, Am. J. Phys. 54, 949 (1986). 
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inside the solenoid. The momentum density (Eq. 8.29) was therefore 

_ _ JJ,oniQ;;. 
g- 2nls .,, 

in the region a < s < R. The z component of the angular momentum density was 

which is constant (independent of s ). To get the total angular momentum in the 
fields, we simply multiply by the volume, n(R2 - a 2)l:9 

1 2 2 A L = - - JJ,onl Q(R -a ) z. 
2 

(8.34) 

When the current is turned off, the changing magnetic field induces a circum­
ferential electric field, given by Faraday's law: 

Thus the torque on the outer cylinder is 

1 2dl A 

Nb = r x (-QE) = - JJ,0nQR - z, 
2 dt 

and it picks up an angular momentum 

1 2 A 1° dl 1 2 A Lb = - JJ,onQR z - dt = - - JJ,oniQR z. 
2 1 dt 2 

Similarly, the torque on the inner cylinder is 

1 2dl A 

N = - - n 0nQa - z 
a 2~""' dt ' 

and its angular momentum increase is 

1 2A 
La= 2JJ,onl Qa z. 

So it all works out: Lem =La+ Lb. The angular momentum lost by the fields is 
precisely equal to the angular momentum gained by the cylinders, and the total 
angular momentum (fields plus matter) is conserved. 

9The radial component integrates to zero, by symmetry. 
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Problem 8.8 In Ex. 8.4, suppose that instead of turning off the magnetic field (by 
reducing I) we turn off the electric field, by connecting a weakly10 conducting 
radial spoke between the cylinders. (We'll have to cut a slot in the solenoid, so 
the cylinders can still rotate freely.) From the magnetic force on the current in the 
spoke, determine the total angular momentum delivered to the cylinders, as they 
discharge (they are now rigidly connected, so they rotate together). Compare the 
initial angular momentum stored in the fields (Eq. 8.34). (Notice that the mechanism 
by which angular momentum is transferred from the fields to the cylinders is entirely 
different in the two cases: in Ex. 8.4 it was Faraday's law, but here it is the Lorentz 
force law.) 

Problem 8.9 Two concentric spherical shells carry uniformly distributed charges 
+ Q (at radius a) and - Q (at radius b > a). They are immersed in a uniform mag­
netic field B = B0 Z. 

(a) Find the angular momentum of the fields (with respect to the center). 

(b) Now the magnetic field is gradually turned off. Find the torque on each sphere, 
and the resulting angular momentum of the system. 

Problem 8.1011 Imagine an iron sphere of radius R that carries a charge Q and a 
uniform magnetization M = MZ. The sphere is initially at rest. 

(a) Compute the angular momentum stored in the electromagnetic fields. 

(b) Suppose the sphere is gradually (and uniformly) demagnetized (perhaps by 
heating it up past the Curie point). Use Faraday's law to determine the induced 
electric field, find the torque this field exerts on the sphere, and calculate the 
total angular momentum imparted to the sphere in the course of the demagneti­
zation. 

(c) Suppose instead of demagnetizing the sphere we discharge it, by connecting a 
grounding wire to the north pole. Assume the current flows over the surface in 
such a way that the charge density remains uniform. Use the Lorentz force law 
to determine the torque on the sphere, and calculate the total angular momentum 
imparted to the sphere in the course of the discharge. (The magnetic field is 
discontinuous at the surface ... does this matter?) [Answer: ~JLoM QR2] 

8.3 • MAGNETIC FORCES DO NO WORK12 

This is perhaps a good place to revisit the old paradox that magnetic forces do no 
work (Eq. 5.11 ). What about that magnetic crane lifting the carcass of a junked 
car? Somebody is doing work on the car, and if it's not the magnetic field, who 

10In Ex. 8.4 we turned the current off slowly, to keep things quasistatic; here we reduce the electric 
field slowly to keep the displacement current negligible. 
11This version of the Feynman disk paradox was proposed by N. L. Sharma (Am. J. Phys. 56, 420 
(1988)); similar models were analyzed by E. M. Pugh and G. E. Pugh, Am. J. Phys. 35, 153 (1967) 
and by R. H. Romer, Am. J. Phys. 35, 445 (1967). 
12This section can be skipped without loss of continuity. I include it for those readers who are disturbed 
by the notion that magnetic forces do no work. 
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FIGURE8.8 

is it? The car is ferromagnetic; in the presence of the magnetic field, it contains 
a lot of microscopic magnetic dipoles (spinning electrons, actually), all lined up. 
The resulting magnetization is equivalent to a bound current running around the 
surface, so let's model the car as a circular current loop-in fact, let's make it an 
insulating ring of line charge).. rotating at angular velocity w (Fig. 8.8). 

The upward magnetic force on the loop is (Eq. 6.2) 

F = 2nlaBs, (8.35) 

where Bs is the radial component of the magnet's field, 13 and I = )..wa. If the ring 
rises a distance dz (while the magnet itself stays put), the work done on it is 

(8.36) 

This increases the potential energy of the ring. Who did the work? Naively, it ap­
pears that the magnetic field is responsible, but we have already learned (Ex. 5.3) 
that this is not the case--as the ring rises, the magnetic force is perpendicular to 
the net velocity of the charges in the ring, so it does no work on them. 

At the same time, however, a motional emf is induced in the ring, which 
opposes the flow of charge, and hence reduces its angular velocity: 

E =- d<P 
dt. 

Here d<P is the flux through the "ribbon" joining the ring at timet to the ring at 
timet + dt (Fig. 8.9): 

d<P = Bs 2na dz. 

~dz 
FIGURE8.9 

13Note that the field has to be nonuniform, or it won't lift the car at all. 
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Now 

£ = f f · di = f(2na), 

where f is the force per unit charge. So 

the force on a segment of length dl is f). dl, the torque on the ring is 

N =a ( -Bs ~;) 'A(2rra), 

and the work done (slowing the rotation) is N d¢ = N w dt, or 

dW = -2na2'AwBs dz. 

375 

(8.37) 

(8.38) 

The ring slows down, and the rotational energy it loses (Eq. 8.38) is precisely 
equal to the potential energy it gains (Eq. 8.36). All the magnetic field did was 
convert energy from one form to another. If you'll permit some sloppy language, 
the work done by the vertical component of the magnetic force (Eq. 8.35) is equal 
and opposite to the work done by its horizontal component (Eq. 8.37).14 

What about the magnet? Is it completely passive in this process? Suppose we 
model it as a big circular loop (radius b), resting on a table and carrying a current 
Ib; the "junk car" is a relatively small current loop (radius a), on the floor directly 
below, carrying a current I a (Fig. 8.10). This time, just for a change, let's assume 
both currents are constant (we'll include a regulated power supply in each loop15). 

Parallel currents attract, and we propose to lift the small loop off the floor, keeping 
careful track of the work done and the agency responsible. 

b 

h 

a 

FIGURE8.10 

14This argument is essentially the same as the one in Ex. 5.3, except that in this case I told the story 
in terms of motional emf, instead of the Lorentz force law. But after all, the flux rule is a consequence 
of the Lorentz force law. 
15The lower loop could be a single spinning electron, in which case quantum mechanics fixes its 
angular momentum at li f2. It might appear that this sustains the current, with no need for a power 
supply. I will return to this point, but for now let's just keep quantum mechanics out of it. 
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Let's start by adjusting the currents so the small ring just "floats," a distance 
h below the table, with the magnetic force exactly balancing the weight (mag) of 
the little ring. I'll let you calculate the magnetic force (Prob. 8.11): 

3rr a2b2h 
Fmag = TJJ-olalb (b2 + h2 ) 512 =mag. (8.39) 

Now the loop rises an infinitesimal distance dz; the work done is equal to the gain 
in its potential energy 

3rr a2b2h 
dW8 =mag dz = TJJ-olalb (b2 + h2 ) 512 dz. (8.40) 

Who did it? The magnetic field? No! The work was done by the power supply 
that sustains the current in loop a (Ex. 5.3). As the loop rises, a motional emf is 
induced in it. The flux through the loop is 

where M is the mutual inductance of the two loops: 

rr u a2b2 
M = ,_.,o ---=~--=--::-= 

2 (b2 + h2)3/2 

(Pro b. 7 .22). The emf is 

dct>a dM dM dh 
Ca = - -- = -/b - = -/b--

dt dt dh dt 

__ 1 (- ~) rr JJ-o a
2
b

2 

2h ( -dz) 
- b 2 2 (b2 + h2 ) 512 dt . 

The work done by the power supply (fighting against this motional emf) is 

3rr a2b2h 
dWa = -&ala dt = TJJ-olah (b2 + h2 ) 512 dz (8.41) 

-same as the work done in lifting the loop (Eq. 8.40). 
Meanwhile, however, a Faraday emf is induced in the upper loop, due to the 

changing flux from the lower loop: 

dM 
cf>b =MIa => £b = -la ­

dt ' 

and the work done by the power supply in ring b (to sustain the current /b) is 

3rr a2b2h 
dWb = -t:blb dt = TJJ-olalb (b2 + h2 ) 512 dz, (8.42) 

exactly the same as dWa. That's embarrassing-the power supplies have done 
twice as much work as was necessary to lift the junk car! Where did the "wasted" 
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energy go? Answer: It increased the energy stored in the fields. The energy in a 
system of two current-carrying loops is (see Pro b. 8.12) 

1 2 1 2 
U = 2Lala + 2,Lblb + M Ialb, (8.43) 

so 

Remarkably, all four energy increments are the same. If we care to apportion 
things this way, the power supply in loop a contributes the energy necessary to lift 
the lower ring, while the power supply in loop b provides the extra energy for the 
fields. If all we're interested in is the work done to raise the ring, we can ignore 
the upper loop (and the energy in the fields) altogether. 

In both these models, the magnet itself was stationary. That's like lifting a 
paper clip by holding a magnet over it. But in the case of the magnetic crane, the 
car stays in contact with the magnet, which is attached to a cable that lifts the 
whole works. As a model, we might stick the upper loop in a big box, the lower 
loop in a little box, and crank up the currents so the force of attraction is much 
greater than mag; the two boxes snap together, and we attach a string to the upper 
box and pull up on it (Fig. 8.11). 

The same old mechanism (Ex. 5.3) prevails: as the lower loop rises, the mag­
netic force tilts backwards; its vertical component lifts the loop, but its horizontal 
component opposes the current, and no net work is done. This time, however, the 
motional emf is perfectly balanced by the Faraday emf fighting to keep the current 
going-the flux through the lower loop is not changing. (If you like, the flux is 
increasing because the loop is moving upward, into a region of higher magnetic 
field, but it is decreasing because the magnetic field of the upper loop-at any give 
point in space-is decreasing as that loop moves up.) No power supply is needed 
to sustain the current (and for that matter, no power supply is required in the upper 
loop either, since the energy in the fields is not changing. Who did the work to lift 
the car? The person pulling up on the rope, obviously. The role of the magnetic 
field was merely to transmit this energy to the car, via the vertical component of 
the magnetic force. But the magnetic field itself (as always) did no work. 

FIGURES.ll 
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The fact that magnetic fields do no work follows directly from the Lorentz 
force law, so if you think you have discovered an exception, you're going to have 
to explain why that law is incorrect. For example, if magnetic monopoles exist, 
the force on a particle with electric charge qe and magnetic charge qm becomes 
(Prob. 7.38): 

F = qe(E + v X B) + qm (B - EoJ.LoV X E). (8.44) 

In that case, magnetic fields can do work ... but only on magnetic charges. So 
unless your car is made of monopoles (I don't think so), this doesn't solve the 
problem. 

A somewhat less radical possibility is that in addition to electric charges there 
exist permanent point magnetic dipoles (electrons?), whose dipole moment m is 
not associated with any electric current, but simply is. The Lorentz force law 
acquires an extra term 

F = q(E + v x B)+ V(m ·B). 

The magnetic field can do work on these "intrinsic" dipoles (which experience 
no motional or Faraday emf, since they enclose no flux). I don't know whether a 
consistent theory can be constructed in this way, but in any event it is not classical 
electrodynamics, which is predicated on Ampere's assumption that all magnetic 
phenomena are due to electric charges in motion, and point magnetic dipoles must 
be interpreted as the limits of tiny current loops. 

Problem 8.11 Derive Eq. 8.39. [Hint: Treat the lower loop as a magnetic dipole.] 

Problem 8.12 Derive Eq. 8.43. [Hint: Use the method of Section 7 .2.4, building the 
two currents up from zero to their final values.] 

More Problems on Chapter 8 

Problem 8.1316 A very long solenoid of radius a, with n turns per unit length, 
carries a current Is. Coaxial with the solenoid, at radius b » a, is a circular ring of 
wire, with resistance R. When the current in the solenoid is (gradually) decreased, 
a current / 7 is induced in the ring. 

(a) Calculate Ir. in terms of dl.Jdt. 

(b) The power (f/' R) delivered to the ring must have come from the solenoid. Con­
firm this by calculating the Poynting vector just outside the solenoid (the elec­
tric field is due to the changing flux in the solenoid; the magnetic field is due 
to the current in the ring). Integrate over the entire surface of the solenoid, and 
check that you recover the correct total power. 

16For extensive discussion, seeM. A. Heald, Am. J. Phys. 56, 540 (1988). 
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Problem 8.14 An infinitely long cylindrical tube, of radius a, moves at constant 
speed v along its axis. It carries a net charge per unit length A., uniformly distributed 
over its surface. Surrounding it, at radius b, is another cylinder, moving with the 
same velocity but carrying the opposite charge (-A.). Find: 

(a) The energy per unit length stored in the fields. 

(b) The momentum per unit length in the fields. 

(c) The energy per unit time transported by the fields across a plane perpendicular 
to the cylinders. 

Problem 8.15 A point charge q is located at the center of a toroidal coil of rectan­
gular cross section, inner radius a, outer radius a+ w, and height h, which carries 
a total of N tightly-wound turns and current I. 

(a) Find the electromagnetic momentum p of this configuration, assuming that w 
and h are both much less than a (so you can ignore the variation of the fields 
over the cross section). 

(b) Now the current in the toroid is turned off, quickly enough that the point charge 
does not move appreciably as the magnetic field drops to zero. Show that the 
impulse imparted to q is equal to the momentum originally stored in the elec­
tromagnetic fields. [Hint: You might want to refer to Prob. 7.19.] 

Problem 8.1617 A sphere of radius R carries a uniform polarization P and a uniform 
magnetization M (not necessarily in the same direction). Find the electromagnetic 
momentum of this configuration. [Answer: (4j9)rrtt0 R 3 (M x P)] 

Problem 8.1718 Picture the electron as a uniformly charged spherical shell, with 
chargee and radius R, spinning at angular velocity w. 

(a) Calculate the total energy contained in the electromagnetic fields. 

(b) Calculate the total angular momentum contained in the fields. 

(c) According to the Einstein formula (E = mc2), the energy in the fields should 
contribute to the mass of the electron. Lorentz and others speculated that the 
entire mass of the electron might be accounted for in this way: Uem = m.c2• 

Suppose, moreover, that the electron's spin angular momentum is entirely 
attributable to the electromagnetic fields: Lem = li/2. On these two assump­
tions, determine the radius and angular velocity of the electron. What is their 
product, wR? Does this classical model make sense? 

Problem 8.18 Work out the formulas for u, S, g, and ~ in the presence of 
magnetic charge. [Hint: Start with the generalized Maxwell equations (7.44) and 
Lorentz force law (Eq. 8.44), and follow the derivations in Sections 8.1.2, 8.2.2, 
and 8.2.3.] 

17For an interesting discussion and references, seeR. H. Romer, Am. J. Phys. 63, 777 (1995). 
18See J. Higbie, Am. J. Phys. 56, 378 (1988). 
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Problem 8.1919 Suppose you had an electric charge qe and a magnetic monopole 
qm. The field of the electric charge is 

1 qe " 
E= ---~ 

41l'Eo '~-2 

(of course), and the field of the magnetic monopole is 

B = f.Lo qm .t:. 
41l' '1-2 

Find the total angular momentum stored in the fields, if the two charges are sepa­
rated by a distance d. [Answer: (JLo/4Jr)qeqm.] 20 

Problem 8.20 Consider an ideal stationary magnetic dipole m in a static electric 
field E. Show that the fields carry momentum 

p = -Eof.Lo(m x E). (8.45) 

[Hint: There are several ways to do this. The simplest method is to start with 
p = Eo J (E x B) d r, write E = - V V, and use integration by parts to show that 

P = Eof.Lo I VJdr. 

So far, this is valid for any localized static configuration. For a current confined 
to an infinitesimal neighborhood of the origin we can approximate V (r) Ri V (0) -
E(O) · r. Treat the dipole as a current loop, and use Eqs. 5.82 and 1.108.]21 

Problem 8.21 Because the cylinders in Ex. 8.4 are left rotating (at angular veloci­
ties Wa and wb, say), there is actually a residual magnetic field, and hence angular 
momentum in the fields, even after the current in the solenoid has been extinguished. 
If the cylinders are heavy, this correction will be negligible, but it is interesting to 
do the problem without making that assumption. 22 

(a) Calculate (in terms of Wa and wb) the final angular momentum in the fields. 
[Define w = w i, so Wa and wb could be positive or negative.] 

(b) As the cylinders begin to rotate, their changing magnetic field induces an extra 
azimuthal electric field, which, in turn, will make an additional contribution to 

19This system is known as Thomson's dipole. See I. Adawi, Am. J. Phys. 44, 762 (1976) and Phys. 
Rev. D31, 3301 (1985), and K. R. Brownstein, Am. J. Phys. 57, 420 (1989), for discussion and refer­
ences. 
20N ote that this result is independent of the separation distance d! It points from q e toward qm. In 
quantum mechanics, angular momentum comes in half-integer multiples of n, so this result suggests 
that if magnetic monopoles exist, electric and magnetic charge must be quantized: J.Loqeqmf4n = 

nn/2, for n = 1, 2, 3, ... , an idea first proposed by Dirac in 1931. If even one monopole is lurking 
somewhere in the universe, this would "explain" why electric charge comes in discrete units. (How­
ever, see D. Singleton, Am. J. Phys. 66, 697 (1998) for a cautionary note.) 
21 As it stands, Eq. 8.45 is valid only for ideal dipoles. But g is linear in B, and therefore, if E is held 
fixed, obeys the superposition principle: For a collection of magnetic dipoles, the total momentum is 
the (vector) sum of the momenta for each one separately. In particular, if E is uniform over a localized 
steady current distribution, then Eq. 8.45 is valid for the whole thing, only now m is the total magnetic 
dipole moment. 
22This problem was suggested by Paul DeYoung. 
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the torques. Find the resulting extra angular momentum, and compare it with 
your result in (a). [Answer: -J.Lo Q2wb(b2

- a2)j4rrl z] 

Problem 8.2223 A point charge q is a distance a > R from the axis of an infinite 
solenoid (radius R, n turns per unit length, current I). Find the linear momen­
tum and the angular momentum (with respect to the origin) in the fields. (Put 
q on the x axis, with the solenoid along z; treat the solenoid as a nonconduc­
tor, so you don't need to worry about induced charges on its surface.) [Answer: 
p = (J.Loqnl R2 j2a) y; L = 0] 

Problem 8.23 

(a) Carry through the argument in Sect. 8.1.2, starting with Eq. 8.6, but using J1 in 
place of J. Show that the Poynting vector becomes 

s =EX H, (8.46) 

and the rate of change of the energy density in the fields is 

au aD aB 
- =E· - +H· - . at at at 

For linear media, show that24 

1 
u = 2(E · D + B ·H). (8.47) 

(b) In the same spirit, reproduce the argument in Sect. 8.2.2, starting with Eq. 8.15, 
with Pt andJt in place of p andJ. Don't bother to construct the Maxwell stress 
tensor, but do show that the momentum density is25 

g = D X B. (8.48) 

Problem 8.24 

A circular disk of radius R and mass M carries n point charges (q), attached at 
regular intervals around its rim. At time t = 0 the disk lies in the xy plane, with its 
center at the origin, and is rotating about the z axis with angular velocity w0 , when 
it is released. The disk is immersed in a (time-independent) external magnetic field 

B(s, z) = k( -s s + 2zi), 

where k is a constant. 

(a) Find the position of the center if the ring, z(t), and its angular velocity, w(t), as 
functions of time. (Ignore gravity.) 

(b) Describe the motion, and check that the total (kinetic) energy-translational 
plus rotational-is constant, confirming that the magnetic force does no work.26 

23 See F. S. Johnson, B. L. Cragin, and R. R. Hodges, Am. J. Phys. 62, 33 (1994), and B. Y.-K. Hu, 
Eur. J. Phys. 33, 873 (2012), for discussion of this and related problems. 
24Refer to Sect. 4.4.3 for the meaning of "energy" in this context. 
25For over 100 years there has been a raging debate (still not completely resolved) as to whether 
the field momentum in polarizable/magnetizable media is Eq. 8.48 (Minkowski's candidate) or EoJ.to 
(E x H) (Abraham's). See D. J. Griffiths, Am. J. Phys. 80, 7 (2012). 
26This cute problem is due to K. T. McDonald, http://puhepl.princeton.edu/mcdonald/examles/ 
disk. pdf (who draws a somewhat different conclusion). 
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Electromagnetic Waves 

9.1 • WAVES IN ONE DIMENSION 

9.1.1 • The Wave Equation 

What is a "wave"? I don't think I can give you an entirely satisfactory answer-the 
concept is intrinsically somewhat vague-but here's a start: A wave is a distur­
bance of a continuous medium that propagates with a fixed shape at constant ve­
locity. Immediately I must add qualifiers: In the presence of absorption, the wave 
will diminish in size as it moves; ifthe medium is dispersive, different frequencies 
travel at different speeds; in two or three dimensions, as the wave spreads out, its 
amplitude will decrease; and of course standing waves don't propagate at all. But 
these are refinements; let's start with the simple case: fixed shape, constant speed 
(Fig. 9.1). 

How would you represent such an object mathematically? In the figure, I have 
drawn the wave at two different times, once at t = 0, and again at some later 
time t-each point on the wave form simply shifts to the right by an amount vt, 
where v is the velocity. Maybe the wave is generated by shaking one end of a taut 
string; f(z, t) represents the displacement of the string at the point z, at timet. 
Given the initial shape of the string, g(z) = f (z, 0), what is the subsequent form, 
f(z, t)? Well, the displacement at point z, at the later timet, is the same as the 
displacement a distance vt to the left (i.e. at z- vt), back at timet = 0: 

f(z, t) = f(z- vt, 0) = g(z- vt). (9.1) 

That statement captures (mathematically) the essence of wave motion. It tells us 
that the function f(z, t), which might have depended on z and tin any old way, 
infact depends on them only in the very special combination z- vt; when that 

f(z, 0) f(z, t) 

f 

z 
vt 

FIGURE9.1 
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f T 

z z 

FIGURE9.2 

is true, the function f(z, t) represents a wave of fixed shape traveling in the z 
direction at speed v. For example, if A and bare constants (with the appropriate 
units), 

2 • A 
JI(z, t) = Ae-b(z-vt) , h(z, t) =A sm[b(z- vt)], h(z, t) = b( )

2 1 z- vt + 

all represent waves (with different shapes, of course), but 

f4(Z, t) = Ae-b(bz
2
+vt), and fs(z, t) = A sin(bz) cos(bvt)3, 

do not. 
Why does a stretched string support wave motion? Actually, it follows from 

Newton's second law. Imagine a very long string under tension T. If it is displaced 
from equilibrium, the net transverse force on the segment between z and z + ~z 
(Fig. 9.2) is 

~F = T sinO'- T sinO, 

where 0' is the angle the string makes with the z-direction at point z + ~z. and 
0 is the corresponding angle at point z. Provided that the distortion of the string 
is not too great, these angles are small (the figure is exaggerated, obviously), and 
we can replace the sine by the tangent: 

,.__ ( , ) ( aj I aj I ) ,.__ a
2 
f ~F = T tanO - tanO = T - - - = T -
2 
~z. 

az z+~z az z az 

If the mass per unit length is J.-L, Newton's second law says 

and therefore 

a2 f _ !:!:_ a2 f 
az2 - T at2 · 
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Evidently, small disturbances on the string satisfy 

a2 J 1 az J 
az2 - v2 at2 ' 

(9.2) 

where v (which, as we'll soon see, represents the speed of propagation) is 

(9.3) 

Equation 9.2 is known as the (classical) wave equation, because it admits as 
solutions all functions of the form 

f(z, t) = g(z- vt), (9.4) 

(that is, all functions that depend on the variables z and t in the special combi­
nation u = z- vt), and we have just learned that such functions represent waves 
propagating in the z direction with speed v. For Eq. 9.4 means 

and 

so 

at dg au dg aj dg au dg 
- = -- = - - = -- =-v-
az du az du' at du at du' 

az g - az f - _!_ az f 
du2 - az2 - v2 at2 • D 

Note that g(u) can be any (differentiable) function whatever. If the disturbance 
propagates without changing its shape, then it satisfies the wave equation. 

But functions of the form g(z- vt) are not the only solutions. The wave equa­
tion involves the square of v, so we can generate another class of solutions by 
simply changing the sign of the velocity: 

f(z, t) = h(z + vt). (9.5) 

This, of course, represents a wave propagating in the negative z direction, and it is 
certainly reasonable (on physical grounds) that such solutions would be allowed. 
What is perhaps surprising is that the most general solution to the wave equation 
is the sum of a wave to the right and a wave to the left: 

f(z, t) = g(z- vt) + h(z + vt). (9.6) 
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(Notice that the wave equation is linear: The sum of any two solutions is itself a 
solution.) Every solution to the wave equation can be expressed in this form. 

Like the simple harmonic oscillator equation, the wave equation is ubiquitous 
in physics. If something is vibrating, the oscillator equation is almost certainly 
responsible (at least, for small amplitudes), and if something is waving (whether 
the context is mechanics or acoustics, optics or oceanography), the wave equation 
(perhaps with some decoration) is bound to be involved. 

Problem 9.1 By explicit differentiation, check that the functions /1, fz, and /3 in 
the text satisfy the wave equation. Show that f 4 and f 5 do not. 

Problem 9.2 Show that the standing wave f(z, t) = A sin(kz) cos(kvt) satisfies 
the wave equation, and express it as the sum of a wave traveling to the left and a 
wave traveling to the right (Eq. 9.6). 

9.1.2 • Sinusoidal Waves 

(i) Terminology. Of all possible wave forms, the sinusoidal one 

f (z, t) = A cos[k(z - vt) + 8] (9.7) 

is (for good reason) the most familiar. Figure 9.3 shows this function at time t = 0. 
A is the amplitude of the wave (it is positive, and represents the maximum dis­
placement from equilibrium). The argument of the cosine is called the phase, and 
8 is the phase constant (obviously, you can add any integer multiple of 2n to 8 
without changing f(z, t); ordinarily, one uses a value in the range 0 ~ 8 < 2n). 
Notice that at z = vt- 8/ k, the phase is zero; let's call this the "central maxi­
mum." If 8 = 0, the central maximum passes the origin at time t = 0; more gen­
erally, 8/ k is the distance by which the central maximum (and therefore the entire 
wave) is "delayed." Finally, k is the wave number; it is related to the wavelength 
). by the equation 

2n 
).= k' 

for when z advances by 2n f k, the cosine executes one complete cycle. 

Central 

z 

FIGURE9.3 

(9.8) 
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As time passes, the entire wave train proceeds to the right, at speed v. At any 
fixed point z, the string vibrates up and down, undergoing one full cycle in a 
period 

2n 
T= - . 

kv 

The frequency v (number of oscillations per unit time) is 

1 kv v 
v = - = - = - . 

T 2n ). 

(9.9) 

(9.10) 

For our purposes, a more convenient unit is the angular frequency w, so-called 
because in the analogous case of uniform circular motion, it represents the number 
of radians swept out per unit time: 

w = 2nv = kv. (9.11) 

Ordinarily, it's nicer to write sinusoidal waves (Eq. 9.7) in terms of w, rather 
than v: 

f(z, t) = A cos(kz- wt + 8). (9.12) 

A sinusoidal oscillation of wave number k and (angular) frequency w traveling 
to the left would be written 

f(z, t) = A cos (kz + wt - 8). (9.13) 

The sign of the phase constant is chosen for consistency with our previous con­
vention that 8 f k shall represent the distance by which the wave is "delayed" (since 
the wave is now moving to the left, a delay means a shift to the right). At t = 0, 
the wave looks like Fig. 9.4. Because the cosine is an even function, we can just 
as well write Eq. 9.13 thus: 

f(z, t) =A cos( -kz- wt + 8). (9.14) 

Comparison with Eq. 9.12 reveals that, in effect, we could simply switch the sign 
of k to produce a wave with the same amplitude, phase constant, frequency, and 
wavelength, traveling in the opposite direction. 

f(z, 0) Central 

z 

FIGURE9.4 
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(ii) Complex notation. In view of Euler's formula, 

ei9 =cosO+ i sinO, (9.15) 

the sinusoidal wave (Eq. 9.12) can be written 

J(z, t) = Re [ Aei(kz-wt+8)]' (9.16) 

where Re(~) denotes the real part of the complex number ~. This invites us to 
introduce the complex wave function 

(9.17) 

with the complex amplitude A = Aei8 absorbing the phase constant. The actual 
wave function is the real part of j: 

j(z, t) = Re[f(z, t)]. (9.18) 

If you know f, it is a simple matter to find f; the advantage of the complex 
notation is that exponentials are much easier to manipulate than sines and cosines. 

Example 9.1. Suppose you want to combine two sinusoidal waves: 

h =!I+ h = Re(ji) + Re(fz) = Re(_h + fz) = Re(_h), 

with h = .h + fz. You simply add the corresponding complex wave functions, 
and then take the real part. In particular, if they have the same frequency and 
wave number, 

where 

(9.19) 

In other words, you just add the (complex) amplitudes. The combined wave still 
has the same frequency and wavelength, 

!J(z, t) = A3 cos (kz- wt + 83), 

and you can easily figure out A3 and 83 from Eq. 9.19 (Prob. 9.3). Try doing 
this without using the complex notation-you will find yourself looking up trig 
identities and slogging through nasty algebra. 

(iii) Linear combinations of sinusoidal waves. Although the sinusoidal function 
(Eq. 9.17) is a very special wave form, the fact is that any wave can be expressed 
as a linear combination of sinusoidal ones: 

j(z, t) = i: A(k)ei(kz-wt) dk. (9.20) 
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Here w is a function of k (Eq. 9.11), and I have allowed k to run through negative 
values in order to include waves going both directions.1 

The formula for A(k), in terms of the initial conditions f(z, 0) and j(z, 0), 
can be obtained from the theory of Fourier transforms (see Prob. 9.33), but the 
details are not relevant to my purpose here. The point is that any wave can be 
written as a linear combination of sinusoidal waves, and therefore if you know 
how sinusoidal waves behave, you know in principle how any wave behaves. So 
from now on, we shall confine our attention to sinusoidal waves. 

Problem 9.3 Use Eq. 9.19 to determine A3 and 83 in terms of A1. A2, 81. and 82 • 

Problem 9.4 Obtain Eq. 9.20 directly from the wave equation, by separation of 
variables. 

9.1.3 • Boundary Conditions: Reflection and Transmission 

So far, I have assumed the string is infinitely long-or at any rate long enough that 
we don't need to worry about what happens to a wave when it reaches the end. As 
a matter of fact, what happens depends a lot on how the string is attached-that 
is, on the specific boundary conditions to which the wave is subject. Suppose, 
for instance, that the string is simply tied onto a second string. The tension T is 
the same for both, but the mass per unit length f.L presumably is not, and hence 
the wave velocities v1 and v2 are different (remember, v = ,JTTji,). Let's say, for 
convenience, that the knot occurs at z = 0. The incident wave 

(9.21) 

coming in from the left, gives rise to a reflected wave 

(9.22) 

traveling back along string 1 (hence the minus sign in front of k1), in addition to 
a transmitted wave 

fr(z, t) = Arei(k2z-wt), (z > 0), (9.23) 

which continues on to the right in string 2. 
The incident wave /J (z, t) is a sinusoidal oscillation that extends (in principle) 

all the way back to z = -oo, and has been doing so for all of history. The same 
goes for fR and fr (except that the latter, of course, extends to z = +oo).All parts 
of the system are oscillating at the same frequency w (a frequency determined by 
the person at z = -oo, who is shaking the string in the first place). Since the 

1This does not mean that). and ware negative-wavelength and frequency are always positive. If 
we allow negative wave numbers, then Eqs. 9.8 and 9.11 should really be written).= 2rr/lkl and 
w= lklv. 
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wave velocities are different in the two strings, however, the wavelengths and 
wave numbers are also different: 

(9.24) 

Of course, this situation is pretty artificial-what's more, with incident andre­
flected waves of infinite extent traveling on the same piece of string, it's going to 
be hard for a spectator to tell them apart. You might therefore prefer to consider 
an incident wave of finite extent-say, the pulse shown in Fig. 9.5. You can work 
out the details for yourself, if you like (Prob. 9.5). The trouble with this approach 
is that no finite pulse is truly sinusoidal. The waves in Fig. 9.5 may look like sine 
functions, but they're not: they're little pieces of sines, joined onto an entirely dif­
ferent function (namely, zero). Like any other waves, they can be built up as linear 
combinations of true sinusoidal functions (Eq. 9 .20), but only by putting together 
a whole range of frequencies and wavelengths. If you want a single incident fre­
quency (as we shall in the electromagnetic case), you must let your waves extend 
to infinity. (In practice, if you use a very long pulse, with many oscillations, it will 
be close to the ideal of a single frequency.) 

For a sinusoidal incident wave, then, the net disturbance of the string is: 

{ 

A 1ei(ktz-wt) + ARei(-ktz-wt), for Z < 0, 

f(z, t) = 
Arei(k2z-wt)' for z > 0. 

(9.25) 

At the join (z = 0), the displacement just slightly to the left (z = o-) must equal 
the displacement slightly to the right (z = o+)--else there would be a break 
between the two strings. Mathematically, f(z, t) is continuous at z = 0: 

f(O-, t) = f(O+, t). (9.26) 

If the knot itself is of negligible mass, then the derivative of f must also be 
continuous: 

(9.27) 

f f 

z 

(a) Incident pulse (b) Reflected and transmitted pulses 

FIGURE9.5 
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T 

T 
T 

z z 
(a) Discontinuous slope; force on knot (b) Continuous slope; no force on knot 

FIGURE9.6 

Otherwise there would be a net force on the knot, and therefore an infinite 
acceleration (Fig. 9.6). These boundary conditions apply directly to the real wave 
function f(z, t). But since the imaginary part of j differs from the real part only 
in the replacement of cosine by sine (Eq. 9.15), it follows that the complex wave 
function ](z, t) obeys the same rules: 

ajl = ajl 
az az o- o+ 

(9.28) 

When applied to Eq. 9.25, these boundary conditions determine the outgoing 
amplitudes (AR and Ar) in terms of the incoming one (A 1 ): 

A1 + AR = Ar, ki (AI- AR) = kzAr, 

from which it follows that 

AR = (~:~~~)A[, Ar = (ki2:Ikz) A[. (9.29) 

Or, in terms of the velocities (Eq. 9.24): 

AR = (vz- VI) A1, Ar = (~) AJ. 
Vz +VI Vz +VI 

(9.30) 

The real amplitudes and phases, then, are related by 

(9.31) 

If the second string is lighter than the first (J.L2 < f.LI, so that v2 > VI), all three 
waves have the same phase angle (8R = 8r = 81), and the outgoing amplitudes 
are 

(9.32) 

If the second string is heavier than the first ( Vz < VI), the reflected wave is out of 
phase by 180° ( 8 R + n = 8r = 81 ). In other words, since 

cos ( -kiZ- wt + 81 - n) = -cos ( -kiZ- wt + 81 ), 
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the reflected wave is "upside down." The amplitudes in this case are 

AR =(VI- v
2

) A 1 and Ar = (~) AJ. 
V2 +VI V2 +VI 

(9.33) 

In particular, if the second string is infinitely massive-or, what amounts to the 
same thing, if the first string is simply nailed down at the end-then 

Naturally, in this case there is no transmitted wave-all of it reflects back. 

Problem 9.5 Suppose you send an incident wave of specified shape, g1(z- v1t), 
down string number 1. It gives rise to a reflected wave, hR(Z + v1t), and a transmit­
ted wave, gr(z- v2t). By imposing the boundary conditions 9.26 and 9.27, find hR 
and gr. 

Problem 9.6 

(a) Formulate an appropriate boundary condition, to replace Eq. 9.27, for the case 
of two strings under tension T joined by a knot of mass m. 

(b) Find the amplitude and phase of the reflected and transmitted waves for the case 
where the knot has a mass m and the second string is massless. 

Problem 9.7 Suppose string 2 is embedded in a viscous medium (such as molasses), 
which imposes a drag force that is proportional to its (transverse) speed: 

at 
I:!.Fdrag = -yatl:!.z. 

(a) Derive the modified wave equation describing the motion of the string. 

(b) Solve this equation, assuming the string vibrates at the incident frequency w. 
That is, look for solutions of the form j(z, t) = eiwt F(z). 

(c) Show that the waves are attenuated (that is, their amplitude decreases with in­
creasing z). Find the characteristic penetration distance, at which the amplitude 
is 1/ e of its original value, in terms of y, T, JL, and w. 

(d) If a wave of amplitude A1 , phase 81 = 0, and frequency w is incident from the 
left (string 1), find the reflected wave's amplitude and phase. 

9.1.4 • Polarization 

The waves that travel down a string when you shake it are called transverse, 
because the displacement is perpendicular to the direction of propagation. If the 
string is reasonably elastic, it is also possible to stimulate compression waves, by 
giving the string little tugs. Compression waves are hard to see on a string, but if 
you try it with a slinky they're quite noticeable (Fig. 9.7). These waves are called 
longitudinal, because the displacement from equilibrium is along the direction of 
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1J -
FIGURE9.7 

propagation. Sound waves, which are nothing but compression waves in air, are 
longitudinal; electromagnetic waves, as we shall see, are transverse. 

Now there are, of course, two dimensions perpendicular to any given line of 
propagation. Accordingly, transverse waves occur in two independent states of 
polarization: you can shake the string up-and-down ("vertical" polarization­
Fig. 9.8a), 

fv(Z, t) = Aei(kz-wt) X, (9.34) 

or left-and-right ("horizontal" polarization-Fig. 9.8b), 

(9.35) 

or along any other direction in the xy plane (Fig. 9.8c): 

f(z, t) = Aei(kz-wt) fi.. (9.36) 

The polarization vector fi. defines the plane of vibration.2 Because the waves are 
transverse, fi. is perpendicular to the direction of propagation: 

(9.37) 

(a) Vertical polarization (b) Horizontal polarization 

X 

z 

(c) Polarization vector 

FIGURE9.8 

2Notice that you can always switch the sign of ii, provided you simultaneously advance the phase 
constant by 180°, since both operations change the sign of the wave. 
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In terms of the polarization angle 0, 

ii = cos 0 i + sin 0 y. (9.38) 

Thus, the wave pictured in Fig. 9.8c can be considered a superposition of two 
waves-one horizontally polarized, the other vertically: 

f(z, t) = (A cos O)ei(kz-wt) i +(A sinO)ei(kz-wt) y. (9.39) 

Problem 9.8 Equation 9.36 describes the most general linearly polarized wave on 
a string. Linear (or "plane") polarization (so called because the displacement is par­
allel to a fixed vector n) results from the combination of horizontally and vertically 
polarized waves of the same phase (Eq. 9.39). If the two components are of equal 
amplitude, but out of phase by 90° (say, 8v = 0, 8h = 90°), the result is a circularly 
polarized wave. In that case: 

(a) At a fixed point z, show that the string moves in a circle about the z axis. Does it 
go clockwise or counterclockwise, as you look down the axis toward the origin? 
How would you construct a wave circling the other way? (In optics, the clock­
wise case is called right circular polarization, and the counterclockwise, left 
circular polarization.)3 

(b) Sketch the string at time t = 0. 

(c) How would you shake the string in order to produce a circularly polarized wave? 

9.2 • ELECTROMAGNETIC WAVES IN VACUUM 

9.2.1 • The Wave Equation for E and B 

In regions of space where there is no charge or current, Maxwell's equations read 

(i) (iii) 
aB 

V·E=O, V xE=--
at' 

(9.40) 

(ii) (iv) OE I V ·B=O, V x B = f.LoEo - . 
at 

They constitute a set of coupled, first-order, partial differential equations for E 
and B. They can be decoupled by applying the curl to (iii) and (iv): 

V x (V x E) = V (V · E) - V 2E = V x (- ~~) 

a a2E 
= -at (V X B) = -JLoEo at2 ' 

3 An elegant notation for circular polarization (or elliptical, if the amplitudes are unequal) is to use a 
complex ii, but I shall not do so in this book. 
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V x (V x B) = V (V · B) - V 2B = V x (JLoEo ~~) 

a a2B 
= JLoEoat(V X E) = -JLoEo at2 . 

Or, since V · E = 0 and V · B = 0, 

(9.41) 

We now have separate equations forE and B, but they are of second order; that's 
the price you pay for decoupling them. 

In vacuum, then, each Cartesian component of E and B satisfies the three­
dimensional wave equation, 

2 1 az f 
v f = v2 at2. 

(This is the same as Eq. 9.2, except that a2 jjaz2 is replaced by its natural gen­
eralization, V2 f.) So Maxwell's equations imply that empty space supports the 
propagation of electromagnetic waves, traveling at a speed 

1 
v = -- = 3.00 x 108 mjs, 
~ 

(9.42) 

which happens to be precisely the velocity of light, c. The implication is astound­
ing: Perhaps light is an electromagnetic wave.4 Of course, this conclusion does 
not surprise anyone today, but imagine what a revelation it was in Maxwell's time! 
Remember how Eo and JLo came into the theory in the first place: they were con­
stants in Coulomb's law and the Biot-Savart law, respectively. You measure them 
in experiments involving charged pith balls, batteries, and wires-experiments 
having nothing whatever to do with light. And yet, according to Maxwell's the­
ory, you can calculate c from these two numbers. Notice the crucial role played by 
Maxwell's contribution to Ampere's law (JLoEoaEjat); without it, the wave equa­
tion would not emerge, and there would be no electromagnetic theory of light. 

9.2.2 • Monochromatic Plane Waves 

For reasons discussed in Sect. 9 .1.2, we may confine our attention to sinusoidal 
waves of frequency w. Since different frequencies in the visible range correspond 
to different colors, such waves are called monochromatic (Table 9.1). Suppose, 

4 As Maxwell himself put it, "We can scarcely avoid the inference that light consists in the transverse 
undulations of the same medium which is the cause of electric and magnetic phenomena." See Ivan 
Tolstoy, James Clerk Maxwell, A Biography (Chicago: University of Chicago Press, 1983). 
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z 

y 

FIGURE9.9 

moreover, that the waves are traveling in the z direction and have no x or y depen­
dence; these are called plane waves, 5 because the fields are uniform over every 
plane perpendicular to the direction of propagation (Fig. 9.9). We are interested, 
then, in fields of the form 

E(z, t) = Eoei(kz-wt)' B(z, t) = Boei(kz-wt)' (9.43) 

where Eo and Bo are the (complex) amplitudes (the physical fields, of course, are 
the real parts ofE and B), and w = ck. 

Now, the wave equations forE and B (Eq. 9.41) were derived from Maxwell's 
equations. However, whereas every solution to Maxwell's equations (in empty 
space) must obey the wave equation, the converse is not true; Maxwell's equa­
tions impose extra constraints on Eo and B0 • In particular, since V · E = 0 and 
V · B = 0, it follows6 that 

(9.44) 

That is, electromagnetic waves are transverse: the electric and magnetic fields are 
perpendicular to the direction of propagation. Moreover, Faraday's law, V x E = 
-a B I at' implies a relation between the electric and magnetic amplitudes, to wit: 

or, more compactly: 

- k -
Bo = - (i x Eo). 

w 

(9.45) 

(9.46) 

5For a discussion of spherical waves, at this level, see J. R. Reitz, F. J. Milford, and R. W. Christy, 
Foundations of Electromagnetic Theory, 3rd ed., Sect. 17-5 (Reading, MA: Addison-Wesley, 1979). 
Or work Prob. 9.35. Of course, over small enough regions any wave is essentially plane, as long as the 
wavelength is much less than the radius of the curvature of the wave front. 
6Because the real part of E differs from the imaginary part only in the replacement of sine by cosine, 
if the former obeys Maxwell's equations, so does the latter, and hence E as well. 
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The Electromagnetic Spectrum 
Frequency (Hz) Type Wavelength (m) 
1()22 10-13 

1021 gamma rays 10-12 

1020 10-11 
1019 10-10 

1018 x-rays 10-9 
1017 10-8 
1016 ultraviolet 10-7 
1015 visible 10-6 
1014 infrared 10-5 

1013 10-4 
1012 10-3 
1011 10-2 
1010 microwave 10-1 

109 1 
108 TV,FM 10 
107 102 

106 AM 103 

105 104 

104 RF 105 

103 106 

The Visible Range 
Frequency (Hz) Color Wavelength (m) 

1.0 X 1015 near ultraviolet 3.0 x 10-7 

7.5 X 1014 shortest visible blue 4.0 x 10-7 

6.5 X 1014 blue 4.6 x 10-7 

5.6 X 1014 green 5.4 x 10-7 

5.1 X 1014 yellow 5.9 x 10-7 

4.9 X 1014 orange 6.1 x 10-7 

3.9 X 1014 longest visible red 7.6 x 10-7 

3.0 X 1014 near infrared 1.0 x 10-6 

TABLE9.1 

Evidently, E and B are in phase and mutually perpendicular; their (real) ampli­
tudes are related by 

k 1 
Bo = - Eo= - Eo. (9.47) 

(J) c 

The fourth of Maxwell's equations, V x B = f.LoEo(aEjat), does not yield an in­
dependent condition; it simply reproduces Eq. 9.45. 
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Example 9.2. If E points in the x direction, then B points in the y direction 
(Eq. 9.46): 

or (taking the real part) 

A 1 A 

E(z, t) =Eo cos(kz- wt + 8) x, B(z, t) = - Eo cos(kz- wt + 8) y. 
c 

X 

E 
c -

FIGURE9.10 

(9.48) 

z 

This is the paradigm for a monochromatic plane wave (see Fig. 9.10). The wave 
as a whole is said to be polarized in the x direction (by convention, we use the 
direction of E to specify the polarization of an electromagnetic wave). 

There is nothing special about the z direction, of course-we can easily gen­
eralize to monochromatic plane waves traveling in an arbitrary direction. The no­
tation is facilitated by the introduction of the propagation (or wave) vector, k, 
pointing in the direction of propagation, whose magnitude is the wave number k. 
The scalar product k · r is the appropriate generalization of kz (Fig. 9.11 ), so 

E(r, t) = Eoei(k·r-wt) ii, 

(9.49) 
- 1 - '(k ) A 1 A -B(r, t) = - Eoe1 ·r-wt (k x ii) = - k x E, 

c c 

where ii is the polarization vector. Because E is transverse, 

(9.50) 

(The transversality of B follows automatically from Eq. 9.49.) The actual (real) 
electric and magnetic fields in a monochromatic plane wave with propagation 
vector k and polarization ii are 
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FIGURE9.11 

E(r, t) = Eo cos (k · r- wt + 8) ii, 

1 A 

B(r, t) = - Eo cos (k · r- wt + 8)(k x ii). 
c 

(9.51) 

(9.52) 

Problem 9.9 Write down the (real) electric and magnetic fields for a monochro­
matic plane wave of amplitude E0 , frequency w, and phase angle zero that is (a) 
traveling in the negative x direction and polarized in the z direction; (b) traveling in 
the direction from the origin to the point (1, 1, 1), with polarization parallel to the 
xz plane. In each case, sketch the wave, and give the explicit Cartesian components 
ofk and ii. 

9.2.3 • Energy and Momentum in Electromagnetic Waves 

According to Eq. 8.5, the energy per unit volume in electromagnetic fields is 

u = ~ (EoE2 + _!__B 2
). 

2 J.l-o 

In the case of a monochromatic plane wave (Eq. 9.48) 

2 1 2 2 
B = 2" E = J.l-oEoE , 

c 

so the electric and magnetic contributions are equal: 

u = EoE2 = EoE~ cos2 (kz- wt + 8). 

(9.53) 

(9.54) 

(9.55) 

As the wave travels, it carries this energy along with it. The energy flux den­
sity (energy per unit area, per unit time) transported by the fields is given by the 
Poynting vector (Eq. 8.10): 

1 s = - (EX B). (9.56) 
J.l-o 

For monochromatic plane waves propagating in the z direction, 

S = cE0E~ cos2 (kz - wt + 8) z = cu Z. (9.57) 
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Notice that S is the energy density (u) times the velocity of the waves (c z)-as it 
should be. For in a time !:it, a length c !:it passes through area A (Fig. 9 .12), carry­
ing with it an energy uAc !:it. The energy per unit time, per unit area, transported 
by the wave is therefore uc. 

Electromagnetic fields not only carry energy, they also carry momentum. In 
fact, we found in Eq. 8.29 that the momentum density stored in the fields is 

1 
g= - S. 

c2 

For monochromatic plane waves, then, 

1 2 2 A 1 A 

g = - £oE0 cos (kz - cvt + 8) z = - u z. 
c c 

(9.58) 

(9.59) 

In the case of light, the wavelength is so short("' 5 x 10-7 m), and the period 
so brief ("' 1 o-15 s ), that any macroscopic measurement will encompass many 
cycles. Typically, therefore, we're not interested in the fluctuating cosine-squared 
term in the energy and momentum densities; all we want is the average value. 
Now, the average of cosine-squared over a complete cycle7 is~. so 

1 2 
(u} = 2£oE0 , 

1 2A 
(g} = 2c £oEo z. 

(9.60) 

(9.61) 

(9.62) 

I use brackets, ( }, to denote the (time) average over a complete cycle (or many 
cycles, if you prefer). The average power per unit area transported by an electro­
magnetic wave is called the intensity: 

(9.63) 

7There is a cute trick for doing this in your head: sin2 (} + cos2 (} = 1, and over a complete cycle the 
average of sin2 (} is equal to the average of cos2 (}, so ( sin2 ) = ( cos2 ) = 1/2. More formally, 

linT - cos2 (kz- 2rrtfT + 8) dt = 1/2. 
T o 
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When light falls (at normal incidence) on a perfect absorber, it delivers its 
momentum to the surface. In a time !:::.t, the momentum transfer is (Fig. 9.12) 
!:::.p = (g)Ac !:::.t, so the radiation pressure (average force per unit area) is 

1 !:::.p 1 2 I 
P = AM= 2EoE0 = -;;· (9.64) 

(On a perfect reflector the pressure is twice as great, because the momentum 
switches direction, instead of simply being absorbed.) We can account for this 
pressure qualitatively, as follows: The electric field (Eq. 9.48) drives charges in 
the x direction, and the magnetic field then exerts on them a force q(v x B) in the 
z direction. The net force on all the charges in the surface produces the pressure. 8 

Problem 9.10 The intensity of sunlight hitting the earth is about 1300 W jm2 • If 
sunlight strikes a perfect absorber, what pressure does it exert? How about a perfect 
reflector? What fraction of atmospheric pressure does this amount to? 

Problem 9.11 Consider a particle of charge q and mass m, free to move in the 
xy plane in response to an electromagnetic wave propagating in the z direction 
(Eq. 9.48-might as well set 8 = 0). 

(a) Ignoring the magnetic force, find the velocity of the particle, as a function of 
time. (Assume the average velocity is zero.) 

(b) Now calculate the resulting magnetic force on the particle. 

(c) Show that the (time) average magnetic force is zero. 

The problem with this naive model for the pressure of light is that the velocity is 
90° out of phase with the fields. For energy to be absorbed, there's got to be some 
resistance to the motion of the charges. Suppose we include a force of the form 
-ymv, for some damping constant y. 

(d) Repeat part (a) (ignore the exponentially damped transient). Repeat part (b), and 
find the average magnetic force on the particle. 9 

Problem 9.12 In the complex notation there is a clever device for finding the 
time average of a product. Suppose f(r, t) = A cos (k · r- wt + oa) and g(r, t) = 
B cos (k · r- wt + ob). Show that (fg) = (1/2)Recfg*), where the star denotes 
complex conjugation. [Note that this only works if the two waves have the same k 
and w, but they need not have the same amplitude or phase.] For example, 

(u)= - Re EoE·E*+ - B·B* 1 (-- 1--) 
4 J.Lo 

1 (- - ) and (S) = - Re E x B* . 
2J.Lo 

Problem 9.13 Find all elements of the Maxwell stress tensor for a monochromatic 
plane wave traveling in the z direction and linearly polarized in the x direction 
(Eq. 9.48). Does your answer make sense? (Remember that -1f represents the 
momentum flux density.) How is the momentum flux density related to the energy 
density, in this case? 

8 Actually, it's a little more subtle than this-see Prob. 9.11. 
9C. E. Mungan, Am. J. Phys. 77, 965 (2009). See also Prob. 9.34. 
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9.3 • ELECTROMAGNETIC WAVES IN MATTER 

9.3.1 • Propagation in Linear Media 

Inside matter, but in regions where there is no free charge or free current, 
Maxwell's equations become 

(i) V · D = 0, (iii) 

(ii) V · B = 0, (iv) 

If the medium is linear, 

v x E =- aB I at' 

an 
VxH= - . 

at 

D=EE, 
1 

H= - B, 
f1 

(9.65) 

(9.66) 

and homogeneous (so E and f1 do not vary from point to point), they reduce to 

aB 

I (i) V ·E=O, (iii) VxE=--
at' 

(9.67) 
aE 

(ii) V ·B=O, (iv) v X B = f.LE - , 
at 

which differ from the vacuum analogs (Eqs. 9.40) only in the replacement of 
f.LoEo by f.LE .10 Evidently electromagnetic waves propagate through a linear ho­
mogeneous medium at a speed 

where 

1 c 
V= -- = -,jE[i n, 

{I£ 
n=v~ 

(9.68) 

(9.69) 

is the index of refraction of the substance. For most materials, f1 is very close to 
f.Lo, so 

(9.70) 

10 This observation is mathematically pretty trivial, but the physical implications are astonishing: As 
the wave passes through, the fields busily polarize and magnetize all the molecules, and the resulting 
(oscillating) dipoles create their own electric and magnetic fields. These combine with the original 
fields in such a way as to create a single wave with the same frequency but a different speed. This 
extraordinary conspiracy (known in optics as the Ewald-Oseen extinction theorem) is responsible 
for the phenomenon of transparency. It is a distinctly nontrivial consequence of linearity. For further 
discussion seeM. B. James and D. J. Griffiths, Am. J. Phys. 60, 309 (1992); H. Fearn, D. F. V. James, 
and P. W. Milonni, Am. J. Phys. 64, 986 (1996); M. Mansuripur, Optics and Photonics News 9, 50 
(1998). 
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where Er is the dielectric constant11 (Eq. 4.34). Since Er is almost always greater 
than 1, light travels more slowly through matter-a fact that is well known from 
optics. 

All of our previous results carry over, with the simple transcription Eo --+ E, 

f.l-o --+ f.l-, and hence c--+ v. The energy density is12 

and the Poynting vector is 

1 s = - (EX B). 
f.1, 

(9.71) 

(9.72) 

For monochromatic plane waves, the frequency and wave number are related by 
w = kv (Eq. 9.11), the amplitude ofB is 1jv times the amplitude ofE (Eq. 9.47), 
and the intensity13 is 

(9.73) 

The interesting question is this: What happens when a wave passes from one 
transparent medium into another-air to water, say, or glass to plastic? As in the 
case of waves on a string, we expect to get a reflected wave and a transmitted 
wave. The details depend on the exact nature of the electrodynamic boundary 
conditions, which we derived in Chapter 7 (Eq. 7 .65): 

(i) E1Ef = E2Ef, C") Ell-Ell 

} 
111 1 - 2• 

(iv) _!_B 11 = _!_B 11
• 

(9.74) 
(ii) Bf = Bf, 

f.l-1 1 f.l-2 2 

These equations relate the electric and magnetic fields just to the left and just to 
the right of the interface between two linear media. In the following sections, we 
use them to deduce the laws governing reflection and refraction of electromag­
netic waves. 

11 The dielectric constant is "constant" in the sense of being independent of the amplitude of E, but 
it may well depend on the frequency, as we shall see. Thus, for example, if you quote the (static) 
dielectric constant for water, from Table 4.2, you will conclude that the index of refraction is 8.9, 
which is wildly off, for visible light (n = 1.33). 
12 See Prob. 8.23; refer to Sect. 4.4.3 for the precise meaning of "energy density," in the context of 
linear media. 
13 The momentum carried by an electromagnetic wave in matter is controversial. See, for example, 
S.M. Barnett, Phys. Rev. Lett. 104, 070401 (2010). 



9.3 Electromagnetic Waves in Matter 403 

9.3.2 • Reflection and Transmission at Normal Incidence 

Suppose the xy plane forms the boundary between two linear media. A plane 
wave of frequency w, traveling in the z direction and polarized in the x direction, 
approaches the interface from the left (Fig. 9.13): 

(9.75) 

It gives rise to a reflected wave 

(9.76) 

which travels back to the left in medium (1), and a transmitted wave 

E (z t) = jj; ei(k2z-wt) i: } 
T ' OT ' 

- 1 - '(k ) Br(z, t) = - EoTe' 2z-wt y, 
V2 

(9.77) 

which continues on to the right in medium (2). Note the minus sign in BR, as 
required by Eq. 9.49-or, if you prefer, by the fact that the Poynting vector aims 
in the direction of propagation. 

At z = 0, the combined fields on the left, E1 + ER and B1 + BR, must join 
the fields on the right, Er and Br, in accordance with the boundary conditions 

X 

z 

" Interface 

FIGURE9.13 
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(Eq. 9.74). In this case there are no components perpendicular to the surface, so 
(i) and (ii) are trivial. However, (iii) requires that 

(9.78) 

while (iv) says 

(9.79) 

or 

(9.80) 

where 

fJ 
_ f.-ti VI _ J.-tin2 
= -- - --. (9.81) 

J.-t2 v2 J.-t2n I 

Equations 9.78 and 9.80 are easily solved for the outgoing amplitudes, in terms 
of the incident amplitude: 

(9.82) 

These results are strikingly similar to the ones for waves on a string. Indeed, if 
the permeabilities p, are close to their values in vacuum (as, remember, they are 
for most media), then fJ = vifv2, and we have 

(9.83) 

which are identical to Eqs. 9.30. In that case, as before, the reflected wave is in 
phase (right side up) if v2 > VI and out of phase (upside down) if v2 < VI; the 
real amplitudes are related by 

(9.84) 

or, in terms of the indices of refraction, 

(9.85) 

What fraction of the incident energy is reflected, and what fraction is transmit­
ted? According to Eq. 9.73, the intensity (average power per unit area) is 
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If (again) /1-l = 11-2 = JLo, then the ratio of the reflected intensity to the incident 
intensity is 

(9.86) 

whereas the ratio of the transmitted intensity to the incident intensity is 

(9.87) 

R is called the reflection coefficient and T the transmission coefficient; they 
measure the fraction of the incident energy that is reflected and transmitted, re­
spectively. Notice that 

R + T = 1, (9.88) 

as conservation of energy, of course, requires. For instance, when light passes 
from air (n1 = 1) into glass (n2 = 1.5), R = 0.04 and T = 0.96. No surprise: 
most of the light is transmitted. 

Problem 9.14 Calculate the exact reflection and transmission coefficients, without 
assuming J.Ll = J.Lz = J.Lo. Confirm that R + T = 1. 

Problem 9.15 In writing Eqs. 9.76 and 9.77, I tacitly assumed that the reflected 
and transmitted waves have the same polarization as the incident wave-along the 
x direction. Prove that this must be so. [Hint: Let the polarization vectors of the 
transmitted and reflected waves be 

and prove from the boundary conditions that f)r = ()R = 0.] 

9.3.3 • Reflection and Transmission at Oblique Incidence 

In the last section, I treated reflection and transmission at normal incidence-that 
is, when the incoming wave hits the interface head-on. We now tum to the more 
general case of oblique incidence, in which the incoming wave meets the bound­
ary at an arbitrary angle fh (Fig. 9.14). Of course, normal incidence is really just a 
special case of oblique incidence, with fh = 0, but I wanted to treat it separately, 
as a kind of warm-up, because the algebra is now going to get a little heavy. 

Suppose, then, that a monochromatic plane wave 

(9.89) 
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X 

z 

Plane of Incidence 

FIGURE9.14 

approaches from the left, giving rise to a reflected wave, 

ER(r, t) = EoRei(kR·r-wt), BR(r, t) = :
1 

( kR x ER), 

and a transmitted wave 

Er(r, t) = Eorei(kr·r-wt), Br(r, t) = :
2 

(k:r X Er). 

(9.90) 

(9.91) 

All three waves have the same frequency w-that is determined once and for all 
at the source (the flashlight, or whatever, that produces the incident beam).14 The 
three wave numbers are related by Eq. 9.11: 

(9.92) 

The combined fields in medium (1), E1 + ER and B1 + BR, must now be 
joined to the fields Er and Br in medium (2), using the boundary conditions 
(Eq. 9.74). These all share the generic structure 

( )ei(krr-wt) + ( )ei(kR·r-wt) = ( )ei(kr·r-wt)' at z = O. (9.93) 

I'll fill in the parentheses in a moment; for now, the important thing to notice is 
that the x, y, and t dependence is confined to the exponents. Because the boundary 
conditions must hold at all points on the plane, and for all times, these exponential 
factors must be equal (when z = 0). Otherwise, a slight change in x, say, would 
destroy the equality (see Prob. 9.16). Of course, the time factors are already equal 
(in fact, you could regard this as a confirmation that the transmitted and reflected 
frequencies must match the incident one). As for the spatial terms, evidently 

k1 · r = kR · r = kr · r, when z = 0, (9.94) 

14 Nonlinear ("active") media can change the frequency, but we are talking only about linear media. 
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or, more explicitly, 

(9.95) 

for all x and all y. 
But Eq. 9.95 can only hold if the components are separately equal, for if x = 0, 

we get 

(9.96) 

while y = 0 gives 

(9.97) 

We may as well orient our axes so that k1 lies in the xz plane (i.e. (k1 )y = 0); 
according to Eq. 9.96, so too will kR and kr. Conclusion: 

First Law: The incident, reflected, and transmitted wave vectors 
form a plane (called the plane of incidence), which also includes the 
normal to the surface (here, the z axis). 

Meanwhile, Eq. 9.97 implies that 

(9.98) 

where fh is the angle of incidence, (} R is the angle of reflection, and Or is the 
angle of transmission (more commonly known as the angle of refraction), all of 
them measured with respect to the normal (Fig. 9.14). In view ofEq. 9.92, then, 

Second Law: The angle of incidence is equal to the angle of 
reflection, 

This is the law of reflection. 

As for the transmitted angle, 

Third Law: 

(9.99) 

sinOr n1 

sin01 n2 
(9.100) 

This is the law of refraction-Snell's law. 

These are the three fundamental laws of geometrical optics. It is remarkable 
how little actual electrodynamics went into them: we have yet to invoke any spe­
cific boundary conditions-all we used was their generic form (Eq. 9.93). There­
fore, any other waves (water waves, for instance, or sound waves) can be expected 
to obey the same "optical" laws when they pass from one medium into another. 
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Now that we have taken care of the exponential factors-they cancel, given 
Eq. 9.94---the boundary conditions (Eq. 9.74) become: 

(9.101) 

1 (- - ) 1 (- ) (iv) - Bo1 + BoR = - Bor 
f.-Ll x,y f.-L2 x,y 

where B0 = (1/v)k x Eo in each case. (The lasttwo represent pairs of equations, 
one for the x-component and one for they-component.) 

Suppose the polarization of the incident wave is parallel to the plane of inci­
dence (the xz plane); it follows (see Prob. 9.15) that the reflected and transmitted 
waves are also polarized in this plane (Fig. 9.15). (I shall leave it for you to analyze 
the case of polarization perpendicular to the plane of incidence; see Pro b. 9.17.) 
Then (i) reads 

(9.102) 

(ii) adds nothing (0 = 0), since the magnetic fields have no z components; (iii) 
becomes 

(9.103) 

FIGURE9.15 
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and (iv) says 

(9.104) 

Given the laws of reflection and refraction, Eqs. 9.102 and 9.104 both reduce to 

where (as before) 

and Eq. 9.103 says 

where 

f3 
_ f..tl VI _ J..t1n2 
= -- - --, 

J..t2 v2 J..t2n 1 

cos Or 
a= --. 

cos(}[ 

(9.105) 

(9.106) 

(9.107) 

(9.108) 

Solving Eqs. 9.105 and 9.107 for the reflected and transmitted amplitudes, we 
obtain 

(9.109) 

These are known as Fresnel's equations, for the case of polarization in the plane 
of incidence. (There are two other Fresnel equations, giving the reflected and 
transmitted amplitudes when the polarization is perpendicular to the plane of 
incidence-see Pro b. 9.17.) Notice that the transmitted wave is always in phase 
with the incident one; the reflected wave is either in phase ("right side up"), if 
a > f3, or 180° out of phase ("upside down"), if a < f3 .15 

The amplitudes of the transmitted and reflected waves depend on the angle of 
incidence, because a is a function of(} 1 : 

.j 1 - sin2 Or 
a= 

.j1 - [(ni/n2) sinO/ F 
cos(}[ 

(9.110) 

In the case of normal incidence (01 = 0), a = 1, and we recover Eq. 9.82. At 
grazing incidence (01 = 90°), a diverges, and the wave is totally reflected (a fact 

15 There is an unavoidable ambiguity in the phase of the reflected wave, since (as I mentioned in the 
footnote to Eq. 9.36) changing the sign of the polarization vector is equivalent to a 180° phase shift. 
The convention I adopted in Fig. 9.15, withER positive "upward;' is consistent with some, but not all, 
of the standard optics texts. 



410 Chapter 9 Electromagnetic Waves 

that is painfully familiar to anyone who has driven at night on a wet road). Inter­
estingly, there is an intermediate angle, OB (called Brewster's angle), at which the 
reflected wave is completely extinguished.16 According to Eq. 9.109, this occurs 
when a= {3, or 

1- {32 
sin2 OB = ---7----"7 

(ni/n2)2- f32. 
(9.111) 

For the typical case /1-I ~ J.L2, so {3 ~ n2 jn1, sin2 OB ~ {32 /(1 + {32), and hence 

(9.112) 

Figure 9.16 shows a plot of the transmitted and reflected amplitudes as functions 
of 01 , for light incident on glass (n2 = 1.5) from air (n1 = 1). (On the graph, a 
negative number indicates that the wave is 180° out of phase with the incident 
beam-the amplitude itself is the absolute value.) 

The power per unit area striking the interface is S · Z. Thus the incident inten­
sity is 

1 2 
h = lE1V1Eo1 COS OJ, 

while the reflected and transmitted intensities are 

1.0 

0.6 

0.4 

0.2 

-{).2 1-------:E:­
oR 

-{).4 Eo I 

and 

FIGURE9.16 

(9.113) 

(9.114) 

16 Because waves polarized perpendicular to the plane of incidence exhibit no corresponding quench­
ing of the reflected component, an arbitrary beam incident at Brewster's angle yields a reflected beam 
that is totally polarized parallel to the interface. That's why Polaroid glasses, with the transmission 
axis vertical, help to reduce glare off a horizontal surface. 
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FIGURE9.17 

(The cosines are there because I am talking about the average power per unit area 
of interface, and the interface is at an angle to the wave front.) The reflection and 
transmission coefficients for waves polarized parallel to the plane of incidence are 

(9.115) 

Ir E2V2 (EaT ) 2 
cos Or ( 2 )

2 

T =I;= E1V1 Eo
1 

cos01 = ot{3 a+ {3 
(9.116) 

They are plotted as functions of the angle of incidence in Fig. 9.17 (for the 
air/glass interface). R is the fraction of the incident energy that is reflected­
naturally, it goes to zero at Brewster's angle; T is the fraction transmitted-it 
goes to 1 at OB. Note that R + T = 1, as required by conservation of energy: the 
energy per unit time reaching a particular patch of area on the surface is equal to 
the energy per unit time leaving the patch. 

Problem 9.16 Suppose Aeiax + Beibx = Ceicx, for some nonzero constants A, B, 
C, a, b, c, and for all x. Prove that a= b = c and A+ B =C. 

Problem 9.17 Analyze the case of polarization perpendicular to the plane of in­
cidence (i.e. electric fields in the y direction, in Fig. 9.15). Impose the boundary 
conditions (Eq. 9.101), and obtain the Fresnel equations for E0R and E0T. Sketch 
(EoR/ Eo1 ) and (EoT/ Eo1 ) as functions of lh, for the case f3 = n2/nt = 1.5. (Note 
that for this f3 the reflected wave is always 180° out of phase.) Show that there is no 
Brewster's angle for any n1 and n2 : E0R is never zero (unless, of course, n1 = n2 

and f.Lt = f.Lz, in which case the two media are optically indistinguishable). Confirm 
that your Fresnel equations reduce to the proper forms at normal incidence. Com­
pute the reflection and transmission coefficients, and check that they add up to 1. 

Problem 9.18 The index of refraction of diamond is 2.42. Construct the graph anal­
ogous to Fig. 9.16 for the air/diamond interface. (Assume f.Lt = f.Lz = f.Lo.) In partie­
war, calcu1ate (a) the amplitudes at normal incidence, (b) Brewster's angle, and (c) 
the "crossover" angle, at which the reflected and transmitted amplitudes are equal. 
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9.4 • ABSORPTION AND DISPERSION 

9.4.1 • Electromagnetic Waves in Conductors 

In Sect. 9.3 I stipulated that the free charge density P! and the free current density 
J 1 are zero, and everything that followed was predicated on that assumption. Such 
a restriction is perfectly reasonable when you're talking about wave propagation 
through a vacuum or through insulating materials such as glass or (pure) water. 
But in the case of conductors we do not independently control the flow of charge, 
and in general J1 is certainly not zero. In fact, according to Ohm's law, the (free) 
current density in a conductor is proportional to the electric field: 

With this, Maxwell's equations for linear media assume the form 

1 
(i) V · E = - p1 , 

E 

an 
(iii) V x E = - ­at ' 

(ii) V · B = 0, aE I (iv) V x B = J.UrE + J.LEat. 

Now, the continuity equation for free charge, 

apf 
v ·Jf = -Tt, 

together with Ohm's law and Gauss's law (i), gives 

apf a at = -a(V ·E)= --;PI 

for a homogeneous linear medium, from which it follows that 

PJ(t) = e-<ufE)t PJ(O). 

(9.117) 

(9.118) 

(9.119) 

(9.120) 

Thus any initial free charge p 1 (0) dissipates in a characteristic time r = E I a. This 
reflects the familiar fact that if you put some free charge on a conductor, it will 
flow out to the edges. The time constant r affords a measure of how "good" a con­
ductor is: For a "perfect" conductor, a = oo and r = 0; for a "good" conductor, 
r is much less than the other relevant times in the problem (in oscillatory systems, 
that means r « 1/w); for a "poor" conductor, r is greater than the characteris­
tic times in the problem (r » 1/w)P But we're not interested in this transient 

17 N. Ashby, Am. J. Phys. 43, 553 (1975), points out that for good conductors r is absurdly short 
(10-19 s, for copper, whereas the time between collisions is Tc = 10-14 s). The problem is that Ohm's 
law itself breaks down on time scales shorter than Tc; actually, the time it takes free charge to dissipate 
in a good conductor is of order Tc, not r. Moreover, H. C. Ohanian, Am. J. Phys. 51, 1020 (1983), 
shows that it takes even longer for the fields and currents to equilibrate. But none of this is relevant 
to our present purpose; the net free charge density in a conductor does quickly dissipate, and exactly 
how long the process takes is beside the point. 
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behavior-we'll wait for any accumulated free charge to disappear. From then 
on, p f = 0, and we have 

aB 

I (i) V · E = 0, (iii) V xE=--
at' 

(9.121) 
aE 

(ii) V · B = 0, (iv) v X B = tJ-E - + tJ-O"E. 
at 

These differ from the corresponding equations for nonconducting media (Eq. 9 .67) 
only in the last term in (iv)-which is absent, obviously, when a = 0. 

Applying the curl to (iii) and (iv), as before, we obtain modified wave equations 
forE and B: 

(9.122) 

These equations still admit plane-wave solutions, 

E(z, t) = Eoei(kz-wt), B(z, t) = Boei(kz-wt), (9.123) 

but this time the "wave number" k is complex: 

(9.124) 

as you can easily check by plugging Eq. 9.123 into Eq. 9.122. Taking the square 
root, 

(9.125) 

where 

(9.126) 

The imaginary part of k results in an attenuation of the wave (decreasing 
amplitude with increasing z): 

(9.127) 

The distance it takes to reduce the amplitude by a factor of 1/e (about a third) is 
called the skin depth: 

1 
d = - · - , (9.128) 

K 
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it is a measure of how far the wave penetrates into the conductor. Meanwhile, the 
real part of k determines the wavelength, the propagation speed, and the index of 
refraction, in the usual way: 

2n 
A=T· 

(J) 

V= k' 
ck 

n= - . 
(J) 

(9.129) 

The attenuated plane waves (Eq. 9.127) satisfy the modified wave equation 
(9.122) for any Eo and B0 • But Maxwell's equations (9.121) impose further con­
straints, which serve to determine the relative amplitudes, phases, and polariza­
tions of E and B. As before, (i) and (ii) rule out any z components: the fields 
are transverse. We may as well orient our axes so that E is polarized along the x 
direction: 

(9.130) 

Then (iii) gives 

- k - "(k ) B(z, t) = - Eoe-Kze' z-wt y. (9.131) 
(J) 

(Equation (iv) says the same thing.) Once again, the electric and magnetic fields 
are mutually perpendicular. 

Like any complex number, k can be expressed in terms of its modulus and 
phase: 

(9.132) 

where 

(9.133) 

and 

(9.134) 

According to Eq. 9.130 and 9.131, the complex amplitudes Eo = E0eilh and B0 = 
B0ei8s are related by 

Keic/J 
Boei8s = --Eoei8E. 

(J) 

Evidently the electric and magnetic fields are no longer in phase; in fact, 

(9.135) 

(9.136) 

the magnetic field lags behind the electric field. Meanwhile, the (real) amplitudes 
of E and B are related by 

Bo 

Eo 

K 
(J) 

(9.137) 
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X 

y 

FIGURE9.18 

The (real) electric and magnetic fields are, finally, 

E(z, t) = Eoe-Kz cos (kz - wt +DE) i, } 

B(z, t) = B0e-Kz cos (kz- wt +DE+ c/J) y. 
These fields are shown in Fig. 9.18. 

Problem 9.19 

415 

z 

(9.138) 

(a) Suppose you imbedded some free charge in a piece of glass. About how long 
would it take for the charge to flow to the surface? 

(b) Silver is an excellent conductor, but it's expensive. Suppose you were designing 
a microwave experiment to operate at a frequency of 1010 Hz. How thick would 
you make the silver coatings? 

(c) Find the wavelength and propagation speed in copper for radio waves at 1 MHz. 
Compare the corresponding values in air (or vacuum). 

Problem 9.20 

(a) Show that the skin depth in a poor conductor (a «wE) is (2/a)../Elii (inde­
pendent of frequency). Find the skin depth (in meters) for (pure) water. (Use the 
static values of E, p,, and a; your answers will be valid, then, only at relatively 
low frequencies.) 

(b) Show that the skin depth in a good conductor (a »wE) is A.j2rr (where). is the 
wavelength in the conductor). Find the skin depth (in nanometers) for a typical 
metal(a ~ 107(Qm)-1)inthevisiblerange(w ~ 1015/s),assurningE ~Eo and 
p, ~ p,0 • Why are metals opaque? 

(c) Show that in a good conductor the magnetic field lags the electric field by 45°, 
and find the ratio of their amplitudes. For a numerical example, use the "typical 
metal" in part (b). 
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Problem 9.21 

(a) Calculate the (time-averaged) energy density of an electromagnetic plane wave 
in a conducting medium (Eq. 9.138). Show that the magnetic contribution al­
ways dominates. [Answer: (k2 f2~-t(Ji)E~e-2tcz] 

(b) Show that the intensity is (kf2wJ))E~e-2tcz. 

9.4.2 • Reflection at a Conducting Surface 

The boundary conditions we used to analyze reflection and refraction at an in­
terface between two dielectrics do not hold in the presence of free charges and 
currents. Instead, we have the more general relations (Eq. 7.64): 

E~- E~ = 0, } 

1 II 1 II A 

- Bi- - B2 = K 1 x n, 
J.Li J.L2 

(iii) 

(9.139) 
(ii) Bt - Bf = 0, (iv) 

where a 1 (not to be confused with conductivity) is the free surface charge, K 1 
is the free surface current, and ii (not to be confused with the polarization of the 
wave) is a unit vector perpendicular to the surface, pointing from medium (2) 
into medium (1). For ohmic conductors (J1 = aE) there can be no free surface 
current, since this would require an infinite electric field at the boundary. 

Suppose now that the xy plane forms the boundary between a nonconducting 
linear medium (1) and a conductor (2). A monochromatic plane wave, traveling 
in the z direction and polarized in the x direction, approaches from the left, as in 
Fig. 9.13: 

E (z t) _ jj; ei(ktz-wt) i B (z t) _ _!__ jj; ei(k1z-wt) YA 
I ' - 01 ' I ' - 01 • 

Vi 

This incident wave gives rise to a reflected wave, 

E (z t) = jj; ei(-ktz-wt) i B (z t) = _ _!__jj; ei(-k1z-wt) YA 
R ' OR ' R ' OR ' 

Vi 

propagating back to the left in medium (1), and a transmitted wave 

Er(z, t) = Eorei(k2z-wt) i, Br(z, t) = kz Eorei(k2z-wt) y, 
{J) 

which is attenuated as it penetrates into the conductor. 

(9.140) 

(9.141) 

(9.142) 

At z = 0, the combined wave in medium (1) must join the wave in medium 
(2), pursuant to the boundary conditions (Eq. 9.139). Since El.. = 0 on both sides, 
boundary condition (i) yields a f = 0. Since Bl.. = 0, (ii) is automatically satis­
fied. Meanwhile, (iii) gives 

(9.143) 
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and (iv) (with K f = 0) says 

1 - - kz -
--(Eo1 - EoR) - --Eor = 0, 
~1v1 ~2w 

(9.144) 

or 

(9.145) 

where 

(9.146) 

It follows that 

(9.147) 

These results are formally identical to the ones that apply at the boundary be­
tween nonconductors (Eq. 9.82), but the resemblance is deceptive since Pis now 
a complex number. 

For a perfect conductor (a = oo), kz = oo (Eq. 9.126), soP is infinite, and 

(9.148) 

In this case the wave is totally reflected, with a 180° phase shift. (That's why 
excellent conductors make good mirrors. In practice, you paint a thin coating of 
silver onto the back of a pane of glass-the glass has nothing to do with the 
reflection; it's just there to support the silver and to keep it from tarnishing. Since 
the skin depth in silver at optical frequencies is less than 100 A, you don't need a 
very thick layer.) 

Problem 9.22 Calculate the reflection coefficient for light at an air-to-silver inter­
face (JL1 = f.1,2 = f.Lo, E1 =Eo, u = 6 x 107(Q · m)-1), at optical frequencies (w = 

4 x 1015 js). 

9.4.3 • The Frequency Dependence of Permittivity 

In the preceding sections, we have seen that the propagation of electromagnetic 
waves through matter is governed by three properties of the material: the permit­
tivity E, the permeability~. and the conductivity a. Actually, each of these param­
eters depends to some extent on the frequency of the waves you are considering. 
Indeed, it is well known from optics that n ~ ,JE; is a function of wavelength 
(Fig. 9.19 shows the graph for a typical glass). A prism or a raindrop bends blue 
light more sharply than red, and spreads white light out into a rainbow of colors. 
This phenomenon is called dispersion. By extension, whenever the speed of a 
wave depends on its frequency, the supporting medium is called dispersive. 
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Because waves of different frequency travel at different speeds in a dispersive 
medium, a wave form that incorporates a range of frequencies will change shape 
as it propagates. A sharply peaked wave typically flattens out, and whereas each 
sinusoidal component travels at the ordinary wave (or phase) velocity, 

w 
V= k' (9.149) 

the packet as a whole (the "envelope") moves at the so-called group velocity18 

dw 
Vg = dk. (9.150) 

[You can demonstrate this by dropping a rock into the nearest pond and watching 
the waves that form: While the disturbance as a whole spreads out in a circle, 
moving at speed vg, the ripples that go to make it up will be seen to travel twice 
as fast ( v = 2 vg in this case). They appear at the back end of the packet, growing 
as they move forward to the center, then shrinking again and fading away at the 
front (Fig. 9.20).] We shall not concern ourselves with these matters-1'11 stick 
to monochromatic waves, for which the problem does not arise. But I should 
just mention that the energy carried by a wave packet in a dispersive medium 
does not travel at the phase velocity. Don't be too alarmed, therefore, if in some 
circumstances v comes out greater than c .19 

18 See A. P. French, Vibrations and Waves (New York: W. W. Norton & Co., 1971), p. 230, or F. S. 
Crawford, Jr., Waves (New York: McGraw-Hill, 1968), Sect. 6.2. 
19 Even the group velocity can exceed c in special cases-seeP. C. Peters, Am. J. Phys. 56, 129 (1988), 
or work Prob. 9.26. For delightful commentary, see C. F. Bohren, Am. J. Phys. 77, 101 (2009). And if 
two different "speeds of light" are not enough to satisfy you, check out S. C. Bloch, Am. J. Phys. 45, 
538 (1977), in which no fewer than eight distinct velocities are identified! Indeed, it's not clear what 
you mean by the "velocity" of something that changes shape as it moves, and has no precise beginning 
or end. Do you mean the speed at which the peak intensity propagates? Or the speed at which energy 
is transported? Or information transmitted? In special relativity no causal signal can travel faster than 
c, but some of the other "velocities" have no such restriction. 
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FIGURE9.20 

My purpose in this section is to account for the frequency dependence of E 

in dielectrics, using a simplified model for the behavior of the electrons. Like all 
classical models of atomic-scale phenomena, it is at best an approximation to the 
truth; nevertheless, it does yield qualitatively satisfactory results, and it provides 
a plausible mechanism for dispersion in transparent media. 

The electrons in a nonconductor are bound to specific molecules. The actual 
binding forces can be quite complicated, but we shall picture each electron as 
attached to the end of a spring, with force constant kspring (Fig. 9.21): 

Fbinding = -kspringX = -mw6x, (9.151) 

where x is displacement from equilibrium, m is the electron's mass, and w0 is 
the natural oscillation frequency, .Jkspring/m. [If this strikes you as an implausible 
model, look back at Ex. 4.1, where we were led to a force of precisely this form. 
As a matter of fact, practically any binding force can be approximated this way for 
sufficiently small displacements from equilibrium, as you can see by expanding 
the potential energy in a Taylor series about the equilibrium point: 

1 
U(x) = U(O) + xU'(O) + 2x2U"(O) + · · · . 

The first term is a constant, with no dynamical significance (you can always adjust 
the zero of potential energy so that U (0) = 0). The second term automatically 
vanishes, since d U j dx = - F, and by the nature of an equilibrium, the force at 
that point is zero. The third term is precisely the potential energy of a spring with 
force constant kspring = d2 U jdx2

l
0 

(the second derivative is positive, for a point 
of stable equilibrium). As long as the displacements are small, the higher terms in 
the series can be neglected. Geometrically, all I am saying is that practically any 
function can be fit near a minimum by a suitable parabola.] 

X 

z 

FIGURE9.21 
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Meanwhile, there will presumably be some damping force on the electron: 

dx 
Fdamping = -mydt. (9.152) 

[Again I have chosen the simplest possible form; the damping must be opposite in 
direction to the velocity, and making it proportional to the velocity is the easiest 
way to accomplish this. The cause of the damping does not concern us here­
among other things, an oscillating charge radiates, and the radiation siphons off 
energy. We will calculate this "radiation damping" in Chapter 11.] 

In the presence of an electromagnetic wave of frequency w, polarized in the x 
direction (Fig. 9.21), the electron is subject to a driving force 

Fdriving = qE = qEocos(wt), (9.153) 

where q is the charge of the electron and Eo is the amplitude of the wave at the 
point z where the electron is situated. (Since we're only interested in one point, I 
have reset the clock so that the maximum E occurs there at t = 0. For simplicity, 
I assume the magnetic force is negligible.) Putting all this into Newton's second 
law gives 

or 

(9.154) 

Our model, then, describes the electron as a damped harmonic oscillator, driven 
at frequency w. (The much more massive nucleus remains at rest.) 

Equation 9.154 is easier to handle if we regard it as the real part of a complex 
equation: 

d2x dx _ q . - + y - + w2x = - E0e-u11t. 
dt2 dt 0 m 

(9.155) 

In the steady state, the system oscillates at the driving frequency: 

x(t) = ioe-iwt. (9.156) 

Inserting this into Eq. 9.155, we obtain 

qjm 
io = 2 . Eo. 

w0 - w2 - z yw 
(9.157) 

The resulting dipole moment is the real part of 

-c) -c) q2fm E -iwr p t = qx t = 2 2 
. oe . 

w0 - w - z yw 
(9.158) 
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The imaginary term in the denominator means that pis out of phase withE­
lagging behind by an angle tan-1 [y(L)/C(L)6 - (L)2)] that is very small when (L) « (L)o 
and rises ton when (L) » (1)0 • 

In general, differently situated electrons within a given molecule experience 
different natural frequencies and damping coefficients. Let's say there are /j 
electrons with frequency (L) i and damping Yi in each molecule. If there are N 
molecules per unit volume, the polarization P is given by20 the real part of 

(9.159) 

Now, I defined the electric susceptibility as the proportionality constant between 
P and E (specifically, P = EoXeE). In the present case, P is not proportional to E 
(this is not, strictly speaking, a linear medium) because of the difference in phase. 
However, the complex polarization P is proportional to the complex field E, and 
this suggests that we introduce a complex susceptibility, Xe: 

(9.160) 

All of the manipulations we went through before carry over, on the understand­
ing that the physical polarization is the real part of P, just as the physical field is 
the real part of E. In particular, the proportionality between D and E is the com­
plex permittivity € = Eo(1 + Xe), and the complex dielectric constant (in this 
model) is 

(9.161) 

Ordinarily, the imaginary term is negligible; however, when (L) is very close to one 
of the resonant frequencies ( (L) i) it plays an important role, as we shall see. 

In a dispersive medium, the wave equation for a given frequency reads 

2-z- _ a E 
V E = EJ.Lo - 2- ; at 

it admits plane wave solutions, as before, 

E(z, t) = Eoei(kz-wt), 

with the complex wave number 

(9.162) 

(9.163) 

(9.164) 

20This applies <lirectly to the case of a dilute gas; for denser materials the theory is modified slightly, 
in accordance with the Clausius-Mossotti equation (Prob. 4.41). By the way, don't confuse the "polar­
ization" of a medium, P, with the "polarization" of a wave-same word, but two completely unrelated 
meanings. 
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Writing k in terms of its real and imaginary parts, 

(9.165) 

Eq. 9.163 becomes 

(9.166) 

The wave is attenuated (this is hardly surprising, since the damping absorbs 
energy). Because the intensity is proportional to E 2 (and hence to e-2Kz), the 
quantity 

a= 2K (9.167) 

is called the absorption coefficient. Meanwhile, the wave velocity is (J) j k, and 
the index of refraction is 

ck 
n= - . 

(J) 
(9.168) 

I have deliberately used notation reminiscent of Sect. 9 .4.1. However, in the 
present case k and K have nothing to do with conductivity; rather, they are deter­
mined by the parameters of our damped harmonic oscillator. For gases, the second 
term in Eq. 9.161 is small, and we can approximate the square root (Eq. 9.164) by 
the first term in the binomial expansion, .Jf+"8 ~ 1 + !s. Then 

(9.169) 

so 

(9.170) 

and 

(9.171) 

In Fig. 9.22 I have plotted the index of refraction and the absorption coefficient 
in the vicinity of one of the resonances. Most of the time the index of refraction 
rises gradually with increasing frequency, consistent with our experience from 
optics (Fig. 9.19). However, in the immediate neighborhood of a resonance the 
index of refraction drops sharply. Because this behavior is atypical, it is called 
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FIGURE9.22 

anomalous dispersion. Notice that the region of anomalous dispersion (w1 < 
w < w2, in the figure) coincides with the region of maximum absorption; in fact, 
the material may be practically opaque in this frequency range. The reason is that 
we are now driving the electrons at their "favorite" frequency; the amplitude of 
their oscillation is relatively large, and a correspondingly large amount of energy 
is dissipated by the damping mechanism. 

In Fig. 9.22, n runs below 1 above the resonance, suggesting that the wave 
speed exceeds c. As I mentioned earlier, this is no immediate cause for alarm, 
since energy does not travel at the wave velocity. Moreover, the graph does not 
include the contributions of other terms in the sum, which add a relatively con­
stant "background" that, in some cases, keeps n > 1 on both sides of the reso­
nance. Incidentally, the group velocity can also exceed c in the neighborhood of a 
resonance, in this model (see Prob. 9.26). 

If you agree to stay away from the resonances, the damping can be ignored, 
and the formula for the index of refraction simplifies: 

n = 1 + N q2 '"'- /j . 
2mEo ~ w~ -w2 

j J 

(9.172) 

For most substances the natural frequencies w i are scattered all over the spectrum 
in a rather chaotic fashion. But for transparent materials, the nearest significant 
resonances typically lie in the ultraviolet, so that w < w i. In that case, 

----=----1 _ 2_ ( 1 _ w2)-l ~ 2_ ( 1 + w2) 
w~-w2 -w~ w~ -w~ w~' 

J J J J J 

and Eq. 9.172 takes the form 

n - 1 + ( N q2 '"'- /j ) + w2 ( N q2 '"'- /j ) 
- 2mEo 7 w] 2mEo 7 wj · (9.173) 
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Or, in terms of the wavelength in vacuum (.A= 2ncjw): 

n=l+A(l+~)· (9.174) 

This is known as Cauchy's formula; the constant A is called the coefficient of re­
fraction, and B is called the coefficient of dispersion. Cauchy's equation applies 
reasonably well to most gases, in the optical region. 

What I have described in this section is certainly not the complete story of dis­
persion in nonconducting media. Nevertheless, it does indicate how the damped 
harmonic motion of electrons can account for the frequency dependence of the in­
dex of refraction, and it explains why n is ordinarily a slowly increasing function 
of w, with occasional "anomalous" regions where it precipitously drops. 

Problem 9.23 

(a) Shallow water is nondispersive; waves travel at a speed that is proportional to 
the square root of the depth. In deep water, however, the waves can't "feel" 
all the way down to the bottom-they behave as though the depth were pro­
portional to ).. (Actually, the distinction between "shallow" and "deep" itself 
depends on the wavelength: If the depth is less than)., the water is "shallow"; 
if it is substantially greater than )., the water is "deep.") Show that the wave 
velocity of deep water waves is twice the group velocity. 

(b) In quantum mechanics, a free particle of mass m traveling in the x direction is 
described by the wave function 

\ll(x, t) = Aei(px-Et)fh, 

where p is the momentum, and E = p 2 j2m is the kinetic energy. Calculate the 
group velocity and the wave velocity. Which one corresponds to the classical 
speed of the particle? Note that the wave velocity is half the group velocity. 

Problem 9.24 If you take the model in Ex. 4.1 at face value, what natural frequency 
do you get? Put in the actual numbers. Where, in the electromagnetic spectrum, does 
this lie, assuming the radius of the atom is 0.5 A? Find the coefficients of refraction 
and dispersion, and compare them with the measured values for hydrogen at ooc 
and atmospheric pressure: A= 1.36 X w-4, B = 7.7 X w-15m2• 

Problem 9.25 Find the width of the anomalous dispersion region for the case of 
a single resonance at frequency w0 • Assume y « w0 • Show that the index of re­
fraction assumes its maximum and minimum values at points where the absorption 
coefficient is at half-maximum. 

Problem 9.26 Starting with Eq. 9.170, calculate the group velocity, assuming there 
is only one resonance, at w0• Use a computer to graph y = Vg/c as a function 
of x = (wjw0 ) 2 , from x = 0 to 2, (a) for y = 0, and (b) for y = (0.1)w0 • Let 
(Nq 2)f(2mEow5) = 0.003. Note that the group velocity can exceed c. 
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9.5 • GUIDED WAVES 

9.5.1 • Wave Guides 

So far, we have dealt with plane waves of infinite extent; now we consider elec­
tromagnetic waves confined to the interior of a hollow pipe, or wave guide 
(Fig. 9.23). We'll assume the wave guide is a perfect conductor, so that E = 0 
and B = 0 inside the material itself, and hence the boundary conditions at the 
inner wall are21 

(i) Ell = 0, } 

(ii) Bj_ = 0. 
(9.175) 

Free charges and currents22 will be induced on the surface in such a way as to 
enforce these constraints. We are interested in monochromatic waves that propa­
gate down the tube, so E and B have the generic form 

(i) E(x, y, z, t) = Eo(x, y)ei(kz-wt), } 

(ii) B(x, y, z, t) = Bo(x, y)ei(kz-wt). 
(9.176) 

(For the cases of interest, k is real, so I shall dispense with its tilde.) The electric 
and magnetic fields must, of course, satisfy Maxwell's equations, in the interior 
of the wave guide: 

FIGURE9.23 

See Eq. 9.139 and Prob. 7.44. In a perfect conductor, E = 0, and hence (by Faraday's law) 
aBjat = 0; assuming the magnetic field started out zero, then, it will remain so. 
22 In Section 9.4.2 I argued that there can be no surface currents in an ohmic conductor (with finite 
conductivity). But there are volume currents, extending in (roughly) to the skin depth. As the con­
ductivity increases, they are squeezed into a thinner and thinner layer, and in the limit of a perfect 
conductor they become true surface currents. 
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(i) V · E = 0, 

(ii) V · B = 0, 

aB } (iii) V x E = - -
at' 

. 1 aE 
(IV) v X B = --. 

c2 at 

(9.177) 

The problem, then, is to find functions Eo and B0 such that the fields (Eq. 9.176) 
obey the differential equations (Eq. 9 .177), subject to boundary conditions 
(Eq. 9.175). 

As we shall soon see, confined waves are not (in general) transverse; in order 
to fit the boundary conditions we shall have to include longitudinal components 
(Ez and Bz):23 

(9.178) 

where each of the components is a function of x and y. Putting this into Maxwell's 
equations (iii) and (iv), we obtain (Prob. 9.27a) 

(i) 
aEy aEx . 

(iv) 
aBy aBx i(J) 

-- - -- = l(J)B - - - --- E 
ax ay z, ax ay - c2 z, 

(ii) 
aEz . . 

(v) 
aBz . i(J) 

(9.179) - - zkEy = l(J)Bx, - -zkB =-- E 
ay ay y C2 X' 

(iii) 
. aEz . 

(vi) 
. aBz i(J) 

zkEx - - = l(J)By, zkBx- - =-- E. 
ax ax c2 y 

Equations (ii), (iii), (v), and (vi) can be solved for Ex, Ey, Bx, and By: 

(i) E _ i (k aEz + (J) aBz) 
X - ((J)/C)2 - k2 ax ay ' 

(ii) E _ i (k aEz _ (J) aBz) 
y - ((J)jc) 2 - k2 ay ax ' 

... i (kaBz (J) aEz) (111) Bx = - - -- , 
((J)jc)Z- k2 ax c2 ay 

(9.180) 

. i ( aBz (J) aEz) (1v) B = k - + -- . 
y ((J)jc) 2 - k2 ay c2 ax 

It suffices, then, to determine the longitudinal components Ez and Bz; if we knew 
those, we could quickly calculate all the others, just by differentiating. Inserting 

23 To avoid cumbersome notation, I shall leave the subscript 0 and the tilde off the individual compo­
nents. 
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Eq. 9.180 into the remaining Maxwell equations (Prob. 9.27b) yields uncoupled 
equations for Ez and Bz: 

(i) [ a2 a2 J I -
2 

+ -
2 

+ (wjc)2
- e Ez = 0, 

ax ay 

[ 
a2 a2 J 

-
2 

+ -
2 

+ (wjc) 2
- k 2 Bz = 0. 

ax ay 

(9.181) 

(ii) 

If Ez = 0, we call these TE ("transverse electric") waves; if Bz = 0, they are 
called TM ("transverse magnetic") waves; if both Ez = 0 and Bz = 0, we call 
them TEM waves.24 It turns out that TEM waves cannot occur in a hollow wave 
guide. 

Proof. If Ez = 0, Gauss's law (Eq. 9.177i) says 

aEx + aEy = O, 
ax ay 

and if Bz = 0, Faraday's law (Eq. 9.177iii) says 

aEy _ aEx = O. 
ax ay 

Indeed, the vector Eo in Eq. 9.178 has zero divergence and zero curl. It can there­
fore be written as the gradient of a scalar potential that satisfies Laplace's equa­
tion. But the boundary condition onE (Eq. 9.175) requires that the surface be an 
equipotential, and since Laplace's equation admits no local maxima or minima 
(Sect. 3.1.4), this means that the potential is constant throughout, and hence the 
electric field is zero-no wave at all. D 

Notice that this argument applies only to a completely empty pipe-if you run a 
separate conductor down the middle, the potential at its surface need not be the 
same as on the outer wall, and hence a nontrivial potential is possible. We'll see 
an example of this in Sect. 9.5 .3. 

Problem 9.27 

(a) Derive Eqs. 9.179, and from these obtain Eqs. 9.180. 

(b) Put Eq. 9.180 into Maxwell's equations (i) and (ii) to obtain Eq. 9.181. Check 
that you get the same results using (i) and (iv) ofEq. 9.179. 

24 In the case ofTEM waves (including the unconfined plane waves of Sect. 9.2), k = wjc, Eqs. 9.180 
are indeterminate, and you have to go back to Eqs. 9.179. 
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9.5.2 • TE Waves in a Rectangular Wave Guide 

Suppose we have a wave guide of rectangular shape (Fig. 9.24), with height a 
and width b, and we are interested in the propagation of TE waves. The problem 
is to solve Eq. 9.181ii, subject to the boundary condition 9.175ii. We'll do it by 
separation of variables. Let 

Bz(X, y) = X(x)Y(y), 

so that 

d2X d 2Y 
Y -

2 
+ X -

2 
+ [(wjc)2

- e] XY = 0. 
dx dy 

Divide by XY, and note that the x- andy-dependent terms must be constants: 

1 d2 X 2 • . 1 d2 Y 2 
(i) X dx2 = -kx, (n) y dy2 = -ky, (9.182) 

with 

-k;- k; + (w/c)2
- k2 = 0. (9.183) 

The general solution to Eq. 9.182i is 

X(x) =A sin (kxx) + B cos (kxx). 

But the boundary conditions require that Bx-and hence also (Eq. 9.180iii) 
dXjdx-vanishes at x = 0 and x =a. So A= 0, and 

kx = mnja, (m = 0, 1, 2, ... ). 

The same goes for Y, with 

X 

a 

ky = nnjb, (n = 0, 1, 2, ... ), 

y 

FIGURE9.24 

(9.184) 

(9.185) 

z 
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and we conclude that 

Bz = Bocos(mnxja)cos(mr:yjb). (9.186) 

This solution is called the TEmn mode. (The first index is conventionally asso­
ciated with the larger dimension, so we assume a ~ b. By the way, at least one of 
the indices must be nonzero-see Prob. 9.28.) The wave number (k) is obtained 
by putting Eqs. 9.184 and 9.185 into Eq. 9.183: 

(9.187) 

If 

w < cnJ(mja)2 + (njb) 2 = Wmn• (9.188) 

the wave number is imaginary, and instead of a traveling wave we have expo­
nentially attenuated fields (Eq. 9.176). For this reason, Wmn is called the cutoff 
frequency for the mode in question. The lowest cutoff frequency for a given wave 
guide occurs for the mode TE10: 

w10 = cn I a. (9.189) 

Frequencies less than this will not propagate at all. 
The wave number can be written more simply in terms of the cutoff frequency: 

k = ~J w2 - w~n. (9.190) 

The wave velocity is 

(J) c 
V= - = ' 

k J1 - (Wmnfw) 2 
(9.191) 

which is greater than c. However (see Prob. 9.30), the energy carried by the wave 
travels at the group velocity (Eq. 9.150): 

1 
Vg = dkjdw = cJ1 - (wmnfw) 2 < c. (9.192) 

There's another way to visualize the propagation of an electromagnetic wave 
in a rectangular pipe, and it serves to illuminate many of these results. Con­
sider an ordinary plane wave, traveling at an angle() to the z axis, and reflect­
ing perfectly off each conducting surface (Fig. 9.25). In the x andy directions, 
the (multiply reflected) waves interfere to form standing wave patterns, of wave­
length Ax= 2ajm and Ay = 2bjn (hence wave number kx = 2nf'Ax = nmja 
and ky = nnjb), respectively. Meanwhile, in the z direction there remains a trav­
eling wave, with wave number kz = k. The propagation vector for the "original" 
plane wave is therefore 

, nmA nnA kA 
k = - x+ - y+ z, 

a b 
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and the frequency is 

u 
A-

Wave fronts 

FIGURE9.25 

z 

w =elk' I = c../P + n 2[(mja) 2 + (njb)2] = J (ck)2 + (wmn)2. 

Only certain angles will lead to one of the allowed standing wave patterns: 

cosO= l:'l = J1- (wmnfw)
2
. 

The plane wave travels at speed c, but because it is going at an angle 0 to the 
z axis, its net velocity down the wave guide is 

Vg = ccosO = cJl- (Wmnfw) 2. 

The wave velocity, on the other hand, is the speed of the wave fronts (A, say, in 
Fig. 9.25) down the pipe. Like the intersection of a line of breakers with the beach, 
they can move much faster than the waves themselves-in fact 

c c 
v = -co_s_O = --;:.;===== 

V 1 - (Wmn/ (J) )
2 

Problem 9.28 Show that the mode TEoo cannot occur in a rectangular wave guide. 
[Hint: In this case wjc = k, so Eqs. 9.180 are indeterminate, and you must go back 
to Eq. 9.179. Show that Bz is a constant, and hence-applying Faraday's law in 
integral form to a cross section-that Bz = 0, so this would be a TEM mode.] 

Problem 9.29 Consider a rectangular wave guide with dimensions 2.28 em x 
1.01 em. What TE modes will propagate in this wave guide, if the driving fre­
quency is 1.70 x 1010 Hz? Suppose you wanted to excite only one TE mode; what 
range of frequencies could you use? What are the corresponding wavelengths (in 
open space)? 

Problem 9.30 Confirm that the energy in the TEmn mode travels at the group veloc­
ity. [Hint: Find the time averaged Poynting vector (S} and the energy density (u} 
(use Prob. 9.12 if you wish). Integrate over the cross section of the wave guide to 
get the energy per unit time and per unit length carried by the wave, and take their 
ratio.] 
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Problem 9.31 Work out the theory of TM modes for a rectangular wave guide. In 
particular, find the longitudinal electric field, the cutoff frequencies, and the wave 
and group velocities. Find the ratio of the lowest TM cutoff frequency to the lowest 
TE cutoff frequency, for a given wave guide. [Caution: What is the lowest TM 
mode?] 

9.5.3 • The Coaxial Transmission Line 

In Sect. 9.5 .1, I showed that a hollow wave guide cannot support TEM waves. 
But a coaxial transmission line, consisting of a long straight wire of radius a, 
surrounded by a cylindrical conducting sheath of radius b (Fig. 9.26), does admit 
modes with Ez = 0 and Bz = 0. In this case Maxwell's equations (Eq. 9.179) 
yield 

k = (J)jC 

(so the waves travel at speed c, and are nondispersive), 

cBy =Ex and cBx = -Ey 

(9.193) 

(9.194) 

(so E and B are mutually perpendicular), and (together with V · E = 0, 
V ·B = 0): 

aEx aEy aEy aEx 

} 
- + - =0, -- - -- =0, 
ax ay ax ay 

(9.195) 
aBx aBy aBy aBx 
- + - =0, - - - =0. 
ax ay ax ay 

These are precisely the equations of electrostatics and magnetostatics, for empty 
space, in two dimensions; the solution with cylindrical symmetry can be borrowed 
directly from the case of an infinite line charge and an infinite straight current, 
respectively: 

AA 
Eo(s, ¢) = - s, 

s 

A A 

Bo(s, ¢) = - ,P, 
cs 

(9.196) 

for some constant A. Substituting these into Eq. 9.176, and taking the real part: 

A cos (kz - (J)t) A } E(s,¢,z,t) = s s, 

A cos (kz - (J)t) A 

B(s, ¢, z, t) = ,P. 
cs 

(9.197) 

b 

z 

FIGURE9.26 
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Problem 9.32 

(a) Show directly that Eqs. 9.197 satisfy Maxwell's equations (Eq. 9.177) and the 
boundary conditions (Eq. 9.175). 

(b) Find the charge density, A.(z, t), and the current, I(z, t), on the inner conductor. 

More Problems on Chapter 9 

Problem 9.33 The "inversion theorem" for Fourier transforms states that 

¢Cz) = /_: ci'>(k)eikz dk {::::::::} ci'>(k) = ~ foo ¢Cz)e-ikz dz. 
2rr _00 

Use this to determine A(k), in Eq. 9.20, in terms of f(z, 0) and j(z, 0). 

[Answer: (1/2rr) J~00 [f(z, 0) + (ijw)j(z, O)]e-ikz dz] 

(9.198) 

Problem 9.34 [The naive explanation for the pressure of light offered in Section 
9.2.3 has its flaws, as you discovered if you worked Problem 9.11. Here's another 
account, due originally to Planck.25] A plane wave traveling through vacuum in the 
z direction encounters a perfect conductor occupying the region z ~ 0, and reflects 
back: 

E(z, t) = Eo [cos(kz - wt) - cos(kz + wt)] i, (z < 0). 

(a) Find the accompanying magnetic field (in the region z < 0). 

(b) Assuming B = 0 inside the conductor, find the current K on the surface z = 0, 
by invoking the appropriate boundary condition. 

(c) Find the magnetic force per unit area on the surface, and compare its time aver­
age with the expected radiation pressure (Eq. 9.64). 

Problem 9.35 Suppose 

sine A • w 
E(r, e, </J, t) = A - r- [cos (kr- wt)- (1/kr) sin (kr- wt)] l/J, Wlth k =c. 

(This is, incidentally, the simplest possible spherical wave. For notational conve­
nience, let (kr - wt) = u in your calculations.) 

(a) Show that E obeys all four of Maxwell's equations, in vacuum, and find the 
associated magnetic field. 

(b) Calculate the Poynting vector. AverageS over a full cycle to get the intensity 
vector I. (Does it point in the expected direction? Does it fall off like r-2 , as it 
should?) 

(c) Integrate I· da over a spherical surface to determine the total power radiated. 
[Answer: 4rr A2 f3J-Loc] 

25 T. Rothman and S. Boughn, Am. J. Phys. 77, 122 (2009), Section N. 
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Problem 9.36 Light of (angular) frequency w passes from medium 1, through a slab 
(thickness d) of medium 2, and into medium 3 (for instance, from water through 
glass into air, as in Fig. 9.27). Show that the transmission coefficient for normal 
incidence is given by 

(9.199) 

[Hint: To the left, there is an incident wave and a reflected wave; to the right, there 
is a transmitted wave; inside the slab, there is a wave going to the right and a wave 
going to the left. Express each of these in terms of its complex amplitude, and relate 
the amplitudes by imposing suitable boundary conditions at the two interfaces. All 
three media are linear and homogeneous; assume f.Lt = f.L2 = f.L3 = f.Lo.] 

Problem 9.37 A microwave antenna radiating at 10 GHz is to be protected from 
the environment by a plastic shield of dielectric constant 2.5. What is the minimum 
thickness of this shielding that will allow perfect transmission (assuming normal 
incidence)? [Hint: Use Eq. 9.199.] 

o X 

0 

~0-- -------- --·)> 

0 d 

Water Glass Air z 

FIGURE9.27 

Problem 9.38 Light from an aquarium (Fig. 9.27) goes from water (n = ~)through 
a plane of glass (n = ~)into air (n = 1). Assuming it's a monochromatic plane wave 
and that it strikes the glass at normal incidence, find the minimum and maximum 
transmission coefficients (Eq. 9.199). You can see the fish clearly; how well can it 
see you? 

Problem 9.39 According to Snell's law, when light passes from an optically dense 
medium into a less dense one (nt > n2) the propagation vector k bends away from 
the normal (Fig. 9.28). In particular, if the light is incident at the critical angle 

(9.200) 

then Or = 90°, and the transmitted ray just grazes the surface. If 01 exceeds Oc, 
there is no refracted ray at all, only a reflected one (this is the phenomenon of total 
internal reflection, on which light pipes and fiber optics are based). But the fields 
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are not zero in medium 2; what we get is a so-called evanescent wave, which is 
rapidly attenuated and transports no energy into medium 2.26 

X 

z 

CD® 

FIGURE9.28 

A quick way to construct the evanescent wave is simply to quote the results of 
Sect. 9.3.3, with kr = wn2/ c and 

kr = kr(sin8r x + cos8r z); 
the only change is that 

is now greater than 1, and 

cos 8r = /1 - sin2 8r = i / sin2 8r - 1 

is imaginary. (Obviously, 8r can no longer be interpreted as an angle!) 

(a) Show that 

(9.201) 

where 

(9.202) 

This is a wave propagating in the x direction (parallel to the interface!), and 
attenuated in the z direction. 

26 The evanescent fields can be detected by placing a second interface a short distance to the right of 
the first; in a close analog to quantum mechanical tunneling, the wave crosses the gap and reassembles 
to the right. See F. Albiol, S. Navas, and M. V. Andres, Am. J. Phys. 61, 165 (1993). 
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(b) Noting that ot (Eq. 9.108) is now imaginary, use Eq. 9.109 to calculate there­
flection coefficient for polarization parallel to the plane of incidence. [Notice 
that you get 100% reflection, which is better than at a conducting surface (see, 
for example, Prob. 9.22).] 

(c) Do the same for polarization perpendicular to the plane of incidence (use the 
results ofProb. 9.17). 

(d) In the case of polarization perpendicular to the plane of incidence, show that 
the (real) evanescent fields are 

E(r, t) = E0e-Kz cos(kx - wt) y, } 

B(r, t) = ~ e-KZ [ K sin(kx - wt) X+ k cos(kx - wt) z] . 
(9.203) 

(e) Check that the fields in (d) satisfy all of Maxwell's equations (Eq. 9.67). 

(t) For the fields in (d), construct the Poynting vector, and show that, on average, 
no energy is transmitted in the z direction. 

Problem 9.40 Consider the resonant cavity produced by closing off the two ends 
of a rectangular wave guide, at z = 0 and at z = d, making a perfectly conducting 
empty box. Show that the resonant frequencies for both TE and TM modes are 
given by 

W!mn = crr./(ljd)2 + (mja) 2 + (njb) 2 , (9.204) 

for integers l, m, and n. Find the associated electric and magnetic fields. 
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10 Potentials and Fields 

10.1 . THE POTENTIAL FORMULATION 

1 0.1.1 • Scalar and Vector Potentials 

In this chapter we seek the general solution to Maxwell's equations, 

(i) 
1 

(iii) 
aB 

} 
V ·E= - p, V xE= - -

Eo at' 
(10.1) 

aE 
(ii) V ·B=O, (iv) V x B = JLoJ + JloEo- . at 

Given p(r, t) and J(r, t), what are the fields E(r, t) and B(r, t)? In the static case, 
Coulomb's law and the Biot-Savart law provide the answer. What we're looking 
for, then, is the generalization of those laws to time-dependent configurations. 

This is not an easy problem, and it pays to begin by representing the fields 
in terms of potentials. In electrostatics V x E = 0 allowed us to write E as the 
gradient of a scalar potential: E = - V V. In electrodynamics this is no longer 
possible, because the curl of E is nonzero. But B remains divergenceless, so we 
can still write 

I B = v X A, I 

as in magnetostatics. Putting this into Faraday's law (iii) yields 

or 

a v X E = - - (V X A), at 

(10.2) 

Here is a quantity, unlike E alone, whose curl does vanish; it can therefore be 
written as the gradient of a scalar: 

a A 
E+ - =-VV. at 
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In terms of V and A, then, 

a A 
E=-VV- - . 

at 

This reduces to the old form, of course, when A is constant. 

437 

(10.3) 

The potential representation (Eqs. 10.2 and 10.3) automatically fulfills the two 
homogeneous Maxwell equations, (ii) and (iii). How about Gauss's law (i) and 
the Ampere/Maxwell law (iv)? Putting Eq. 10.3 into (i), we find that 

2 a 1 
V V + - (V ·A)= - - p; 

at Eo 
(10.4) 

this replaces Poisson's equation (to which it reduces in the static case). Putting 
Eqs. 10.2 and 10.3 into (iv) yields 

(av) a2
A V x (V x A)= JLoJ- J.LoEoV - - J.LoEo -
2

, at at 

or, using the vector identity V x (V x A) = V (V · A) - V2 A, and rearranging 
the terms a bit: 

( 
2 a

2A) ( av) v A- J.LoEo at2 - v v. A+ JLoEoat = -JJ.,oJ. (10.5) 

Equations 10.4 and 10.5 contain all the information in Maxwell's equations. 

Example 10.1. Find the charge and current distributions that would give rise to 
the potentials 

I 
J.Lok 2 A 

A _ - (ct- lxl) z, for lxl < ct, 
V = 0, - 4c 

0, for lxl > ct, 

where k is a constant, and (of course) c = 1 I~· 

-ct ct 

_ ).!Qkct 
2 

X 

FIGURE 10.1 

).!Qkt 
-2-

X 
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Solution 
First we'll determine the electric and magnetic fields, using Eqs. 10.2 and 10.3: 

aA J-Lok A 

E =-at= -2(ct- lxl) z, 

J-Lok a 2 A J-Lok A 

B = V x A= - --(ct- lxl) y = ± - (ct- lxl) y, 
4c ax 2c 

(plus, for x > 0; minus, for x < 0). These are for lxl < ct; when lxl > ct, 
E = B = 0 (Fig. 10.1). Calculating every derivative in sight, I find 

v E 0 v B 0 v X E = :r-J-LokyA· v X B =- J-Lok z· · =; · =; '2' 2c' 

aE J-Lokc A 

- =--- z· at 2 ' 
aB J-Lok A 

- =±- y. at 2 
As you can easily check, Maxwell's equations are all satisfied, with p and J 
both zero. Notice, however, that B has a discontinuity at x = 0, and this signals 
the presence of a surface current K in the yz plane; boundary condition (iv) in 
Eq. 7.64 gives 

kty = K Xi, 

and hence 

K = kt Z. 
Evidently we have here a uniform surface current flowing in the z direction over 
the plane x = 0, which starts up at t = 0, and increases in proportion to t. No­
tice that the news travels out (in both directions) at the speed of light: for points 
lx I > ct the message ("current is now flowing") has not yet arrived, so the fields 
are zero. 

Problem 10.1 Show that the differential equations for V and A (Eqs. 10.4 and 10.5) 
can be written in the more symmetrical form 

where 

2 aL 1 } D V+ - =- - p, 
at Eo 

D2A- VL = -tLoJ, 

2 2 a2 
D =V -P,oEo ­at2 

av 
and L = V ·A+ f.LoEo - . 

at 

(10.6) 

Problem 10.2 For the configuration in Ex. 10.1, consider a rectangular box of length 
l, width w, and height h, situated a distanced above the yz plane (Fig. 10.2). 
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J--=-- l---=--1. 
W I h 

/i 1 __ ___.,. 

I 
I 

z 

y 

FIGURE 10.2 

(a) Find the energy in the box at time t1 = djc, and at t2 = (d + h)jc. 

(b) Find the Poynting vector, and determine the energy per unit time flowing into 
the box during the interval t1 < t < t2. 

(c) Integrate the result in (b) from t1 to t2 , and confirm that the increase in energy 
(part (a)) equals the net influx. 

1 0.1.2 • Gauge Transformations 

Equations 10.4 and 10.5 are ugly, and you might be inclined to abandon the 
potential formulation altogether. However, we have succeeded in reducing six 
problems-finding E and B (three components each)-down to four: V (one com­
ponent) and A (three more). Moreover, Eqs. 10.2 and 10.3 do not uniquely define 
the potentials; we are free to impose extra conditions on V and A, as long as 
nothing happens to E and B. Let's work out precisely what this gauge freedom 
entails. 

Suppose we have two sets of potentials, (V, A) and (V', A'), which correspond 
to the same electric and magnetic fields. By how much can they differ? Write 

A'= A+ a and V' = V + {3. 

Since the two A's give the same B, their curls must be equal, and hence 

V x a= 0. 

We can therefore write a as the gradient of some scalar: 

a= VA.. 

The two potentials also give the same E, so 

a a 
V{J+ - =0 at ' 
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or 

v (P + ~~) = o. 
The term in parentheses is therefore independent of position (it could, however, 
depend on time); call it k(t): 

a A. 
p =-at+ k(t). 

Actually, we might as well absorb k(t) into A., defining a new A. by adding 
J; k(t')dt' to the old one. This will not affect the gradient of A.; it just adds k(t) to 
aA.jat. It follows that 

A'= A+ VA., } 

v' = v- a A.. 
at 

(10.7) 

Conclusion: For any old scalar function A.(r, t), we can with impunity add VA. 
to A, provided we simultaneously subtract aA.jat from V. This will not affect the 
physical quantities E and B. Such changes in V and A are called gauge trans­
formations. They can be exploited to adjust the divergence of A, with a view 
to simplifying the "ugly" equations 10.4 and 10.5. In magnetostatics, it was best 
to choose V ·A= 0 (Eq. 5.63); in electrodynamics, the situation is not so clear 
cut, and the most convenient gauge depends to some extent on the problem at 
hand. There are many famous gauges in the literature; I'll show you the two most 
popular ones. 

Problem 10.3 

(a) Find the fields, and the charge and current distributions, corresponding to 

1 qt A 

V(r, t) = 0, A(r, t) = - --- r. 
4::rrEo r 2 

(b) Use the gauge function A.= -(lj4::rrt:0)(qtjr) to transform the potentials, and 
comment on the result. 

Problem 10.4 Suppose V = 0 and A= A0 sin(kx- wt) y, where A0 , w, and k are 
constants. Find E and B, and check that they satisfy Maxwell's equations in vacuum. 
What condition must you impose on w and k? 

1 0.1.3 • Coulomb Gauge and Lorenz Gauge 

The Coulomb Gauge. As in magnetostatics, we pick 
V·A=O. 

With this, Eq. 10.4 becomes 
2 1 v v = - - p. 

Eo 

(10.8) 

(10.9) 
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This is Poisson's equation, and we already know how to solve it: setting V = 0 at 
infinity, 

V(r, t) = _ 1_ J p(r', t) dr:'. 
4rrEo ~t-

(10.10) 

There is a very peculiar thing about the scalar potential in the Coulomb gauge: 
it is determined by the distribution of charge right now. If I move an electron 
in my laboratory, the potential V on the moon immediately records this change. 
That sounds particularly odd in the light of special relativity, which allows no 
message to travel faster than c. The point is that V by itself is not a physically 
measurable quantity-all the man in the moon can measure is E, and that involves 
A as well (Eq. 10.3). Somehow it is built into the vector potential (in the Coulomb 
gauge) that whereas V instantaneously reflects all changes in p, the combination 
-VV- (aAjat) does not; E will change only after sufficient time has elapsed 
for the "news" to arrive.1 

The advantage of the Coulomb gauge is that the scalar potential is particu­
larly simple to calculate; the disadvantage (apart from the acausal appearance of 
V) is that A is particularly difficult to calculate. The differential equation for A 
(Eq. 10.5) in the Coulomb gauge reads 

V2A- J.loEo a
2
A2 = -f,.loJ + J.loEoV (aV). 

at at 
(10.11) 

The Lorenz gauge. In the Lorenz2 gauge, we pick 

I V ·A= -~o<o~· l (10.12) 

This is designed to eliminate the middle term in Eq. 10.5 (in the language of 
Prob. 10.1, it sets L = 0). With this, 

(10.13) 

Meanwhile, the differential equation for V, (Eq. 10.4), becomes 

a2v 1 
V2V- J.loEo - = - - p. (10.14) 

at2 Eo 

The virtue of the Lorenz gauge is that it treats V and A on an equal footing: 
the same differential operator 

(10.15) 

1See 0. L. Brill and B. Goodman. Am. J. Phys. 35, 832 (1967) and J.D. Jackson, Am. J. Phys. 70, 917 
(2001). 
2Until recently, it was spelled "Lorentz," in honor of the Dutch physicist H. A. Lorentz, but it is now 
attributed to L. V. Lorenz, the Dane. See J. Van Bladel, IEEE Antennas and Propagation Magazine 
33(2), 69 (1991); J.D. Jackson and L. B. Okun, Rev. Mod. Phys. 73, 663 (2001). 
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(called the d' Alembertian) occurs in both equations: 

(i) 
2 1 D V = - - p, 

Eo (10.16) 

This democratic treatment of V and A is especially nice in the context of special 
relativity, where the d' Alembertian is the natural generalization of the Laplacian, 
and Eqs. 10.16 can be regarded as four-dimensional versions of Poisson's equa­
tion. In this same spirit, the wave equation 0 2 f = 0, might be regarded as the 
four-dimensional version of Laplace's equation. In the Lorenz gauge, V and A 
satisfy the inhomogeneous wave equation, with a "source" term (in place of 
zero) on the right. From now on, I shall use the Lorenz gauge exclusively, and the 
whole of electrodynamics reduces to the problem of solving the inhomogeneous 
wave equation for a specified source. 

Problem 10.5 Which of the potentials in Ex. 10.1, Prob. 10.3, and Prob. 10.4 are in 
the Coulomb gauge? Which are in the Lorenz gauge? (Notice that these gauges are 
not mutually exclusive.) 

Problem 10.6 In Chapter 5, I showed that it is always possible to pick a vector 
potential whose divergence is zero (the Coulomb gauge). Show that it is always 
possible to choose V ·A= -JLoEo(8V j8t), as required for the Lorenz gauge, as­
suming you know how to solve the inhomogeneous wave equation (Eq. 10.16). Is it 
always possible to pick V = 0? How about A = 0? 

Problem 10.7 A time-dependentpointchargeq(t) at the origin, p(r, t) = q(t)o3 (r), 
is fed by a current J(r, t) = -(1/4:7l')(q jr2) r, where q = dq jdt. 

(a) Check that charge is conserved, by confirming that the continuity equation is 
obeyed. 

(b) Find the scalar and vector potentials in the Coulomb gauge. If you get stuck, try 
working on (c) first. 

(c) Find the fields, and check that they satisfy all of Maxwell's equations.3 

1 0.1.4 • Lorentz Force Law in Potential Form4 

It is illuminating to express the Lorentz force law in terms of potentials: 

dp [ aA J F = - = q(E + v X B)= q -VV- - + v X (V X A) ' 
dt at 

(10.17) 

3p. R. Berman, Am. J. Phys. 76 48 (2008). 
4This section can be skipped without loss of continuity. 
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where p = mv is the momentum of the particle. Now, product rule 4 says 

V (v · A) = v x (V x A) + (v · V)A 

(v, the velocity of the particle, is a function of time, but not of position). Thus 

dp [aA J - = -q - + (v · V)A + V (V - v · A) . 
dt at 

(10.18) 

The combination 

[ ~~ + (v · V)A] 

is called the convective derivative of A, and written dAj dt (total derivative). It 
represents the time rate of change of A at the (moving) location of the particle. 
For suppose that at timet the particle is at point r, where the potential is A(r, t); 
a moment dt later it is at r + v dt, where the potential is A(r + v dt, t + dt). The 
change in A, then, is 

dA = A(r + vdt, t + dt)- A(r, t) 

= (~~) (vx dt) + (~~) (vydt) + (~~) (vzdt) + (~~) dt, 

so 

dA aA 
- = - + (v · V)A. 
dt at 

(10.19) 

As the particle moves, the potential it "feels" changes for two distinct reasons: 
first, because the potential varies with time, and second, because it is now in a 
new location, where A is different because of its variation in space. Hence the 
two terms in Eq. 10.19. 

With the aid of the convective derivative, the Lorentz force law reads: 

d 
- (p + qA) = - V [q(V- v ·A)]. 
dt 

(10.20) 

This is reminiscent of the standard formula from mechanics, for the motion of a 
particle whose potential energy U is a specified function of position: 

dp 
dt = -VU. 

Playing the role of p is the so-called canonical momentum, 

Pcan = P +qA, (10.21) 

while the part of U is taken by the velocity-dependent quantity 

Uvel = q(V- v ·A). (10.22) 



444 Chapter 1 0 Potentials and Fields 

A similar argument (Prob. 10.9) gives the rate of change of the particle's 
energy: 

d a 
- (T + qV) = - [q(V- v ·A)], 
dt at 

(10.23) 

where T = !m v2 is its kinetic energy and q V is its potential energy (The deriva­
tive on the right acts only on V and A, not on v). Curiously, the same quantity5 

Uvel appears on the right side of both equations. The parallel between Eq. 10.20 
and Eq. 10.23 invites us to interpret A as a kind of "potential momentum" per unit 
charge, just as V is potential energy per unit charge.6 

Problem 10.8 The vector potential for a uniform magnetostatic field is A=---! 
(rxB) (Prob. 5.25). Show that dAjdt = -tCv x B), in this case, and confirm that 
Eq. 10.20 yields the correct equation of motion. 

Problem 10.9 Derive Eq. 10.23. [Hint: Start by dotting v into Eq. 10.17 .] 

10.2 • CONTINUOUS DISTRIBUTIONS 

1 0.2.1 • Retarded Potentials 

In the static case, Eq. 10.16 reduces to (four copies of) Poisson's equation, 

2 1 2 
V V = - - p, V A = - JLoJ, 

Eo 
with the familiar solutions 

V(r) = _ 1_ j p(r') dr:', 
4nEo Jt. 

A(r) = Jlo j J(r') dr:', 
4n Jt. 

(10.24) 

FIGURE 10.3 
51 don't know what to call Uvet-it's not potential energy, exactly (that would be qV). 
6There are other arguments for this interpretation, which Maxwell himself favored, and many modem 
authors advocate. For a fascinating discussion, seeM. D. Semon and J. R. Taylor, Am. J. Phys. 64, 1361 
(1996). Incidentally, it is the canonical angular momentum (derived from Pcan), not the mechanical 
portion alone, that is quantized-seeR. H. Young, Am. J. Phys. 66, 1043 (1998). 
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where -2-, as always, is the distance from the source point r' to the field point r 
(Fig. 10.3). Now, electromagnetic "news" travels at the speed of light. In the non­
static case, therefore, it's not the status of the source right now that matters, but 
rather its condition at some earlier time tr (called the retarded time) when the 
"message" left. Since this message must travel a distance -2-, the delay is -2-f c: 

1 t,==, _ ~- 1 (10.25) 

The natural generalization ofEq. 10.24 for nonstatic sources is therefore 

V(r, t) = _ 1_ f p(r', tr) dr', 
4nEo -2-

A(r, t) = /10 f J(r', tr) dr'. 
4n -2-

(10.26) 

Here p (r', tr) is the charge density that prevailed at point r' at the retarded time 
tr. Because the integrands are evaluated at the retarded time, these are called re­
tarded potentials. (I speak of "the" retarded time, but of course the more distant 
parts of the charge distribution have earlier retarded times than nearby ones. It's 
just like the night sky: The light we see now left each star at the retarded time cor­
responding to that star's distance from the earth.) Note that the retarded potentials 
reduce properly to Eq. 10.24 in the static case, for which p and J are independent 
of time. 

Well, that all sounds reasonable-and surprisingly simple. But are we sure it's 
right? I didn't actually derive the formulas for V and A (Eq. 10.26); all I did 
was invoke a heuristic argument ("electromagnetic news travels at the speed of 
light") to make them seem plausible. To prove them, I must show that they satisfy 
the inhomogeneous wave equation (Eq. 10.16) and meet the Lorenz condition 
(Eq. 10.12). In case you think I'm being fussy, let me warn you that if you apply 
the same logic to the fields you'll get entirely the wrong answer: 

E(r, t) i= _ 1_ f p(r'~ tr) 4dr', B(r, t) i= f.Lo f J(r', t;) x 4 dr'. 
~~ -2- ~ -2-

Let's stop and check, then, that the retarded scalar potential satisfies Eq. 10.16; 
essentially the same argument would serve for the vector potential.7 I shall leave 
it for you (Prob. 10.10) to show that the retarded potentials obey the Lorenz 
condition. 

In calculating the Laplacian of V(r, t), the crucial point to notice is that the 
integrand (in Eq. 10.26) depends on r in two places: explicitly, in the denominator 
(-2- = lr- r'l), and implicitly, through tr = t- -2-jc, in the numerator. Thus 

vv = -
1
- J [cv p)_!_ + pV (..!.)] dr', 

4nEo -2- -2-
(10.27) 

71'11 give you the straightforward but cumbersome proof; for a clever indirect argument seeM. A. 
Heald and J. B. Marion, Classical Electromagnetic Radiation, 3d ed., Sect. 8.1 (Orlando, FL: Saunders 
(1995)). 
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and 
. 1 . 

V p = p Vtr = - - p V-2- (10.28) 
c 

(The dot denotes differentiation with respect to time).8 Now V 1- = .t: and V (1/1-) = 
-.t:j-2-2 (Prob. 1.13), so 

vv = -- - -- - p - dr. 1 /[ p.t: .t:] ' 
4n Eo c 1- 1-2 (10.29) 

Taking the divergence, 

2 1 f { 1 [.t: . . (.t:)] V V = - - - - · (V p) + p V · -
4nEo c 1- 1-

-[~ ·(Vp)+pV·(~)]}dr'. 
But 

. 1 .. 1 .. " V p = - - p V-2- =-- pi£, 
c c 

as in Eq. 10.28, and 

(Prob. 1.63), whereas 

(Eq. 1.100). So 

2 1 J [ 1 i5 3 J , 1 a2v 1 V V = -- -- - 4np8 (1£) dr = -- - - p(r, t), 
4JTEo c2 1- c2 at2 Eo 

confirming that the retarded potential (Eq. 10.26) satisfies the inhomogeneous 
wave equation (Eq. 10.16). D 

Incidentally, this proof applies equally well to the advanced potentials, 

V ( t) 
_ _ 1_/ p(r',ta) d, 

a r, - 4 r' 
JTEo 1-

A ( t) - J-to f J(r', ta) d ' 
a r, - 4n 1- r' (10.30) 

in which the charge and the current densities are evaluated at the advanced time 

-2-
ta = t + - . 

c 
(10.31) 

A few signs are changed, but the final result is unaffected. Although the advanced 
potentials are entirely consistent with Maxwell's equations, they violate the most 
sacred tenet in all of physics: the principle of causality. They suggest that the po­
tentials now depend on what the charge and the current distribution will be at some 

8Note that ajatr = ajat, since tr = t --2-fc and-2- is independent oft. 
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time in the future-the effect, in other words, precedes the cause. Although the 
advanced potentials are of some theoretical interest, they have no direct physical 
significance. 9 

Example 10.2. An infinite straight wire carries the current 

I(t) = { ~· o, 
fort :S 0, 
fort> 0. 

That is, a constant current Io is turned on abruptly at t = 0. Find the resulting 
electric and magnetic fields. 

FIGURE 10.4 

Solution 
The wire is presumably electrically neutral, so the scalar potential is zero. Let the 
wire lie along the z axis (Fig. 10.4); the retarded vector potential at point Pis 

JLo A 1 00 
I (tr) A(s,t) = - z --dz. 

4n _00 ~t-

For t < sIc, the "news" has not yet reached P, and the potential is zero. For 
t > sIc, only the segment 

lzl :S J (ct)2 - s2 (10.32) 

contributes (outside this range tr is negative, so I (tr) = 0); thus 

A( ) 
_ JLo o A 

2 
z 

( 
l ) Ia J (ct)Ls

2 
d 

s, t - z 
4n o Js2 + z2 

= JLo o z In ( J s2 + z2 + z) = JLo o In ct + ct - s z. l IJ(ct)Ls2 l ( ../( )2 2) 
2n 0 2n s 

9Because the d' Alembertian involves t 2 (as opposed tot), the theory itself is time-reversal invariant, 
and does not distinguish "past" from "future." Time asymmetry is introduced when we select the 
retarded potentials in preference to the advanced ones, reflecting the (not unreasonable!) belief that 
electromagnetic influences propagate forward, not backward, in time. 
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The electric field is 
a A 

E(s,t) = - - = 
at 

f.Loloc A 

2n../(ct)2- s2 
z, 

and the magnetic field is 
a Az A JLolo ct A 

B(s,t)=VxA=- - l/1= q,. 
as 2ns ..j(ct)2- s2 

Notice that as t--+ oo we recover the static case: E = 0, B = (JLolof2ns) ~. 

Problem 10.10 Confirm that the retarded potentials satisfy the Lorenz gauge con­
dition. [Hint: First show that 

(J) 1 1 1 1 (J) V · :; = :; (V · J) + :; (V · J) - V · :; , 

where V denotes derivatives with respect tor, and V1 denotes derivatives with re­
spect to r 1

• Next, noting that J(r1
, t -'l-jc) depends on r' both explicitly and through 

'l-, whereas it depends on r only through 'l-, confirm that 

1 • I • 1 • I 
V · J = - - J · (V'l-), V · J = -p- - J · (V 'l-). 

c c 

Use this to calculate the divergence of A (Eq. 10.26).] 

Problem 10.11 

(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current 

/(t) = kt, 

for t > 0. Find the electric and magnetic fields generated. 

(b) Do the same for the case of a sudden burst of current: 

I(t) = qoo(t). 

y 

X 

FIGURE 10.5 

Problem 10.12 A piece of wire bent into a loop, as shown in Fig. 10.5, carries a 
current that increases linearly with time: 

/(t) = kt (-oo < t < oo). 

Calculate the retarded vector potential A at the center. Find the electric field at 
the center. Why does this (neutral) wire produce an electric field? (Why can't you 
determine the magnetic field from this expression for A?) 
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1 0.2.2 • Jefimenko's Equations 

Given the retarded potentials 

449 

V(r, t) = 
4
:Eo J p(r; tr) dr', A(r, t) = :; J J(r~ tr) dr', (10.33) 

it is, in principle, a straightforward matter to determine the fields: 

a A 
E=-VV- ­at ' B = v X A. (10.34) 

But the details are not entirely trivial because, as I mentioned earlier, the in­
tegrands depend on r both explicitly, through 1t- = lr- r'l in the denominator, 
and implicitly, through the retarded time t, = t- ~t-fc in the argument of the 
numerator. 

I already calculated the gradient of V (Eq. 10.29); the time derivative of A is 
easy: 

(10.35) 

Putting them together (and using c2 = 1/ JLoEo): 

E(r, t) = _ 1_ J [p(r', t,) ..£ + p(r', t,) ..£ _ j(r', t,)] dr'. 
~~ ~ ~ A 

(10.36) 

This is the time-dependent generalization of Coulomb's law, to which it reduces 
in the static case (where the second and third terms drop out and the first term 
loses its dependence on t, ). 

As forB, the curl of A contains two terms: 

v xA= :; J [~(V xJ) -Jx v (~)Jdr'. 
Now 

aJz aJy 
(VxJ) = - - -

x ay az ' 
and 

so 

1 ( . a~t- . a~t-) 1 [ . ] (V X J)x = - - lz - -] - = - J X (V~t-) . 
c ay Y az c x 
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But V~t- = ..£ (Prob. 1.13), so 

1. 
V X J = - J X..£. 

c 

Meanwhile V(1/~t-) = -..ij~t-2 (again, Prob. 1.13), and hence 

B(r, t) = f-Lo f [J(r', tr) + j(r', tr)] x ..£dr'. 
4n ~t-2 cJt. 

(10.37) 

(10.38) 

This is the time-dependent generalization of the Biot-Savart law, to which it re­
duces in the static case. 

Equations 10.36 and 10.38 are the (causal) solutions to Maxwell's equations. 
For some reason, they do not seem to have been published until quite recently­
the earliest explicit statement of which I am aware was by Oleg Jefimenko, in 
1966.10 In practice Jefimenko's equations are of limited utility, since it is typi­
cally easier to calculate the retarded potentials and differentiate them, rather than 
going directly to the fields. Nevertheless, they provide a satisfying sense of clo­
sure to the theory. They also help to clarify an observation I made in the previous 
section: To get to the retarded potentials, all you do is replace t by tr in the elec­
trostatic and magnetostatic formulas, but in the case of the fields not only is time 
replaced by retarded time, but completely new terms (involving derivatives of p 
and J) appear. And they provide surprisingly strong support for the quasistatic 
approximation (see Prob. 10.14). 

Problem 10.13 SupposeJ(r) is constant in time, so (Prob. 7.60) p(r, t) = p(r, 0) + 
p(r, O)t. Show that 

1 I p(r',t)" , E(r, t) = -- --
2 

- lt.dr; 
4Jrt:0 Jt. 

that is, Coulomb's law holds, with the charge density evaluated at the non-retarded 
time. 

Problem 10.14 Suppose the current density changes slowly enough that we can (to 
good approximation) ignore all higher derivatives in the Taylor expansion 

J(tr) = J(t) + Ctr- t)j(t) + · · · 
(for clarity, I suppress the r-dependence, which is not at issue). Show that a fortu­
itous cancellation in Eq. 10.38 yields 

B(r, t) = f.Lo I J(r', t; x ..£ dr'. 
41l' Jt. 

100. D. Jefimenk:o, Electricity and Magnetism (New York: Appleton-Century-Crofts, 1966), 
Sect. 15.7. Related expressions appear in G. A. Schott, Electromagnetic Radiation (Cambridge, 
UK: Cambridge University Press, 1912), Chapter 2, W. K. H. Panofsky and M. Phillips, Classical 
Electricity and Magnetism (Reading, MA: Addison-Wesley, 1962), Sect. 14.3, and elsewhere. See 
K. T. McDonald, Am. J. Phys. 65, 1074 (1997) for illuminating commentary and references. 
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That is: the Biot-Savart law holds, with J evaluated at the non-retarded time. This 
means that the quasistatic approximation is actually much better than we had any 
right to expect: the two errors involved (neglecting retardation and dropping the 
second term in Eq. 10.38) cancel one another, to first order. 

10.3 • POINT CHARGES 

1 0.3.1 • Lienard-Wiechert Potentials 

My next project is to calculate the (retarded) potentials, V(r, t) and A(r, t), of a 
point charge q that is moving on a specified trajectory 

w(t) = position of q at timet. (10.39) 

A naive reading of the formula (Eq. 10.26) 

V(r, t) = _ 1_ J p(r', t,) dr:' 
4nEo It-

(10.40) 

might suggest to you that the potential is simply 

1 q 

4nEo 't-

(the same as in the static case, with the understanding that 1t- is the distance to the 
retarded position of the charge). But this is wrong, for a very subtle reason: It is 
true that for a point source the denominator 1t- comes outside the integral, 11 but 
what remains, 

f p(r', t,) dr:', (10.41) 

is not equal to the charge of the particle (and depends, through tro on the location 
of the point r). To calculate the total charge of a configuration, you must inte­
grate p over the entire distribution at one instant of time, but here the retardation, 
t, = t- ~t-Ic, obliges us to evaluate p at different times for different parts of the 
configuration. If the source is moving, this will give a distorted picture of the total 
charge. You might think that this problem would disappear for point charges, but 
it doesn't. In Maxwell's electrodynamics, formulated as it is in terms of charge 
and current densities, a point charge must be regarded as the limit of an extended 
charge, when the size goes to zero. And for an extended particle, no matter how 
small, the retardation in Eq. 10.41 throws in a factor (1 - 4 · vIc) -I, where v is 
the velocity of the charge at the retarded time: 

f p(r', t,) dr:' = ? I . (10.42) 
1-I£·V C 

11There is, however, an implicit change in its functional dependence: Before the integration, 
It- = lr - r'l is a function of r and r'; after the integration, which fixes r' = w(t, ), It- = lr - w(t,) I 
is (like t,) a function of r and t. 
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Proof. This is a purely geometrical effect, and it may help to tell the story in a 
less abstract context. You will not have noticed it, for obvious reasons, but the fact 
is that a train coming towards you looks a little longer than it really is, because 
the light you receive from the caboose left earlier than the light you receive si­
multaneously from the engine, and at that earlier time the train was farther away 
(Fig. 10.6). In the interval it takes light from the caboose to travel the extra dis­
tance L', the train itself moves a distance L'- L: 

L' L'-L 

c v 

L 
or L'= ---

1- vfc 

~ - ~ ~c _____..__v 
,;_-~ ~---..-

[f-ooll~l-~~-~-1 .. _=,~_~r-_)_--___ 1· ___ : : I 

FIGURE 10.6 

So approaching trains appear longer, by a factor (1 - v f c) - 1. By contrast, a train 
going away from you looks shorter, 12 by a factor (1 + vfc)-1• In general, if the 
train's velocity makes an angle () with your line of sight, 13 the extra distance light 
from the caboose must cover is L' cos() (Fig. 10.7). In the time L' cosOjc, then, 
the train moves a distance (L'- L): 

L' cos() 

c 

L'-L 

v 

L' 

L 
or L'= -----

1- v cosOfc 

~====~L===,/=/=/=/~~~---v 

FIGURE 10.7 

Notice that this effect does not distort the dimensions perpendicular to the 
motion (the height and width of the train). Never mind that the light from the far 

12Please note that this has nothing whatever to do with special relativity or Lorentz contraction-L is 
the length of the moving train, and its rest length is not at issue. The argument is somewhat reminiscent 
of the Doppler effect. 
131 assume the train is far enough away or (more to the point) short enough so that rays from the 
caboose and engine can be considered parallel. 
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side is delayed in reaching you (relative to light from the near side)-since there's 
no motion in that direction, they'll still look the same distance apart. The apparent 
volume r' of the train, then, is related to the actual volume r by 

' r 
r = " ' 1-l£·vfc 

(10.43) 

where..£ is a unit vector from the train to the observer. 
In case the connection between moving trains and retarded potentials eludes 

you, the point is this: Whenever you do an integral of the type in Eq. 10.41, in 
which the integrand is evaluated at the retarded time, the effective volume is mod­
ified by the factor in Eq. 10.43, just as the apparent volume of the train was. 
Because this correction factor makes no reference to the size of the particle, it is 
every bit as significant for a point charge as for an extended charge. D 

Meanwhile, for a point charge the retarded time is determined implicitly by the 
equation 

lr- w(tr)l = c(t- tr). (10.44) 

The left side is the distance the "news" must travel, and (t - tr) is the time it takes 
to make the trip (Fig. 10.8); 1£ is the vector from the retarded position to the field 
point r: 

l£=r-w(tr). (10.45) 

It is important to note that at most one point on the trajectory is "in commu­
nication" with r at any particular time t. For suppose there were two such points, 
with retarded times t1 and t2 : 

z 

X 

Particle 
trajectory 

y 

FIGURE 10.8 
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Then ~t- 1 - ~t-2 = c(t2 - tl), so the average speed of the particle in the direction of 
the point r would have to be c-and that's not counting whatever velocity the 
charge might have in other directions. Since no charged particle can travel at the 
speed of light, it follows that only one retarded point contributes to the potentials, 
at any given moment.14 

It follows, then, that 

1 qc 
V(r, t) = , 

4nEo (~t-c -"' · v) 
(10.46) 

where v is the velocity of the charge at the retarded time, and "' is the vector from 
the retarded position to the field point r. Moreover, since the current density is pv 
(Eq. 5.26), the vector potential is 

A(r, t) = J.Lo J p(r', tr)V(tr) dr' = J.Lo.!. J p(r', tr) dr', 
4n Jt. 4n Jt. 

or 

J.Lo qcv v 
A(r, t) = = 2 V(r, t). 

4n (Jt.c -"' · v) c 
(10.47) 

Equations 10.46 and 10.47 are the famous Lienard-Wiechert potentials for a 
moving point charge.15 

Example 10.3. Find the potentials of a point charge moving with constant 
velocity. 

Solution 
For convenience, let's say the particle passes through the origin at timet = 0, so 
that 

w(t)=vt. 

We first compute the retarded time, using Eq. 10.44: 

lr- Vtrl = c(t- tr), 

14For the same reason, an observer at r sees the particle in only one place at a time. By contrast, it 
is possible to hear an object in two places at once. Consider a bear who growls at you and then runs 
toward you at the speed of sound and growls again; you hear both growls at the same time, corning 
from two different locations, but there's only one bear. 
15There are many ways to obtain the Lienard-Wiechert potentials. I have tried to emphasize the ge­
ometrical origin of the factor ( 1 - -4 · v j c) -l ; for illuminating commentary, see W. K. H. Pan of sky 
and M. Phillips, Classical Electricity and Magnetism, 2d ed. (Reading, MA: Addison-Wesley, 1962), 
pp. 342-3. A more rigorous derivation is provided by J. R. Reitz, F. J. Milford, and R. W. Christy, 
Foundations of Electromagnetic Theory, 3d ed. (Reading, MA: Addison-Wesley, 1979), Sect. 21.1, or 
M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation, 3d ed. (Orlando, FL: Saunders, 
1995), Sect. 8.3. 
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or, squaring: 

r 2 - 2r · vtr + v2ij: = c2(t2 - 2ttr + ij:). 

Solving for tr by the quadratic formula, I find that 

(c2t - r · v) ± J (c2t - r · v)2 + (c2 - v2)(r2 - c2t2) 
tr = 2 2 ' c - v 

(10.48) 

To fix the sign, consider the limit v = 0: 

r 
tr = t ± - . 

c 

In this case the charge is at rest at the origin, and the retarded time should be 
(t - r f c); evidently we want the minus sign. 

so 

Now, from Eqs. 10.44 and 10.45, 

'1- = c(t- tr), and 
" r- Vtr 
.t.= ' c(t- tr) 

" [ v (r - vtr)] v · r v
2 

'1-(1-.t.·vfc)=c(t-tr) 1- - · =c(t-tr)- - + - tr 
c c(t - tr) c c 

1[ 2 2 2 ] = -;; (c t - r · v) - (c - v )tr 

1 
= -J (c2t - r · v)2 + (c2 - v2)(r2 - c2t2) 

c 

(I used Eq. 10.48, with the minus sign, in the last step). Therefore, 

1 qc 
V(r, t) = , 

4Juo J(c2t- r. v)2 + (c2- v2)(r2- c2t2) 
(10.49) 

and (Eq. 10.47) 

A( ) 
_ J-to qcv 

r, t -
4n J (c2t - r. v)2 + (c2 - v2)(r2 - c2t2) 

(10.50) 

Problem 10.15 A particle of charge q moves in a circle of radius a at constant 
angular velocity w. (Assume that the circle lies in the xy plane, centered at the 
origin, and at time t = 0 the charge is at (a, 0), on the positive x axis.) Find the 
Lienard-Wiechert potentials for points on the z axis. 

• Problem 10.16 Show that the scalar potential of a point charge moving with con­
stant velocity (Eq. 10.49) can be written more simply as 

(10.51) 
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where R = r - vt is the vector from the present (!) position of the particle to the 
field point r, and() is the angle between R and v (Fig. 10.9). Note that for nonrela­
tivistic velocities (v2 « c2

), 

q 

1 q 
V(r, t) ~ ---. 

4rrEo R 

FIGURE 10.9 

Problem 10.17 I showed that at most one point on the particle trajectory commu­
nicates with r at any given time. In some cases there may be no such point (an 
observer at r would not see the particle-in the colorful language of general rela­
tivity, it is "over the horizon"). As an example, consider a particle in hyperbolic 
motion along the x axis: 

w(t) = .jb2 + (ct) 2 i (-oo < t < oo). (10.52) 

(In special relativity, this is the trajectory of a particle subject to a constant force 
F = mc2 Jb.) Sketch the graph of w versus t. At four or five representative points 
on the curve, draw the trajectory of a light signal emitted by the particle at that 
point-both in the plus x direction and in the minus x direction. What region on 
your graph corresponds to points and times (x, t) from which the particle cannot 
be seen? At what time does someone at point x first see the particle? (Prior to this 
the potential at xis zero.) Is it possible for a particle, once seen, to disappear from 
view? 

Problem 10.18 Determine the Lienard-Wiechert potentials for a charge in hyper­
bolic motion (Eq. 10.52). Assume the point r is on the x axis and to the right of the 
charge.16 

1 0.3.2 • The Fields of a Moving Point Charge 

We are now in a position to calculate the electric and magnetic fields of a point 
charge in arbitrary motion, using the Lienard-Wiechert potentials: 17 

1 qc 
V(r, t) = , 

4nEo (-2-c - -t · v) 

v 
A(r, t) = 2 V(r, t), 

c 
(10.53) 

16The fields of a point charge in hyperbolic motion are notoriously tricky. Indeed, a straightforward 
application of tbe Lienard-Wiechert potentials yields an electric field in violation of Gauss's law. This 
paradox was resolved by Bondi and Gold in 1955. For a history of tbe problem, see E. Eriksen and 
0. Gr!lln, Ann. Phys. 286, 320 (2000). 
17You can get tbe fields directly from Jefimenko's equations, but it's not easy. See, for example, M.A. 
Heald and J. B. Marion, Classical Electromagnetic Radiation, 3d ed. (Orlando, FL: Saunders, 1995), 
Sect. 8.4. 
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and the equations for E and B: 

a A 
E=-VV- ­at · B = v X A. 

The differentiation is tricky, however, because 

.to= r- w(tr) and v = w(tr) 
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(10.54) 

are both evaluated at the retarded time, and tr---defined implicitly by the equation 

(10.55) 

-is itself a function of r and t .18 So hang on: the next two pages are rough going 
... but the answer is worth the effort. 

Let's begin with the gradient of V: 

qc -1 
VV= V(~t-c-.t.·v). 

4nEo (1-c- .to· v)2 
(10.56) 

Since It-= c(t - tr ), 19 

(10.57) 

As for the second term, product rule 4 gives 

V (.to · v) = (.to · V)v + (v · V).t. +.to x (V x v) + v x (V x .to). (10.58) 

Evaluating these terms one at a time: 

= a(.t. · Vtr). (10.59) 

where a = vis the acceleration of the particle at the retarded time. Now 

(v · V).t. = (v · V)r- (v · V)w, (10.60) 

18The following calculation is done by the most direct, "brute force" method. For a more clever and 
efficient approach, see J.D. Jackson, Classical Electrodynamics, 3d ed. (New York: John Wiley, 1999), 
Sect. 14.1. 
19Remember that .to= r - w(t7 ) (Fig. 10.8), and t7 is itself a function of r. Contrast Prob. 1.13 (and 
Section 10.2), where .to = r - r' (Fig. 10.3), and r' was an independent variable. In that case V It- = ..£, 
but here we have a more complicated problem on our hands. 
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and 

( 
a a a) A A A (v · V)r = Vx - + Vy - + Vz - (x x + y y + z z) 

ax ay az 

= Vx X+ Vy Y + Vz Z = V, 

while 

(v · V)w = v(v · Vtr) 

(same reasoning as Eq. 10.59). Moving on to the third term in Eq. 10.58, 

V XV= (avz _ avy) X+ (avx _ avz) y + (avy _ avx) z 
ay az az ax ax ay 

= (dVz atr _ dvy atr) X+ (dVx atr _ dVz atr) y 
dtr ay dtr az dtr az dtr ax 

+ (dvy atr - dvx atr) z 
dtr ax dtr ay 

=-a X Vtr. 

Finally, 

V X -t = V X r- V X W, 

but V x r = 0, while, by the same argument as Eq. 10.62, 

V X W = - V X V tr. 

(10.61) 

(10.62) 

(10.63) 

(10.64) 

Putting all this back into Eq. 10.58, and using the "BAC-CAB" rule to reduce the 
triple cross products, 

V(-t·v) = a(-t· Vtr) +v-v(v· Vtr) --tx (ax Vtr) +v x (v x Vtr) 

(10.65) 

Collecting Eqs. 10.57 and 10.65, we have 

qc 1 
VV = 

2 
[v+ (c2

- v2 +-t· a)Vtr]. 
4nEo (1-c - -t · v) 

(10.66) 

To complete the calculation, we need to know V tr. This can be found by taking 
the gradient of the defining equation (Eq. 10.55)-which we have already done in 
Eq. 10.57-and expanding V 1-: 

1 
-cVtr=VIl-=V~= ~V(-t·-t) 

2-v-t."' 

1 
= - [(-t. V)-t +"' X (V X -t)]. 

1-
(10.67) 



1 0.3 Point Charges 459 

But 

(.to· V).t. =.to- v(.t. · Vtr) 

(same idea as Eq. 10.60), while (from Eqs. 10.63 and 10.64) 

V X 4 = (v X Vtr). 

Thus 

1 1 
-cVtr = - [4- v(.t.. Vtr) + 4 X (v X Vtr)] = - [4- (4. v)Vtrl' 

and hence 

~ ~ 

-.to 
Vtr= --­

~C-4·V 

Incorporating this result into Eq. 10.66, I conclude that 

VV= 
1 

qc [(~c-.t.·v)v-(c2 -v2 +-t-·a).t.]. 
4nEo (~c- .to· v)3 

A similar calculation, which I shall leave for you (Prob. 10.19), yields 

aA 1 qc [ - = (~c-.t.·v)(-v+~ajc) at 4Jl'EQ (~c - 4 · v)3 

~ 2 2 ] + ~(c - v +-t-·a)v . 

Combining these results, and introducing the vector 

I find 

u =c..£- v, 

q ~ 
E(r, t) = -----

3 
[(c2

- v2)u +.to x (u x a)]. 
4nEo (.to· u) 

Meanwhile, 

1 1 
V x A= 2 v x (Vv) = 2 [V(V x v)- v x (VV)]. 

c c 

(10.68) 

(10.69) 

(10.70) 

(10.71) 

(10.72) 

We have already calculated V x v (Eq. 10.62) and VV (Eq. 10.69). Putting these 
together, 

1q 1 [2 2 ] V xA= - ------
3
-t.x (c -v )v+(-t-·a)v+(-t-·u)a. 

c 4nEo (u ·.to) 

The quantity in brackets is strikingly similar to the one in Eq. 10.72, which can be 
written, using the BAC-CAB rule, as [(c2 - v2)u + (.to· a)u- (.to· u)a]; the main 
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difference is that we have v's instead of u's in the first two terms. In fact, since 
it's all crossed into 4 anyway, we can with impunity change these v's into -u's; 
the extra term proportional to 4 disappears in the cross product. It follows that 

1 ... 
B(r, t) = - 4 x E(r, t). 

c 
(10.73) 

Evidently the magnetic field of a point charge is always perpendicular to the 
electric field, and to the vector from the retarded point. 

The first term in E (the one involving (c2 - v2)u) falls off as the inverse square 
of the distance from the particle. If the velocity and acceleration are both zero, this 
term alone survives and reduces to the old electrostatic result 

1 q" E= ---4. 
4nEo 1-2 

For this reason, the first term in E is sometimes called the generalized Coulomb 
field. (Because it does not depend on the acceleration, it is also known as the 
velocity field.) The second term (the one involving 4 x (u x a)) falls off as the 
inverse first power of 1- and is therefore dominant at large distances. As we shall 
see in Chapter 11, it is this term that is responsible for electromagnetic radiation; 
accordingly, it is called the radiation field-or, since it is proportional to a, the 
acceleration field. The same terminology applies to the magnetic field. 

Back in Chapter 2, I commented that if we could write down the formula for 
the force one charge exerts on another, we would be done with electrodynamics, in 
principle. That, together with the superposition principle, would tell us the force 
exerted on a test charge Q by any configuration whatsoever. Well ... here we are: 
Eqs. 10.72 and 10.73 give us the fields, and the Lorentz force law determines the 
resulting force: 

qQ 1- { F = -----
3 

[(c2 - v2)u +4 x (u x a)] 
4nE0 (4 · u) 

+ ~ x [4 x [(c2 
- v2)u + 4 x (u x a)J] } , (10.74) 

where Vis the velocity of Q, and 4, u, v, and a are all evaluated at the retarded 
time. The entire theory of classical electrodynamics is contained in that equa­
tion ... but you see why I preferred to start out with Coulomb's law. 

Example 10.4. Calculate the electric and magnetic fields of a point charge mov­
ing with constant velocity. 

Solution 
Putting a = 0 in Eq. 10.72, 
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In this case, using w = vt, 

.~z.u = c-t- .~z.v = c(r- Vtr)- c(t- tr)V = c(r- vt). 

In Ex. 10.3 we found that 

In Prob. 10.16 you showed that this radical could be written as 

RcJ 1 - v2 sin2 () lc2, 

where 

R = r- vt 
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is the vector from the present location of the particle to r, and () is the angle 
between Rand v (Fig. 10.9). Thus 

(10.75) 

E 

v 

FIGURE 10.10 

Notice that E points along the line from the present position of the particle. 
This is an extraordinary coincidence, since the "message" came from the retarded 
position. Because of the sin2 () in the denominator, the field of a fast-moving 
charge is flattened out like a pancake in the direction perpendicular to the mo­
tion (Fig. 10.1 0). In the forward and backward directions E is reduced by a factor 
(1 - v2 lc2) relative to the field of a charge at rest; in the perpendicular direction 
it is enhanced by a factor 1 I J 1 - v2 I c2. 

As forB, we have 

,. r-vtr (r-vt)+(t-tr)v R v 
""= --- = = - + - , 

/l. /l. /l. c 
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and therefore 

1 A 1 
B = - (4 x E) = --z(v x E). 

c c 
(10.76) 

Lines of B circle around the charge, as shown in Fig. 10.11. 

FIGURE 10.11 

The fields of a point charge moving at constant velocity (Eqs. 10.75 and 10.76) 
were first obtained by Oliver Heaviside in 1888.20 When v2 « c2 they reduce to 

1 q A 

E(r t) R;j ---R· 
' 4nEo R2 ' 

/10 q A 

B(r, t) R;j - 2 (v x R). 
4n R 

(10.77) 

The first is essentially Coulomb's law, and the second is the "Biot-Savart law for 
a point charge" I warned you about in Chapter 5 (Eq. 5.43). 

Problem 10.19 Derive Eq. 10.70. First show that 

atr 'l-c 

at 4· u 
(10.78) 

Problem 10.20 Suppose a point charge q is constrained to move along the x axis. 
Show that the fields at points on the axis to the right of the charge are given by 

E= _q_]_ (c+v) i B=O. 
4JH'o 'l-2 c - v ' 

(Do not assume v is constant!) What are the fields on the axis to the left of the 
charge? 

Problem 10.21 For a point charge moving at constant velocity, calculate the flux 
integral rj E · da (using Eq. 10.75), over the surface of a sphere centered at the 
present location of the charge. 21 

20For history and references, see 0. J. Jefimenko, Am. J. Phys. 62, 79 (1994). 
21 Feynman was fond of saying you should never begin a calculation before you know the answer. It 
doesn't always work, but this is a good problem to try it on. 
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Problem 10.22 

(a) Use Eq. 10.75 to calculate the electric field a distanced from an infinite straight 
wire carrying a uniform line charge A., moving at a constant speed v down the 
wire. 

(b) Use Eq. 10.76 to find the magnetic field of this wire. 

Problem 10.23 For the configuration in Prob. 10.15, find the electric and magnetic 
fields at the center. From your formula for B, determine the magnetic field at the 
center of a circular loop carrying a steady current I, and compare your answer with 
the result of Ex. 5.6 

More Problems on Chapter 10 

Problem 10.24 Suppose you take a plastic ring of radius a and glue charge on it, so 
that the line charge density is A.0 I sin(O /2) 1. Then you spin the loop about its axis at 
an angular velocity w. Find the (exact) scalar and vector potentials at the center of 
the ring. [Answer: A= (JLoA.0waj3rr) { sin[w(t- ajc)] i- cos[w(t- ajc)] y}] 
Problem 10.25 Figure 2.35 summarizes the laws of electrostatics in a "triangle 
diagram" relating the source (p ), the field (E), and the potential (V). Figure 5.48 
does the same for magnetostatics, where the source is J, the field is B, and the 
potential is A. Construct the analogous diagram for electrodynamics, with sources 
p and J (constrained by the continuity equation), fields E and B, and potentials V 
and A (constrained by the Lorenz gauge condition). Do not include formulas for V 
and A in terms of E and B. 

Problem 10.26 An expanding sphere, radius R(t) = vt (t > 0, constant v) carries 
a charge Q, uniformly distributed over its volume. Evaluate the integral 

Qerr= I p(r,tr)d-c 

with respect to the center. Show that Qerr Ri Q(l - ¥c), if v « c. 

Problem 10.27 Check that the potentials of a point charge moving at constant ve­
locity (Eqs. 10.49 and 10.50) satisfy the Lorenz gauge condition (Eq. 10.12). 

Problem 10.28 One particle, of charge q1, is held at rest at the origin. Another 
particle, of charge q2, approaches along the x axis, in hyperbolic motion: 

x(t) = Jb2 + (ct)2 ; 

it reaches the closest point, b, at timet = 0, and then returns out to infinity. 

(a) What is the force F2 on q2 (due to q1) at timet? 

(b) What total impulse ( h = f~oo Fzdt) is delivered to qz by q1? 
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(c) What is the force F1 on q1 (due to q2) at timet? 

(d) What total impulse (11 = f~oo F1dt) is delivered to q1 by q2? [Hint: It might 
help to review Pro b. 10.17 before doing this integral. Answer: ]z = -/1 = 
q1 qz! 4Eobc] 

Problem 10.29 We are now in a position to treat the example in Sect. 8.2.1 quanti­
tatively. Suppose q1 is at x1 = -vt and q2 is at y = -vt (Fig. 8.3, with t < 0). Find 
the electric and magnetic forces on q1 and q2 • Is Newton's third law obeyed? 

Problem 10.30 A uniformly charged rod (length L, charge density A.) slides out 
the x axis at constant speed v. At time t = 0 the back end passes the origin (so 
its position as a function of time is x = vt, while the front end is at x = vt + L ). 
Find the retarded scalar potential at the origin, as a function of time, for t > 0. [First 
determine the retarded time t1 for the back end, the retarded time t2 for the front end, 
and the corresponding retarded positions x1 and x2 .] Is your answer consistent with 
the Lienard-Wiechert potential, in the point charge limit (L « vt, with A.L = q)? 
Do not assume v « c. 

Problem 10.31 A particle of charge q is traveling at constant speed v along the 
x axis. Calculate the total power passing through the plane x =a, at the moment 
the particle itself is at the origin. [Answer: q2 vj32rrE0a 2] 

Problem 10.3222 A particle of charge q1 is at rest at the origin. A second particle, 
of charge q2, moves along the z axis at constant velocity v. 

(a) Find the force Fn(t) of q1 on q2 , at timet (when q2 is at z = vt). 

(b) Find the force F21 (t) of q2 on q1, at timet. Does Newton's third law hold, in 
this case? 

(c) Calculate the linear momentum p(t) in the electromagnetic fields, at timet. 
(Don't bother with any terms that are constant in time, since you won't need 
them in part (d)). [Answer: (JJ,0q1q2 j4rrt) z] 

(d) Show that the sum of the forces is equal to minus the rate of change of the 
momentum in the fields, and interpret this result physically. 

Problem 10.33 Develop the potential formulation for electrodynamics with mag­
netic charge (Eq. 7.44). [Hint: You'll need two scalar potentials and two vec­
tor potentials. Use the Lorenz gauge. Find the retarded potentials (generalizing 
Eqs. 10.26), and give the formulas forE and Bin terms of the potentials (general­
izing Eqs. 10.2 and 10.3).] 

Problem 10.34 Find the (Lorenz gauge) potentials and fields of a time-dependent 
ideal electric dipole p(t) at the origin.23 (It is stationary, but its magnitude and/or 
direction are changing with time.) Don't bother with the contact term. [Answer: 

22See J. J. G. Scanio, Am. J. Phys. 43, 258 (1975). 
23W. J. M. Kort-Kamp and C. Farina, Am. J. Phys. 79, 111 (2011); D. J. Griffiths, Am. J. Phys. 79, 867 
(2011). 
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1 r . 
V(r, t) = -

4 
- 2 · [p + (rjc)p] 

:ll'Eo r 

A(r, t) = /1-o [!] 
4rr r 

E() /1-o{p-r(r·p) 2 [p+(r/c)p]-3r(r·[p+(r/c)p])} 
r, t = - 4rr r + c --=----....:.......c--=-----r =--3 -=--------':......_;=---
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B(r, t) = - /1-o { r X [p + (r jc)p]} 
4rr r 2 

(10.79) 

where all the derivatives of p are evaluated at the retarded time.] 
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11 Radiation 

11.1 • DIPOLE RADIATION 

11.1.1 • What is Radiationl 

When charges accelerate, their fields can transport energy irreversibly out to 
infinity-a process we call radiation. 1 Let us assume the source is localized2 

near the origin; we would like to calculate the energy it is radiating at time t0 • 

Imagine a gigantic sphere, out at radius r (Fig. 11.1) The power passing through 
its surface is the integral of the Poynting vector: 

P(r, t) = f S · da = :
0 
f (E x B) · da. (11.1) 

Because electromagnetic "news" travels at the speed of light, 3 this energy actually 
left the source at the earlier time to = t - rIc, so the power radiated is 

Prad (to) = lim P (r, to + !:..) 
r--+oo C 

(11.2) 

FIGURE 11.1 

1 In this chapter, the word "radiation" is used in a restricted technical sense-it might better be called 
"radiation to infinity." In everyday language the word has a broader connotation. We speak, for 
example, of radiation from a heat lamp or an x-ray machine. In this more general sense, electromag­
netic "radiation" applies to any fields that transport energy-which is to say, fields whose Poynting 
vector is non-zero. There is nothing wrong with that language, but it is not how I am using the term 
here. 
2For nonlocalized configurations, such as infinite planes, wires, or solenoids, the concept of "radia­
tion" must be reformulated (Prob. 11.28). 
3More precisely, the fields depend on the status of the source at the retarded time. 
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(with to held constant). This is energy (per unit time) that is carried away and 
never comes back. 

Now, the area of the sphere is 4n r 2
, so for radiation to occur the Poynting vec­

tor must decrease (at larger) no faster than llr2 (if it went like 11r3, for example, 
then P would go like 11r, and Prad would be zero). According to Coulomb's law, 
electrostatic fields fall off like 1 I r2 (or even faster, if the total charge is zero), and 
the Biot-Savart law says that magnetostatic fields go like 11r2 (or faster), which 
means that S,...., 11r4 , for static configurations. So static sources do not radiate. 
But Jefimenko's equations (Eqs. 10.36 and 10.38) indicate that time-dependent 
fields include terms (involving p and j) that go like 11r; these are the terms that 
are responsible for electromagnetic radiation. 

The study of radiation, then, involves picking out the parts of E and B that go 
like 1 I r at large distances from the source, constructing from them the 1 I r 2 term 
inS, integrating over a large spherical4 surface, and taking the limit as r --+ oo. 
I'll carry through this procedure first for oscillating electric and magnetic dipoles; 
then, in Sect. 11.2, we'll consider the more difficult case of radiation from an 
accelerating point charge. 

11.1.2 • Electric Dipole Radiation 

Picture two tiny metal spheres separated by a distance d and connected by a fine 
wire (Fig. 11.2); at timet the charge on the upper sphere is q(t), and the charge 
on the lower sphere is -q(t). Suppose that we drive the charge back and forth 
through the wire, from one end to the other, at an angular frequency w: 

q(t) = q0 cos(wt). (11.3) 

The result is an oscillating electric dipole:5 

p(t) = Po cos(wt) z, (11.4) 

where 

Po= qod 

is the maximum value of the dipole moment. 
The retarded potential (Eq. 10.26) is 

_ 1 { qo cos[w(t -~t-+lc)] qo cos[w(t - Llc)]} 
V(r,t)- -

4
- - , 
Jl'Eo ~t-+ Jt._ 

(11.5) 

where, by the law of cosines, 

~t-± = ../r2 =f rd cosO+ (dl2) 2 . (11.6) 

4It doesn't have to be a sphere, of course, but this makes the calculations a lot easier. 
5It might occur to you that a more natural model would consist of equal and opposite charges mounted 
on a spring, say, so that q is constant while d oscillates, instead of the other way around. Such a model 
would lead to the same result, but moving point charges are hard to work with, and this formulation is 
much simpler. 
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z 

FIGURE 11.2 

Now, to make this physical dipole into a perfect dipole, we want the separation 
distance to be extremely small: 

approximation 1 : d « r. (11.7) 

Of course, if d is zero we get no potential at all; what we want is an expansion 
carried to first order in d. Thus 

It follows that 

- ~ - 1 ± - cos 0 ' 1 1 ( d ) 
1-± r 2r 

and 

cos[w(t -1-±/c)] ~cos [ w(t- rjc) ±~:cosO] 

= cos[w(t- r jc)] cos (~:cosO) 

. . (wd ) =f sm[w(t - r jc)] sm 2c cos 0 . 

In the perfect dipole limit we have, further, 

c 
approximation 2 : d « - . 

(l) 

(11.8) 

(11.9) 

(11.10) 

(Since waves of frequency w have a wavelength ). = 2rr c j w, this amounts to the 
requirement d «'A.) Under these conditions, 

wd . 
cos[w(t -1-±/c)] ~ cos[w(t - r jc)] =f 2c cos 0 sm[w(t - r jc)]. (11.11) 



11 .1 Dipole Radiation 469 

Putting Eqs. 11.9 and 11.11 into Eq. 11.5, we obtain the potential of an oscil­
lating perfect dipole: 

Po cos () { (J) . 1 } V(r, 0, t) = - - sm[(JJ(t- rfc)] + - cos[(JJ(t- rfc)] . 
4nEor c r 

(11.12) 

In the static limit ((JJ---+ 0) the second term reproduces the old formula for the 
potential of a stationary dipole (Eq. 3.102): 

pocosO 
V= . 

4nEor2 

This is not, however, the term that concerns us now; we are interested in the fields 
that survive at large distances from the source, in the so-called radiation zone:6 

. . 3 c approXImation : r » -
(J) 

(11.13) 

(or, in terms of the wavelength, r »A.). In this region the potential reduces to 

Po(J) (cos() ) . V(r, 0, t) = - -- -- sm[(JJ(t- rfc)]. 
41l'EQC r 

(11.14) 

Meanwhile, the vector potential is determined by the current flowing in the 
wire: 

Referring to Fig. 11.3, 

l(t) = dq z = -qo(J) sin((J)t) z. 
dt 

A 
_ JLo ld/2 -qo(J) sin[(JJ(t -~z.jc)] z d 

(r,t)- - z. 
4n -a;2 1z. 

z 

-q 

FIGURE 11.3 

(11.15) 

(11.16) 

6N ote that approximations 2 and 3 subsume approximation 1; all together, we have d « ). « r. 
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Because the integration itself introduces a factor of d, we can, to first order, 
replace the integrand by its value at the center: 

J.LoPo(J) . A 

A(r, (), t) = - -- sm[(J)(t- rfc)] z. 
4nr 

(11.17) 

(Notice that whereas I implicitly used approximations 1 and 2, in keeping only 
the first order in d, Eq. 11.17 is not subject to approximation 3.) 

From the potentials, it is a straightforward matter to compute the fields. 

av A 1 av A 

VV= - r+ --8 
ar r ao 

PO(J) { ( 1 . (J) ) A = - -- cos() - 2 sm[(JJ(t- rfc)]- - cos[(JJ(t- rfc)] r 
4nEoc r rc 

sin() A} - 7 sin[(JJ(t- r fc)] 8 

rv Po(J)
2 

(cos () ) A = -- -- cos[(JJ(t- rfc)] r. 
4nEoc2 r 

(I dropped the first and last terms, in accordance with approximation 3.) Likewise, 

and therefore 

a A 
at 

J.LoPo(J)2 
A • A 

--- cos[(JJ(t - r fc)](cos () r- sm() 8), 
4nr 

a A 
E=-VV- - = at 

J.LoPo(J)
2 

(sin()) A -- COS[(JJ(t- rjc)]8. 
4n r 

Meanwhile 

1[a aArJ A V x A = - - (rAe) - - q, 
r ar ao 

(11.18) 

J.LoPo(J) { (J) . sin() . } A 

= - -- - sm() cos[(JJ(t- rfc)] + -- sm[(J)(t- rfc)] q,. 
4nr c r 

The second term is again eliminated by approximation 3, so 

J.LoPo(J)
2 

(sin()) A B = V x A= - cos[(JJ(t- rfc)] q,. 
4nc r 

(11.19) 

Equations 11.18 and 11.19 represent monochromatic waves of frequency (J) 
traveling in the radial direction at the speed of light. The fields are in phase, 
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FIGURE 11.4 

mutually perpendicular, and transverse; the ratio of their amplitudes is Eo/ Bo = 
c. All of which is precisely what we expect for electromagnetic waves in free 
space. (These are actually spherical waves, not plane waves, and their amplitude 
decreases like 1 f r as they progress. But for large r, they are approximately plane 
over small regions-just as the surface of the earth is reasonably flat, locally.) 

The energy radiated by an oscillating electric dipole is determined by the 
Poynting vector: 

S(r, t) =__!_(EX B)= {to { pooi (sinO) COS[{J)(t- rfc)]}
2 

r. 
J-to c 4n r 

(11.20) 

The intensity is obtained by averaging (in time) over a complete cycle: 

_ (J-toP5{J)
4

) sin
2 

0 A 

(S) - 32 2 2 r. n c r 
(11.21) 

Notice that there is no radiation along the axis of the dipole (here sin 0 = 0); the 
intensity profile7 takes the form of a donut, with its maximum in the equatorial 
plane (Fig. 11.4). The total power radiated is found by integrating (S) over a 
sphere of radius r: 

(11.22) 

Example 11.1. The strong frequency dependence of the power formula is what 
accounts for the blueness of the sky. Sunlight passing through the atmosphere 
stimulates atoms to oscillate as tiny dipoles. The incident solar radiation covers a 
broad range of frequencies (white light), but the energy absorbed and reradiated 
by the atmospheric dipoles is stronger at the higher frequencies because of the {J)4 

in Eq. 11.22.11 is more intense in the blue, then, than in the red. It is this reradiated 
light that you see when you look up in the sky-unless, of course, you're staring 
directly at the sun. 

Because electromagnetic waves are transverse, the dipoles oscillate in a plane 
orthogonal to the sun's rays. In the celestial arc perpendicular to these rays, where 

7The radial coordinate in Fig. 11.4 represents the magnitude of (S) in that direction. 
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This dipole radiates 
to the observer 

FIGURE 11.5 

the blueness is most pronounced, the dipoles oscillating along the line of sight 
send no radiation to the observer (because of the sin2 

() in equation Eq. 11.21); 
light received at this angle is therefore polarized perpendicular to the sun's rays 
(Fig. 11.5). 

The redness of sunset is the other side of the same coin: Sunlight coming in 
at a tangent to the earth's surface must pass through a much longer stretch of 
atmosphere than sunlight coming from overhead (Fig. 11.6). Accordingly, much 
of the blue has been removed by scattering, and what's left is red. 

Atmosphere (thickness grossly exaggerated) 

FIGURE 11.6 

Problem 11.1 Check that the retarded potentials of an oscillating dipole (Eqs. 11.12 
and 11.17) satisfy the Lorenz gauge condition. Do not use approximation 3. 

Problem 11.2 Equation 11.14 can be expressed in "coordinate-free" form by writing 
Po cos(} = Po · r. Do so, and likewise for Eqs. 11.17, 11.18. 11.19, and 11.21. 

Problem 11.3 Find the radiation resistance of the wire joining the two ends of 
the dipole. (This is the resistance that would give the same average power loss-to 
heat-as the oscillating dipole in fact puts out in the form of radiation.) Show that 
R = 790 (d/).)2 Q, where). is the wavelength of the radiation. For the wires in an 
ordinary radio (say, d = 5 em), should you worry about the radiative contribution 
to the total resistance? 
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Problem 11.4 A rotating electric dipole can be thought of as the superposition 
of two oscillating dipoles, one along the x axis and the other along the y axis 
(Fig. 11. 7), with the latter out of phase by 90°: 

p = Po[cos(wt) i + sin(wt) y]. 

y 

X 

FIGURE 11.7 

Using the principle of superposition and Eqs. 11.18 and 11.19 (perhaps in the form 
suggested by Prob. 11.2), find the fields of a rotating dipole. Also find the Poynting 
vector and the intensity of the radiation. Sketch the intensity profile as a function 
of the polar angle e, and calculate the total power radiated. Does the answer seem 
reasonable? (Note that power, being quadratic in the fields, does not satisfy the 
superposition principle. In this instance, however, it seems to. How do you account 
for this?) 

11.1.3 • Magnetic Dipole Radiation 

Suppose now that we have a wire loop of radius b (Fig. 11.8), around which we 
drive an alternating current: 

I (t) = Io cos(wt). (11.23) 

This is a model for an oscillating magnetic dipole, 

m(t) = n b2 I (t) z = mo cos(wt) z, (11.24) 

FIGURE 11.8 
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where 

(11.25) 

is the maximum value of the magnetic dipole moment. 
The loop is uncharged, so the scalar potential is zero. The retarded vector 

potential is 

A J-Lo J Io cos[w(t- ~t-fc)] dl' (r,t) = - . 
4n It-

(11.26) 

For a point r directly above the x axis (Fig. 11.8), A must aim in the y direction, 
since the x components from symmetrically placed points on either side of the x 

axis will cancel. Thus 

A ~-tolob A 12
ll' cos[w(t- ~t-fc)] 'd , 

(r, t) = --y cos¢ ¢ 
4n 0 ~t-

(cos¢' serves to pick out they-component of dl'). By the law of cosines, 

~t- = ../r2 + b2 - 2rbcos1/f, 

where 1/1 is the angle between the vectors r and b: 

r = r sin 0 x + r cos 0 z, b = b cos ¢' x + b sin¢' y. 

So r b cos 1/1 = r · b = r b sin 0 cos ¢', and therefore 

~t- = .J r2 + b2 - 2r b sin 0 cos ¢'. 

For a "perfect" dipole, we want the loop to be extremely small: 

approximation 1: b « r. 

To first order in b, then, 

It- ~ r ( 1 - ~ sin 0 cos ¢') , 

so 

1 "' 1 ( b . ') - = - 1 + - sm 0 cos¢ 
It- r r 

and 

cos[w(t- ~t-/c)] ~cos [ w(t- rfc) + ~b sinO cos¢'] 

= cos[w(t- rfc)] cos ( ~b sinO cos¢') 

- sin[w(t- rfc)] sin ( ~b sinO cos¢'). 

(11.27) 

(11.28) 

(11.29) 

(11.30) 
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As before, we also assume the size of the dipole is small compared to the wave­
length radiated: 

In that case, 

c 
approximation 2 : b « - . 

(J) 
(11.31) 

( 
rv Wb • I • 

cos[w t- ~t.jc)] = cos[w(t- rjc)]- - smO cos¢ sm[w(t- rjc)]. (11.32) 
c 

Inserting Eqs. 11.30 and 11.32 into Eq. 11.27, and dropping the second-order 
term: 

JLolob A 12
1( { • A(r, t) ~ --y cos[w(t - r jc)] + b smO cos¢' 

4nr 0 

x (~ cos[w(t- rjc)]- ~ sin[w(t- rjc)])} cos¢' d¢'. 

The first term integrates to zero: 

12

1( cos¢' d¢' = 0. 

The second term involves the integral of cosine squared: 

12

1( cos2 ¢' d¢' = rr. 

Putting this in, and noting that in general A points in the ~-direction, I conclude 
that the vector potential of an oscillating perfect magnetic dipole is 

A(r, O, t) = JLomo (sinO) {~ cos[w(t- rjc)]- ~ sin[w(t- rjc)]} ~. 
4rr r r c 

(11.33) 

In the static limit (w = 0) we recover the familiar formula for the potential of 
a magnetic dipole (Eq. 5.87) 

In the radiation zone, 

A(r, O) = JLo mo s!n 0 ~. 
4rr r 

approximation 3 : 
c 

r » - , 
(J) 

the first term in A is negligible, so 

JLomow (sinO) . A A(r,O,t)=--- - sm[w(t-rjc)]q,. 
4rrc r 

(11.34) 

(11.35) 
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From A we obtain the fields at large r: 

aA J.Lomow
2 

(sinO) A E=-- = - cos[w(t-rfc)]q,, 
at 4nc r 

(11.36) 

and 

J.Lomow
2 

(sin 0 ) A B = V x A= 
2 

-- cos[w(t- rfc)] 8. 
4nc r 

(11.37) 

(I used approximation 3 in calculating B.) These fields are in phase, mutually per­
pendicular, and transverse to the direction of propagation (r), and the ratio of their 
amplitudes is Eo/ B0 = c, all of which is as expected for electromagnetic waves. 
They are, in fact, remarkably similar in structure to the fields of an oscillating 
electric dipole (Eqs. 11.18 and 11.19), only this time it is B that points in the iJ 
direction and E in the~ direction, whereas for electric dipoles it's the other way 
around. 

The energy flux for magnetic dipole radiation is 

S(r, t) = _!_(E X B) = J.Lo { mow
2 

(sinO) cos[w(t- r fc)]}
2 

r, 
J.Lo c 4nc r 

(11.38) 

the intensity is 

( 
2 4) . 2l) s = J.Lofflo(J) ~ r 

( ) 32 2 3 2 ' n c r 
(11.39) 

and the total radiated power is 

(11.40) 

Once again, the intensity profile has the shape of a donut (Fig. 11.4), and 
the power radiated goes like w4 . There is, however, one important difference 
between electric and magnetic dipole radiation: For configurations with compara­
ble dimensions, the power radiated electrically is enormously greater. Comparing 
Eqs. 11.22 and 11.40, 

Pmagnetic = ( mo )
2

' 

Pelectric poe 
(11.41) 

where (remember) m0 = nb210 , and p0 = q0d. The amplitude of the current in 
the electrical case was /0 = q0w (Eq. 11.15). Setting d = nb, for the sake of 
comparison, I get 

P magnetic = ( wb) 2 

Pelectric C 

(11.42) 
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But wbfc is precisely the quantity we assumed was very small (approximation 2), 
and here it appears squared. Ordinarily, then, one should expect electric dipole 
radiation to dominate. Only when the system is carefully contrived to exclude any 
electric contribution (as in the case just treated) will the magnetic dipole radiation 
reveal itself. 

Problem 11.5 Calculate the electric and magnetic fields of an oscillating magnetic 
dipole without using approximation 3. [Do they look familiar? Compare Pro b. 9.35.] 
Find the Poynting vector, and show that the intensity of the radiation is exactly the 
same as we got using approximation 3. 

Problem 11.6 Find the radiation resistance (Prob. 11.3) for the oscillating magnetic 
dipole in Fig. 11.8. Express your answer in terms of). and b, and compare the 
radiation resistance of the electric dipole. [Answer: 3 x 105 (b j A.) 4 Q] 

Problem 11.7 Use the "duality" transformation of Prob. 7.64, together with the 
fields of an oscillating electric dipole (Eqs. 11.18 and 11.19), to determine the fields 
that would be produced by an oscillating "Gilbert" magnetic dipole (composed of 
equal and opposite magnetic charges, instead of an electric current loop). Compare 
Eqs. 11.36 and 11.37, and comment on the result. 

11.1.4 • Radiation from an Arbitrary Source 

In the previous sections, we studied the radiation produced by two specific sys­
tems: oscillating electric dipoles and oscillating magnetic dipoles. Now I want 
to apply the same procedures to a configuration of charge and current that is 
entirely arbitrary, except that it is localized within some finite volume near the 
origin (Fig. 11.9). The retarded scalar potential is 

_ 1 J p(r', t- ~z.jc) d , 
V(r,t)- -- r:, 

4nEo 1z. 
(11.43) 

where 

"'= Jr2 + r'2 - 2r · r'. (11.44) 

y 

FIGURE 11.9 
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As before, we shall assume that the field point r is far away, in comparison to the 
dimensions of the source: 

approximation 1 : r' « r. (11.45) 

(Actually, r' is a variable of integration; approximation 1 means that the maximum 
value of r', as it ranges over the source, is much less than r.) On this assumption, 

so 

and 

, , r r·r 
( 

A ') p(r, t -~J-jc) ~ p r, t- ~ + - c- . 

Expanding p as a Taylor series in t about the retarded time at the origin, 

we have 

r 
t0 = t- - , 

c 

p(r', t -~J-jc) ~ p(r', to)+ p(r', to) c~ ~r') + ... 

(11.46) 

(11.47) 

(11.48) 

(11.49) 

where the dot signifies differentiation with respect to time. The next terms in the 
series would be 

1 .. (r. r') 2 

2p - c- ' 

We can afford to drop them, provided 

1 ... (r. r') 3 

- p -
3! c 

• • 2 ' c c c 
approXImation : r « 1.0//JI' li:i/fJil/2' 1:0/fJil/3' (11.50) 

For an oscillating system, each of these ratios is c I (J), and we recover the old 
approximation 2. In the general case it's more difficult to interpret Eq. 11.50, but 
as a procedural matter approximations 1 and 2 amount to keeping only the first­
order terms in r'. 

Putting Eqs. 11.47 and 11.49 into the formula for V (Eq. 11.43), and again 
discarding the second-order term: 

"' 1 [/ , , r J , r' , r d J , , '] V(r,t)= -- p(r,t0)dr + - · rp( ,t0)dr + - · - rp(r,t0)dr . 
4nEor r c dt 
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The first integral is simply the total charge, Q, at time t0 • Because charge is con­
served, Q is independent of time. The other two integrals represent the electric 
dipole moment at time t0 • Thus 

rv 1 [ Q r . p(to) r . p(to) J 
V(r,t)= -- - +--+-- . 

4nEo r r 2 rc 
(11.51) 

In the static case, the first two terms are the monopole and dipole contributions to 
the multipole expansion for V; the third term, of course, would not be present. 

Meanwhile, the vector potential is 

A(r, t) = J.Lo J J(r', t- "'/c) dr:'. 
4n "' 

(11.52) 

As you'll see in a moment, to first order in r' it suffices to replace"' by r in the 
integrand: 

A(r, t) ~ J.Lo j J(r', to) dr:'. 
4nr 

(11.53) 

According to Prob. 5.7, the integral of J is the time derivative of the dipole mo­
ment, so 

A(r, t) ~ J.Lo p(to). 
4n r 

(11.54) 

Now you see why it was unnecessary to carry the approximation of"' beyond the 
zeroth order ("' ~ r ): p is already first order in r', and any refinements would be 
corrections of second order (or higher). 

Next we must calculate the fields. Once again, we are interested in the radiation 
zone (that is, in the fields that survive at large distances from the source), so we 
keep only those terms that go like 1 I r: 

approximation 3: discard 1jr2 terms in E and B. (11.55) 

For instance, the Coulomb field, 

1 Q A 

E= --- r, 
4nEo r 2 

coming from the first term in Eq. 11.51, does not contribute to the electromag­
netic radiation. In fact, the radiation comes entirely from those terms in which we 
differentiate the argument t0 • From Eq. 11.48 it follows that 

1 L 
Vto = - - Vr = - - r, 

c c 

and hence 

rv [ 1 r . p(to) J rv 1 [ r . ii(to) J VV = V ----- = -- --- Vt0 = 
4nEo rc 4nEo rc 

1 [r · ii(to)J A 

--- r. 
4nEoc2 r 
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Similarly, 

V x A~ JLo [V x p(to)] = JLo [(Vto) x iiCto)] = -~[r x ii(to)], 
4nr 4nr 4nrc 

while 

aA ,__, JLo ii(to) 
- - ---
at 4n r 

So 

E( ) "-' JLo [(A oo)A ""] JLo [A (A "")] r, t = - r · p r- p = - r x r x p , 
4nr 4nr 

(11.56) 

where p is evaluated at time to = t - rIc, and 

B( ) ,__, JLo [A .• ] r, t = - -- r x p. 
4nrc 

(11.57) 

In particular, if we use spherical polar coordinates, with the z axis in the direc­
tion of p(t0), then 

E(r,O,t) ~ JLo:;to) (si:O) 8, I· 
B(r, O, t) ~ JLoPCto) (sinO) ~. 

4nc r 

The Poynting vector is 

1 JLo .. 2 ( sin
2 

0 ) A S(r, t) ~ - (Ex B) = -
6 2 

[p(to)] -
2
- r, 

JLo 1 n c r 

the power passing through a giant spherical surface at radius r is 

P(r,t) = f S(r,t) ·da= :roc [fi(t- ~)r, 

and the total radiated power (Eq. 11.2) is 

Prad(to) ~ 
6
JLo [fi(to) ]

2
• 

nc 

(11.58) 

(11.59) 

(11.60) 

Notice that E and B are mutually perpendicular, transverse to the direction of 
propagation (r), and in the ratio E I B = c, as always for radiation fields. 
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Example 11.2. 

(a) In the case of an oscillating electric dipole, 

p(t) = Po cos(wt), p(t) = -w2 Po cos(wt), 

and we recover the results of Sect. 11.1.2. 

(b) For a single point charge q, the dipole moment is 

p(t) = qd(t), 

where d is the position of q with respect to the origin. Accordingly, 

p(t) = qa(t), 

where a is the acceleration of the charge. In this case the power radiated 
(Eq. 11.60) is 

p = JLoq2a2 
6rrc 

(11.61) 

This is the famous Larmor formula; I'll derive it again, by rather different 
means, in the next section. Notice that the power radiated by a point charge 
is proportional to the square of its acceleration. 

What I have done in this section amounts to a multipole expansion of the 
retarded potentials, carried to the lowest order in r' that is capable of produc­
ing electromagnetic radiation (fields that go like 1/r). This turns out to be the 
electric dipole term. Because charge is conserved, an electric monopole does not 
radiate-if charge were not conserved, the first term in Eq. 11.51 would read 

V, _ _ 1_ Q(to) 
mono - 4rrt:o r ' 

and we would get a monopole field proportional to 1 j r: 

Emono = -
4 

1 
Q(to) r. 

rrt:oc r 

You might think that a charged sphere whose radius oscillates in and out would 
radiate, but it doesn't-the field outside, according to Gauss's law, is exactly 
(Q/4rrt:0r 2)r, regardless of the fluctuations in size. (In the acoustical analog, by 
the way, monopoles do radiate: witness the croak of a bullfrog.) 

If the electric dipole moment should happen to vanish (or, at any rate, if its 
second time derivative is zero), then there is no electric dipole radiation, and one 
must look to the next term: the one of second order in r'. As it happens, this term 
can be separated into two parts, one of which is related to the magnetic dipole 
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moment of the source, the other to its electric quadrupole moment. (The former 
is a generalization of the magnetic dipole radiation we considered in Sect. 11.1.3.) 
If the magnetic dipole and electric quadrupole contributions vanish, the (r')3 term 
must be considered. This yields magnetic quadrupole and electric octopole radia­
tion ... and so it goes. 

Problem 11.8 A parallel-plate capacitor C, with plate separation d, is given an 
initial charge (±) Q0 • It is then connected to a resistor R, and discharges, Q(t) = 
Qoe-tfRC. 

(a) What fraction of its initial energy CQV2C) does it radiate away? 

(b) If C = 1 pF, R = 1000 Q, and d = 0.1 mm, what is the actual number? In elec­
tronics we don't ordinarily worry about radiative losses; does that seem reason­
able, in this case? 

Problem 11.9 Apply Eqs. 11.59 and 11.60 to the rotating dipole of Prob. 11.4. 
Explain any apparent discrepancies with your previous answer. 

Problem 11.10 An insulating circular ring (radius b) lies in the xy plane, centered 
at the origin. It carries a linear charge density A. = A.0 sin r/J, where A.0 is constant and 
r/J is the usual azimuthal angle. The ring is now set spinning at a constant angular 
velocity w about the z axis. Calculate the power radiated. 

Problem 11.11 A current I (t) flows around the circular ring in Fig. 11.8. Derive 
the general formula for the power radiated (analogous to Eq. 11.60), expressing 
your answer in terms of the magnetic dipole moment, m(t), of the loop. [Answer: 
P = ~-tom2 j61l'c3] 

11.2 • POINT CHARGES 

11.2.1 • Power Radiated by a Point Charge 

In Chapter 10 we derived the fields of a point charge q in arbitrary motion 
(Eqs. 10.72 and 10.73): 

E(r, t) = _ q ___ ll-_
3 

[ (c2 - v2) u +.to x (u x a)], 
4nEo (.to· u) 

where u =c.£- v, and 

1A 
B(r, t) = - .to x E(r, t). 

c 

(11.62) 

(11.63) 

The first term in Eq. 11.62 is the velocity field, and the second one (with the triple 
cross-product) is the acceleration field. 

The Poynting vector is 

1 1 A 1 2A A s = - (EX B)= - [EX (.to X E)]= - [E .to- (.to. E)E]. (11.64) 
J.Lo J.Loc J.Loc 
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FIGURE 11.10 

However, not all of this energy flux constitutes radiation; some of it is just field 
energy carried along by the particle as it moves. The radiated energy is the stuff 
that, in effect, detaches itself from the charge and propagates off to infinity. (It's 
like flies breeding on a garbage truck: Some of them hover around the truck 
as it makes its rounds; others fly away and never come back.) To calculate the 
total power radiated by the particle at time tr, we draw a huge sphere of radius 1z. 

(Fig. 11.10), centered at the position of the particle (at time tr ), wait the appropri­
ate interval 

lz. 
t- tr = ­

c 
(11.65) 

for the radiation to reach the sphere, and at that moment integrate the Poynting 
vector over the surface. 8 I have used the notation tr because, in fact, this is the 
retarded time for all points on the sphere at time t. 

Now, the area of the sphere is proportional to .~z.2 , so any term inS that goes like 
1j.~z.2 will yield a finite answer, but terms like lj.~z.3 or 1j.~z.4 will contribute nothing 
in the limit 1z.--+ oo. For this reason, only the acceleration fields represent true 
radiation (hence their other name, radiation fields): 

q lz. 
Erad = -----

3 
[11. x (u x a)]. 

4rrEo (11. · u) 
(11.66) 

The velocity fields carry energy, to be sure, and as the charge moves this energy is 
dragged along-but it's not radiation. (It's like the flies that stay with the garbage 
truck.) Now Erad is perpendicular to .£, so the second term in Eq. 11.64 vanishes: 

1 2 A 

Srad = - Erad"'· 
J.-Loc 

If the charge is instantaneously at rest (at time tr ), then u = c.£, and 

(11.67) 

(11.68) 

8Note the subtle change in strategy here: In Sect. 11.1 we worked from a fixed point (the origin), but 
here it is more appropriate to use the (moving) location of the charge. The implications of this change 
in perspective will become clearer in a moment. 
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FIGURE 11.11 

In that case 

S _ 1 (J.-Loq)
2 

[ 2 (" )2] "- J.-Loq
2
a

2 
(sin

2
0) " rad- -- -- a--t·a -t- --- --- -t 

f-Loc 4n~t- 16rr2c ~t-2 ' 
(11.69) 

where () is the angle between..£ and a. No power is radiated in the forward or 
backward direction-rather, it is emitted in a donut about the direction of instan­
taneous acceleration (Fig. 11.11 ). 

The total power radiated is 

or 

p = J.-Loq2a2. 
6nc 

(11.70) 

This, again, is the Larmor formula, which we obtained earlier by a different 
route (Eq. 11.61). 

Although I derived them on the assumption that v = 0, Eqs. 11.69 and 11.70 
actually hold to good approximation as long as v « c. An exact treatment of the 
case v f= 0 is harder,9 both for the obvious reason that Erad is more complicated, 

-~-~---------------------- ~ v I 
FIGURE 11.12 

9In the context of special relativity, the condition v = 0 simply represents an astute choice of reference 
system, with no essential loss of generality. If you can decide how P transforms, you can deduce the 
general (Lienard) result from the v = 0 (Larmor) formula (see Prob. 12.71). 
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and also for the more subtle reason that Srad· the rate at which energy passes 
through the sphere, is not the same as the rate at which energy left the particle. 
Suppose someone is firing a stream of bullets out the window of a moving car 
(Fig.l1.12). The rate Nt at which the bullets strike a stationary target is not the 
same as the rate Ng at which they left the gun, because of the motion of the car. 
In fact, you can easily check that N g = ( 1 - vIc) Nr. if the car is moving towards 
the target, and 

( 
..£.y) 

Ng = 1- - c- Nt 

for arbitrary directions (here v is the velocity of the car, c is that of the bullets­
relative to the ground-and ..£ is a unit vector from car to target). In our case, if 
dW fdt is the rate at which energy passes through the sphere at radius 1-, then the 
rate at which energy left the charge was 

(11.71) 

(I used Eq. 10.78 to express atrfat.) But 

4·U ..£.y 
-- = 1- --, 

't-C C 

which is precisely the ratio of Ng to Nt; it's a purely geometrical factor (the same 
as in the Doppler effect). 

The power radiated by the particle into a patch of area ~t-2 sin 0 dO d ¢ = ~t-2 d Q 

on the sphere is therefore given by 

1..£ x (u x a)l 2 

(..£. u)S 
(11.72) 

where dQ = sin 0 dOd¢ is the solid angle into which this power is radiated. 
Integrating over 0 and ¢ to get the total power radiated is no picnic, and for now 
I shall simply quote the answer: 

(11.73) 

where y = 1/J1- v2 jc2 • This is Lienard's generalization of the Larmor for­
mula (to which it reduces when v «c). The factor y 6 means that the radiated 
power increases enormously as the particle velocity approaches the speed of light. 

Example 11.3. Suppose v and a are instantaneously collinear (at time tr ), as, 
for example, in straight-line motion. Find the angular distribution of the radiation 
(Eq. 11.72) and the total power emitted. 
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Solution 
In this case (u x a) = c(4 x a), so 

dP q2c2 14 X (4 X a)l 2 

dQ = 16n2Eo (c - 4 · v)5 • 

Now 

4 x (4 x a) = (4 · a) 4- a, so 14 x (4 x a) 12 = a2 
- (4 · a)2

. 

In particular, if we let the z axis point along v, then 

dP J.-Loq 2a2 sin2 (} 

dQ = 16n2c (1 - f3 cos 0)5' 
(11.74) 

where f3 = vjc. This is consistent, of course, with Eq. 11.69, in the case v = 0. 
However, for very large v ({3 ~ 1) the donut of radiation (Fig. 11.11) is stretched 
out and pushed forward by the factor (1- f3 coso)-5, as indicated in Fig. 11.13. 
Although there is still no radiation in precisely the forward direction, most of it is 
concentrated within an increasingly narrow cone about the forward direction (see 
Prob. 11.15). 

X 

FIGURE 11.13 

The total power emitted is found by integrating Eq. 11.74 over all angles: 

p = J dP dQ = J.-Loq2a2 J sin2 (} sinO dOd¢. 
dQ 16n2c (1 - f3 cos 0)5 

The ¢ integral is 2n; the (} integral is simplified by the substitution x = cos (}: 

J.-Loq2a21+1 (1 - x2) 
P= ---

5
dx. 

8nc _1 (1- f3x) 

Integration by parts yields 1C1 - {32)-3, and I conclude that 

p = J.-Loq2a2y6 

6nc 
(11.75) 

This result is consistent with the Lienard formula (Eq. 11.73), for the case of 
collinear v and a. Notice that the angular distribution of the radiation is the same 
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whether the particle is accelerating or decelerating; it only depends on the square 
of a, and is concentrated in the forward direction (with respect to the velocity) in 
either case. When a high speed electron hits a metal target it rapidly decelerates, 
giving off what is called bremsstrahlung, or "braking radiation." What I have 
described in this example is essentially the classical theory of bremsstrahlung. 

X 

Problem 11.12 An electron is released from rest and falls under the influence of 
gravity. In the first centimeter, what fraction of the potential energy lost is radiated 
away? 

Problem 11.13 A positive charge q is fired head-on at a distant positive charge 
Q (which is held stationary), with an initial velocity v0 • It comes in, decelerates 
to v = 0, and returns out to infinity. What fraction of its initial energy (~mv5) is 
radiated away? Assume v0 « c, and that you can safely ignore the effect of radiative 
losses on the motion of the particle. [Answer: (16j45)(q/Q)(v0 jc)3 .] 

Problem 11.14 In Bohr's theory of hydrogen, the electron in its ground state was 
supposed to travel in a circle of radius 5 x w-11m, held in orbit by the Coulomb 
attraction of the proton. According to classical electrodynamics, this electron should 
radiate, and hence spiral in to the nucleus. Show that v « c for most of the trip 
(so you can use the Larmor formula), and calculate the lifespan of Bohr's atom. 
(Assume each revolution is essentially circular.) 

Problem 11.15 Find the angle 8max at which the maximum radiation is emitted, in 
Ex. 11.3 (Fig. 11.13). Show that for ultrarelativistic speeds (v close to c), 8max ~ 
.J (1 - {3) f2. What is the intensity of the radiation in this maximal direction (in 
the ultrarelativistic case), in proportion to the same quantity for a particle instanta­
neously at rest? Give your answer in terms of y. 

Problem 11.16 In Ex. 11.3 we assumed the velocity and acceleration were (instan­
taneously, at least) collinear. Carry out the same analysis for the case where they are 
perpendicular. Choose your axes so that v lies along the z axis and a along the x axis 
(Fig. 11.14), so that v = v z, a= a i, and..£= sin(} cos¢ i +sin(} sin¢ y +cos(} Z. 
Check that P is consistent with the Lienard formula. [Answer: 

z 

dP f.Loq 2a2 [(1- {3 cos8)2 - (1- {3 2) sin2 
(} cos2 ¢] 

dQ 16Jl'2c (1 - {3 cos 8)5 

I 
I 

.., I 
'.J 

FIGURE 11.14 

y 

FIGURE 11.15 

z 
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For relativistic velocities ({3 ~ 1) the radiation is again sharply peaked in the for­
ward direction (Fig. 11.15). The most important application of these formulas is to 
circular motion-in this case the radiation is called synchrotron radiation. For a 
relativistic electron, the radiation sweeps around like a locomotive's headlight as 
the particle moves.] 

11.2.2 • Radiation Reaction 

An accelerating charge radiates. This radiation carries off energy, which comes, 
ultimately, at the expense of the particle's kinetic energy. Under the influence of 
a given force, therefore, a charged particle accelerates less than a neutral one of 
the same mass. The radiation exerts a force (F rad) back on the charge-a recoil 
force, rather like that of a bullet on a gun. In this section I'll derive the radiation 
reaction force from conservation of energy. Then, in the next section, I'll show 
you the actual mechanism responsible, and derive the reaction force again in the 
context of a simple model. 

For a nonrelativistic particle ( v « c), the total power radiated is given by the 
Larmor formula (Eq. 11.70): 

p = J.-Loq2a2. 
6nc 

(11.76) 

Conservation of energy suggests that this is also the rate at which the particle loses 
energy, under the influence of the radiation reaction force Frad: 

J.-Loq2a2 
Frad · V = - -

6
--. 
JfC 

(11.77) 

I say "suggests" advisedly, because this equation is actually wrong. For we cal­
culated the radiated power by integrating the Poynting vector over a sphere of 
"infinite" radius; in this calculation the velocity fields played no part, since they 
fall off too rapidly as a function of 1- to make any contribution. But the velocity 
fields do carry energy-they just don't transport it out to infinity. As the parti­
cle accelerates and decelerates, energy is exchanged between it and the velocity 
fields, at the same time as energy is irretrievably radiated away by the acceleration 
fields. Equation 11.77 accounts only for the latter, but if we want to know there­
coil force exerted by the fields on the charge, we need to consider the total power 
lost at any instant, not just the portion that eventually escapes in the form of ra­
diation. (The term "radiation reaction" is a misnomer. We should really call it the 
field reaction. In fact, we'll soon see that Frad is determined by the time deriva­
tive of the acceleration and can be nonzero even when the acceleration itself is 
instantaneously zero, and the particle is not radiating.) 

The energy lost by the particle in any given time interval, then, must equal 
the energy carried away by the radiation plus whatever extra energy has been 
pumped into the velocity fields. 10 However, if we agree to consider only intervals 

10 Actually, while the total field is the sum of velocity and acceleration fields, E = Ev + Ea, the energy 
is proportional to £ 2 = E; + 2Ev · Ea + E; and contains three terms: energy stored in the velocity 
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over which the system returns to its initial state, then the energy in the velocity 
fields is the same at both ends, and the only net loss is in the form of radiation. 
Thus Eq. 11.77, while incorrect instantaneously, is valid on the average: 

1
t2 J.L q21t2 

Frad · vdt = - -
6
° a2 dt, 

t1 rrc t1 

(11.78) 

with the stipulation that the state of the system is identical at t1 and t2 . In the case 
of periodic motion, for instance, we must integrate over an integral number of full 
cycles.U Now, the right side of Eq. 11.78 can be integrated by parts: 

t2 a2 dt = t2 (dv). (dv) dt = (v. dv) lt2- t2 d2:. vdt. 
lt! lt! dt dt dt tt lt! dt 

The boundary term drops out, since the velocities and accelerations are identical 
at t1 and t2, so Eq. 11.78 can be written equivalently as 

i12 

(Frad- ~:q: a) · vdt = 0. 

Equation 11.79 will certainly be satisfied if 

2 

Fract = J.Loq a. 
6rrc 

This is the Abraham-Lorentz formula for the radiation reaction force. 

(11.79) 

(11.80) 

Of course, Eq. 11.79 doesn't prove Eq. 11.80. It tells you nothing whatever 
about the component of Frad perpendicular to v, and it only tells you the time 
average of the parallel component-the average, moreover, over very special time 
intervals. As we'll see in the next section, there are other reasons for believing in 
the Abraham-Lorentz formula, but for now, the best that can be said is that it 
represents the simplest form the radiation reaction force could take, consistent 
with conservation of energy. 

The Abraham-Lorentz formula has disturbing implications, which are not 
entirely understood a century after the law was first proposed. For suppose a 
particle is subject to no external forces; then Newton's second law says 

J.Loq2 . 
Frad = --a = ma, 

6rrc 

fields alone (E;), energy radiated away (E~), and a cross term Ev · Ea. For the sake of simplicity, I'm 
referring to the combination (E; + 2Ev · Ea) as "energy stored in the velocity fields." These terms go 
like lj1J,4 and lf1J,3 , respectively, so neither one contributes to the radiation. 
11 For nonperiodic motion the condition that the energy in the velocity fields be the same at t1 and t2 is 
more difficult to achieve. It is not enough that the instantaneous velocities and accelerations be equal, 
since the fields farther out depend on v and a at earlier times. In principle, then, v and a and all higher 
derivatives must be identical at t1 and tz. In practice, since the velocity fields fall off rapidly with IJ,, it 
is sufficient that v and a be the same over a brief interval prior to ft and tz. 
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from which it follows that 

where 

a(t) = aoetf-r:, 

J.Loq2 
r= -­

- 6nmc · 

(11.81) 

(11.82) 

(In the case of the electron, r = 6 x 10-24s.) The acceleration spontaneously 
increases exponentially with time! This absurd conclusion can be avoided if we 
insist that a0 = 0, but it turns out that the systematic exclusion of such runaway 
solutions has an even more unpleasant consequence: If you do apply an external 
force, the particle starts to respond before the force acts! (See Prob. 11.19.) This 
acausal preacceleration jumps the gun by only a short time r; nevertheless, it is 
(to my mind) unacceptable that the theory should countenance it at all. 12 

Example 11.4. Calculate the radiation damping of a charged particle attached 
to a spring of natural frequency w0 , driven at frequency w. 

Solution 
The equation of motion is 

mx = Fspring + Frad + Fdriving = -mw5x + mrx + Fdriving· 

With the system oscillating at frequency w, 

x(t) = x0 cos(wt + 8), 

so 

... 2. x = -w x. 

Therefore 

•• • 2 F. mx + myx + mw0x = driving• (11.83) 

and the damping factor y is given by 

(11.84) 

[When I wrote Fdarnping = -ymv, back in Chap. 9 (Eq. 9.152), I assumed for 
simplicity that the damping was proportional to the velocity. We now know that 

12These difficulties persist in the relativistic version of the Abraham-Lorentz equation, which can be 
derived by starting with Lienard's formula instead ofLarmor's (Prob. 12.72). Perhaps they are telling 
us that there can be no such thing as a point charge in classical electrodynamics, or maybe they presage 
the onset of quantum mechanics. For guides to the literature, see Philip Pearle's chapter in D. Teplitz, 
ed., Electromagnetism: Paths to Research (New York: Plenum, 1982) and F. Rohrlich, Am. J. Phys. 
65, 1051 (1997). 
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radiation damping, at least, is proportional to ii. But it hardly matters: for sinu­
soidal oscillations any even number of derivatives of v would do, since they're all 
proportional to v.] 

Problem 11.17 

(a) A particle of charge q moves in a circle of radius R at a constant speed v. To 
sustain the motion, you must, of course, provide a centripetal force mv2 j R; 
what additional force (Fe) must you exert, in order to counteract the radia­
tion reaction? [It's easiest to express the answer in terms of the instantaneous 
velocity v.] What power (Pe) does this extra force deliver? Compare Pe with the 
power radiated (use the Larmor formula). 

(b) Repeat part (a) for a particle in simple harmonic motion with amplitude A and 
angular frequency w: w(t) = A cos(wt) z. Explain the discrepancy. 

(c) Consider the case of a particle in free fall (constant acceleration g). What is 
the radiation reaction force? What is the power radiated? Comment on these 
results. 

Problem 11.18 A point charge q, of mass m, is attached to a spring of constant k. 
At timet = 0 it is given a kick, so its initial energy is U0 = ~mv5. Now it oscillates, 
gradually radiating away this energy. 

(a) Confirm that the total energy radiated is equal to U0 • Assume the radiation 
damping is small, so you can write the equation of motion as 

and the solution as 

x+yx+w~x=O, 

x(t) = ~e-ytfZ sin(w0t), 
wo 

with Wo = v'k[iii, y = w5r, andy « wo (drop y 2 in comparison to w5, and 
when you average over a complete cycle, ignore the change in e-Y1). 

(b) Suppose now we have two such oscillators, and we start them off with identical 
kicks. Regardless of their relative positions and orientations, the total energy 
radiated must be 2U0 • But what if they are right on top of each other, so it's 
equivalent to a single oscillator with twice the charge; the Larmor formula says 
that the power radiated is four times as great, suggesting that the total will be 
4U0 • Find the error in this reasoning, and show that the total is actually 2U0 , as 
it should be. 13 

Problem 11.19 With the inclusion of the radiation reaction force (Eq. 11.80), 
Newton's second law for a charged particle becomes 

. F 
a= ra+ - , 

m 

where F is the external force acting on the particle. 

13For a more sophisticated version of this paradox, seeP. R. Berman, Am. J. Phys. 78, 1323 (2010). 
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(a) In contrast to the case of an uncharged particle (a= F jm), acceleration (like 
position and velocity) must now be a continuous function of time, even if the 
force changes abruptly. (Physically, the radiation reaction damps out any rapid 
change in a.) Prove that a is continuous at any time t, by integrating the equation 
of motion above from (t - E) to (t + E) and taking the limitE ~ 0. 

(b) A particle is subjected to a constant force F, beginning at time t = 0 and lasting 
until time T. Find the most general solution a(t) to the equation of motion in 
each of the three periods: (i) t < 0; (ii) 0 < t < T; (iii) t > T. 

(c) Impose the continuity condition (a) at t = 0 and t = T. Show that you can 
either eliminate the runaway in region (iii) or avoid preacceleration in region 
(i), but not both. 

(d) If you choose to eliminate the runaway, what is the acceleration as a function 
of time, in each interval? How about the velocity? (The latter must, of course, 
be continuous at t = 0 and t = T .) Assume the particle was originally at rest: 
v(-oo)=O. 

(e) Plot a(t) and v(t), both for an uncharged particle and for a (nonrunaway) 
charged particle, subject to this force. 

11.2.3 • The Mechanism Responsible for the Radiation Reaction 

In the last section, I derived the Abraham-Lorentz formula for the radiation re­
action, using conservation of energy. I made no attempt to identify the actual 
mechanism responsible for this force, except to point out that it must be a recoil 
effect of the particle's own fields acting back on the charge. Unfortunately, the 
fields of a point charge blow up right at the particle, so it's hard to see how one 
can calculate the force they exert.14 Let's avoid this problem by considering an 
extended charge distribution, for which the field is finite everywhere; at the end, 
we'll take the limit as the size of the charge goes to zero. In general, the electro­
magnetic force of one part (A) on another part (B) is not equal and opposite to 
the force of B on A (Fig. 11.16). If the distribution is divided up into infinitesimal 
chunks, and the imbalances are added up for all such pairs, the result is a net force 
of the charge on itself. It is this self-force, resulting from the breakdown of New­
ton's third law within the structure of the particle, that accounts for the radiation 
reaction. 

Lorentz originally calculated the electromagnetic self-force using a spherical 
charge distribution, which seems reasonable but makes the mathematics rather 
cumbersome.15 Because I am only trying to elucidate the mechanism involved, 
I shall use a less realistic model: a "dumbbell" in which the total charge q is 
divided into two halves separated by a fixed distance d (Fig. 11.17). This is the 
simplest possible arrangement of the charge that permits the essential mechanism 

14It can be done by a suitable averaging of the field, but it's not easy. See T. H. Boyer, Am. J. Phys. 
40, 1843 (1972), and references cited there. 
15See J.D. Jackson, Classical Electrodynamics, 3rd ed. (New York: John Wiley, 1999), Sect. 16.3. 
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FIGURE 11.16 
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(imbalance of internal electromagnetic forces) to function. Never mind that it's an 
unlikely model for an elementary particle: in the point limit (d ---+ 0) any model 
must yield the Abraham-Lorentz formula, to the extent that conservation of energy 
alone dictates that answer. 

Let's assume the dumbbell moves in the x direction, and is (instantaneously) 
at rest at the retarded time. The electric field at (1) due to (2) is 

(q/2) IJ- 2 
E1 = ----- [(c +-to· a)u- (4 · u)a] 

4nEo (4 · u)3 

(Eq. 10.72), where 

u = c.£ and -to = l i + d y, 

so that 

-t.·u=c~J-, -t.·a=la, and ~J-=Jf2+d2 • 

(11.85) 

(11.86) 

(11.87) 

Actually, we're only interested in the x component of E 1, since they compo­
nents will cancel when we add the forces on the two ends (for the same reason, 
we don't need to worry about the magnetic forces). Now 

and hence 

cl 
Ux = - , 

IJ-

q (lc2 - ad2 ) 
E1 -

x - 8nEoc2 (12 + d2)3/2. 

By symmetry, E2x = E1x' so the net force on the dumbbell is 

(11.88) 

(11.89) 

(11.90) 
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So far everything is exact. The idea now is to expand in powers of d; when the 
size of the particle goes to zero, all positive powers will disappear. Using Taylor's 
theorem 

we have, 

1 2 1 . 3 
l = x(t)- x(tr) = 2aT + 6aT + · · · , (11.91) 

where T = t- tr, for short. Now Tis determined by the retarded time condition 

(11.92) 

so 

d= .j(cT)2-l2= cT 1- - + - +... = cT- - T3+ ( )T4+ ... . (
aT iJ,T2 )2 a2 

2c 6c 8c 

This equation tells us d, in terms ofT; we need to "solve" it forT as a function 
of d. There's a systematic procedure for doing this, known as reversion of 
series, 16 but we can get the first couple of terms more informally as follows: 
Ignoring all higher powers of T, 

d~cT ::::} 

using this as an approximation for the cubic term, 

and so on. Thus 

1 a2 

T = - d + - d3 + ( )d4 + .... 
c 8c5 

(11.93) 

Returning to Eq. 11.91, we construct the power series for lin terms of d: 

a 2 a 3 4 
l = 2c2 d + 6c3 d + ( )d + ... (11.94) 

Putting this into Eq. 11.90, I conclude that 

Fself = -- - -- + -- + ( )d + · · · X. q
2 

[ a a J 
4nEo 4c2d 12c3 

(11.95) 

16See, for example, the CRC Standard Mathematical Tables and Formulas, 32 ed. (Boca Raton, FL: 
CRC Press, 2011). 
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Here a and a are evaluated at the retarded time (tr ), but it's easy to rewrite the 
result in terms of the present time t: 

. . . d 
a(tr) = a(t) + a(t)(tr- t) + · · · = a(t)- a(t)T + · · · = a(t)- a(t) - + · · · , 

c 

and it follows that 

q
2 

[ a(t) a(t) ] A 

Fself= -- - -- + - +( )d+ ... X. 
4rrEo 4c2d 3c3 

(11.96) 

The first term on the right is proportional to the acceleration of the charge; if 
we pull it over to the other side of Newton's second law, it simply adds to the 
dumbbell's mass. In effect, the total inertia of the charged dumbbell is 

1 q2 
m = 2mo + ----, 

4rrEo 4dc2 
(11.97) 

where m0 is the mass of either end alone. In the context of special relativity, it 
is not surprising that the electrical repulsion of the charges should enhance the 
mass of the dumbbell. For the potential energy of this configuration (in the static 
case) is 

(q/2)2 
-----
4rrEo d 

(11.98) 

and according to Einstein's formulaE = mc2
, this energy contributes to the iner­

tia of the object.17 

The second term in Eq. 11.96 is the radiation reaction: 

2. 
pint_ f.Loq a 

rad- 12rrc . (11.99) 

It alone (apart from the mass correction18 ) survives in the "point dumbbell" limit 
d-+ 0. Unfortunately, it differs from the Abraham-Lorentz formula by a factor 
of 2. But then, this is only the self-force associated with the interaction between 1 
and 2-hence the superscript "int." There remains the force of each end on itself. 
When the latter is included (see Prob. 11.20), the result is 

(11.100) 

17The fact that the numbers work out perfectly is a lucky feature of this configuration. If you do the 
same calculation for the dumbbell in longitudinal motion, the mass correction is only half of what it 
"should" be (there's a 2, instead of a 4, in Eq. 11.97), and for a sphere it's off by a factor of 3/4. This 
notorious paradox has been the subject of much debate over the years. See D. J. Griffiths and R. E. 
Owen, Am. J. Phys. 51, 1120 (1983). 
180f course, the limit d ---+ 0 has an embarrassing effect on the mass term. In a sense, it doesn't matter, 
since only the total mass m is observable; maybe mo somehow has a compensating (negative!) infinity, 
so that m comes out finite. This awkward problem persists in quantum electrodynamics, where it is 
"swept under the rug" in a procedure known as mass renormalization. 
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reproducing the Abraham-Lorentz formula exactly. Conclusion: The radiation 
reaction is due to the force of the charge on itself--or, more elaborately, the net 
force exerted by the fields generated by different parts of the charge distribution 
acting on one another. 

Problem 11.20 Deduce Eq. 11.100 from Eq. 11.99. Here are three methods: 

(a) Use the Abraham-Lorentz formula to determine the radiation reaction on each 
end of the dumbbell; add this to the interaction term (Eq. 11.99). 

(b) Method (a) has the defect that it uses the Abraham-Lorentz formula-the 
very thing that we were trying to derive. To avoid this, let F(q) be the total 
d-independent part of the self-force on a charge q. Then 

F(q) = Fin1(q) + 2F(qj2), 

where Fint is the interaction part (Eq. 11.99), and F(q/2) is the self-force on 
each end. Now, F ( q) must be proportional to q 2 , since the field is proportional 
to q and the force is qE. So F(q /2) = (1/4)F(q). Take it from there. 

(c) Smear out the charge along a strip of length L oriented perpendicular to the 
motion (the charge density, then, is ). = q J L); find the cumulative interaction 
force for all pairs of segments, using Eq. 11.99 (with the correspondence q /2 ---+ 
). dy1, at one end and q/2---+ ). dy2 at the other). Make sure you don't count the 
same pair twice. 

Problem 11.2119 An electric dipole rotates at constant angular velocity w in the xy 

plane. (The charges, ±q, are at r ± = ±R (cos wt i + sin wt y); the magnitude of the 
dipole moment is p = 2q R .) 

(a) Find the interaction term in the self-torque (analogous to Eq. 11.99). Assume 
the motion is nonrelativistic (wR «c). 

(b) Use the method of Prob. 11.20(a) to obtain the total radiation reaction torque 

. [ J-Lop
2
w

3 A] on this system. Answer: - --- z. 
6:n:c 

(c) Check that this result is consistent with the power radiated (Eq. 11.60). 

More Problems on Chapter 11 

Problem 11.22 A particle of mass m and charge q is attached to a spring with 
force constant k, hanging from the ceiling (Fig. 11.18). Its equilibrium position is 
a distance h above the floor. It is pulled down a distance d below equilibrium and 
released, at time t = 0. 

(a) Under the usual assumptions (d «). «h), calculate the intensity of the radi­
ation hitting the floor, as a function of the distance R from the point directly 
below q. [Note: The intensity here is the average power per unit area of .floor.] 

19For related problems, see D. R. Stump and G. L. Pollack, Am. J. Phys. 65, 81 (1997); D. Griffiths 
and E. Szeto, Am. J. Phys. 46, 244 (1978). 
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FIGURE 11.18 

At what R is the radiation most intense? Neglect the radiative damping of the 
oscillator. [Answer: J.Loq 2d2(J} R2hj32rr 2c(R2 + h2) 512] 

(b) As a check on your formula, assume the floor is of infinite extent, and calculate 
the average energy per unit time striking the entire floor. Is it what you'd expect? 

(c) Because it is losing energy in the form of radiation, the amplitude of the oscilla­
tion will gradually decrease. After what time -r has the amplitude been reduced 
to d j e? (Assume the fraction of the total energy lost in one cycle is very small.) 

Problem 11.23 A radio tower rises to height h above flat horizontal ground. At 
the top is a magnetic dipole antenna, of radius b, with its axis vertical. FM station 
KRUD broadcasts from this antenna at (angular) frequency w, with a total radiated 
power P (that's averaged, of course, over a full cycle). Neighbors have complained 
about problems they attribute to excessive radiation from the tower-interference 
with their stereo systems, mechanical garage doors opening and closing mysteri­
ously, and a variety of suspicious medical problems. But the city engineer who 
measured the radiation level at the base of the tower found it to be well below the 
accepted standard. You have been hired by the Neighborhood Association to assess 
the engineer's report. 

(a) In terms of the variables given (not all of which may be relevant), find the 
formula for the intensity of the radiation at ground level, a distance R from the 
base of the tower. You may assume that b « cjw «h. [Note: We are interested 
only in the magnitude of the radiation, not in its direction-when measurements 
are taken, the detector will be aimed directly at the antenna.] 

(b) How far from the base of the tower should the engineer have made the measure­
ment? What is the formula for the intensity at this location? 

(c) KRUD's actual power output is 35 kilowatts, its frequency is 90 MHz, the 
antenna's radius is 6 em, and the height of the tower is 200m. The city's radio­
emission limit is 200 microwatts/cm2 • Is KRUD in compliance? 

Problem 11.24 As a model for electric quadrupole radiation, consider two oppo­
sitely oriented oscillating electric dipoles, separated by a distanced, as shown in 
Fig. 11.19. Use the results of Sect. 11.1.2 for the potentials of each dipole, but note 
that they are not located at the origin. Keeping only the terms of first order in d: 
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z 

+p0 cos rot 

-p0 cos rot 

FIGURE 11.19 

(a) Find the scalar and vector potentials. 

(b) Find the electric and magnetic fields. 

p 

(c) Find the Poynting vector and the power radiated. Sketch the intensity profile as 
a function of (). 

Problem 11.25 As you know, the magnetic north pole of the earth does not coincide 
with the geographic north pole-in fact, it's off by about 11 o. Relative to the fixed 
axis of rotation, therefore, the magnetic dipole moment of the earth is changing with 
time, and the earth must be giving off magnetic dipole radiation. 

(a) Find the formula for the total power radiated, in terms of the following param­
eters: \II (the angle between the geographic and magnetic north poles), M (the 
magnitude of the earth's magnetic dipole moment), and w (the angular velocity 
of rotation of the earth). [Hint: refer to Pro b. 11.4 or Prob. 11.11.] 

(b) Using the fact that the earth's magnetic field is about half a gauss at the equator, 
estimate the magnetic dipole moment M of the earth. 

(c) Find the power radiated. [Answer: 4 X w-s W] 

(d) Pulsars are thought to be rotating neutron stars, with a typical radius of 10 km, 
a rotational period of w-3 s, and a surface magnetic field of 108 T. What sort of 
radiated power would you expect from such a star?20 [Answer: 2 x 1036 W] 

Problem 11.26 An ideal electric dipole is situated at the origin; its dipole moment 
points in the z direction, and is quadratic in time: 

( ) 1 •• 2 A 

p t = 2Pot z, (-oo<t<oo) 

where Po is a constant. 

(a) Use the method of Section 11.1.2 to determine the (exact) electric and magnetic 
fields, for all r > 0 (there's also a delta-function term at the origin, but we're 
not concerned with that). 

[Partial Answer :V = J-LoPo cos()[(ctfr)2 - 1 ], A= /-LoP [(ctfr)- 1] z.J 
8~ 4~c 

20J. P. Ostriker and J. E. Gunn, Astrophys. J. 157, 1395 (1969). 
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(b) Calculate the power, P(r, t), passing through a sphere of radius r. 

[Answer: P5 3 t[t2 +(r/c)2].] 
12rrEor 

(c) Find the total power radiated (Eq. 11.2), and check that your answer is consis­
tent with Eq. 11.60.21 

Problem 11.27 In Section 11.2.1 we calculated the energy per unit time radiated by 
a (nonrelativistic) point charge-the Larmor formula. In the same spirit: 

(a) Calculate the momentum per unit time radiated. [Answer:~;~: a 2v.J 

(b) Calculate the angular momentum per unit time radiated. 

Answer: - 0 - (v x a). [ 
JL q2 ] 
6rrc 

Problem 11.28 Suppose the (electrically neutral) yz plane carries a time-dependent 
but uniform surface current K (t) Z. 

(a) Find the electric and magnetic fields at a height x above the plane if 

(i) a constant current is turned on at t = 0: 

I 0, 
K(t)= 

Ko, 

t:::; 0, 

t > 0. 

(ii) a linearly increasing current is turned on at t = 0: 

I 0, 
K(t) = 

at, 

t:::; 0, 

t > 0. 

(b) Show that the retarded vector potential can be written in the form 

A(x, t) = JL;C z 100 

K (t- ~ - u) du, 

and from this determine E and B. 

(c) Show that the total power radiated per unit area of surface is 

JL;C [K(t)]2. 

Explain what you mean by "radiation," in this case, given that the source is not 
localized.22 

21 Notice that B(r, t) goes like 1jr2, and one might therefore assume that this configuration does not 
radiate. However, it is not B(r, t) we require (for Eq. 11.2), but rather B(r, to+ rfc)-we track the 
fields as they propagate out to infinity-and B(r, to+ rfc) has a term that goes like 1/r. 
22For discussion and related problems, see B. R. Holstein, Am. J. Phys. 63, 217 (1995), T. A. Abbott 
and D. J. Griffiths, Am. J. Phys. 53, 1203 (1985). 
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Problem 11.29 Use the duality transformation (Prob. 7.64) to construct the electric 
and magnetic fields of a magnetic monopole qm in arbitrary motion, and find the 
"Larmor formula" for the power radiated. 23 

Problem 11.30 Assuming you exclude the runaway solution in Prob. 11.19, 
calculate 

(a) the work done by the external force, 

(b) the final kinetic energy (assume the initial kinetic energy was zero), 

(c) the total energy radiated. 

Check that energy is conserved in this process. 24 

Problem 11.31 

(a) Repeat Prob. 11.19, but this time let the external force be a Dirac delta func­
tion: F(t) = k8(t) (for some constant k).25 [Note that the acceleration is now 
discontinuous at t = 0 (though the velocity must still be continuous); use the 
method ofProb. 11.19 (a) to show that ~a= -kfmr:. In this problem there are 
only two intervals to consider: (i) t < 0, and (ii) t > 0.] 

(b) As in Prob. 11.30, check that energy is conserved in this process. 

Problem 11.32 A charged particle, traveling in from - oo along the x axis, encoun­
ters a rectangular potential energy barrier 

U(x) = ~Uo, 
0, 

if 0 <X< L, 

otherwise. 

Show that, because of the radiation reaction, it is possible for the particle to tunnel 
through the barrier-that is, even if the incident kinetic energy is less than U0 , the 
particle can pass through.26 [Hint: Your task is to solve the equation 

subject to the force 

. F 
a= r:a+ - , 

m 

F(x) = Uo[ -8(x) + 8(x - L)]. 

Refer to Probs. 11.19 and 11.31, but notice that this time the force is a specified 
function of x, not t. There are three regions to consider: (i) x < 0, (ii) 0 < x < L, 
(iii) x > L. Find the general solution for a(t), v(t), andx(t) in each region, exclude 
the runaway in region (iii), and impose the appropriate boundary conditions at x = 0 
and x = L. Show that the final velocity ( v f) is related to the time T spent traversing 
the barrier by the equation 

23For related applications, see J. A. Heras, Am. J. Phys. 63, 242 (1995). 
24Problems 11.30 and 11.31 were suggested by G. L. Pollack. 
25This example was first analyzed by P. A.M. Dirac, Proc. Roy. Soc. A167, 148 (1938). 
26F. Denef et al., Phys. Rev. E 56, 3624 (1997). 
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and the initial velocity (at x = - oo) is 

V· - v - _U_o_ [1 - -----:,.,--...,-1---.,....] 
' - f mvf 1 + J\ (e-Tf"r:- 1} · 

mv1 

To simplify these results (since all we're looking for is a specific example), suppose 
the final kinetic energy is half the barrier height. Show that in this case 

Vi= __ v....:.f __ 
1- (LfvJ-c) 

In particular, if you choose L = v f r j 4, then vi = ( 4 /3) v f, the initial kinetic energy 
is (8/9)U0, and the particle makes it through, even though it didn't have sufficient 
energy to get over the barrier!] 

Problem 11.33 

(a) Find the radiation reaction force on a particle moving with arbitrary velocity in 
a straight line, by reconstructing the argument in Sect. 11.2.3 without assuming 
v(t,) = 0. [Answer: (J-L0q 2 y 4j6rrc)(a + 3y2a2 vjc2)] 

(b) Show that this result is consistent (in the sense of Eq. 11.78) with the power 
radiated by such a particle (Eq. 11.75). 

Problem 11.34 

(a) Does a particle in hyperbolic motion (Eq. 10.52) radiate? (Use the exact formula 
(Eq. 11.7 5) to calculate the power radiated.) 

(b) Does a particle in hyperbolic motion experience a radiation reaction? (Use the 
exact formula (Prob. 11.33) to determine the reaction force.) 

[Comment: These famous questions carry important implications for the prin­
ciple of equivalence.27

] 

Problem 11.35 Use the result ofProb. 10.34 to determine the power radiated by an 
ideal electric dipole, p(t), at the origin. Check that your answer is consistent with 
Eq. 11.22, in the case of sinusoidal time dependence, and with Pro b. 11.26, in the 
case of quadratic time dependence. 

27T. Fulton and F. Rohrlich, Annals of Physics 9, 499 (1960); J. Cohn, Am. J. Phys. 46, 225 (1978); 
Chapter 8 of R. Peierls, Surprises in Theoretical Physics (Princeton, NJ: Princeton University Press, 
1979); the article by P. Pearle in Electromagnetism: Paths to Research, ed. D. Teplitz (New York: 
Plenum Press, 1982); C. de Almeida and A. Saa, Am. J. Phys. 14, 154 (2006). 
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12 Electrodynamics and Relativity 

12.1 . THE SPECIAL THEORY OF RELATIVITY 

12.1.1 • Einstein's Postulates 

Classical mechanics obeys the principle of relativity: the same laws apply in 
any inertial reference frame. By "inertial" I mean that the system is at rest or 
moving with constant velocity. 1 Imagine, for example, that you have loaded a 
billiard table onto a railroad car, and the train is going at constant speed down 
a smooth straight track. The game will proceed exactly the same as it would 
if the train were parked in the station; you don't have to "correct" your shots 
for the fact that the train is moving-indeed, if you pulled all the curtains, you 
would have no way of knowing whether the train was moving or not. Notice 
by contrast that you know immediately if the train speeds up, or slows down, 
or rounds a corner, or goes over a bump--the billiard balls roll in weird curved 
trajectories, and you yourself feel a lurch and spill coffee on your shirt. The 
laws of mechanics, then, are certainly not the same in accelerating reference 
frames. 

In its application to classical mechanics, the principle of relativity is hardly 
new; it was stated clearly by Galileo. Question: does it also apply to the laws of 
electrodynamics? At first glance, the answer would seem to be no. After all, a 
charge in motion produces a magnetic field, whereas a charge at rest does not. A 
charge carried along by the train would generate a magnetic field, but someone on 
the train, applying the laws of electrodynamics in that system, would predict no 
magnetic field. In fact, many of the equations of electrodynamics, starting with 
the Lorentz force law, make explicit reference to "the" velocity of the charge. 
It certainly appears, therefore, that electromagnetic theory presupposes the exis­
tence of a unique stationary reference frame, with respect to which all velocities 
are to be measured. 

And yet there is an extraordinary coincidence that gives us pause. Suppose we 
mount a wire loop on a freight car, and have the train pass between the poles of a 

1 This raises an awkward problem: If the laws of physics hold just as well in a uniformly moving frame, 
then we have no way of identifying the "rest" frame in the first place, and hence no way of checking 
that some other frame is moving at constant velocity. To avoid this trap, we define an inertial frame 
formally as one in which Newton's first law holds. If you want to know whether you're in an inertial 
frame, throw some rocks around-if they travel in straight lines at constant speed, you've got yourself 
an inertial frame, and any frame moving at constant velocity with respect to you will be another inertial 
frame (see Prob. 12.1). 
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FIGURE 12.1 

giant magnet (Fig. 12.1). As the loop rides through the magnetic field, a motional 
emf is established; according to the flux rule (Eq. 7 .13), 

£ =- dct>. 
dt 

This emf, remember, is due to the magnetic force on charges in the wire loop, 
which are moving along with the train. On the other hand, if someone on the 
train naively applied the laws of electrodynamics in that system, what would the 
prediction be? No magnetic force, because the loop is at rest. But as the magnet 
flies by, the magnetic field in the freight car changes, and a changing magnetic 
field induces an electric field, by Faraday's law. The resulting electric force would 
generate an emf in the loop given by Eq. 7.14: 

£ =- dct>. 
dt 

Because Faraday's law and the flux rule predict exactly the same emf, people on 
the train will get the right answer, even though their physical interpretation of the 
process is completely wrong! 

Or is it? Einstein could not believe this was a mere coincidence; he took it, 
rather, as a clue that electromagnetic phenomena, like mechanical ones, obey the 
principle of relativity. In his view, the analysis by the observer on the train is just 
as valid as that of the observer on the ground. If their interpretations differ (one 
calling the process electric, the other magnetic), so be it; their actual predictions 
are in agreement. Here's what he wrote on the first page of his 1905 paper intro­
ducing the special theory of relativity: 

It is known that Maxwell's electrodynamics-as usually understood at 
the present time-when applied to moving bodies, leads to asymmetries 
which do not appear to be inherent in the phenomena. Take, for example, the 
reciprocal electrodynamic action of a magnet and a conductor. The observ­
able phenomenon here depends only on the relative motion of the conductor 
and the magnet, whereas the customary view draws a sharp distinction be­
tween the two cases in which either one or the other of these bodies is in 
motion. For if the magnet is in motion and the conductor at rest, there arises 
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in the neighborhood of the magnet an electric field ... producing a current 
at the places where parts of the conductor are situated. But if the magnet is 
stationary and the conductor in motion, no electric field arises in the neigh­
borhood of the magnet. In the conductor, however, we find an electromotive 
force ... which gives rise-assuming equality of relative motion in the two 
cases discussed-to electric currents of the same path and intensity as those 
produced by the electric forces in the former case. 

Examples of this sort, together with unsuccessful attempts to discover 
any motion of the earth relative to the "light medium," suggest that the phe­
nomena of electrodynamics as well as of mechanics possess no properties 
corresponding to the idea of absolute rest.2 

But I'm getting ahead of the story. To Einstein's predecessors, the equality 
of the two emfs was just a lucky accident; they had no doubt that one observer 
was right and the other was wrong. They thought of electric and magnetic fields as 
strains in an invisible jellylike medium called ether, which permeated all of space. 
The speed of the charge was to be measured with respect to the ether-only then 
would the laws of electrodynamics be valid. The train observer is wrong, because 
that frame is moving relative to the ether. 

But wait a minute! How do we know the ground observer isn't moving relative 
to the ether, too? Mter all, the earth rotates on its axis once a day and revolves 
around the sun once a year; the solar system circulates around the galaxy, and for 
all I know the galaxy itself is moving at a high speed through the cosmos. All told, 
we should be traveling at well over 50 km/s with respect to the ether. Like a mo­
torcycle rider on the open road, we face an "ether wind" of high velocity-unless 
by some miraculous coincidence we just happen to find ourselves in a tailwind of 
precisely the right strength, or the earth has some sort of "windshield" and drags 
its local supply of ether along with it. Suddenly it becomes a matter of crucial im­
portance to find the ether frame, experimentally, or else all our calculations will 
be invalid. 

The problem, then, is to determine our motion through the ether-to measure 
the speed and direction of the "ether wind." How shall we do it? At first glance 
you might suppose that practically any electromagnetic experiment would suf­
fice: If Maxwell's equations are valid only with respect to the ether frame, any 
discrepancy between the experimental result and the theoretical prediction would 
be ascribable to the ether wind. Unfortunately, as nineteenth-century physicists 
soon realized, the anticipated error in a typical experiment is extremely small; as 
in the example above, "coincidences" always seem to conspire to hide the fact that 
we are using the "wrong" reference frame. So it takes an uncommonly delicate 
experiment to do the job. 

2 A translation of Einstein's first relativity paper, "On the Electrodynamics of Moving Bodies;' is 
reprinted in The Principle of Relativity, by H. A. Lorentz et al. (New York: Dover, 1923). 
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Now, among the results of classical electrodynamics is the prediction that elec­
tromagnetic waves travel through the vacuum at a speed 

1 
-- = 3.00 x 108mjs, 
~ 

relative (presumably) to the ether. In principle, then, one should be able to detect 
the ether wind by simply measuring the speed of light in various directions. Like a 
motorboat on a river, the net speed "downstream" should be a maximum, for here 
the light is swept along by the ether; in the opposite direction, where it is bucking 
the current, the speed should be a minimum (Fig. 12.2). 

~ 

Ether wind 

FIGURE 12.2 

While the idea of this experiment could not be simpler, its execution is another 
matter, because light travels so inconveniently fast. If it weren't for that "technical 
detail," you could do it with a flashlight and a stopwatch. As it happened, an 
elaborate and lovely experiment was devised by Michelson and Morley, using an 
optical interferometer of fantastic precision. I shall not go into the details here, 
because I do not want to distract your attention from the two essential points: (1) 
all Michelson and Morley were trying to do was compare the speed of light in 
different directions, and (2) what they in fact discovered was that this speed is 
exactly the same in all directions. 

Nowadays, when students are taught in high school to snicker at the na'ivete of 
the ether model, it takes some imagination to comprehend how utterly perplexing 
this result must have been at the time. All other waves (water waves, sound waves, 
waves on a string) travel at a prescribed speed relative to the propagating medium 
(the stuff that does the waving), and if this medium is in motion with respect to 
the observer, the net speed is always greater "downstream" than "upstream." Over 
the next 20 years, a series of improbable schemes were concocted in an effort 
to explain why this does not occur with light. Michelson and Morley themselves 
interpreted their experiment as confirmation of the "ether drag" hypothesis, which 
held that the earth somehow pulls the ether along with it. But this was found to be 
inconsistent with other observations, notably the aberration of starlight. 3 Various 
so-called "emission" theories were proposed, according to which the speed of 
electromagnetic waves is governed by the motion of the source-as it would be in 

3 A discussion of the Michelson-Morley experiment and related matters is to be found in R. Resnick's 
Introduction to special relativity (New York: John Wiley, 1968), Chapter 1. 
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a corpuscular theory (conceiving of light as a stream of particles). Such theories 
called for implausible modifications in Maxwell's equations, but in any event they 
were discredited by experiments using extraterrestrial light sources. Meanwhile, 
Fitzgerald and Lorentz suggested that the ether wind physically compresses all 
matter (including the Michelson-Morley apparatus itself) in just the right way to 
compensate for, and thereby conceal, the variation in speed with direction. As it 
turns out, there is a grain of truth in this, although their idea of the reason for the 
contraction was quite wrong. 

At any rate, it was not until Einstein that anyone took the Michelson-Morley 
result at face value, and suggested that the speed of light is a universal constant, 
the same in all directions, regardless of the motion of the observer or the source. 
There is no ether wind because there is no ether. Any inertial system is a suitable 
reference frame for the application of Maxwell's equations, and the velocity of a 
charge is to be measured not with respect to a (nonexistent) absolute rest frame, 
nor with respect to a (nonexistent) ether, but simply with respect to the particular 
inertial system you happen to have chosen. 

Inspired, then, both by internal theoretical hints (the fact that the laws of elec­
trodynamics are such as to give the right answer even when applied in the "wrong" 
system) and by external empirical evidence (the Michelson-Morley experiment4), 

Einstein proposed his two famous postulates: 

1. The principle of relativity. The laws of physics apply in all inertial 
reference systems. 

2. The universal speed of light. The speed of light in vacuum is the 
same for all inertial observers, regardless of the motion of the source. 

The special theory of relativity derives from these two postulates. The first ele­
vates Galileo's observation about classical mechanics to the status of a general 
law, applying to all of physics. It states that there is no absolute rest system. The 
second might be considered Einstein's response to the Michelson-Morley exper­
iment. It means that there is no ether. (Some authors consider Einstein's second 
postulate redundant-no more than a special case of the first. They maintain that 
the very existence of ether would violate the principle of relativity, in the sense 
that it would define a unique stationary reference frame. I think this is nonsense. 
The existence of air as a medium for sound does not invalidate the theory of 
relativity. Ether is no more an absolute rest system than the water in a goldfish 
bowl-which is a special system, if you happen to be the goldfish, but scarcely 
"absolute.")5 

Unlike the principle of relativity, which had roots going back several cen­
turies, the universal speed of light was radically new-and, on the face of it, 

4 Actually, Einstein appears to have been only dimly aware of the Michelson-Morley experiment at the 
time. For him, the theoretical argument was decisive. 
51 put it this way in an effort to dispel some misunderstanding as to what constitutes an absolute rest 
frame. In 1977, it became possible to measure the speed of the earth through the 3 K background 
radiation left over from the "big bang." Does this mean we have found an absolute rest system, and 
relativity is out the window? Of course not. 
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preposterous. For if I walk 5 milh down the corridor of a train going 60 milh, 
my net speed relative to the ground is "obviously" 65 milh-the speed of A (me) 
with respect to C (ground) is equal to the speed of A relative to B (train) plus the 
speed of B relative to C: 

(12.1) 

And yet, if A is a light signal (whether it comes from a flashlight on the train or 
a lamp on the ground or a star in the sky) Einstein would have us believe that its 
speed is c relative to the train and c relative to the ground: 

VAC = VAB =C. (12.2) 

Clearly, Eq. 12.1, which we now call Galileo's velocity addition rule (no one 
before Einstein would have bothered to give it a name at all) is incompatible 
with the second postulate. In special relativity, as we shall see, it is replaced by 
Einstein's velocity addition rule: 

(12.3) 

For "ordinary" speeds (VAB « c, VBc «c), the denominator is so close to 1 that 
the discrepancy between Galileo's formula and Einstein's formula is negligible. 
On the other hand, Einstein's formula has the desired property that if VAB = c, 

then automatically VAc = c: 

C + VBC 
VAC = - C 

1 + (cvBcfc2) - · 

But how can Galileo's rule, which seems to rely on nothing but common sense, 
possibly be wrong? And if it is wrong, what does this do to all of classical physics? 
The answer is that special relativity compels us to alter our notions of space and 
time themselves, and therefore also of such derived quantities as velocity, mo­
mentum, and energy. Although it developed historically out of Einstein's contem­
plation of electrodynamics, the special theory is not limited to any particular class 
of phenomena-rather, it is a description of the space-time "arena" in which all 
physical phenomena take place. And in spite of the reference to the speed of light 
in the second postulate, relativity has nothing to do with light: c is a fundamental 
velocity, and it happens that light travels at that speed, but it is perfectly possi­
ble to conceive of a universe in which there are no electric charges, and hence 
no electromagnetic fields or waves, and yet relativity would still prevail. Because 
relativity defines the structure of space and time, it claims authority not merely 
over all presently known phenomena, but over those not yet discovered. It is, as 
Kant would say, a "prolegomenon to any future physics." 
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Problem 12.1 LetS be an inertial reference system. Use Galileo's velocity addition 
rule. 

(a) Suppose that S moves with constant velocity relative to S. Show that Sis also 
an inertial reference system. [Hint: Use the definition in footnote 1.] 

(b) Conversely, show that if S is an inertial system, then it moves with respect to S 
at constant velocity. 

Problem 12.2 As an illustration of the principle of relativity in classical mechanics, 
consider the following generic collision: In inertial frame S, particle A (mass m A, 

velocity uA) hits particle B (mass mB, velocity uB). In the course of the collision 
some mass rubs off A and onto B, and we are left with particles C (mass me, 
velocity uc) and D (mass mv, velocity uv). Assume that momentum (p = mu) is 
conserved in S. 

(a) Prove that momentum is also conserved in inertial frameS, which moves with 
velocity v relative to S. [Use Galileo's velocity addition rule-this is an entirely 
classical calculation. What must you assume about mass?] 

(b) Suppose the collision is elastic inS; show that it is also elastic inS. 

Problem 12.3 

(a) What's the percent error introduced when you use Galileo's rule, instead of 
Einstein's, with VAB = 5 milh and VBc = 60 milh? 

(b) Suppose you could run at half the speed of light down the corridor of a train 
going three-quarters the speed of light. What would your speed be relative to 
the ground? 

(c) Prove, using Eq. 12.3, that if VAB < c and VBc < c then VAc < c. Interpret this 
result. 

~-=-------
FIGURE 12.3 

Problem 12.4 As the outlaws escape in their getaway car, which goes ~c, the police 
officer fires a bullet from the pursuit car, which only goes kc (Fig. 12.3). The muzzle 
velocity of the bullet (relative to the gun) is tc. Does the bullet reach its target 
(a) according to Galileo, (b) according to Einstein? 

12.1.2 • The Geometry of Relativity 

In this section I present a series of gedanken (thought) experiments that serve 
to introduce the three most striking geometrical consequences of Einstein's pos­
tulates: time dilation, Lorentz contraction, and the relativity of simultaneity. In 
Sect. 12.1.3 the same results will be derived more systematically, using Lorentz 
transformations. 
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(b) (a) (b) (a) 

FIGURE 12.4 FIGURE 12.5 

(i) The relativity of simultaneity. Imagine a freight car, traveling at constant 
speed along a smooth, straight track (Fig. 12.4). In the very center of the car 
there hangs a light bulb. When someone switches it on, the light spreads out in 
all directions at speed c. Because the lamp is equidistant from the two ends, an 
observer on the train will find that the light reaches the front end at the same 
instant as it reaches the back end: The two events in question-(a) light reaches 
the front end (and maybe a buzzer goes off) and (b) light reaches the back end 
(another buzzer sounds)---occur simultaneously. 

However, to an observer on the ground these same two events are not simul­
taneous. For as the light travels out from the bulb (going at speed c in both 
directions-that's the second postulate), the train itself moves forward, so the 
beam going to the back end has a shorter distance to travel than the one going 
forward (Fig. 12.5). According to this observer, therefore, event (b) happens be­
fore event (a). An observer passing by on an express train, meanwhile, would 
report that (a) preceded (b). Conclusion: 

Two events that are simultaneous in one inertial system are not, in 
general, simultaneous in another. 

Naturally, the train has to be going awfully fast before the discrepancy becomes 
detectable-that's why you don't notice it all the time. 

Of course, it's always possible for a naive witness to be mistaken about si­
multaneity: a person sitting in the back comer of the car would hear buzzer b 
before buzzer a, simply because he's closer to the source of the sound, and a child 
might infer that b actually rang before a. But this is a trivial error, having nothing 
to do with special relativity-obviously, you must correct for the time the signal 
(sound, light, carrier pigeon, or whatever) takes to reach you. When I speak of an 
observer, I mean someone with the sense to make this correction, and an obser­
vation is what he records after doing so. What you hear or see, therefore, is not 
the same as what you observe. An observation is an artificial reconstruction after 
the fact, when all the data are in, and it doesn't depend on where the observer 
is located. In fact, a wise observer will avoid the whole problem by stationing 
assistants at strategic locations, each equipped with a watch synchronized to a 
master clock, so that time measurements can be made right at the scene. I belabor 
this point in order to emphasize that the relativity of simultaneity is a genuine 
discrepancy between measurements made by competent observers in relative mo­
tion, not a simple mistake arising from a failure to account for the travel time of 
light signals. 
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Problem 12.5 Synchronized clocks are stationed at regular intervals, a million km 
apart, along a straight line. When the clock next to you reads 12 noon: 

(a) What time do you see on the 90th clock down the line? 

(b) What time do you observe on that clock? 

Problem 12.6 Every 2 years, more or less, The New York Times publishes an article 
in which some astronomer claims to have found an object traveling faster than the 
speed of light. Many of these reports result from a failure to distinguish what is 
seen from what is observed-that is, from a failure to account for light travel time. 
Here's an example: A star is traveling with speed v at an angle() to the line of sight 
(Fig. 12.6). What is its apparent speed across the sky? (Suppose the light signal from 
b reaches the earth at a time 11t after the signal from a, and the star has meanwhile 
advanced a distance 11s across the celestial sphere; by "apparent speed," I mean 
11s j 11t .) What angle() gives the maximum apparent speed? Show that the apparent 
speed can be much greater than c, even if v itself is less than c. 

a 

11s 

To earth 

FIGURE 12.6 

(ii) Time dilation. Now let's consider a light ray that leaves the bulb and strikes 
the floor of the car directly below. Question: How long does it take the light to 
make this trip? From the point of view of an observer on the train, the answer is 
easy: If the height of the car is h, the time is 

I 
I 
I 
I 
I 
I 

- h 
!:l.t = - . 

c 

I_-,.........,- .1.,_~~~~_.,....-....,.......,......... 

I\~) 

FIGURE 12.7 

(12.4) 
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(I'll use an overbar to denote measurements made on the train.) On the other hand, 
as observed from the ground, this same ray must travel farther, because the train 
itself is moving. From Fig. 12.7, I see that this distance is .jh2 + (v~t)2 , so 

Solving for ~t, we have 

and therefore 

.jh2 + (v~t)2 
~t= --'-----­

c 

h 1 
~t= ' 

c .j1- v2jc2 

(12.5) 

Evidently the time elapsed between the same two events-(a) light leaves bulb, 
and (b) light strikes center of floor-is different for the two observers. In fact, the 
interval recorded on the train clock, ~i, is shorter by the factor 

(12.6) 

Conclusion: 

Moving clocks run slow. 

This is called time dilation. It doesn't have anything to do with the mechanics 
of clocks; it's a statement about the nature of time, which applies to all properly 
functioning timepieces. 

Of all Einstein's predictions, none has received more spectacular and persua­
sive confirmation than time dilation. Most elementary particles are unstable: they 
disintegrate after a characteristic lifetime6 that varies from one species to the next. 
The lifetime of a neutron is 15 min; of a muon, 2 x w-6 s; and of a neutral pion, 
9 x w-17 s. But these are lifetimes of particles at rest. When particles are mov­
ing at speeds close to c they last much longer, for their internal clocks (whatever 
it is that tells them when their time is up) are running slow, in accordance with 
Einstein's time dilation formula. 

Example 12.1. A muon is traveling through the laboratory at three-fifths the 
speed of light. How long does it last? 

6 Actually, an individual particle may last longer or shorter than this. Particle disintegration is a random 
process, and I should really speak of the average lifetime for the species. But to avoid irrelevant 
complication, I shall pretend that every particle disintegrates after precisely the average lifetime. 
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Solution 
In this case, 

1 5 
y = J1- (3/5)2 = 4' 

so it lives longer (than at rest) by a factor of~: 

5 4 X (2 X 10-6) S = 2.5 X 10-6 S. 

It may strike you that time dilation is inconsistent with the principle of relativ­
ity. For if the ground observer says the train clock runs slow, the train observer can 
with equal justice claim that the ground clock runs slow-after all, from the train's 
point of view it is the ground that is in motion. Who's right? Answer: They're both 
right! On closer inspection, the "contradiction," which seems so stark, evaporates. 
Let me explain: In order to check the rate of the train clock, the ground observer 
uses two of his own clocks (Fig. 12.8): one to compare times at the beginning of 
the interval, when the train clock passes point A, the other to compare times at 
the end of the interval, when the train clock passes point B. Of course, he must 
be careful to synchronize his clocks before the experiment. What he finds is that 
while the train clock ticked off, say, 3 minutes, the interval between his own two 
clock readings was 5 minutes. He concludes that the train clock runs slow. 

Meanwhile, the observer on the train is checking the rate of the ground clock 
by the same procedure: She uses two carefully synchronized train clocks, and 
compares times with a single ground clock as it passes by each of them in turn 
(Fig. 12.9). She finds that while the ground clock ticks off 3 minutes, the interval 
between her train clocks is 5 minutes, and concludes that the ground clock runs 
slow. Is there a contradiction? No, for the two observers have measured different 
things. The ground observer compared one train clock with two ground clocks; 
the train observer compared one ground clock with two train clocks. Each fol­
lowed a sensible and correct procedure, comparing a single moving clock with 
two stationary ones. "So what," you say, "the stationary clocks were synchro­
nized in each instance, so it cannot matter that they used two different ones." 
But there's the rub: Clocks that are properly synchronized in one system will not 

Train clock 

Train clock B Train clock A 

C9C9 
Ground clock A i Ground clock B ~ 

Ground clock 

FIGURE 12.8 FIGURE 12.9 
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be synchronized when observed from another system. They can't be, for to say 
that two clocks are synchronized is to say that they read 12 noon simultaneously, 
and we have already learned that what's simultaneous to one observer is not si­
multaneous to another. So whereas each observer conducted a perfectly sound 
measurement, from his/her own point of view, the other observer (watching the 
process) considers that she/he made the most elementary blunder in the book, by 
using two unsynchronized clocks. That's how, in spite of the fact that his clocks 
"actually" run slow, he manages to conclude that hers are running slow (and vice 
versa). 

Because moving clocks are not synchronized, it is essential when checking 
time dilation to focus attention on a single moving clock. All moving clocks run 
slow by the same factor, but you can't start timing on one clock and then switch 
to another because they weren't in step to begin with. But you can use as many 
stationary clocks (stationary with respect to you, the observer) as you please, for 
they are properly synchronized (moving observers would dispute this, but that's 
their problem). 

Example 12.2. The twin paradox. On her 21st birthday, an astronaut takes off 
in a rocket ship at a speed of He. After 5 years have elapsed on her watch, she 
turns around and heads back at the same speed to rejoin her twin brother, who 
stayed at home. Question: How old is each twin at their reunion? 

Solution 
The traveling twin has aged 10 years (5 years out, 5 years back); she arrives at 
home just in time to celebrate her 31st birthday. However, as viewed from earth, 
the moving clock has been running slow by a factor 

1 13 
y = Jl- (12/13)2 = 5' 

The time elapsed on earthbound clocks is lf x 10 = 26, and her brother will be 
therefore celebrating his 47th birthday-he is now 16 years older than his twin sis­
ter! But don't be deceived: This is no fountain of youth for the traveling twin, for 
though she may die later than her brother, she will not have lived any more-she's 
just done it slower. During the flight, all her biological processes-metabolism, 
pulse, thought, and speech-are subject to the same time dilation that affects her 
watch. 

The so-called twin paradox arises when you try to tell this story from the 
point of view of the traveling twin. She sees the earth fly off at He, turn around 
after 5 years, and return. From her point of view, it would seem, she's at rest, 
whereas her brother is in motion, and hence it is he who should be younger at the 
reunion. An enormous amount has been written about the twin paradox, but the 
truth is there's really no paradox here at all: this second analysis is simply wrong. 
The two twins are not equivalent. The traveling twin experiences acceleration 
when she turns around to head home, but her brother does not. To put it in fancier 
language, the traveling twin is not in an inertial system-more precisely, she's 
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in one inertial system on the way out and a completely different inertial system 
on the way back. You'll see in Prob. 12.16 how to analyze this problem correctly 
from her perspective, but as far as the resolution of the "paradox" is concerned, it 
is enough to note that the traveling twin cannot claim to be a stationary observer 
because you can't undergo acceleration and remain stationary. 

Problem 12.7 In a laboratory experiment, a muon is observed to travel800 m before 
disintegrating. A graduate student looks up the lifetime of a muon (2 x w-6 s) and 
concludes that its speed was 

800m 8 v = 
2 

x 
10

_6 s = 4 x 10 mjs. 

Faster than light! Identify the student's error, and find the actual speed of this muon. 

Problem 12.8 A rocket ship leaves earth at a speed of ~c. When a clock on the 
rocket says 1 hour has elapsed, the rocket ship sends a light signal back to earth. 

(a) According to earth clocks, when was the signal sent? 

(b) According to earth clocks, how long after the rocket left did the signal arrive 
back on earth? 

(c) According to the rocket observer, how long after the rocket left did the signal 
arrive back on earth? 

(iii) Lorentz contraction. For the third gedanken experiment you must imag­
ine that we have set up a lamp at one end of a boxcar and a mirror at the other, 
so that a light signal can be sent down and back (Fig. 12.10). Question: How long 
does the signal take to complete the round trip? To an observer on the train, the 
answer is 

- ~i 
~t =2- , 

c 
(12.7) 

where ~i is the length of the car (the overbar, as before, denotes measurements 
made on the train). To an observer on the ground, the process is more complicated 
because of the motion of the train. If ~t1 is the time for the light signal to reach 
the front end, and ~t2 is the return time, then (see Fig. 12.11): 

~x + v~t1 
~tl = ' 

LampaMmor 
~ 

FIGURE 12.10 

c 

FIGURE 12.11 
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or, solving for ~t1 and ~tz: 

So the round-trip time is 

~X 
~tl = --, 

c-v 
~X 

~tz = --. 
c+v 

~X 1 
~t = ~tl + ~tz = 2 c (1 - v2 I c2) . 

But these intervals are related by the time dilation formula, Eq. 12.5: 

~i = J1- v2jc2 ~t. 

Applying this to Eqs. 12.7 and 12.8, I conclude that 
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(12.8) 

(12.9) 

The length of the boxcar is not the same when measured by an observer on the 
ground, as it is when measured by an observer on the train-from the ground 
point of view, it is somewhat shorter. Conclusion: 

Moving objects are shortened. 

We call this Lorentz contraction. Notice that the same factor, 

appears in both the time dilation formula and the Lorentz contraction formula. 
This makes it all very easy to remember: Moving clocks run slow, moving sticks 
are shortened, and the factor is always y. 

Of course, the observer on the train doesn't think her car is shortened-her 
meter sticks are contracted by that same factor, so all her measurements come out 
the same as when the train was standing in the station. In fact, from her point of 
view it is objects on the ground that are shortened. This raises again a paradoxical 
problem: If A says B's sticks are short, and B says A's sticks are short, who is 
right? Answer: They both are! But to reconcile the rival claims we must study 
carefully the actual process by which length is measured. 

Suppose you want to find the length of a board. If it's at rest (with respect to 
you) you simply lay your ruler down next to the board, record the readings at 
each end, and subtract (Fig. 12.12). (If you're really clever, you'll line up the left 
end of the ruler against the left end of the board-then you only have to read one 
number.) 

But what if the board is moving? Same story, only this time, of course, you 
must be careful to read the two ends at the same instant of time. If you don't, the 



516 Chapter 12 Electrodynamics and Relativity 

,,,,,,,,,,,!!!;!,,,,,,,,,,,, 
Ruler 

FIGURE 12.12 

board will move in the course of measurement, and obviously you'll get the wrong 
answer. But therein lies the problem: Because of the relativity of simultaneity the 
two observers disagree on what constitutes "the same instant of time." When the 
person on the ground measures the length of the boxcar, he reads the position of 
the two ends at the same instant in his system. But the person on the train, watch­
ing him do it, complains that he read the front end first, then waited a moment 
before reading the back end. Naturally, he came out short, in spite of the fact 
that (to her) he was using an undersized meter stick, which would otherwise have 
yielded a number too large. Both observers measure lengths correctly (from the 
point of view of their respective inertial frames), and each finds the other's sticks 
to be shortened. Yet there is no inconsistency, for they are measuring different 
things, and each considers the other's method improper. 

Example 12.3. The barn and ladder paradox. Unlike time dilation, there is 
no direct experimental confirmation of Lorentz contraction, simply because it's 
too difficult to get an object of measurable size going anywhere near the speed 
of light. The following parable illustrates how bizarre the world would be if the 
speed of light were more accessible. 

There once was a farmer who had a ladder too long to store in his barn 
(Fig. 12.13a). He chanced one day to read some relativity, and a solution to his 
problem suggested itself. He instructed his daughter to run with the ladder as 
fast as she could-the moving ladder having Lorentz-contracted to a size the 
barn could easily accommodate, she was to rush through the door, whereupon the 

lilliE 

(c) 

FIGURE 12.13 
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farmer would slam it behind her, capturing the ladder inside (Fig. 12.13b). The 
daughter, however, has read somewhat farther in the relativity book; she points 
out that in her reference frame the bam, not the ladder, will contract, and the fit 
will be even worse than it was with the two at rest (Fig. 12.13c). Question: Who's 
right? Will the ladder fit inside the barn, or won't it? 

Solution 
They're both right! When you say "the ladder is in the barn," you mean that all 
parts of it are inside at one instant of time, but in view of the relativity of si­
multaneity, that's a condition that depends on the observer. There are really two 
relevant events here: 

a. Back end of ladder makes it in the door. 
b. Front end of ladder hits far wall of barn. 

The farmer says a occurs before b, so there is a time when the ladder is entirely 
within the barn; his daughter says b precedes a, so there is not. Contradiction? 
Nope-just a difference in perspective. 

"But come now," I hear you protest, "when it's all over and the dust clears, 
either the ladder is inside the barn, or it isn't. There can be no dispute about that." 
Quite so, but now you're introducing a new element into the story: What happens 
as the ladder is brought to a stop? Suppose the farmer grabs the last rung of the 
ladder firmly with one hand, while he slams the door with the other. Assuming 
it remains intact, the ladder must now stretch out to its rest length. Evidently, the 
front end keeps going, even after the rear end has stopped! Expanding like an 
accordian, the front end of the ladder smashes into the far side of the barn. In 
truth, the whole notion of a "rigid" object loses its meaning in relativity, for when 
it changes its speed, different parts do not in general accelerate simultaneously­
in this way, the material stretches or shrinks to reach the length appropriate to its 
new velocity? 

But to return to the question at hand: When the ladder finally comes to a stop, 
is it inside the barn or not? The answer is indeterminate. When the front end of 
the ladder hits the far side of the barn, something has to give, and the farmer is left 
either with a broken ladder inside the barn or with the ladder intact poking through 
a hole in the wall. In any event, he is unlikely to be pleased with the outcome. 

One final comment on Lorentz contraction. A moving object is shortened only 
along the direction of its motion: 

Dimensions perpendicular to the velocity are not contracted. 

Indeed, in deriving the time dilation formula I took it for granted that the height 
of the train is the same for both observers. I'll now justify this, using a lovely 
gedanken experiment suggested by Taylor and Wheeler. 8 Imagine that we build 

7For a related paradox see E. Pierce, Am. J. Phys. 75, 610 (2007). 
8E. F. Taylor and J. A. Wheeler, Spacetime Physics 2nd ed. (San Francisco: W. H. Freeman, 1992). 
A somewhat different version of the same argument is given in J. H. Smith, Introduction to special 
relativity (Champaign, IL: Stipes, 1965). 
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a wall beside the railroad tracks, and 1 m above the rails (as measured on the 
ground), we paint a horizontal blue line. When the train goes by, a passenger leans 
out the window holding a wet paintbrush 1 m above the rails, as measured on the 
train, leaving a horizontal red line on the wall. Question: Does the passenger's red 
line lie above or below our blue one? If the rule were that perpendicular directions 
contract, then the person on the ground would predict that the red line is lower, 
while the person on the train would say it's the blue one (to the latter, of course, 
the ground is moving). The principle of relativity says that both observers are 
equally justified, but they cannot both be right. No subtleties of simultaneity or 
synchronization can rationalize this contradiction; either the blue line is higher or 
the red one is-unless they exactly coincide, which is the inescapable conclusion. 
There cannot be a law of contraction (or expansion) of perpendicular dimensions, 
for it would lead to irreconcilably inconsistent predictions. 

Problem 12.9 A Lincoln Continental is twice as long as a VW Beetle, when they 
are at rest. As the Continental overtakes the VW, going through a speed trap, a 
(stationary) policeman observes that they both have the same length. The VW is 
going at half the speed of light. How fast is the Lincoln going? (Leave your answer 
as a multiple of c.) 

Problem 12.10 A sailboat is manufactured so that the mast leans at an angle {j with 
respect to the deck. An observer standing on a dock sees the boat go by at speed v 
(Fig. 12.14). What angle does this observer say the mast makes? 

FIGURE 12.14 FIGURE 12.15 

Problem 12.11 A record turntable of radius R rotates at angular velocity w 
(Fig. 12.15). The circumference is presumably Lorentz-contracted, but the radius 
(being perpendicular to the velocity) is not. What's the ratio of the circumference 
to the diameter, in terms of wand R? According to the rules of ordinary geometry, 
it has to be 1r. What's going on here?9 

9This is known as Ehrenfest's paradox; for discussion and references, see H. Arzelies, Relativistic 
Kinematics (Elmsford, NY: Pergamon Press, 1966), Chap. IX, or T. A. Weber, Am. J. Phys. 65,486 
(1997). 
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12.1.3 • The Lorentz Transformations 

Any physical process consists of one or more events. An "event" is something 
that takes place at a specific location (x, y, z), at a precise time (t). The explosion 
of a firecracker, for example, is an event; a tour of Europe is not. Suppose we 
know the coordinates (x, y, z, t) of a particular event E in one inertial systemS, 
and we would like to calculate the coordinates (i, y, z, i) of that same event in 
some other inertial system S. What we need is a "dictionary" for translating from 
the language of S to the language of S. 

We may as well orient our axes as shown in Fig. 12.16, so that S slides along 
the x axis at speed v. If we "start the clock" (t = 0) at the moment the origins 
(0 and 6) coincide, then at timet, 6 will be a distance vt from 0, and hence 

x = d + vt, (12.10) 

where d is the distance from 6 to A at time t (A is the point on the i axis that 
is even withE when the event occurs). Before Einstein, anyone would have said 
immediately that 

d =i, (12.11) 

and thus constructed the "dictionary" 

(i) i = x- vt, 

(ii) y = y, 
(12.12) 

(iii) z = z, 

(iv) t=t. 

These are now called the Galilean transformations, though they scarcely deserve 
so fine a title-the last one, in particular, went without saying, since everyone as­
sumed the flow of time is the same for all observers. In the context of special 

y 

~v 

d 
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- --------------~' 
X 
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FIGURE 12.16 
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relativity, however, we must expect (iv) to be replaced by a rule that incorporates 
time dilation, the relativity of simultaneity, and the nonsynchronization of moving 
clocks. Likewise, there will be a modification in (i) to account for Lorentz con­
traction. As for (ii) and (iii), they, at least, remain unchanged, for we have already 
seen that there can be no modification of lengths perpendicular to the motion. 

But where does the classical derivation of (i) break down? Answer: In 
Eq. 12.11. Ford is the distance from 6 to A as measured inS, whereas x is 
the distance from 6 to A as measured in S. Because 6 and A are at rest in S, x 
is the "moving stick," which appears contracted to S: 

1 -
d= - x. 

y 

When this is inserted in Eq. 12.10 we obtain the relativistic version of (i): 

x = y(x- vt). 

(12.13) 

(12.14) 

Of course, we could have run the same argument from the point of view of 
S. The diagram (Fig. 12.17) looks similar, but in this case it depicts the scene at 
time t, whereas Fig. 12.16 showed the scene at time t. (Nate that t and t represent 
the same physical instant at E, but not elsewhere, because of the relativity of 
simultaneity.) If we assume that S also starts_ its clock when the origins coincide, 
then at timet, 0 will be a distance vt from 0, and therefore 

x = d- vt, (12.15) 

where d is the distance from 0 to A at time t, and A is that point on the x axis 
that is even with E when the event occurs. The classical physicist would have said 
that x = d, and, using (iv), recovered (i). But, as before, relativity demands that 
we observe a subtle distinction: xis the distance from 0 to A inS, whereas dis 
the distance from 0 to A in S. Because 0 and A are at rest in S, x is the "moving 
stick," and 

y 

v~ 

z 

- 1 
d= - x. 
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(12.16) 
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It follows that 

x = y(i +vi). (12.17) 

This last equation comes as no surprise, for the symmetry of the situation dic­
tates that the formula for x, in terms of i and t, should be identical to the formula 
fori in terms of x and t (Eq. 12.14), except for a switch in the sign of v. (If Sis 
going to the right at speed v, with respect to S, then Sis going to the left at speed 
v, with respect to S.) Nevertheless, this is a useful result, for if we substitute i 
from Eq. 12.14, and solve fort, we complete the relativistic "dictionary": 

(i) i = y(x- vt), 

(ii) y = y, 

(iii) Z = Z, 
(12.18) 

. - ( v ) (IV) t = y t - cZ X • 

These are the famous Lorentz transformations, with which Einstein replaced 
the Galilean ones. They contain all the geometrical information in the special 
theory, as the following examples illustrate. The reverse dictionary, which carries 
you from S back to S, can be obtained algebraically by solving (i) and (iv) for x 

and t, or, more simply, by switching the sign of v: 

(i') x = y(i + vt), 

(ii') y = y, 

(iii') z = z, (12.19) 

(. ') (- v -) IV t = y t + cZ X • 

Example 12.4. Simultaneity, synchronization, and time dilation. Suppose 
event A occurs at XA = 0, tA = 0, and event B occurs at XB = b, tB = 0. The 
two events are simul~aneous inS (they both take place at t = 0). But they are 
not simultaneous inS, for the Lorentz transformations give iA = 0, fA= 0 and 
iB = yb, tB = -y(vjc2)b. According to the S clocks, then, B occurred before 
A. This is nothing new, of course-just the relativity of simultaneity. But I wanted 
you to see how it follows from the Lorentz transformations. 

Suppose that at time t = 0 observer S decides to examine all the clocks in S. 
He finds that they read different times, depending on their location; from (iv): 

- v 
t = -y - x. 

c2 
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x=O ~v 

x=O 

Sclocks 

FIGURE 12.18 

Those to the left of the origin (negative x) are ahead, and those to the right are 
behind, by an amount that increases in proportion to their distance (Fig. 12.18). 
Only the master clock at the origin reads i = 0. Thus, the nonsynchronization of 
moving clocks, too, follows directly from the Lorentz transformations. Of course, 
from the S viewpoint it is the S clocks that are out of synchronization, as you can 
check by putting i = 0 into equation (iv'). 

Finally, suppose S focuses his attention on a single clock at rest in the S frame 
(say, the one at x = a), and watches it over some interval /)..t. How much time 
elapses on the moving clock? Because x is fixed, (iv') gives /)..t = y /)..t, or 

- 1 
/)..t = - /)..t. 

y 

That's the old time dilation formula, derived now from the Lorentz transforma­
tions. Please note that it's x we hold fixed, here, because we're watching one 
moving clock. If you hold x fixed, then you're watching a whole series of differ­
ent S clocks as they pass by, and that won't tell you whether any one of them is 
running slow. 

Example 12.5. Lorentz contraction. Imagine a stick at rest in S (hence moving 
to the right at speed v inS). Its rest length (that is, its length as measured inS) is 
f)..x = Xr - x1, where the subscripts denote the right and left ends of the stick. If 
an observer in S were to measure the stick, he would subtract the positions of the 
two ends at one instant of his timet: f)..x = Xr- xz (for tz = tr). According to (i), 
then, 

1 -
f)..x = - f)..x. 

y 

This is the old Lorentz contraction formula. Note that it's t we hold fixed, here, 
because we're talking about a measurement made by S, and he marks off the two 
ends at the same instant of his time. (S doesn't have to be so fussy, since the stick 
is at rest in her frame.) 
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Example 12.6. Einstein's velocity addition rule. Suppose a particle moves a 
distance dx (inS) in a time dt. Its velocity u is then 

dx 
U= - . 

dt 

In S, meanwhile, it has moved a distance 

di = y(dx- vdt), 

as we see from (i), in a time given by (iv): 

dt=y(dt- : 2 dx). 

The velocity in S is therefore 

_ di y(dx- vdt) 
u - - - ~~------~~ 

- dt - y (dt- vjc2dx) 

(dxjdt- v) 

1- vjc2dxjdt 

u-v 
(12.20) 

1-uvjc2 ' 

This is Einstein's velocity addition rule. To recover the more transparent nota­
tion ofEq. 12.3, let A be the particle, B be S, and C be S; then u = VAB, u = VAc, 

and v = VcB = -VBc, so Eq. 12.20 becomes 

VAB + VBC 
VAC = · 

1 + (VABVBcfc2) 

Problem 12.12 Solve Eqs. 12.18 for x, y, z. tin terms of i, y, z. t, and check that 
you recover Eqs. 12.19. 

Problem 12.13 Sophie Zabar, clairvoyante, cried out in pain at precisely the instant 
her twin brother, 500 km away, hit his thumb with a hammer. A skeptical scientist 
observed both events (brother's accident, Sophie's cry) from an airplane traveling at 
He to the right (Fig. 12.19). Which event occurred first, according to the scientist? 
How much earlier was it, in seconds? 

Problem 12.14 

(a) In Ex. 12.6 we found how velocities in the x direction transform when you 
go from S to S. Derive the analogous formulas for velocities in the y and z 
directions. 

(b) A spotlight is mounted on a boat so that its beam makes an angle 0 with the deck 
(Fig. 12.20). If this boat is then set in motion at speed v, what angle() does an 
individual photon trajectory make with the deck, according to an observer on 
the dock? What angle does the beam (illuminated, say, by a light fog) make? 
Compare Prob. 12.10. 
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Brother Sophie 

500km 

FIGURE 12.19 FIGURE 12.20 

Problem 12.15 You probably did Prob. 12.4 from the point of view of an observer 
on the ground. Now do it from the point of view of the police car, the outlaws, and 
the bullet. That is, fill in the gaps in the following table: 

speed of--+ 

relative to ,j. 
Ground Police Outlaws Bullet Do they escape? 

Ground 0 1c ~c 
Police jc 
Outlaws 
Bullet 

Problem 12.16 The twin paradox revisited. On their 21st birthday, one twin gets 
on a moving sidewalk, which carries her out to star X at speed ~c; her twin brother 
stays home. When the traveling twin gets to star X, she immediately jumps onto the 
returning moving sidewalk and comes back to earth, again at speed ~c. She arrives 
on her 39th birthday (as determined by her watch). 

(a) How old is her twin brother? 

(b) How far away is star X? (Give your answer in light years.) 

Call the outbound sidewalk systemS and the inbound oneS (the earth system 
is S). All three systems choose their coordinates and set their master clocks such 
that x = .X = i = 0, t = t = t = 0 at the moment of departure. 

(c) What are the coordinates (x, t) of the jump (from outbound to inbound side-
walk) inS? 

(d) What are the coordinates (.X, t) of the jump in S? 

(e) What are the coordinates (i, i) of the jump in S? 

(t) If the traveling twin wants her watch to agree with the clock in S, how must she 
reset it immediately after the jump? What does her watch then read when she 
gets home? (This wouldn't change her age, of course-she's still 39-it would 
just make her watch agree with the standard synchronization inS.) 

(g) If the traveling twin is asked the question, "How old is your brother right now?", 
what is the correct reply (i) just before she makes the jump, (ii) just after she 
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makes the jump? (Nothing dramatic happens to her brother during the split 
second between (i) and (ii), of course; what does change abruptly is his sister's 
notion of what "right now, back home" means.) 

(h) How many earth years does the return trip take? Add this to (ii) from (g) to 
determine how old she expects him to be at their reunion. Compare your answer 
to (a). 

12.1.4 • The Structure of Spacetime 

(i) Four-vectors. The Lorentz transformations take on a simpler appearance when 
expressed in terms of the quantities 

v 
f3 = - . 

c 
(12.21) 

Using x 0 (instead of t) and f3 (instead of v) amounts to changing the unit of time 
from the second to the meter-1 meter of x0 corresponds to the time it takes 
light to travel 1 meter (in vacuum). If, at the same time, we number the x, y, z 
coordinates, so that 

(12.22) 

then the Lorentz transformations read 

_xo = y(xo _ {Jxl), 

(12.23) 

Or, in matrix form: 

.xo y -y{J 0 0 xo 

_xl -yf3 y 0 0 xl 

(12.24) 
_x2 0 0 1 0 x2 

_x3 0 0 0 1 x3 

Letting Greek indices run from 0 to 3, this can be distilled into a single equa­
tion: 

3 

xtt = L(A~)xv, (12.25) 
v=O 
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where A is the Lorentz transformation matrix in Eq. 12.24 (the superscript f.L 
labels the row, the subscript v labels the column). One virtue of writing things 
in this abstract manner is that we can handle in the same format a more general 
transformation, in which the relative motion is not along a common xx axis; the 
matrix A would be more complicated, but the structure ofEq. 12.25 is unchanged. 

If this reminds you of the rotations we studied in Sect. 1.1.5, it's no accident. 
There we were concerned with the change in components when you switch to a 
rotated coordinate system; here we are interested in the change of components 
when you go to a moving system. In Chapter 1 we defined a (3-)vector as any set 
of three components that transform under rotations the same way (x, y, z) do; by 
extension, we now define a 4-vector as any set of four components that transform 
in the same manner as (x 0 , x 1, x 2 , x 3 ) under Lorentz transformations: 

(ilL= LA~av. (12.26) 
v=O 

For the particular case of a transformation along the x axis, 

(12.27) 

There is a 4-vector analog to the dot product (A · B = AxBx + AyBy + AzBz), 
but it's not just the sum of the products of like components; rather, the zeroth 
components have a minus sign: 

(12.28) 

This is the four-dimensional scalar product; you should check for yourself 
(Prob. 12.17) that it has the same value in all inertial systems: 

(12.29) 

just as the ordinary dot product is invariant (unchanged) under rotations, this 
combination is invariant under Lorentz transformations. 

To keep track of the minus sign, it is convenient to introduce the covariant 
vector aJL, which differs from the contravariant aJL only in the sign of the zeroth 
component: 

(12.30) 

You must be scrupulously careful about the placement of indices in this business: 
upper indices designate contravariant vectors; lower indices are for covariant 
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vectors. Raising or lowering the temporal index costs a minus sign (ao = -a0 ); 

raising or lowering a spatial index changes nothing (a1 = a 1, a2 = a2
, a3 = a 3). 

Formally, 

3 

ap, = Lgp,vav. 
v=O 

where 

is the (Minkowski) metric. 10 

-1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 

The scalar product can now be written with the summation symbol, 

3 

L:attbtt, 
tt=O 

or, more compactly still, 

(12.31) 

(12.31) 

(12.32) 

(Summation is implied whenever a Greek index is repeated in a product--once as 
a covariant index and once as contravariant. This is called the Einstein summa­
tion convention, after its inventor, who regarded it as one of his most important 
contributions.) Of course, we could just as well take care of the minus sign by 
switching to covariant b: 

(12.33) 

• Problem 12.17 Check Eq. 12.29, using Eq. 12.27. [This only proves the invariance 
of the scalar product for transformations along the x direction. But the scalar product 
is also invariant under rotations, since the first term is not affected at all, and the last 
three constitute the three-dimensional dot product a · b. By a suitable rotation, the x 
direction can be aimed any way you please, so the four-dimensional scalar product 
is actually invariant under arbitrary Lorentz transformations.] 

Problem 12.18 

(a) Write out the matrix that describes a Galilean transformation (Eq. 12.12). 

(b) Write out the matrix describing a Lorentz transformation along they axis. 

(c) Find the matrix describing a Lorentz transformation with velocity v along the 
x axis followed by a Lorentz transformation with velocity v along the y axis. 
Does it matter in what order the transformations are carried out? 

10It doesn't matter whether you define the scalar product as in Eq. 12.28 ( -a0b0 +a· b) or with an 
overall minus sign (a0b0 - a· b); if one is invariant, so is the other. In the literature, both conventions 
are common, and you just have to be aware of which one is in use. If they write the diagonal compo­
nents of the Minkowski metric as(-,+,+,+), they are using the convention in Eq. 12.28; otherwise 
they will write(+,-,-,-). 
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Problem 12.19 The parallel between rotations and Lorentz transformations is even 
more striking if we introduce the rapidity: 

() = tanh-1(vjc). (12.34) 

(a) Express the Lorentz transformation matrix A (Eq. 12.24) in terms of(), and 
compare it to the rotation matrix (Eq. 1.29). 

In some respects, rapidity is a more natural way to describe motion than ve­
locity.U For one thing, it ranges from -oo to +oo, instead of -c to +c. More 
significantly, rapidities add, whereas velocities do not. 

(b) Express the Einstein velocity addition law in terms of rapidity. 

(ii) The invariant interval. The scalar product of a 4-vector with itself, 
aJLaJL = -(a0

)
2 + (a1)2 + (a2)2 + (a3)2, can be positive (if the "spatial" terms 

dominate) or negative (if the "temporal" term dominates) or zero: 

If aiL aiL > 0, aiL is called spacelike. 

If aiL aiL < 0, aiL is called timelike. 

If aiL aiL = 0, aiL is called lightlike. 

Suppose event A occurs at (x~, x1, x~, xl), and event B at (x~. x1. x~. x1). 
The difference, 

(12.35) 

is the displacement 4-vector. The scalar product of f::uiL with itself is called the 
invariant interval between two events: 

I= (~x)IL(~x)JL = -(~xo)2 + (~x1)2 + (~x2)2 + (~x3)2 = -c2t2 + d2, 
(12.36) 

where t is the time difference between the two events and d is their spatial sep­
aration. When you transform to a moving syste~, the time between A and B is 
altered (if. t), and so is the spatial separation (d f. d), but the interval I remains 
the same. 

If the displacement between two events is timelike (I < 0), there exists an 
inertial system (accessible by Lorentz transformation) in which they occur at the 
same point. For if I hop on a train going from (A) to (B) at the speed v = djt, 
leaving event A when it occurs, I shall be just in time to pass B when it occurs; 
in the train system, A and B take place at the same point. You cannot do this for 
a spacelike interval, of course, because v would have to be greater than c, and no 
observer can exceed the speed of light (y would be imaginary and the Lorentz 
transformations would be nonsense). On the other hand, if the displacement is 
spacelike (I > 0), then there exists a system in which the two events occur at the 
same time (see Prob. 12.21). And ifthe displacement is lightlike (I = 0), then the 
two events could be connected by a light signal. 

11 E. F. Taylor and J. A. Wheeler, Spacetime Physics, 1st ed. (San Francisco: W. H. Freeman, 1966). 
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Problem 12.20 

(a) Event A happens at point (xA = 5, YA = 3, ZA = 0) and at time tA given by 
etA = 15; event B occurs at (10, 8, 0) and cts = 5, both in systemS. 

(i) What is the invariant interval between A and B? 

(ii) Is there an inertial system in which they occur simultaneously? If so, find 
its velocity (magnitude and direction) relative to S. 

(iii) Is there an inertial system in which they occur at the same point? If so, find 
its velocity relative to S. 

(b) Repeat part (a) for A= (2, 0, 0), ct = 1; and B = (5, 0, 0), ct = 3. 

Problem 12.21 The coordinates of event A are (x A, 0, 0), t A, and the coordinates of 
event B are (xs, 0, 0), ts. Assuming the displacement between them is spacelike, 
find the velocity of the system in which they are simultaneous. 

(iii) Space-time diagrams. If you want to represent the motion of a particle 
graphically, the normal practice is to plot the position versus time (that is, x runs 
vertically and t horizontally). On such a graph, the velocity can be read off as the 
slope of the curve. For some reason, the convention is reversed in relativity: every­
one plots position horizontally and time (or, better, x 0 = ct) vertically. Velocity 
is then given by the reciprocal of the slope. A particle at rest is represented by a 
vertical line; a photon, traveling at the speed of light, is described by a 45° line; 
and a rocket going at some intermediate speed follows a line of slope c I v = 1 I f3 
(Fig. 12.21). We call such plots Minkowski diagrams. 

The trajectory of a particle on a Minkowski diagram is called a world line. 
Suppose you set out from the origin at time t = 0. Because no material object 
can travel faster than light, your world line can never have a slope less than 1. 
Accordingly, your motion is restricted to the wedge-shaped region bounded by 
the two 45° lines (Fig. 12.22). We call this your "future," in the sense that it is the 

Your future at t 
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530 Chapter 12 Electrodynamics and Relativity 

locus of all points accessible to you. Of course, as time goes on, and you move 
along your chosen world line, your options progressively narrow: your "future" 
at any moment is the forward "wedge" constructed at whatever point you find 
yourself. Meanwhile, the backward wedge represents your "past," in the sense 
that it is the locus of all points from which you might have come. As for the 
rest (the region outside the forward and backward wedges), this is the generalized 
"present." You can't get there, and you didn't come from there. In fact, there's no 
way you can influence any event in the present (the message would have to travel 
faster than light); it's a vast expanse of spacetime that is absolutely inaccessible 
to you. 

I've been ignoring the y and z directions. If we include a y axis coming out of 
the page, the "wedges" become cones-and, with an undrawable z axis, hyper­
cones. Because their boundaries are the trajectories of light rays, we call them the 
forward light cone and the backward light cone. Your future, in other words, 
lies within your forward light cone, your past within your backward light cone. 

Notice that the slope of the line connecting two events on a space-time dia­
gram tells you at a glance whether the displacement between them is timelike 
(slope greater than 1), spacelike (slope less than 1), or lightlike (slope 1). For 
example, all points in the past and future are timelike with respect to your present 
location, whereas points in the present are spacelike, and points on the light cone 
are lightlike. 

Hermann Minkowski, who was the first to recognize the full geometrical sig­
nificance of special relativity, began a famous lecture in 1908 with the words, 
"Henceforth space by itself, and time by itself, are doomed to fade away into 
mere shadows, and only a kind of union of the two will preserve an independent 
reality."12 It's a lovely thought, but you must be careful not to read too much into 
it. For it is not at all the case that time is "just another coordinate, on the same 
footing with x, y, and z" (except that for obscure reasons we measure it on clocks 
instead of rulers). No: Time is utterly different from the others, and the mark of its 
distinction is the minus sign in the invariant interval. That minus sign imparts to 
spacetime a hyperbolic geometry that is much richer than the circular geometry 
of3-space. 

Under rotations about the z axis, a point P in the xy plane describes a circle: 
the locus of all points a fixed distance r = J x 2 + y2 from the origin (Fig. 12.23). 
Under Lorentz transformations, however, it is the interval I = (x2 

- c2t 2) that is 
preserved, and the locus of all points with a given value of I is a hyperbola-or, 
if we include the y axis, a hyperboloid of revolution. When the displacement is 
time like, it's a "hyperboloid of two sheets" (Fig. 12.24a); when the displacement 
is spacelike, it's a "hyperboloid of one sheet" (Fig. 12.24b). When you perform a 
Lorentz transformation (that is, when you go into a moving inertial system), the 
coordinates (x, t) of a given event will change to (x, t), but these new coordinates 
will lie on the same hyperbola as (x, t). By appropriate combinations of Lorentz 
transformations and rotations, a spot can be moved around at will over the surface 

12 A. Einstein et al., The Principle of Relativity (New York: Dover, 1923), Chapter V. 
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of a given hyperboloid, but no amount of transformation will carry it, say, from 
the upper sheet of the timelike hyperboloid to the lower sheet, or to a spacelike 
hyperboloid. 

When we were discussing simultaneity, I showed that the time ordering of two 
events can, at least in certain cases, be reversed, simply by going into a mov­
ing system. But we now see that this is not always possible: If the displacement 
4-vector between two events is timelike, their ordering is absolute; if the interval 
is space like, their ordering depends on the inertial system from which they are 
observed. In terms of the space-time diagram, an event on the upper sheet of a 
timelike hyperboloid definitely occurred after (0, 0), and one on the lower sheet 
certainly occurred before; but an event on a spacelike hyperboloid occurred at 
positive t, or negative t, depending on your reference frame. This is not an idle 
curiosity, for it rescues the notion of causality, on which all physics is based. If it 
were always possible to reverse the order of two events, then we could never say 
"A caused B ," since a rival observer would retort that B preceded A. This embar­
rassment is avoided, provided the two events are time like-separated. And causally 
related events are timelike-separated--otherwise no influence could travel from 
one to the other. Conclusion: The displacement between causally related events is 
always timelike, and their temporal ordering is the same for all inertial observers. 
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Problem 12.22 

(a) Draw a space-time diagram representing a game of catch (or a conversation) 
between two people at rest, 10 ft apart. How is it possible for them to commu­
nicate, given that their separation is spacelike? 

(b) There's an old limerick that runs as follows: 

There once was a girl named Ms. Bright, 
Who could travel much faster than light. 
She departed one day, 
The Einsteinian way, 
And returned on the previous night. 

What do you think? Even if she could travel faster than light, could she return before 
she set out? Could she arrive at some intermediate destination before she set out? 
Draw a space-time diagram representing this trip. 

Problem 12.23 Inertial systemS moves in the x direction at speed ~c relative to 
system S. (The i axis slides long the x axis, and the origins coincide at t = i = 0, 
as usual.) 

(a) On graph paper set up a Cartesian coordinate system with axes ct and x. Care­
fully draw in lines representing i = -3, -2, -1, 0, 1, 2, and 3. Also draw in 
the lines corresponding to ci = -3, -2, -1, 0, 1, 2, and 3. Label your lines 
clearly. 

(b) In S, a free particle is observed to travel from the point i = -2 at time ci = -2 
to the point i = 2 at ci = +3. Indicate this displacement on your graph. From 
the slope of this line, determine the particle's speed inS. 

(c) Use the velocity addition rule to determine the velocity inS algebraically, and 
check that your answer is consistent with the graphical solution in (b). 

12.2 • RELATIVISTIC MECHANICS 

12.2.1 • Proper Time and Proper Velocity 

As you progress along your world line, your watch runs slow; while the clock on 
the wall ticks off an interval dt, your watch only advances dr: 

(12.37) 

(I'll use u for the velocity of a particular object-you, in this instance-and 
reserve v for the relative velocity of two inertial systems.) The time r your watch 
registers (or, more generally, the time associated with the moving object) is called 
proper time. (The word suggests a mistranslation of the French "pro pre", mean­
ing "own.") In some cases, r may be a more relevant or useful quantity than t. 
For one thing, proper time is invariant, whereas "ordinary" time depends on the 
particular reference frame you have in mind. 
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Now, imagine you're on a flight to Los Angeles, and the pilot announces that 
the plane's velocity is ~c. What precisely does he mean by "velocity"? Well, of 
course, he means the displacement divided by the time: 

dl 
U= - , 

dt 
(12.38) 

and, since he is presumably talking about the velocity relative to ground, both dl 
and dt are to be measured by the ground observer. That's the important number to 
know, if you're concerned about being on time for an appointment in Los Angeles, 
but if you're wondering whether you'll be hungry on arrival, you might be more 
interested in the distance covered per unit proper time: 

dl 
11 = dr · (12.39) 

This hybrid quantity (distance measured on the ground, over time measured in the 
airplane) is called proper velocity; for contrast, I'll call u the ordinary velocity. 
The two are related by Eq. 12.37: 

(12.40) 

For speeds much less than c, of course, the difference between ordinary and proper 
velocity is negligible. 

From a theoretical standpoint, however, proper velocity has an enormous ad­
vantage over ordinary velocity: it transforms simply, when you go from one iner­
tial system to another. In fact, 1J is the spatial part of a 4-vector, 

whose zeroth component is 

dxi-L 
1]/-L = -­

- dr' 

0 dx0 ~ c 
1J - - - c- - ---;::.====::====== 

- dr- dr- J1-u2jc2' 

(12.41) 

(12.42) 

for the numerator, dxi-L, is a displacement 4-vector, while the denominator, dr, is 
invariant. Thus, for instance, when you go from system S to system S, moving at 
speed v along the common xi axis, 

(12.43) 
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More generally, 

(12.44) 

17tt is called the proper velocity 4-vector, or simply the 4-velocity. 
By contrast, the transformation rule for ordinary velocities is quite cumber­

some, as we found in Ex. 12.6 and Prob. 12.14: 

_ di Ux- V 

Ux = dt = (1- VUxfc2)' 

_ dy Uy 
u - - - ------'---

y - dt - y(1- VUxfc2)' 
(12.45) 

__ dz _ Uz 
Uz - ----= - . 

dt y(1 - VUxfc2) 

The reason for the added complexity is plain: we're obliged to transform both the 
numerator dl and the denominator dt, whereas for proper velocity, the denomi­
nator d r is invariant, so the ratio inherits the transformation rule of the numerator 
alone. 

Problem 12.24 

(a) Equation 12.40 defines proper velocity in terms of ordinary velocity. Invert that 
equation to get the formula for u in terms of 11. 

(b) What is the relation between proper velocity and rapidity (Eq. 12.34)? Assume 
the velocity is along the x direction, and find 71 as a function of (). 

Problem 12.25 A car is traveling along the 45° line inS (Fig. 12.25), at (ordinary) 
speed (2j,JS)c. 

(a) Find the components Ux and Uy of the (ordinary) velocity. 

(b) Find the components T/x and T/y of the proper velocity. 

(c) Find the zeroth component of the 4-velocity, 71°. 

SystemS is moving in the x direction with (ordinary) speed ,J275 c, relative 
to S. By using the appropriate transformation laws: 

(d) Find the (ordinary) velocity components Ux and uy inS. 

FIGURE 12.25 
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(e) Find the proper velocity components ~x and ~Yin S. 

(f) As a consistency check, verify that 

- u 
1J= . Jl- u2 fc2 

535 

• Problem 12.26 Find the invariant product of the 4-velocity with itself, T/JLT/w Is 771L 
timelike, spacelike, or lightlike? 

Problem 12.27 A cop pulls you over and asks what speed you were going. "Well, 
officer, I cannot tell a lie: the speedometer read 4 x 108 rn/s." He gives you a ticket, 
because the speed limit on this highway is 2.5 x 108 rn/s. In court, your lawyer 
(who, luckily, has studied physics) points out that a car's speedometer measures 
proper velocity, whereas the speed limit is ordinary velocity. Guilty, or innocent? 

Problem 12.28 Consider a particle in hyperbolic motion, 

x(t) = ../b2 + (ct)2 , y = z = 0. 

(a) Find the proper time r as a function oft, assuming the clocks are set so that 
r = 0 when t = 0. [Hint: Integrate Eq. 12.37.] 

(b) Find x and v (ordinary velocity) as functions of r. 

(c) Find 17JL (proper velocity) as a function of t. 

12.2.2 • Relativistic Energy and Momentum 

In classical mechanics, momentum is mass times velocity. I would like to ex­
tend this definition to the relativistic domain, but immediately a question arises: 
Should I use ordinary velocity or proper velocity? In classical physics, 11 and u 
are identical, so there is no a priori reason to favor one over the other. However, 
in the context of relativity it is essential that we use proper velocity, for the law of 
conservation of momentum would be inconsistent with the principle of relativity 
if we were to define momentum as mu (see Prob. 12.29). Thus 

mu 
p=mq= ; J1- u2 jc2 

(12.46) 

this is the relativistic momentum of an object of mass m traveling at (ordinary) 
velocity u.13 

Relativistic momentum is the spatial part of a 4-vector, 

(12.47) 

130lder treatments introduce the so-called relativistic mass, mr = mfJl - u2 fc2, sop can be writ­
ten as m7 u, but this unhelpful extra terminology has gone the way of the two-dollar bill. 
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and it is natural to ask what the temporal component, 

o o me 
p =mTJ = J1-u2jc2 

(12.48) 

represents. Einstein identified p 0c as relativistic energy: 

(12.49) 

p"" is called the energy-momentum 4-vector (or the momentum 4-vector, for 
short). 

Notice that the relativistic energy is nonzero even when the object is stationary; 
we call this rest energy: 

(12.50) 

The remainder, which is attributable to the motion, is kinetic energy 

Ekin = E - me = me - 1 . 2 2 ( 1 ) 
y'1- u2 jc2 

(12.51) 

In the nonrelativistic regime (u « c) the square root can be expanded in powers 
of u2 I c2 , giving 

1 2 3 mu4 

Ekin = 2mu + 87 + · · · ; (12.52) 

the leading term reproduces the classical formula. 
So far, this is all just notation. The physics resides in the experimental fact that 

E and p, as defined by Eqs. 12.46 and 12.49, are conserved: 

In every closed14 system, the total relativistic energy and momen­
tum are conserved. 

Mass is not conserved-a fact that has been painfully familiar to everyone since 
1945 (though the so-called "conversion of mass into energy" is really a conversion 
of rest energy into kinetic energy). 

Note the distinction between an invariant quantity (same value in all inertial 
systems) and a conserved quantity (same value before and after some process). 
Mass is invariant but not conserved; energy is conserved but not invariant; electric 
charge is both conserved and invariant; velocity is neither conserved nor invariant. 

The scalar product of p"" with itself is 

(12.53) 

14If there are external forces at work, then (just as in the classical case) the energy and momentum of 
the system itself will not, in general, be conserved. 
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as you can quickly check using the result of Pro b. 12.26. In terms of the relativistic 
energy and momentum, 

I E2- p2c2 = m2c4. I (12.54) 

This result is extremely useful, for it enables you to calculate E (if you know 
p = IP 1), or p (knowing E), without ever having to determine the velocity.15 

Problem 12.29 

(a) Repeat Prob. 12.2(a) using the (incorrect) definition p = mu, but with the (cor­
rect) Einstein velocity addition rule. Notice that if momentum (so defined) is 
conserved in S, it is not conserved in S. Assume all motion is along the x axis. 

(b) Now do the same using the correct definition, p = m 11. Notice that if momentum 
(so defined) is conserved inS, it is automatically also conserved inS. [Hint: 
Use Eq. 12.43 to transform the proper velocity.] What must you assume about 
relativistic energy? 

Problem 12.30 If a particle's kinetic energy is n times its rest energy, what is its 
speed? 

Problem 12.31 Suppose you have a collection of particles, all moving in the x 
direction, with energies E1o E2 , E3 , ••• and momenta Ph p 2 , p 3 , •••• Find the ve­
locity of the center of momentum frame, in which the total momentum is zero. 

12.2.3 • Relativistic Kinematics 

In this section we'll explore some applications of the conservation laws. 

Example 12.7. Two lumps of clay, each of (rest) mass m, collide head-on at ~c 
(Fig. 12.26). They stick together. Question: what is the mass (M) of the composite 
lump? 

CD 
M 

(before) (after) 

FIGURE 12.26 

15Equations 12.53 and 12.54 apply to a single particle of mass m. If you're talking about the total 
energy and momentum of a collection of particles, pfL p,_. is still an invariant, and you can use it to 
define the so-called invariant mass (- pJ.L p,..fc2) of the system, but this will not (in general) be the 
sum of the individual masses. 
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Solution 
In this case conservation of momentum is trivial: zero before, zero after. The 
energy of each lump prior to the collision is 

mc2 5 2 

yfl- (3/5)2 = 4mc' 

and the energy of the composite lump after the collision is M c2 (since it's at rest). 
So conservation of energy says 

5 5 
- mc2 + - mc2 = Mc2 

4 4 ' 

and hence 

Notice that this is greater than the sum of the initial masses! Mass was not con­
served in this collision; kinetic energy was converted into rest energy, so the mass 
increased. 

In the classical analysis of such a collision, we say that kinetic energy was 
converted into thermal energy-the composite lump is hotter than the two col­
liding pieces. This is, of course, true in the relativistic picture too. But what is 
thermal energy? It's the sum total of the random kinetic and potential energies of 
all the atoms and molecules in the substance. Relativity tells us that these internal 
energies are represented in the mass of the composite object: a hot potato is heav­
ier than a cold potato, and a compressed spring is heavier than a relaxed spring. 
Not by much, it's true-internal energy (U) contributes an amount U jc2 to the 
mass, and c2 is a very large number by everyday standards. You could never get 
two lumps of clay going anywhere near fast enough to detect the nonconservation 
of mass in their collision. But in the realm of elementary particles, the effect can 
be very striking. For example, when the neutral pi meson (mass 2.4 x w-28 kg) 
decays into an electron and a positron (each of mass 9.11 x w-31 kg), the rest 
energy is converted almost entirely into kinetic energy-less than 1% of the orig­
inal mass remains. 

In classical mechanics, there's no such thing as a massless (m = 0) particle­
its kinetic energy (~mu2) and its momentum (mu) would be zero, you couldn't 
apply a force to it (F = ma), and hence (by Newton's third law) it couldn't ex­
ert a force on anything else-it's a cipher, as far as physics is concerned. You 
might at first assume that the same is true in relativity; after all, p and E are still 
proportional tom. However, a closer inspection of Eqs. 12.46 and 12.49 reveals 
a loophole worthy of a congressman: If u = c, then the zero in the numerator 
is balanced by a zero in the denominator, leaving p and E indeterminate (zero 
over zero). It is just conceivable, therefore, that a massless particle could carry 
energy and momentum, provided it always travels at the speed of light. Although 
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Eqs. 12.46 and 12.49 would no longer suffice to determine E and p, Eq. 12.54 
suggests that the two should be related by 

E = pc. (12.55) 

Personally, I would regard this argument as a joke, were it not for the fact that 
at least one massless particle is known to exist in nature: the photon.16 Photons do 
travel at the speed of light, and they obey Eq. 12.55.17 They force us to take the 
"loophole" seriously. (By the way, you might ask what distinguishes a photon with 
a lot of energy from one with very little-after all, they have the same mass (zero) 
and the same speed (c). Relativity offers no answer to this question; curiously, 
quantum mechanics does: According to the Planck formula, E = hv, where his 
Planck's constant and v is the frequency. A blue photon is more energetic than a 
red one!) 

Example 12.8. A pion at rest decays into a muon and a neutrino (Fig. 12.27). 
Find the energy of the outgoing muon, in terms of the two masses, mrr and miL 
(assume mv = 0). 

(before) (after) 

FIGURE 12.27 

Solution 
In this case, 

Ebefore Pbefore 0, 

Eafter Pafter PJL + Pv· 

Conservation of momentum requires that Pv = - p JL. Conservation of energy says 
that 

Now, Ev = IPv lc, by Eq. 12.55, whereas IPJL I = J E~ - m~ c4 / c, by Eq. 12.54, so 

16Until recently, neutrinos were also assumed to be massless, but experiments in 1998 indicate that 
they in fact carry a (very small) mass. 
17The photon is the quantum of the electromagnetic field, and it is no accident that the same ratio 
between energy and momentum holds for electromagnetic waves (see Eqs. 9.60 and 9.62). 
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from which it follows that 

In a classical collision, momentum and mass are always conserved, whereas 
kinetic energy, in general, is not. A "sticky" collision generates heat at the expense 
of kinetic energy; an "explosive" collision generates kinetic energy at the expense 
of chemical energy (or some other kind). If the kinetic energy is conserved, as 
in the ideal collision of the two billiard balls, we call the process "elastic." In 
the relativistic case, momentum and total energy are always conserved, but mass 
and kinetic energy, in general, are not. Once again, we call the process elastic if 
kinetic energy is conserved. In such a case the rest energy (being the total minus 
the kinetic) is also conserved, and therefore so too is the mass. In practice, this 
means that the same particles come out as went in. Examples 12.7 and 12.8 were 
inelastic processes; the next one is elastic. 

Example 12.9. Compton scattering. A photon of energy Eo "bounces" off an 
electron, initially at rest. Find the energy E of the outgoing photon, as a function 
of the scattering angle 0 (see Fig. 12.28). 

Eo 

~ 
Electron 

(before) 

Solution 

E 

(after) 

FIGURE 12.28 

Conservation of momentum in the "vertical" direction gives Pe sin¢= Pp sinO, 
or, since Pp = Efc, 

E 
sin¢= - sinO. 

PeC 

Conservation of momentum in the "horizontal" direction gives 

Eo = Pp cos 0 +Pecos¢ = !!_cos 0 + Pe 1 - (_!__sin o) 2

, 
C C PeC 
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or 

p;e2 = (Eo - E cos 0)2 + E 2 sin2 
() = E5 - 2EoE cos() + E 2

• 

Finally, conservation of energy says that 

Eo+ me2 = E + Ee = E + .Jm2e4 + p;e2 

E + Jm2e4 + E5- 2E0 E cos()+ E 2 . 

Solving for E, I find that 

1 
E= . 

(1 -cos 0) fme2 + (1/ Eo) 
(12.56) 

The answer looks nicer when expressed in terms of photon wavelength: 

he 
E=hv = - , 

so 

). 

h 
A.= A.o + - (1- cosO). 

me 
(12.57) 

The quantity (hfme) is called the Compton wavelength ofthe electron. 

Problem 12.32 Find the velocity of the muon in Ex. 12.8. 

Problem 12.33 A particle of mass m whose total energy is twice its rest energy 
collides with an identical particle at rest. If they stick together, what is the mass of 
the resulting composite particle? What is its velocity? 

Problem 12.34 A neutral pion of (rest) mass m and (relativistic) momentum p = 
~me decays into two photons. One of the photons is emitted in the same direction 
as the original pion, and the other in the opposite direction. Find the (relativistic) 
energy of each photon. 

Problem 12.35 In the past, most experiments in particle physics involved stationary 
targets: one particle (usually a proton or an electron) was accelerated to a high 
energy E, and collided with a target particle at rest (Fig. 12.29a). Far higher relative 
energies are obtainable (with the same accelerator) if you accelerate both particles to 
energy E, and fire them at each other (Fig. 12.29b ). Classically, the energy E of one 
particle, relative to the other, is just 4E (why?) ... not much of a gain (only a factor 
of 4). But relativistically the gain can be enormous. Assuming the two particles have 
the same mass, m, show that 

- 2E2 2 
E= - -mc. 

mc2 
(12.58) 
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o-- 0 o-- ---a 
E Target E E 

(a) (b) 

FIGURE 12.29 

Suppose you use protons (mc2 = 1 GeV) withE= 30 GeV. What E do you get? 
What multiple of E does this amount to? (1 GeV=109 electron volts.) [Because of 
this relativistic enhancement, most modern elementary particle experiments involve 
colliding beams, instead of fixed targets.] 

Problem 12.36 In a pair annihilation experiment, an electron (mass m) with mo­
mentum Pe hits a positron (same mass, but opposite charge) at rest. They annihilate, 
producing two photons. (Why couldn't they produce just one photon?) If one of the 
photons emerges at 60° to the incident electron direction, what is its energy? 

12.2.4 • Relativistic Dynamics 

Newton's first law is built into the principle of relativity. His second law, in the 
form 

c;l 
~ 

(12.59) 

retains its validity in relativistic mechanics, provided we use the relativistic mo­
mentum. 

Example 12.10. Motion under a constant force. A particle of mass m is subject 
to a constant force F. If it starts from rest at the origin, at time t = 0, find its 
position (x ), as a function of time. 

Solution 

dp = F ::::} p = Ft +constant, 
dt 

but since p = 0 at t = 0, the constant must be zero, and hence 

mu 
p = =Ft . 

.j1- u2 jc2 

Solving for u, we obtain 

(F jm)t 
u = ---;::======== .j1 + (Ftjmc)l 

(12.60) 

The numerator, of course, is the classical answer-it's approximately right, if 
(F jm)t «c. But the relativistic denominator ensures that u never exceeds c; in 
fact, as t ---+ oo, u ---+ c. 
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To complete the problem we must integrate again: 

x(t) = F t t' dt' 
m Jo y'1 + (Ft' jmc)2 

mc
2 It mc

2 
[ J = F -/1 + (Ft'jmc)2 

0 
= F -/1 + (Ftjmc)2 -1 . (12.61) 

In place of the classical parabola, x(t) = (F j2m)t2, the graph is a hyperbola 
(Fig. 12.30); for this reason, motion under a constant force is often called 
hyperbolic motion. It occurs, for example, when a charged particle is placed 
in a uniform electric field. 

ct 

/ 
/ 

Relativistic 
(hyperbola) 

FIGURE 12.30 

Work, as always, is the line integral of the force: 

W= f F·dl. 

X 

(12.62) 

The work-energy theorem ("the net work done on a particle equals the increase 
in its kinetic energy") holds relativistically: 

W = j dp. dl = j dp. dl dt = j dp. udt 
dt dt dt dt ' 

while 
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so 

(12.64) 

(Since the rest energy is constant, it doesn't matter whether we use the total en­
ergy, here, or the kinetic energy.) 

Unlike the first two, Newton's third law does not, in general, extend to the 
relativistic domain. Indeed, if the two objects in question are separated in space, 
the third law is incompatible with the relativity of simultaneity. For suppose the 
force of A on Bat some instant tis F(t), and the force of B on A at the same in­
stant is -F(t); then the third law applies in this reference frame. But a moving 
observer will report that these equal and opposite forces occurred at different 
times; in his system, therefore, the third law is violated. Only in the case of con­
tact interactions, where the two forces are applied at the same physical point (and 
in the trivial case where the forces are constant) can the third law be retained. 

Because F is the derivative of momentum with respect to ordinary time, it 
shares the ugly behavior of (ordinary) velocity, when you go from one inertial 
system to another: both the numerator and the denominator must be transformed. 
Thus,18 

- dpy dpy 
Fy = - -- = __ ....::....::.--=-- dpy/dt Fy 

dt ydt- yf3 dx 
c 

y ( 1 _ !!_ dx) = y(1- f3uxfc)' 
c dt 

and similarly for the z component: 

- Fz 
Fz = . 

y(1- f3uxfc) 

The x component is even worse: 

- dfix Y dpx - yf3 dp0 

Fx= - - = = 
dt ydt- yf3 dx 

c 

dpx _ f3dp 0 

dt dt 
f3 dx 

1- -­
c dt 

We calculated dE j dt in Eq. 12.63; putting that in, 

Fx- f3(u · F)/c Fx= ------
1- f3uxfc 

F _!!_(dE) 
X C dt 

1 - f3uxfc 

(12.65) 

(12.66) 

In one special case these equations are reasonably tractable: If the particle is (in­
stantaneously) at rest inS, so that u = 0, then 

- 1 -
F_1_= - F_i, F11=F11. 

y 
(12.67) 

18Remember: y and {J pertain to the motion of S with respectS-they are constants; u is the velocity 
of the particle with respect to S. 
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That is, the component of F parallel to the motion of S is unchanged, whereas 
perpendicular components are divided by y. 

It has perhaps occurred to you that we could avoid the bad transformation 
behavior ofF by introducing a "proper" force, analogous to proper velocity, which 
would be the derivative of momentum with respect to proper time: 

dpiL 
KIL = -­- d-e. (12.68) 

This is called the Minkowski force; it is plainly a 4-vector, since pJL is a 4-vector 
and proper time is invariant. The spatial components of K JL are related to the 
"ordinary" force by 

K = (!!!__) dp = 1 F 
d-e dt J1 _ u2jc2 ' 

(12.69) 

while the zeroth component, 

Ko = dpo =~dE 
d-e c d-e' 

(12.70) 

is, apart from the 1/c, the (proper) rate at which the energy of the particle 
increases-in other words, the (proper) power delivered to the particle. 

Relativistic dynamics can be formulated in terms of the ordinary force or in 
terms of the Minkowski force. The latter is generally much neater, but since in 
the long run we are interested in the particle's trajectory as a function of ordinary 
time, the former is often more useful. When we wish to generalize some classical 
force law, such as Lorentz's, to the relativistic domain, the question arises: Does 
the classical formula correspond to the ordinary force or to the Minkowski force? 
In other words, should we write 

F = q(E + u X B), 

or should it rather be 

K = q(E + u X B)? 

Since proper time and ordinary time are identical in classical physics, there is 
no way at this stage to decide the issue. The Lorentz force, as it turns out, is an 
ordinary force-later on I'll explain why this is so, and show you how to construct 
the electromagnetic Minkowski force. 

Example 12.11. The typical trajectory of a charged particle in a uniform mag­
netic field is cyclotron motion (Fig. 12.31). The magnetic force pointing toward 
the center, 

F = QuB, 
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provides the centripetal acceleration necessary to sustain circular motion. Beware, 
however-in special relativity the centripetal force is not mu2 I R, as in classical 
mechanics. Rather, as you can see from Fig. 12.32, dp = p dO, so 

dp d(} u 
F = dt = p dt = pR. 

(Classically, of course, p = mu, so F = mu2 I R.) Thus, 

u 
QuB = pli, 

or 

p = QBR. (12.71) 

In this form, the relativistic cyclotron formula is identical to the nonrelativistic 
one, Eq. 5.3-the only difference is that pis now the relativistic momentum. 

In classical mechanics, the total momentum (P) of a collection of interacting 
particles can be expressed as the total mass (M) times the velocity of the center­
of-mass: 

dRm 
P=M- . 

dt 

In relativity the center-of-mass (Rm = -li L miri) is replaced by the center-of­
energy (Re = ~ L E i r i, where E is the total energy), and M by E I c2

: 

P- ~ dRe 
- c2 dt · (12.72) 

P now includes all forms of momentum, and E all forms of energy-not just 
mechanical, but also whatever may be stored in the fields. 19 

19The proof of Eq. 12.72 is not trivial. SeeS. Coleman and J. H. Van Vleck, Phys. Rev. 171, 1370 
(1968) or M.G. Calkin, Am. J. Phys. 39, 513 (1971). 
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Example 12.12. In Example 8.3 we found that the momentum stored in the 
fields of a coaxial cable is not zero, even though the cable itself is at rest. At 
the time, this seemed paradoxical. However, energy is being transported, from 
the battery to the resistor, and hence the center-of-energy is in motion. Indeed, if 
the battery is at z = 0, so the resistor is at z = l, then Re = (EoRo + ERl z)f E, 
where E R is the energy in the resistor, Eo is the rest of the energy, and R0 is the 
center-of-energy of E0 , so 

dRe 
dt 

(dERfdt)l A /Vl A 

---'----- z = -- z. 
E E 

According to Eq. 12.72, then, the total momentum should be 

/Vl A 

P= -- z, 
c2 

which is exactly the momentum in the fields, as calculated in Example 8.3. 
If this still seems strange to you, imagine a shoe-box, with a marble inside that 

we cannot see. The box is at rest, but the marble is rolling from one end to the 
other. Is there momentum in this system? Yes, of course, even though the box is 
stationary-there is the momentum of the marble. In the case of the coaxial cable, 
no actual object is in motion (well, the electrons are, but there are just as many of 
them going one way as the other, and their net momentum is zero), but energy is 
flowing from one end to the other, and in relativity all forms of energy in motion, 
not just rest energy (mass), constitute momentum. The "marble" (in this analogy) 
is the electromagnetic field, which transports energy, and therefore contributes 
momentum ... even though the fields themselves are perfectly static! 20 

In the following example, the center of energy is at rest, so the total momentum 
must be zero (Eq. 12.72). But the (static) electromagnetic fields do carry momen­
tum, and the problem is to locate the compensating mechanical momentum. 

Example 12.13. As a model for a magnetic dipole m, consider a rectangular 
loop of wire carrying a steady current I. Picture the current as a stream of non­
interacting positive charges that move freely within the wire. When a uniform 
electric field E is applied (Fig. 12.33), the charges accelerate in the left segment 
and decelerate in the right one.21 Find the total momentum of all the charges in 
the loop. 

Solution 
The momenta of the left and right segments cancel, so we need only consider the 
top and the bottom. Say there are N + charges in the top segment, going at speed 

20This problem was incorrectly analyzed in the third edition-see T. H. Boyer, Am. J. Phys. 76, 190 
(2008). 
21 This is not a very realistic model for a current-carrying wire, obviously, but other models lead to 
exactly the same result. See V. Hnizdo, Am. J. Phys. 65, 92 (1997). 
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FIGURE 12.33 

u+ to the right, and N _ charges in the lower segment, going at (slower) speed u_ 
to the left. The current (I = ).u) is the same in all four segments (or else charge 
would be piling up somewhere); in particular, 

QN+ QN_ Il 
I= -

1
- u+ = -

1
- u_, so N±U± = Q' 

where Q is the charge of each particle, and l is the length of the rectangle. Clas­
sically, the momentum of a single particle is p = Mu (where M is its mass), and 
the total momentum (to the right) is 

Il Il 
Pclassical = MN+u+- MN_u_ = M Q - M Q = 0, 

as one would certainly expect (after all, the loop as a whole is not moving). But 
relativistically, p = y Mu, and we get 

which is not zero, because the particles in the upper segment are moving faster. 
In fact, the gain in energy (y M c2), as a particle goes up the left segment, is 

equal to the work done by the electric force, Q E w, where w is the height of the 
rectangle, so 

and hence 

QEw 
Y+- Y- = Mc2' 

/lEw 
p=~· 

But I l w is the magnetic dipole moment of the loop; as vectors, m points into the 
page and p is to the right, so 

1 
p = - (m x E). 

c2 
(12.73) 
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Thus a magnetic dipole at rest in an electric field carries linear momentum, even 
though it is not moving! This so-called hidden momentum is strictly relativistic, 
and purely mechanical; it precisely cancels the electromagnetic momentum stored 
in the fields (Eq. 8.45).22 

Problem 12.37 In classical mechanics, Newton's law can be written in the more 
familiar form F =rna. The relativistic equation, F = dpfdt, cannot be so simply 
expressed. Show, rather, that 

F _ m [a + u(u · a)] 
- J1-u2jc2 c2-u2 , 

(12.74) 

where a= dufdt is the ordinary acceleration. 

Problem 12.38 Show that it is possible to outrun a light ray, if you're given a suffi­
cient head start, and your feet generate a constant force. 

Problem 12.39 Define proper acceleration in the obvious way: 

d71IL d2xiL 
aiL= - = --. 

dr: dr: 2 
(12.75) 

(a) Find a0 and a in terms of u and a (the ordinary acceleration). 

(b) Express aJLaJL in terms ofu and a. 

(c) Show that 71JLaJL = 0. 

(d) Write the Minkowski version of Newton's second law, Eq. 12.68, in terms of 
aiL. Evaluate the invariant product KJLT/w 

Problem 12.40 Show that 

where () is the angle between u and F. 

Problem 12.41 Show that the (ordinary) acceleration of a particle of mass m and 
charge q, moving at velocity u under the influence of electromagnetic fields E and 
B, is given by 

a= ~J1- u2jc2 [ E + u x B- ~u(u ·E)]. 

[Hint: Use Eq. 12.74.] 

22For more on hidden momentum, look again at Problem 8.6, and the reference cited there. 
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12.3 • RELATIVISTIC ELECTRODYNAMICS 

12.3.1 • Magnetism as a Relativistic Phenomenon 

Unlike Newtonian mechanics, classical electrodynamics is already consistent 
with special relativity. Maxwell's equations and the Lorentz force law can be ap­
plied legitimately in any inertial system. Of course, what one observer interprets 
as an electrical process another may regard as magnetic, but the actual particle 
motions they predict will be identical. To the extent that this did not work out 
for Lorentz and others, who studied the question in the late nineteenth century, 
the fault lay with the nonrelativistic mechanics they used, not with the electro­
dynamics. Having corrected Newtonian mechanics, we are now in a position to 
develop a complete and consistent formulation of relativistic electrodynamics. 
I emphasize that we will not be changing the rules of electrodynamics in the 
slightest-rather, we will be expressing these rules in a notation that exposes and 
illuminates their relativistic character. As we go along, I shall pause now and then 
to rederive, using the Lorentz transformations, results obtained earlier by more 
laborious means. But the main purpose of this section is to provide you with a 
deeper understanding of the structure of electrodynamics-laws that had seemed 
arbitrary and unrelated before take on a kind of coherence and inevitability when 
approached from the point of view of relativity. 

To begin with, I'd like to show you why there had to be such a thing as mag­
netism, given electrostatics and relativity, and how, in particular, you can calculate 
the magnetic force between a current-carrying wire and a moving charge with­
out ever invoking the laws of magnetism.23 Suppose you had a string of positive 
charges moving along to the right at speed v. I'll assume the charges are close 
enough together so that we may treat them as a continuous line charge A. Super­
imposed on this positive string is a negative one, -A proceeding to the left at the 
same speed v. We have, then, a net current to the right, of magnitude 

I= 2Av. (12.76) 

Meanwhile, a distance s away there is a point charge q traveling to the right 
at speed u < v (Fig. 12.34a). Because the two line charges cancel, there is no 
electrical force on q in this system (S). 

However, let's examine the same situation from the point of view of system S, 
which moves to the right with speed u (Fig. 12.34b ). In this reference frame, q 
is at rest. By the Einstein velocity addition rule, the velocities of the positive and 
negative lines are now 

V=fU 
V±= ----=-

1 =f vufc2 • 
(12.77) 

23This and several other arguments in this section are adapted from E. M. Purcell's Electricity and 
Magnetism, 2d ed. (New York: McGraw-Hill, 1985). 
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Because v_ is greater than v+, the Lorentz contraction of the spacing between 
negative charges is more severe than that between positive charges; in this frame, 
therefore, the wire carries a net negative charge! In fact, 

(12.78) 

where 

(12.79) 

and )..0 is the charge density of the positive line in its own rest system. That's not 
the same as A, of course-inS they're already moving at speed v, so 

)., = YAo, (12.80) 

where 

(12.81) 
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It takes some algebra to put Y± into simple form: 

1 
Y± = ----;::::========= 

j1- c\-(v =f u)2(1 =f vujc2)-2 

(12.82) 

The net line charge in S, then, is 

(12.83) 

Conclusion: As a result of unequal Lorentz contraction of the positive and nega­
tive lines, a current-carrying wire that is electrically neutral in one inertial system 
will be charged in another. 

Now, a line charge Atot sets up an electric field 

A tot 
E= --, 

2nEos 

so there is an electrical force on q in S, to wit: 

A.v qu 

nEoc2s J1- u2 jc2 · 
F=qE= (12.84) 

But if there's a force on q in S, there must be one in S; in fact, we can calculate 
it by using the transformation rules for forces. Since q is at rest inS, and F is 
perpendicular to u, the force inS is given by Eq. 12.67: 

- A.v qu 
F = y'1- u2 jc2 F = - ---. 

nEoc2 s 
(12.85) 

The charge is attracted toward the wire by a force that is purely electrical in S 
(where the wire is charged, and q is at rest), but distinctly nonelectrical in S 
(where the wire is neutral). Taken together, then, electrostatics and relativity im­
ply the existence of another force. This "other force" is, of course, magnetic. In 
fact, we can cast Eq. 12.85 into more familiar form by using c2 = (EoJLo)-1 and 
expressing A.v in terms of the current (Eq. 12.76): 

(JLol) 
F = -qu 2ns · (12.86) 

The term in parentheses is the magnetic field of a long straight wire, and the 
force is precisely what we would have obtained by using the Lorentz force law in 
systemS. 
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12.3.2 • How the Fields Transform 

We have learned, in various special cases, that one observer's electric field is 
another's magnetic field. It would be nice to know the general transformation 
rules for electromagnetic fields: Given the fields inS, what are the fields inS? 
Your first guess might be that E is the spatial part of one 4-vector and B the 
spatial part of another. But your guess would be wrong-it's more complicated 
than that. Let me begin by making explicit an assumption that was already used 
implicitly in Sect. 12.3.1: Charge is invariant. Like mass, but unlike energy, the 
charge of a particle is a fixed number, independent of how fast it happens to be 
moving. We shall assume also that the transformation rules are the same no matter 
how the fields were produced-electric fields associated with changing magnetic 
fields transform the same way as those set up by stationary charges. Were this 
not the case we'd have to abandon the field formulation altogether, for it is the 
essence of a field theory that the fields at a given point tell you all there is to know, 
electromagnetically, about that point; you do not have to append extra information 
regarding their source. 

With this in mind, consider the simplest possible electric field: the uni­
form field in the region between the plates of a large parallel-plate capacitor 
(Fig. 12.35a). Say the capacitor is at rest in S0 and carries surface charges ±a0 • 

Then 

ao A 

Eo= - y. (12.87) 
Eo 

Yo y 

Vo<=== 
-0' 

# xo Vo<=== 
+0' 

X 

zo v z 
(a) (b) 

-0' «« I V 

+0' «« I V 

(c) 

FIGURE 12.35 
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What if we examine this same capacitor from system S, moving to the right at 
speed v0 (Fig. 12.35b)? In this system the plates are moving to the left, but the 
field still takes the form 

a A 

E= - y; (12.88) 
Eo 

the only difference is the value of the surface charge a. [Wait a minute! Is that the 
only difference? The formulaE =a /Eo for a parallel plate capacitor came from 
Gauss's law, and whereas Gauss's law is perfectly valid for moving charges, this 
application also relies on symmetry. Are we sure that the field is still perpendicular 
to the plates? What if the field of a moving plane tilts, say, along the direction of 
motion, as in Fig. 12.35c? Well, even if it did (it doesn't), the field between the 
plates, being the superposition of the +a field and the -a field, would still run 
perpendicular to the plates (changing the sign of the charge reverses the direction 
of the field, and the vector sum kills off the parallel components).] 

Now, the total charge on each plate is invariant, and the width ( w) is un­
changed, but the length (l) is Lorentz-contracted by a factor of 

1 
Yo= , J1- v5Jc2 

(12.89) 

so the charge per unit area is increased by a factor of y0 : 

(12.90) 

Accordingly, 

E_l_ = YoEo_l_. (12.91) 

I have put in the superscript l_ to make it clear that this rule pertains to com­
ponents of E that are perpendicular to the direction of motion of S. To get the 
rule for parallel components, consider the capacitor lined up with the y z plane 

y 

/ Vj 
-~-T 

z l/ l 
~ 

d 

FIGURE 12.36 
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(Fig. 12.36). This time it is the plate separation (d) that is Lorentz-contracted, 
whereas l and w (and hence also a) are the same in both frames. Since the field 
does not depend on d, it follows that 

(12.92) 

Example 12.14. Electric field of a point charge in uniform motion. A point 
charge q is at rest at the origin in system S0 • Question: What is the electric field 
of this same charge in system S, which moves to the right at speed v0 relative 
to So? 

Solution 
In So, the field is 

or 

1 q A 

Eo= --2 ro, 
4rrEo r0 

qxo 

From the transformation rules (Eqs. 12.91 and 12.92), we have 

1 Yoqyo 

4rrEo (x5 + Y5 + z6)312 ' 

These are still expressed in terms of the S0 coordinates (x0 , y0 , zo) of the field 
point (P); I'd prefer to write them in terms of the S coordinates of P. From the 
Lorentz transformations (or, actually, the inverse transformations), 

{ 

xo 

Yo 
zo 

Yo(x + vot) 
y 
z 
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X 

FIGURE 12.37 

where R is the vector from q toP (Fig. 12.37). Thus 

E= 1 yoqR 
4nEo (yJ R2 cos2 (} + R2 sin2 0)3/2 

q(1 - v5fc2
) R 

4nEo [1 - (v5/c2) sin2 0]3/2 R 2 · 
(12.93) 

This, then, is the field of a charge in uniform motion; we got the same result in 
Chapter 10 using the retarded potentials (Eq. 10.75). The present derivation is far 
more efficient, and sheds some light on the remarkable fact that the field points 
away from the instantaneous (as opposed to the retarded) position of the charge: 
Ex gets a factor of Yo from the Lorentz transformation ofthe coordinates; Ey and 
Ez pick up theirs from the transformation ofthefield. It's the balancing of these 
two Yo's that leaves E parallel to R. 

But Eqs. 12.91 and 12.92 are not the most general transformation laws, for we 
began with a system So in which the charges were at rest and where, consequently, 
there was no magnetic field. To derive the general rule, we must start out in a 
system with both electric and magnetic fields. For this purpose S itself will serve 
nicely. In addition to the electric field 

(J 

Ey= - , 
Eo 

there is a magnetic field due to the surface currents (Fig. 12.35b): 

K± = =fa vo i. 

(12.94) 

(12.95) 

By the right-hand rule, this field points in the negative z direction; its magnitude 
is given by Ampere's law (Ex. 5.8): 

(12.96) 

In a third system, S, traveling to the right with speed v relative to S (Fig. 12.38), 
the fields would be 

(12.97) 
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where v is the velocity of S relative to S0 : 

_ v+vo _ 1 
v - y - ---;:::.=========== 

- 1 + vvofc2' - J1- v2jc2' 
(12.98) 

and 

(12.99) 

It remains only to express E andB (Eq. 12.97), in terms ofE and B (Eqs. 12.94 
and 12.96). In view of Eqs. 12.90 and 12.99, we have 

- (ji)a- (ji) -Ey = - - , Bz = - - J.Loa v. 
Yo Eo Yo 

(12.100) 

With a little algebra, you can show that 

(12.101) 

where 

(12.102) 

as always. Thus, writing E y in terms of the components of E and B in S, 

- ( vvo) a ( v ) Ey = y 1 + -
2 

- = y Ey - -
2
--Bz , 

c Eo c Eof.Lo 

whereas 

- ( VVo) ( V + Vo ) Bz = -y 1 + - 2 J.Loa 2 = y(Bz- J.LoEoVEy). 
c 1 + vvofc 
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Or, since J-LoEo = 1 I c2, 

(12.103) 

This tells us howEy and Bz transform-to do Ez and By, we simply align the 
same capacitor parallel to the xy plane instead of the xz plane (Fig. 12.39). The 
fields in S are then 

(Use the right-hand rule to get the sign of By.) The rest of the argument is 
identical--everywhere we had Ey before, read Ez, and everywhere we had Bz, 
read -By: 

(12.104) 

As for the x components, we have already seen (by orienting the capacitor 
parallel to the yz plane) that 

(12.105) 

Since in this case there is no accompanying magnetic field, we cannot deduce the 
transformation rule for Bx. But another configuration will do the job: Imagine 
a long solenoid aligned parallel to the x axis (Fig. 12.40) and at rest inS. The 
magnetic field within the coil is 

Bx = J-Lonl, (12.106) 
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where n is the number of turns per unit length, and I is the current. In system S, 
the length contracts, son increases: 

ii = yn. (12.107) 

On the other hand, time dilates: The S clock, which rides along with the solenoid, 
runs slow, so the current (charge per unit time) in S is given by 

- 1 
I= - I. 

y 

The two factors of y exactly cancel, and we conclude that 

Bx = Bx. 

Like E, the component of B parallel to the motion is unchanged. 
Here, then, is the complete set of transformation rules: 

Two special cases warrant particular attention: 

1. IfB = 0 inS, then 

or, since v = v :i, 

- 1 -
B = - 2 (v x E). 

c 

(12.108) 

(12.109) 

(12.110) 
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2. IfE = 0 inS, then 

E = -yv(Bz y- By z) = -v(Bz y- By z), 

or 

(12.111) 

In other words, if either E orB is zero (at a particular point) in one system, then 
in any other system the fields (at that point) are very simply related by Eq. 12.110 
or Eq. 12.111. 

Example 12.15. Magnetic field of a point charge in uniform motion. Find the 
magnetic field of a point charge q moving at constant velocity v. 

Solution 
In the particle's rest frame the magnetic field is zero (everywhere), so in a system 
moving with velocity -v (in which the particle is moving at velocity +v)24 

1 
B = 2 (v x E). 

c 

We calculated the electric field in Ex. 12.14. The magnetic field, then, is 

J.Lo q v ( 1 - v2 I c2
) sin 9 ~ 

B = 4n [1 - (v2 jc2 ) sin2 9]312 R2 ' 
(12.112) 

where ~ aims counterclockwise as you face the oncoming charge. Incidentally, in 
the nonrelativistic limit (v2 « c2), Eq. 12.112 reduces to 

/10 V X R 
B~ 4nq~, 

which is exactly what you would get by naive application of the Biot-Savart law 
to a point charge (Eq. 5.43). 

Problem 12.42 Why can't the electric field in Fig. 12.35b have a z component? 
After all, the magnetic field does. 

Problem 12.43 A parallel-plate capacitor, at rest in S0 and tilted at a 45° angle to 
the x0 axis, carries charge densities ±a0 on the two plates (Fig. 12.41). SystemS is 
moving to the right at speed v relative to S0• 

24Here vis the particle's velocity; in Eq. 12.110 it was the velocity of the reference frame. 
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Yo 

Zo 

(a) Find E0, the field in S0• 

(b) Find E, the field in S. 

FIGURE 12.41 

(c) What angle do the plates make with the x axis? 

(d) Is the field perpendicular to the plates inS? 
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Problem 12.44 In system S0 , a static uniform line charge).. coincides with the z axis. 

(a) Write the electric field Eo in Cartesian coordinates, for the point (x0 , y0 , z0 ). 

(b) Use Eq. 12.109 to find the electric inS, which moves with speed v in the x 
direction with respect to S0 • The field is still in terms of (x0 , y0 , z0 ); express it 
instead in terms of the coordinates (x, y, z) in S. Finally, write E in terms of the 
vector S from the present location of the wire and the angle () between S and i. 
Does the field point away from the instantaneous location of the wire, like the 
field of a uniformly moving point charge? 

Problem 12.45 

(a) Charge qA is at rest at the origin in systemS; charge q8 flies by at speed von a 
trajectory parallel to the x axis, but at y =d. What is the electromagnetic force 
on q8 as it crosses they axis? 

(b) Now study the same problem from systemS, which moves to the right with 
speed v. What is the force on q8 when qA passes the ji axis? [Do it two ways: 
(i) by using your answer to (a) and transforming the force; (ii) by computing 
the fields inS and using the Lorentz force law.] 

FIGURE 12.42 
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Problem 12.46 Two charges, ±q, are on parallel trajectories a distance d apart, 
moving with equal speeds v in opposite directions. We're interested in the force on 
+q due to -q at the instant they cross (Fig. 12.42). Fill in the following table, doing 
all the consistency checks you can think of as you go along. 

System A System B System C 
(Fig. 12.42) (+qat rest) (-qat rest) 

Eat +q due to -q: 
Bat +q due to -q: 
F on +q due to -q: 

Problem 12.47 

(a) Show that (E ·B) is relativistically invariant. 

(b) Show that (E2 - c2 B2) is relativistically invariant. 

(c) Suppose that in one inertial system B = 0 but E "# 0 (at some point P). Is it 
possible to find another system in which the electric field is zero at P? 

Problem 12.48 An electromagnetic plane wave of (angular) frequency w is traveling 
in the x direction through the vacuum. It is polarized in the y direction, and the 
amplitude of the electric field is E0 • 

(a) Write down the electric and magnetic fields, E(x, y, z, t) and B(x, y, z, t). [Be 
sure to define any auxiliary quantities you introduce, in terms of w, E0 , and the 
constants of nature.] 

(b) This same wave is observed from an inertial systemS moving in the x direction 
with spee~ v relative to the original system S. _!ind the electr!c and magnetic 
~elds inS, and express them in terms of the S coordinates: E(.X, y, z, t) and 
B(.X, y, z, t). [Again, be sure to define any auxiliary quantities you introduce.] 

(c) What is the frequency iiJ of the wave in S? Interpret this result. What is the 
wavelength i of the wave in S? From iiJ and I, determine the speed of the 
waves inS. Is it what you expected? 

(d) What is the ratio of the intensity inS to the intensity inS? As a youth, Ein­
stein wondered what an electromagnetic wave would look like if you could run 
along beside it at the speed of light. What can you tell him about the amplitude, 
frequency, and intensity of the wave, as v approaches c? 

12.3.3 • The Field Tensor 

As Eq. 12.109 indicates, E and B certainly do not transform like the spatial parts 
of the two 4-vectors-in fact, the components of E and B are stirred together 
when you go from one inertial system to another. What sort of an object is this, 
which has six components and transforms according to Eq. 12.109? Answer: It's 
an antisymmetric, second-rank tensor. 

Remember that a 4-vector transforms by the rule 

(12.113) 
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(summation over v implied), where A is the Lorentz transformation matrix. If S 
is moving in the x direction at speed v, A has the form 

( 
-~fi A-- 0 

0 

-yfi 0 0 ) 
y 0 0 
0 1 0 ' 
0 0 1 

(12.114) 

and A~ is the entry in row JL, column v. A (second-rank) tensor is an object with 
two indices, which transforms with two factors of A (one for each index): 

(12.115) 

A tensor (in 4 dimensions) has 4 x 4 = 16 components, which we can display in 
a 4 x 4 array: 

However, the 16 elements need not all be different. For instance, a symmetric 
tensor has the property 

tJLv = tvJL (symmetric tensor). (12.116) 

In this case there are 10 distinct components; 6 of the 16 are repeats (t01 = 
tw, to2 = t2o, to3 = t3o, t12 = t21, tB = t31, t23 = t32). Similarly, an 
antisymmetric tensor obeys 

tJLv = -tvJL (antisymmetric tensor). (12.117) 

Such an object has just 6 distinct elements-of the original 16, six are repeats 
(the same ones as before, only this time with a minus sign) and four are zero 
(t 00 , t 11 , t22 , and t 33 ). Thus, the general antisymmetric tensor has the form 

Let's see how the transformation rule (Eq. 12.115) works, for the six distinct 
components of an antisymmetric tensor. Starting with fl1, we have 

but according to Eq. 12.114, A~= 0 unless A.= 0 or 1, and A~ = 0 unless a = 0 
or 1. So there are four terms in the sum: 
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On the other hand, t00 = t 11 = 0, while t 01 = -t10, so 

I'll let you work out the others-the complete set of transformation rules is 

j01 = 101, 

j23 = t23, 

j02 = y(t02- f3t12), 
j31 = y(t31 + f3t03), (12.118) 

These are precisely the rules we obtained on physical grounds for the electromag­
netic fields (Eq. 12.109)-in fact, we can construct the field tensor FJLv by direct 
comparison:25 

F 01 = Ex, F02 =- Ey, 03 Ez 12 31 23 F = - , F = B F = B F = B C C C - Z• - Y• - X• 

Written as an array, 

0 
-Exfc 
-Ey/c 
-Ezfc 

(12.119) 

Thus relativity completes and perfects the job begun by Oersted, combining the 
electric and magnetic fields into a single entity, FJLv. 

If you followed that argument with exquisite care, you may have noticed that 
there was a different way of imbedding E and B in an antisymmetric tensor: In­
stead of comparing the first line of Eq. 12.109 with the first line of Eq. 12.118, 
and the second with the second, we could relate the first line of Eq. 12.109 to the 
second line of Eq. 12.118, and vice versa. This leads to dual tensor, GJLv: 

(12.120) 

GJLv can be obtained directly from FJLv by the substitution Ejc -+ B, B-+ 
-Ejc. Notice that this operation leaves Eq. 12.109 unchanged-that's why both 
tensors generate the correct transformation rules for E and B. 

Problem 12.49 Work out the remaining five parts to Eq. 12.118. 

Problem 12.50 Prove that the symmetry (or antisymmetry) of a tensor is preserved 
by Lorentz transformation (that is: if t11-v is symmetric, show that [11-v is also sym­
metric, and likewise for antisymmetric ). 

25 Some authors prefer the convention F 01 =Ex, F 12 = cBz, and so on, and some use the opposite 
signs. Accordingly, most of the equations from here on will look a little different, depending on the 
text. 
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Problem 12.51 Recall that a covariant 4-vector is obtained from a contravariant 
one by changing the sign of the zeroth component. The same goes for tensors: When 
you "lower an index" to make it covariant, you change the sign if that index is zero. 
Compute the tensor invariants 

in terms ofE and B. Compare Prob. 12.47. 

Problem 12.52 A straight wire along the z axis carries a charge density ).. traveling 
in the +z direction at speed v. Construct the field tensor and the dual tensor at the 
point (x, 0, 0). 

12.3.4 • Electrodynamics in Tensor Notation 

Now that we know how to represent the fields in relativistic notation, it is time 
to reformulate the laws of electrodynamics (Maxwell's equations and the Lorentz 
force law) in that language. To begin with, we must determine how the sources of 
the fields, p and J, transform. Imagine a cloud of charge drifting by; we concen­
trate on an infinitesimal volume V, which contains charge Q moving at velocity 
u (Fig. 12.43). The charge density is 

Q 
P= v' 

and the current density26 is 

J= pu. 

I would like to express these quantities in terms of the proper charge density p0 , 

the density in the rest system of the charge: 

Q 
Po= Vo' 

FIGURE 12.43 

26I'm assuming all the charge in V is of one sign, and it all goes at the same speed. If not, you have to 
treat the constituents separately: J = P+ u+ + P-u_. But the argument is the same. 
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where Vo is the rest volume of the cloud. Because one dimension (the one along 
the direction of motion) is Lorentz-contracted, 

(12.121) 

and hence 

(12.122) 

Comparing this with Eqs. 12.40 and 12.42, we recognize here the components 
of proper velocity, multiplied by the invariant p0 • Evidently charge density and 
current density go together to make a 4-vector: 

whose components are 

We'll call it the current density 4-vector. 
The continuity equation (Eq. 5.29), 

ap 
V·J=- ­

at' 

(12.123) 

(12.124) 

expressing the local conservation of charge, takes on a nice compact form when 
written in terms of J J..L. For 

3 . 

v. J = aJx + aJy + aJz = L aJ:, 
ax ay az i=l axz 

while 

ap 1 aJ0 aJ0 

at= -;;Tt = ax0 • 
(12.125) 

Thus, bringing ap j at over to the left side (in the continuity equation), we have: 

~ 
~ 

(12.126) 

with summation over JL implied. Incidentally, aJf-L ;axJ..L is the four-dimensional 
divergence of Jf-L, so the continuity equation states that the current density 
4-vector is divergenceless. 
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As for Maxwell's equations, they can be written 

apJLv 
-- = uoJIL axv fA' ' 

aGJLv 
-- =0 
axv ' 
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(12.127) 

with summation over v implied. Each of these stands for four equations--one for 
every value of J-L. If J-L = 0, the first equation reads 

or 

apov apoo apol apo2 apo3 
-- =-- +-- +-- +--axv axo ax 1 ax2 ax3 

1 (aEx aEy aEz) 1 = - - + - + - = - (V·E) 
c ax ay az c 

1 
V ·E= - p. 

Eo 

This, of course, is Gauss's law. If J-L = 1, we have 

Combining this with the corresponding results for J-L = 2 and J-L = 3 gives 

aE 
V x B = J-LoJ + J-LoEo - , at 

which is Ampere's law with Maxwell's correction. 
Meanwhile, the second equation in 12.127, with J-L = 0, becomes 
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(the third of Maxwell's equations), whereas JL = 1 yields 

aa1v aG10 aG11 aG12 aG13 

-- = -- +-- +-- +--
axv ax0 ax 1 ax2 ax3 

= -~ aBx - ~ aEz + ~ aEy = -~ (aB + v X E) = 0. 
c at c ay c az c at x 

So, combining this with the corresponding results for JL = 2 and JL = 3, 

aB 
V xE= - -

at' 

which is Faraday's law. In relativistic notation, then, Maxwell's four rather cum­
bersome equations reduce to two delightfully simple ones. 

In terms of FJLv and the proper velocity 17JL, the Mink:owski force on a charge 
q is given by 

(12.128) 

For if JL = 1, we have 

Kl = q1JvFlv = q( _ 11o plO + 17 1 p11 + 112 p12 + 1J3 F13) 

= q [ -c (-Ex)+ Uy (Bz) + Uz (-By)] 
y'1- u2 jc2 c y'1- u2 jc2 y'1- u2 jc2 

q [E+(uxB)]x, 
.j1- u2 jc2 

with a similar formula for JL = 2 and JL = 3. Thus, 

K = q [E + (u x B)], 
.j1- u2 jc2 

(12.129) 

and therefore, referring back to Eq. 12.69, 

F = q[E + (u x B)], 

which is the Lorentz force law. Equation 12.128, then, represents the Lorentz 
force law in relativistic notation. I'll leave for you the interpretation of the zeroth 
component (Prob. 12.55). 

Problem 12.53 Obtain the continuity equation (Eq. 12.126) directly from Maxwell's 
equations (Eq. 12.127). 

Problem 12.54 Show that the second equation in Eq. 12.127 can be expressed in 
terms of the field tensor p•v as follows: 

(12.130) 
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Problem 12.55 Work out, and interpret physically, the JL = 0 component of the 
electromagnetic force law, Eq. 12.128. 

12.3.5 • Relativistic Potentials 

From Chapter 10, we know that the electric and magnetic fields can be expressed 
in terms of a scalar potential V and a vector potential A: 

a A 
E=-VV-at, B=VxA. 

As you might guess, V and A together constitute a 4-vector: 

I Att = (V jc, Ax, Ay, Az)· I 

In terms of this 4-vector potential, the field tensor can be written 

(12.131) 

(12.132) 

(12.133) 

(Observe that the differentiation is with respect to the covariant vectors xtt and 
xv; remember, that changes the sign of the zeroth component: x0 = - x0 • See 
Prob. 12.56.) 

To check that Eq. 12.133 is equivalent to Eq. 12.131, let's evaluate a few terms 
explicitly. For J-t = 0, v = 1, 

01 aA1 aA0 aAx 1 av 
F = - - - =--- - --

axo ax1 a(ct) c ax 

= -~ (aA + vv) 
c at x 

That (and its companions with v = 2 and v = 3) is the first equation in Eq. 12.131. 
For J-t = 1, v = 2, we get 

12 aA2 a A 1 aAy a Ax 
F = - - - = - - - = (V X A)z = Bz 

ax1 ax2 ax ay ' 

which (together with the corresponding results for F 23 and F 31 ) is the second 
equation in Eq. 12.131. 

The potential formulation automatically takes care of the homogeneous Max­
well equation (aGttv jaxv = 0). As for the inhomogeneous equation (aFttv jaxv = 
J-toftt), that becomes 

- -- - - -- - J-toltt a (aAv) a (aAtt) 
axtt axv axv axv - . 

(12.134) 
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This is an intractable equation as it stands. However, you will recall that the poten­
tials are not uniquely determined by the fields-in fact, it's clear from Eq. 12.133 
that you could add to Att the gradient of any scalar function A.: 

a .A 
Att ----+ AW = Att + --, 

axtt 
(12.135) 

without changing Fttv. This is precisely the gauge invariance we noted in 
Chapter 10; we can exploit it to simplify Eq. 12.134. In particular, the Lorenz 
gauge condition (Eq. 10.12) 

1 av 
V·A=--­

c2 at 

becomes, in relativistic notation, 

aAtt 
- =0. 
axtt 

In the Lorenz gauge, therefore, Eq. 12.134 reduces to 

I 02 AM= -f.LoJM' 

where 0 2 is the d' Alembertian, 

2 a a 2 1 a2 

0 = -- =V - --. 
axv axv c2 at2 

(12.136) 

(12.137) 

(12.138) 

Equation 12.137 combines our previous results into a single 4-vector equation-it 
represents the most elegant formulation of Maxwell's equations.27 

Problem 12.56 You may have noticed that the four-dimensional gradient operator 
a;ax11 functions like a covariant 4-vector-in fact, it is often written aiL, for short. 
For instance, the continuity equation, aiL J IL = 0, has the form of an invariant product 
of two vectors. The corresponding contravariant gradient would be a11 = a;axw 
Prove that a11 ljJ is a (contravariant) 4-vector, if l/J is a scalar function, by working out 
its transformation law, using the chain rule. 

Problem 12.57 Show that the potential representation (Eq. 12.133) automatically 
satisfies aGILv jaxv = 0. [Suggestion: Use Prob. 12.54.] 

Problem 12.58 Show that the Lienard-Wiechert potentials (Eqs. 10.46 and 10.47) 
can be expressed in relativistic notation as 

27Incidentally, the Coulomb gauge is bad, from the point of view of relativity, because its defining 
condition, V · A = 0, is destroyed by Lorentz transformation. To restore this condition, it is necessary 
to perform an appropriate gauge transformation every time you go to a new inertial system, in addition 
to the Lorentz transformation itself. In this sense, AIL is not a true 4-vector, in the Coulomb gauge. 
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More Problems on Chapter 12 

Problem 12.59 Inertial system S moves at constant velocity v = {Jc( cos¢ x + 
sin¢y) with respect to S. Their axes are parallel to one another, and their ori­
gins coincide at t = t = 0, as usual. Find the Lorentz transformation matrix A 
(Eq. 12.25). 

[ ( 

-y:cos¢ 
Answer: 

-y{J sin¢ 

0 

-y{J cos¢ 

(y cos2 ¢ + sin2 ¢) 

(y- 1) sin¢ cos¢ 

0 

-y{J sin¢ 

(y- 1) sin¢ cos¢ 

(y sin2 ¢ + cos2 ¢) 

0 nJ 
Problem 12.60 Calculate the threshold (minimum) momentum the pion must have 
in order for the process rr + p ---+ K + 1: to occur. The proton p is initially at 
rest. Use m:n:c2 = 150, mxc2 = 500, mpc2 = 900, m'Ec2 = 1200 (all in MeV). 
[Hint: To formulate the threshold condition, examine the collision in the center-of­
momentum frame (Prob. 12.31). Answer: 1133 MeV/c] 

Problem 12.61 A particle of mass m collides elastically with an identical particle 
at rest. Classically, the outgoing trajectories always make an angle of 90°. Calculate 
this angle relativistically, in terms of¢, the scattering angle, and v, the speed, in the 
center-of-momentum frame. [Answer: tan-1(2c2 jv2 y sin¢)] 

Problem 12.62 Find x as a function of t for motion starting from rest at the origin 
under the influence of a constant Minkowski force in the x direction. Leave your 
answer in implicit form (t as a function of x). [Answer: 2Ktjmc = z.J1 + z2 + 
ln(z + .J1 + z2), where z = J2Kxjmc2 ] 

Problem 12.63 An electric dipole consists of two point charges (±q ), each of mass 
m, fixed to the ends of a (massless) rod oflength d. (Do not assumed is small.) 

(a) Find the net self-force on the dipole when it undergoes hyperbolic motion 
(Eq. 12.61) along a line perpendicular to its axis. [Hint: Start by appropriately 
modifying Eq. 11.90.] 

(b) Notice that this self-force is constant (t drops out), and points in the di­
rection of motion-just right to produce hyperbolic motion. Thus it is pos­
sible for the dipole to undergo self-sustaining accelerated motion with no 
external force at all!28 [Where do you suppose the energy comes from?] 
Determine the self-sustaining force, F, in terms of m, q, and d. [Answer: 
(2mc2 jd)J(JL0q 2 j8rrmd)213- 1] 

Problem 12.64 An ideal magnetic dipole moment m is located at the origin of an 
inertial system S that moves with speed v in the x direction with respect to inertial 
system S. In S the vector potential is 

(Eq. 5.85), and the scalar potential Vis zero. 

28F. H. J. Cornish, Am. J. Phys. 54, 166 (1986). 
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(a) Find the scalar potential V inS. [Answer: 

1 R·(vxm) (1-v2 jc2
) ] 

4JrEo c2 R2 1-(v2jc2)sin2 0)3/2 

(b) In the nonrelativistic limit, show that the scalar potential in S is that of an ideal 
electric dipole of magnitude 

located at 6. 

FIGURE 12.44 

Problem 12.65 A stationary magnetic dipole, m = m i, is situated above an infinite 
uniform surface current, K = K i (Fig. 12.44). 

(a) Find the torque on the dipole, using Eq. 6.1. 

(b) Suppose that the surface current consists of a uniform surface charge a, mov­
ing at velocity v = vi, so that K = av, and the magnetic dipole consists of a 
uniform line charge A., circulating at speed v (same v) around a square loop of 
side l, as shown, so that m = A.vl2

• Examine the same configuration from the 
point of view of systemS, moving in the x direction at speed v. InS, the sur­
face charge is at rest, so it generates no magnetic field. Show that in this frame 
the current loop carries an electric dipole moment, and calculate the resulting 
torque, using Eq. 4.4. 

Problem 12.66 In a certain inertial frameS, the electric field E and the magnetic 
field Bare neither parallel nor perpendicular, at a particular space-time point. Show 
that in a different inertial system S, moving relative to S with velocity v given by 

v ExB 

the fields E and B are parallel at that point. Is there a frame in which the two are 
perpendicular? 

Problem 12.67 Two charges ±q approach the origin at constant velocity from 
opposite directions along the x axis. They collide and stick together, forming a 
neutral particle at rest. Sketch the electric field before and shortly after the collision 
(remember that electromagnetic "news" travels at the speed of light). How would 
you interpret the field after the collision, physically?29 

29See E. M. Purcell, Electricity and Magnetism, 2d ed. (New York: McGraw-Hill, 1985), Sect. 5.7 
and Appendix B (in which Purcell obtains the Larmor formula by masterful analysis of a similar 
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Problem 12.68 "Derive" the Lorentz force law, as follows: Let charge q be at rest 
inS, so F = qE, and letS move with velocity v =vi with respect to S. Use the 
transformation rules (Eqs. 12.67 and 12.109) to rewrite Fin terms ofF, and E in 
terms of E and B. From these, deduce the formula for F in terms of E and B. 

Problem 12.69 A charge q is released from rest at the origin, in the presence of a 
uniform electric field E = Eo z and a uniform magnetic field B = B0 i. Determine 
the trajectory of the particle by transforming to a system in which E = 0, finding 
the path in that system and then transforming back to the original system. Assume 
E0 < cB0 • Compare your result with Ex. 5.2. 

Problem 12.70 

(a) Construct a tensor D~-'v (analogous to F~-'v) out of D and H. Use it to ex­
press Maxwell's equations inside matter in terms of the free current density J;. 
[Answer: D01 = cDx, D 12 =Hz, etc.; 8D~-'v j8xv = 1;.] 

(b) Construct the dual tensor H~-'v (analogous to G~-'v). [Answer: H 01 = Hx, H 12 = 
-cDz, etc.] 

(c) Minkowski proposed the relativistic constitutive relations for linear media: 

and 

where E is the proper3° permittivity, f.L is the proper permeability, and 17~-' is the 
4-velocity of the material. Show that Minkowski's formulas reproduce Eqs. 4.32 
and 6.31, when the material is at rest. 

(d) Work out the formulas relating D and H toE and B for a medium moving with 
(ordinary) velocity u. 

Problem 12.71 Use the Larmor formula (Eq. 11.70) and special relativity to derive 
the Lienard formula (Eq. 11. 73). 

Problem 12.72 The natural relativistic generalization of the Abraham-Lorentz 
formula (Eq. 11.80) would seem to be 

K~-' _ f.Loq
2 dot~-' 

rad- 6rrc d-e . 

This is certainly a 4-vector, and it reduces to the Abraham-Lorentz formula in the 
nonrelativistic limit v « c. 

(a) Show, nevertheless, that this is not a possible Minkowski force. [Hint: See 
Prob. 12.39d.] 

geometrical construction), R. Y. Tsien, Am. J. Phys. 40, 46 (1972), and H. C. Ohanian, Am. J. Phys. 48, 
170 (1980). The method itself is due to J. J. Thomson, Electricity and Matter (New Haven, CT: Yale 
University Press,1904), p. 55. 
30 As always, "proper" means "in the rest frame of the material." 
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(b) Find a correction term that, when added to the right side, removes the objection 
you raised in (a), without affecting the 4-vector character of the formula or its 
nonrelativistic limit.31 

Problem 12.73 Generalize the laws of relativistic electrodynamics (Eqs. 12.127 and 
12.128) to include magnetic charge. [Refer to Sect. 7.3.4.] 

31 For interesting commentary on the relativistic radiation reaction, see F. Rohrlich, Am. J. Phys. 65, 
1051 (1997). 



APPENDIX 

A Vector Calculus in Curvilinear 
Coordinates 

A.1 • INTRODUCTION 

In this Appendix I sketch proofs of the three fundamental theorems of vector 
calculus. My aim is to convey the essence of the argument, not to track down every 
epsilon and delta. A much more elegant, modem, and unified-but necessarily 
also much longer-treatment will be found in M. Spivak's book, Calculus on 
Manifolds (New York: Benjamin, 1965). 

For the sake of generality, I shall use arbitrary (orthogonal) curvilinear co­
ordinates (u, v, w), developing formulas for the gradient, divergence, curl, and 
Laplacian in any such system. You can then specialize them to Cartesian, spheri­
cal, or cylindrical coordinates, or any other system you might wish to use. If the 
generality bothers you on a first reading, and you'd rather stick to Cartesian co­
ordinates, just read (x, y, z) wherever you see (u, v, w), and make the associated 
simplifications as you go along. 

A.2 • NOTATION 

We identify a point in space by its three coordinates, u, v, and w (in the Carte­
sian system, (x, y, z); in the spherical system, (r, 0, ¢);in the cylindrical system, 
(s, ¢, z)). I shall assume the system is orthogonal, in the sense that the three unit 
vectors, ii, v, and w, pointing in the direction of the increase of the corresponding 
coordinates, are mutually perpendicular. Note that the unit vectors are functions 
of position, since their directions (except in the Cartesian case) vary from point to 
point. Any vector can be expressed in terms of ii, v, and w-in particular, the in­
finitesimal displacement vector from (u, v, w) to (u + du, v + dv, w + dw) can 
be written 

dl = f du ii + g dv v + h dw w, (A.1) 

where f, g, and h are functions of position characteristic of the particular coor­
dinate system (in Cartesian coordinates f = g = h = 1; in spherical coordinates 
f = 1, g = r, h = r sinO; and in cylindrical coordinates f = h = 1, g = s). As 
you'll soon see, these three functions tell you everything you need to know about 
a coordinate system. 

575 
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b 

a 

FIGUREA.l 

A.3 • GRADIENT 

If you move from point (u, v, w) to point (u + du, v + dv, w + dw), a scalar 
function t(u, v, w) changes by an amount 

at at at 
dt = - du + - dv + - dw; 

au av aw 
(A.2) 

this is a standard theorem on partial differentiation.1 We can write it as a dot 
product, 

dt = Vt · dl = (Vt)u f du + (Vt)v g dv + (Vt)w h dw, (A.3) 

provided we define 

1 at 
(Vt)u = f au, 

The gradient of t, then, is 

1 at 1 at 
(Vt)v = gav' (Vt)w =haw· 

1 at A 1 at A 1 at A 

Vt = --u + --v + --w. 
f au g av haw 

(A.4) 

If you now pick the appropriate expressions for J, g, and h from Table A.1, you 
can easily generate the formulas for V t in Cartesian, spherical, and cylindrical 
coordinates, as they appear inside the front cover of the book. 

System u v w f g h 

Cartesian X y z 1 
Spherical r () 4> r r sin() 
Cylindrical s 4> z s 1 

TABLEA.l 

1M. Boas, Mathematical Methods in the Physical Sciences, 2nd ed., Chapter 4, Sect. 3 (New York: 
John Wiley, 1983). 
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From Eq. A.3 it follows that the total change in t, as you go from point a to 
point b (Fig. A.1 ), is 

t(b)- t(a) = 1b dt = 1b (Vt) · dl, (A.5) 

which is the fundamental theorem for gradients (not much to prove, really, in 
this case). Notice that the integral is independent of the path taken from a to b. 

A.4 • DIVERGENCE 

Suppose that we have a vector function, 

A(u, v, w) =Au ii + Av v + Aww, 

and we wish to evaluate the integral fA· da over the surface of the infinitesi­
mal volume generated by starting at the point (u, v, w) and increasing each of 
the coordinates in succession by an infinitesimal amount (Fig. A.2). Because the 
coordinates are orthogonal, this is (at least, in the infinitesimal limit) a rectangu­
lar solid, whose sides have lengths diu = f du, dlv = g dv, and dlw = h dw, and 
whose volume is therefore 

dr = dludlvdlw = (fgh)dudvdw. (A.6) 

(The sides are not just du, dv, dw-after all, v might be an angle, in which case 
dv doesn't even have the dimensions of length. The correct expressions follow 
from Eq. A.1.) 

For the front surface, 

da = -(gh)dvdwii, 

so that 

A· da = -(ghAu) dv dw. 

The back surface is identical (except for the sign), only this time the quantity 
ghAu is to be evaluated at (u + du), instead ofu. Since for any (differentiable) 
function F(u), 

dF 
F(u + du)- F(u) = - du, 

du 
(in the limit), the front and back together amount to a contribution 

[ a J 1 a - (ghAu) dudvdw = --(ghAu)dr. 
au fgh au 

By the same token, the right and left sides yield 

1 a 
--(fhA )dr 
fgh av v ' 
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and the top and bottom give 

All told, then, 

FIGUREA.2 

1 a 
--(fgAw) dr. 
fgh aw 

J A· da = ~h [~(ghAu) + ~(fhAv) + _!_(fgAw)J dr. r fg au av aw (A.7) 

The coefficient of dr serves to define the divergence of A in curvilinear coordi-
nates: 

V ·A= - - (ghAu) + - (fhAv) + - (fgAw) , 1 [a a a J 
fgh au av aw (A.8) 

and Eq. A. 7 becomes 

fA·da=(V·A)dr. (A.9) 

Using Table A.1, you can now derive the formulas for the divergence in Cartesian, 
spherical, and cylindrical coordinates, which appear in the front cover of the book. 
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t 
lL-

FIGUREA.3 

As it stands, Eq. A.9 does not prove the divergence theorem, for it pertains 
only to infinitesimal volumes, and rather special infinitesimal volumes at that. Of 
course, a finite volume can be broken up into infinitesimal pieces, and Eq. A.9 
can be applied to each one. The trouble is, when you then add up all the bits, the 
left-hand side is not just an integral over the outer surface, but over all those tiny 
internal surfaces as well. Luckily, however, these contributions cancel in pairs, 
for each internal surface occurs as the boundary of two adjacent infinitesimal vol­
umes, and since da always points outward, A · da has the opposite sign for the 
two members of each pair (Fig. A.3). Only those surfaces that bound a single 
chunk-which is to say, only those at the outer boundary-survive when every­
thing is added up. For finite regions, then, 

fA·da= /(V·A)dr, (A.lO) 

and you need integrate only over the external surface. 2 This establishes the diver­
gence theorem. 

To obtain the curl in curvilinear coordinates, we calculate the line integral, 

fA·dl, 

around the infinitesimal loop generated by starting at (u, v, w) and successively 
increasing u and v by infinitesimal amounts, holding w constant (Fig. A.4). The 
surface is a rectangle (at least, in the infinitesimal limit), of length dlu = f du, 
width dlv = g dv, and area 

da = (fg)du dv w. (A.ll) 

2What about regions that cannot be fit perfectly by rectangular solids no matter how tiny they are­
such as planes cut at an angle to the coordinate lines? It's not hard to dispose of this case; try thinking 
it out for yourself, or look at H. M. Schey's Div, Grad, Curl and All That (New York: W. W. Norton, 
1973), starting with Prob. 11-15. 
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FIGUREA.4 

Assuming the coordinate system is right-handed, w points out of the page in 
Fig. A.4. Having chosen this as the positive direction for da, we are obliged by 
the right-hand rule to run the line integral counterclockwise, as shown. 

Along the bottom segment, 

dl = f duii, 

so 

A · dl = (f Au) du. 

Along the top leg, the sign is reversed, and f Au is evaluated at (v + dv) rather 
than v. Taken together, these two edges give 

[ -(f Au)lv+dv + (f Au)lv] du =- [ aav (f Au) J du dv. 

Similarly, the right and left sides yield 

[ aau (g Av) J du dv, 

so the total is 

J A· dl = [~(gAv)- !_(f Au)] dudv j au av 
(A.12) 

1 [a a ]A = - - (gAv)- - (!Au) W·da. 
fg au av 

The coefficient of da on the right serves to define thew-component of the curl. 
Constructing the u and v components in the same way, we have 

V X A= - - (hAw)- - (gAv) U + - - (f Au)- - (hAw) V 1 [a a ]A 1 [a a ]A 
gh av aw fh aw au 

(A.l3) 
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FIGUREA.S 

and Eq. All generalizes to 

fA · dl = (V x A) · da. (A.l4) 

Using Table A.l, you can now derive the formulas for the curl in Cartesian, spher­
ical, and cylindrical coordinates. 

Equation A.l4 does not by itself prove Stokes' theorem, however, because at 
this point it pertains only to very special infinitesimal surfaces. Again, we can 
chop any finite surface into infinitesimal pieces and apply Eq. A.l4 to each one 
(Fig. A.5). When we add them up, though, we obtain (on the left) not only a 
line integral around the outer boundary, but a lot of tiny line integrals around the 
internal loops as well. Fortunately, as before, the internal contributions cancel in 
pairs, because every internal line is the edge of two adjacent loops running in 
opposite directions. Consequently, Eq. A.l4 can be extended to finite surfaces, 

fA · dl = J (V x A) · da, (A.l5) 

and the line integral is to be taken over the external boundary only.3 This estab­
lishes Stokes' theorem. 

A.6 • LAPLACIAN 

Since the Laplacian of a scalar is by definition the divergence of the gradient, we 
can read off from Eqs. A.4 and A.8 the general formula 

2 1 [ a (gh at) a (fh at) a (fg at)] 
v t = fgh au f au + av g av + aw haw . (A.l6) 

Once again, you are invited to use Table A.l to derive the Laplacian in Cartesian, 
spherical, and cylindrical coordinates, and thus to confirm the formulas inside the 
front cover. 

3What about surfaces that cannot be fit perfectly by tiny rectangles, no matter how small they are (such 
as triangles) or surfaces that do not correspond to holding one coordinate fixed? If such cases trouble 
you, and you cannot resolve them for yourself, look at H. M. Schey's Div, Grad, Curl, and All That, 
Prob. III-2 (New York: W. W. Norton, 1973). 
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The Helmholtz Theorem 

Suppose we are told that the divergence of a vector function F(r) is a specified 
scalar function D(r): 

V·F=D, (B.1) 

and the curl of F(r) is a specified vector function C(r): 

v X F =c. (B.2) 

For consistency, C must be divergenceless, 

V·C=O, (B.3) 

because the divergence of a curl is always zero. Question: can we, on the basis 
of this information, determine the function F? If D(r) and C(r) go to zero suffi­
ciently rapidly at infinity, the answer is yes, as I will show by explicit construction. 

I claim that 

F = -VU+V X W, (B.4) 

where 

1 J D(r') , U(r) = - --dr 
4n ~t-

(B.5) 

and 

1 J C(r') , 
W(r) = - --dr; 

4n ~t-
(B.6) 

the integrals are over all of space, and, as always, It-= lr- r'l. For ifF is given 
by Eq. B.4, then its divergence (using Eq. 1.102) is 

V · F = -V2 U =- 4~ f D V2 (~) dr' = f D(r')83(r- r')dr' = D(r). 

(Remember that the divergence of a curl is zero, so the W term drops out, and 
note that the differentiation is with respect tor, which is contained in ~t-.) 

So the divergence is right; how about the curl? 

v X F = v X (V X W) = -V2W + V(V. W). (B.7) 
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(Since the curl of a gradient is zero, the U term drops out.) Now 

- V2W = - 4~ J C V2 
( ~) dr' = J C(r')83(r- r') dr' = C(r), 

which is perfect-1'11 be done if I can just persuade you that the second term 
on the right side of Eq. B.7 vanishes. Using integration by parts (Eq. 1.59), and 
noting that derivatives of ~ with respect to primed coordinates differ by a sign 
from those with respect to unprimed coordinates, we have 

4nV·W= J C·V(~) dr'=- J c.v'(~) dr' 

f 1 1 J 1 
= ~ V ·Cdr- f ~ C · da. (B.8) 

But the divergence of Cis zero, by assumption (Eq. B.3), and the surface integral 
(way out at infinity) will vanish, as long as C goes to zero sufficiently rapidly. 

Of course, that proof tacitly assumes that the integrals in Eqs. B.5 and B.6 
converge-otherwise U and W don't exist at all. At the large r' limit, where 
~ ~ r', the integrals have the form 

/

00 X(r') foo 
- r-' - r12 dr' = r' X (r') dr'. (B.9) 

(Here X stands forD or C, as the case may be). Obviously, X(r') must go to zero 
at large r'-but that's not enough: if X'"" 11r', the integrand is constant, so the 
integral blows up, and even if X '"" 1 I r 12 , the integral is a logarithm, which is still 
no good at r'--+ oo. Evidently the divergence and curl ofF must go to zero more 
rapidly than 1 I r2 for the proof to hold. (Incidentally, this is more than enough to 
ensure that the surface integral in Eq. B.8 vanishes.) 

Now, assuming these conditions on D(r) and C(r) are met, is the solution 
in Eq. B.4 unique? The answer is clearly no, for we can add to F any vector 
function whose divergence and curl both vanish, and the result still has divergence 
D and curl C. However, it so happens that there is no function that has zero 
divergence and zero curl everywhere and goes to zero at infinity (see Sect. 3.1.5). 
So if we include a requirement that F(r) goes to zero as r --+ oo, then solution 
B.4 is unique.1 

Now that all the cards are on the table, I can state the Helmholtz theorem 
more rigorously: 

If the divergence D(r) and the curl C(r) of a vector function F(r) are spec­
ified, and if they both go to zero faster than 11r2 as r --+ oo, and if F(r) 
goes to zero as r --+ oo, then F is given uniquely by Eq. B.4. 

1Typically we do expect the electric and magnetic fields to go to zero at large distances from the 
charges and currents that produce them, so this is not an unreasonable stipulation. Occasionally one 
encounters artificial problems in which the charge or current distribution itself extends to infinity­
infinite wires, for instance, or infinite planes. In such cases, other means must be found to establish 
the existence and uniqueness of solutions to Maxwell's equations. 
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The Helmholtz theorem has an interesting corollary: 

Any (differentiable) vector function F(r) that goes to zero faster than 1/r 
as r --+ oo can be expressed as the gradient of a scalar plus the curl of a 
vector:2 

(
-1 f V' · F(r') ') ( 1 f V' x F(r') ') F(r) = V - dr + V x - dr . 
4n 1- 4rr 1-

(B.10) 

For example, in electrostatics V · E = p j Eo and V x E = 0, so 

E(r) = -V -- --dr = -VV ( 
1 J p(r') ') 

4rrEo 1-
(B.ll) 

(where V is the scalar potential), while in magnetostatics V · B = 0 and V x B = 
JtoJ, so 

B(r) = V x ( :; f J~') dr') = V x A (B.12) 

(where A is the vector potential). 

2 As a matter of fact, any differentiable vector function whatever (regardless of its behavior at infinity) 
can be written as a gradient plus a curl, but this more general result does not follow directly from the 
Helmholtz theorem, nor does Eq. B.lO supply the explicit construction, since the integrals, in general, 
diverge. 
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c Units 

In our units (the Systeme International), Coulomb's law reads 

F = _ 1_ qlq2 ,£ (SI). 
4nEo "'2 

(C.1) 

Mechanical quantities are measured in meters, kilograms, seconds, and charge 
is in coulombs (Table C.1). In the Gaussian system, the constant in front is, in 
effect, absorbed into the unit of charge, so that 

F qlq2 A (G . ) = -
2
- -t. ausstan . 

If, 
(C.2) 

Mechanical quantities are measured in centimeters, grams, seconds, and charge is 
in electrostatic units (or esu). For what it's worth, an esu is a (dyne) 112-centimeter. 

Quantity SI Factor Gaussian 

Length meter (m) 102 centimeter 
Mass kilogram (kg) 103 gram 
Time second (s) 1 second 
Force newton (N) 105 dyne 
Energy joule (J) 107 erg 
Power watt (W) 107 erg/second 
Charge coulomb (C) 3 X 109 esu (statcoulomb) 
Current ampere (A) 3 X 109 esu/second (statampere) 
Electric field volt/meter (1/3) x 10-4 statvolt/centimeter 
Potential volt (V) 1/300 statvolt 
Displacement coulomb/meter 12n x 105 statcoulomb/centimeter 
Resistance ohm (Q) (1/9) x 10-11 second/centimeter 
Capacitance farad (F) 9 X 1011 centimeter 
Magnetic field tesla (T) 104 gauss 
Magnetic flux weber(Wb) 108 maxwell 
H ampere/meter 4n X 10-3 oersted 
Inductance henry (H) (1/9) x 10-11 second2/centimeter 

TABLE C.l Conversion Factors. [Note: Except in exponents, every "3" is short for 
a = 2.99792458 (the numerical value of the speed of light), "9" means a 2, and "12" is 
4ot.] 

585 



586 Appendix C Units 

Converting electrostatic equations from SI to Gaussian units is not difficult: 
just set 

1 
Eo --+ 4n. 

For example, the energy stored in an electric field (Eq. 2.45), 

U = ~ f E2
dr (SI), 

becomes 

U = __!__ j E 2 dr (Gaussian). 
8n 

(Formulas pertaining to fields inside dielectrics are not so easy to translate, 
because of differing definitions of displacement, susceptibility, and so on; see 
Table C.2.) 

The Biot-Savart law, which for us reads 

J.Lo J dl x .£ B = - / -- (SI), 
4n 'l-2 

(C.3) 

becomes, in the Gaussian system, 

B = ~ j dl x .£ (Gaussian), 
c ""2 

(C.4) 

where c is the speed of light, and current is measured in esu/s. The Gaussian unit 
of magnetic field (the gauss) is the one quantity from this system in everyday use: 
people speak of volts, amperes, henries, and so on (all SI units), but for some rea­
son they tend to measure magnetic fields in gauss (the Gaussian unit); the correct 
SI unit is the tesla (104 gauss). 

One major virtue of the Gaussian system is that electric and magnetic fields 
have the same dimensions (in principle, one could measure the electric fields in 
gauss too, though no one uses the term in this context). Thus the Lorentz force 
law, which we have written 

F = q(E + v x B) (SI), 

(indicating that E j B has the dimensions of velocity), takes the form 

F = q (E + ~ x B) (Gaussian). 

(C.5) 

(C.6) 

In effect, the magnetic field is "scaled up" by a factor of c. This reveals more 
starkly the parallel structure of electricity and magnetism. For instance, the total 
energy stored in electromagnetic fields is 

U = -
1
- J(E 2 + B2)dr (Gaussian), 

8n 
(C.7) 
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eliminating the Eo and J..to that spoil the symmetry in the SI formula, 

1 f ( 2 1 2) U = 2 EoE + f-Lo B dr (SI). (C.8) 

Table C.2 lists some of the basic formulas of electrodynamics in both systems. 
For equations not found here, and for Heaviside-Lorentz units, I refer you to the 
appendix of J.D. Jackson, Classical Electrodynamics, 3rd ed. (New York: John 
Wiley, 1999), where a more complete listing is to be found. 1 

1 For an interesting "primer" on electrical SI units, seeN. M. Zimmerman, Am. J. Phys. 66, 324 (1998); 
the history is discussed in L. Kowalski, Phys. Teach. 24, 97 (1986). 
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SI 

Maxwell's equations 

In general: 

In matter: 

DandH 

Definitions: 

Linear media: 

1 
V ·E= - p 

Eo 
v x E = -aB;at 
V ·B=O 

v x B = J.LoJ + J.LoEoaEjat 

V ·D = Pt 

v x E = -aB;at 
V ·B=O 

v x H = J1 + an;at 

{ 

D = E1E+P 

H= - B-M 
J.Lo 

{ 
P = EoXeE, 

M=xmH. 

D=t:E 
1 

H= - B 
JL 

Lorentz force law F = q (E + v x B) 

Energy and power 

Energy: 

Poynting vector: 

Larmor formula: 

1 s = - (EX B) 
J.Lo 

Gaussian 

V ·E =4np 
1 v x E = - - aB;at 
c 

V ·B=O 
4n 1 v x B = - J + - aE;at 
c c 

V ·D = 4np1 
1 v x E = - - aB;at 
c 

V ·B=O 
4n 1 v x H = - J 1 + - aD ;at 
c c 

D=E+4nP 
H=B-4nM 

P = XeE, D = EE 
1 

M= XmH. H= - B 
JL 

c s = - (EX B) 
4n 

TABLE C.2 Fundamental Equations in SI and Gaussian Units. 



Abraham-Lorentz formula, 489, 
492-496,573 

Absorption,412-417 
Absorption coefficient, 422 
Acausality, 441,446-447,490 
Acceleration 

ordinary, 549 
proper, 549 

Acceleration field, 460, 482 
Advanced potentials, 446 
Advanced time, 446 
Alfven's theorem, 352 
Ampere (unit), 216, 224 
Ampere, A. M., xvi 
Ampere dipole, 269,294 
Ampere's law, 233, 243, 

332-337,567 
applications of, 233-241 
in matter, 279-282 
symmetry for, 237 

Amperianloop,233,249 
Amplitude of wave, 385 
Angle 

azimuthal, 38, 43 
of incidence, 407 
polar, 38 
of reflection, 407 
of refraction, 407 

Angular frequency, 386 
Angular momentum, 370--373, 

378-380 
Angular momentum density, 372 
Anomalous dispersion, 422-423 
Antisymmetric tensor, 562-564 
Atomic polarizability, 168, 

208-209 
Auxiliary fields 

D, 181-189,281-283,573 
H, 279-285, 573 

Index 

Azimuthal angle, 38, 43 
Azimuthal symmetry, 141 

BAC-CAB rule, 8 
Back emf, 325, 328 
Ball, defined, 51 
Bar electret, 176, 184 
Bar magnet, 276, 284 
Barn and ladder paradox, 516-518 
Betatron, 348 
Biot-Savart law, 224-228, 351, 

560 
Bohr atom 

lifetime, 487 
polarizability, 169-170 

Bohr magneton, 263 
Bound charge, 173-179, 192, 340 
Bound currents, 274-277, 287, 340 

physical interpretation of, 
277-279 

Boundary conditions 
for dielectrics, 185, 188, 

192-197,206,342-344 
for electrodynamics, 53, 

342-344 
for electromagnetic waves, 

402,406,416 
for electrostatics, 88-91 
for Laplace's equation, 

119-124 
for magnetic materials, 284, 

293,342-344 
for magnetostatics, 249-251 
for Maxwell's equations, 338, 

342-347,583 
for waves on a string, 388-391 

Boundary value problems, 
124-150, 192-197 

Bremsstrahlung, 487 

Brewster's angle, 410 
Buckminsterfullerine, 161 

Canonical momentum, 443 
Capacitance, 105 
Capacitor, 104-107 

charging, 106-107, 336-337 
dielectric-filled, 190 
discharging, 302 
energy in, 106-107,197 
parallel-plate, 75, 105, 190, 

240,553 
Cartesian coordinates, 4, 

130-131, 575 
Cauchy's formula, 424 
Causality, 441, 446-447, 489, 

531 
Cavity 

in conductor, 99-100, 120 
in dielectric, 183-184 
in magnetic material, 282-283 
resonant, 435 

Center of energy, 546-547 
Center of momentum, 537 
Cgs units, xviii, 585-588 
Charge 

bound, 173-179,192,340 
conservation of, xvii, 222, 339 

(see also Continuity 
equation) 

local, 566 
electric, xvii-xviii, 59 
enclosed, 69 
free, 167,181,192,412-413 
induced, 98-102 
magnetic (see Monopole) 
quantization,xvii-xviii,380 
uniformly moving, 461-463, 

560 

589 



590 Index 

Charge density 
line,63 
surface, 63, 102 
volume, 63 

Charge invariance, 553 
Child-Langmuir law, 109 
Circular polarization, 392 
Clausius-Mossotti equation, 

208-209 
Coaxial cable, 76, 431-432 
Colliding beam, 541-542 
Collision 

classical, 508 
elastic, 540 
relativistic, 540-543 

Completeness, 135 
Complex amplitude, 387 
Complex notation, 387, 400 

wave number, 422 
Complex permittivity, 421 
Complex susceptibility, 421 
Component, 5, 39 
Compton scattering, 540-541 
Compton wavelength, 541 
Conductivity, 296-297 
Conductors, 97-112, 167,296 

"good" and "poor," 412 
perfect, 296, 346, 352, 425 
surface charge on, 125-126, 

129,299 
Conservation laws, 356--381. See 

also Charge; Energy 
global, xvii, 356 
local (see Continuity equation) 
relativistic, 536--542 

Conservative force, 25 
Constitutive relation, 186, 285, 

342,573 
Continuity equation, xvii, 222, 

224,338,356-357,359, 
367,565 

Contravariant vector, 526, 570 
Convective derivative, 443 
Coordinates 

Cartesian, 4, 575, 576 
curvilinear, 38, 575-581 
cylindrical,43-45,575,576 
inversion of, 12 
rotation of, 10-12 

spherical, 38-43, 575, 576 
translation of, 12 

Cosines, law of, 3 
Coulomb (unit), 60, 585 
Coulomb field, generalized, 460 
Coulomb gauge, 440-441,569 
Coulomb's law, xviii, 60, 63-64 

magnetic, 339 
Covariant vector, 526--527, 570 
Critical angle, 433 
Cross product, 3, 6 
Curie point, 291 
Curl, 16, 18-19, 579-581 

of A, 243, 436 
of B, 229-233 
in curvilinear coordinates, 

580-581 
in cylindrical coordinates, 44 
ofD, 184-185 
ofE, 66, 77-78, 313 
ofH, 280 
in spherical coordinates, 42 

Curl-less fields, 53, 78-80 
Current, 216--223 

bound,274-279,287 
displacement, 334-335 
enclosed, 230, 233, 280, 

333-334 
free, 280, 287 
induced, 315 
polarization,340-341 
steady, 223 

Current density, 220-223 
four-vector, 565-566 
surface, 220 
volume, 220-221 

Curvilinear coordinates, 38, 
575-581 

Cutoff frequency, 429-431 
Cycloid motion, 213-215, 

545-546 
Cyclotron motion, 212-213, 

544-545 
Cylindrical coordinates, 43-45, 

575,576 

D. See Displacement, electric 
D' Alembertian, 441-442, 570 
Del operator, 16 

Delta function 
Dirac, 45-52, 164 
Kionecke~ 165,363 

Density of field lines, 67 
Derivative, 13 

normal, 90 
Diamagnetism, 266,271-274, 

346,349 
Dielectric, 167 

linear, 185-193 
Dielectric constant, 186, 187 
Diode, vacuum, 109 
Dipole moment, 155 
Dipoles, electric, 67, 151, 154-160 

energy of, in electric field, 172 
energy of interaction of two, 

172 
field of 

oscillating, 470 
static,67, 158-160 

force on, 170-172 
induced, 167-170 
perfect, 155, 159 
permanent, 170 
physical, 155, 159 
potential of 

oscillating, 469 
static, 151-152, 154-155 

radiation, 467-473 
torque on, 170-171 

Dipoles, magnetic, 252-255 
Ampere model, 269, 294 
of electron, 263 
energy of, in magnetic field, 

291 
energy of interaction of two, 

292 
field of 

oscillating, 475-476 
static, 255, 263-265 

force on, 267-270, 292-293 
Gilbert model, 269, 294, 477 
moment, 253-254, 265 
moving, 571-572 
perfect, 254-255 
physical, 254-255 
potential of 

oscillating, 475-476 
static, 255 



radiation, 473-477, 482 
Thomson's dipole, 380 
torque on, 266-270 

Dirac, P. A. M., 380 

Index 

Dirac delta function, 45-52, 164 
Dirichlet's theorem, 134 
Discharge of capacitor, 302 
Discontinuity 

in B, 250, 284 
inE, 88-90 

Dispersion, 417-424 
anomalous, 422-423 

Dispersion coefficient, 424 
Displacement, electric, 181-185 
Displacement current, 334-337, 

342,352 
Displacement vector 

finite, 1, 8-9 
four-vector, 528 
infinitesimal 

Cartesian, 9 
curvilinear, 575 
cylindrical, 44 
spherical, 40 

Divergence, 16, 17,577-579 
of A, 243 
of B, 229-232 
in Cartesian coordinates, 17 
in curvilinear coordinates, 578 
in cylindrical coordinates, 44 
ofE, 66,71 
four-dimensional, 566 
of H, 282-283 
in spherical coordinates, 42 

Divergence theorem, 32, 579 
Divergenceless fields, 54, 249 
Domain, 288-290 
Dot product, 2, 5, 526 
Drift velocity, 300 
Drude, P. K.l., 300 
Dual tensor, 564, 573 
Duality transformation, 

353-354,477 
Dumbbell model, 492-493 

Earnshaw's theorem, 118,206 
Earth's magnetic field, 224 
Eddy currents, 310 
Ehrenfest's paradox, 518 

Einstein, A., 314, 503-504 
Einstein summation convention, 

527 
Einstein velocity addition rule, 

507-508,523-524 
Einstein's postulates, 501-507 
Elastic collision, 540 
Electret, 176, 184 
Electric field, 59, 61-62. See 

also Charge; Current; 
Dipoles, electric; 
Displacement, electric; 
Energy; Force: electric; 
Polarization (of a 
medium); Potential; 
Susceptibility 

average over a sphere, 163 
in conductor, 98, 296--297 
curl of, 66 
divergence of, 66 
of dynamic configurations 

arbitrary charge 
distribution, 448, 
479-480 

oscillating electric dipole, 
470 

oscillating magnetic dipole, 
476 

parallel-plate capacitor, 
moving, 553-555, 
560--561 

point charge, arbitrary 
motion, 456-460 

point charge, constant 
velocity, 460-461, 
555-556 

point charge moving in 
straight line, 462 

rotating electric dipole, 4 73 
induced,313-314,316--321 
macroscopic, 179-181, 199 
microscopic, 179-181 
of static configurations 

bar electret, 17 6, 184 
conducting sphere in 

dielectric medium, 
207-208 

conducting sphere in 
external field, 146--14 7 

continuous charge 
distribution, 63 
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dielectric cylinder in 
external field, 196 

dielectric sphere in external 
field, 192-194 

dipole, 158-160, 163 
disk, 65 
finite line, 64-65 
infinite cylinder, 73-74 
infinite line, 65, 76 
infinite plane, 7 4 
line charge, 63 
overlapping spheres, 76, 

178-179 
parallel-plate capacitor, 75 
point charge distribution, 61 
point charge near 

conducting plane, 
124-125 

point charge near dielectric 
plane, 194-197 

polarized object, 173-176 
ring, 65 
sphere, 65,71-72 
spherical shell, 65, 76 
surface charge distribution, 

63 
uniformly polarized 

cylinder, 179 
uniformly polarized object, 

173-174,293 
uniformly polarized sphere, 

174-176 
volume charge distribution, 

63 
Electromagnetic force between 

point charges, 460-461 
Electromagnetic induction, 

312-332 
Electromagnetic mass, 495 
Electromagnetic paradox, 495 
Electromagnetic radiation, 

xvi-xvii, 466 
Electromagnetic spectrum, 396 
Electromagnetic waves. See 

Waves 
Electromotance, 304 
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Electromotive force (emf), 
296-312,325 

Electrons 
dipole moment, 263 
discovery of, 216 
spin, 263-264, 379 

Electrostatic pressure, 104 
Electrostatics, 59, 199, 223, 234, 

241-242 
Emf (electromotive force), 

296-312,325 
Enclosed charge, 69 
Enclosed current, 230, 233, 280, 

333-334 
Energy 

of capacitor, 107 
of charge in static field, 91-92 
conservation of, 405, 536 (see 

also Poynting's theorem) 
of continuous charge 

distribution, 94-96 
of dipole, 172, 291-292 
in electric field, 357-359 
of electromagnetic wave, 

398-400 
of inductor, 328 
of linear dielectric, 197-202 
in magnetic field, 328-332, 

357 
of point charge distribution, 

92-94 
of point charge near 

conducting plane, 127 
of spherical shell, 95-96 
of static charge distribution, 

91 
Energy, relativistic, 536 

kinetic,536 
rest, 536 

Energy density 
electromagnetic, 359, 

398-399 
of electromagnetic wave, 

398-400 
electrostatic, 94-97 
in linear media, 359 
magnetostatic, 329-330 

Energy flux, 358 

Energy-momentum four-vector, 
536 

Equipotential, 80, 98 
Equivalence principle, 501 
Ether, 504-506 

drag, 505 
wind, 504-506 

Euler's formula, 387 
Evanescent wave, 434 
Events, 519 
Ewald-Oseen extinction 

theorem, 401 

Farad (unit), 105 
Faraday, M., xvi, 312 
Faraday cage, 102 
Faraday's law, 312-321, 332, 

395-397,568 
Ferromagnetic domain, 288-290 
Ferromagnetism, 266, 288-292 
Feynman disk paradox, 371-373 
Field, 54. See also Electric field; 

Magnetic field 
Field line, 67--68 
Field point, 9, 61 
Field tensor, 562-565, 569 
Field theory, xvi, 52-55, 

553-554 
Flux 

electric, 68-70 
magnetic,306,311 

Flux density, 282 
energy, 358 

Flux integral, 24 
Flux rule, 307-310, 313-314, 

503-504 
Flux rule paradox, 309 
Force 

conservative, 25 
electric 

on conductor, 103-104 
on dielectric, 202-204, 

207-208 
on electric dipole, 170--172 
on point charge in field, 61, 

212 
on point charge near 

conducting plane, 
126-127 

on point charge near 
dielectric plane, 194-197 

between point charges, 60, 
460-461 

on surface charge, 103-104 
electromagnetic, between 

point charges, 460-461 
Lorentz, 212,217,545 
magnetic 

on current, 217-218, 220--221 
between current loops, 259 
on magnetic dipole, 

267-270,292 
on magnetized material, 273 
between monopoles, 339 
between parallel currents, 

210-212,226,229, 
549-551 

between parallel planes, 240 
on point charge, 212 

Minkowski, 545,549, 568, 
571 

ordinary, 542, 545 
relativistic, 542 

Force density, 362 
Four vector, 525-528 

acceleration, 549 
charge/current, 565-566 
displacement, 528 
energy/momentum, 536 
gradient, 570 
Minkowski force, 545, 549, 

568,571 
position/time, 525-526 
potential, 569-571 
velocity, 533-534 

Fourier series, 134 
Fourier transform, 388, 432 
Fourier's trick, 134, 144 
Frequency, 386 

cutoff, 429-431 
Fresnelequations,409-411 
Fringing field, 202-203 
Fundamental theorem of 

calculus, 29 
for curls, 34 
for divergences, 31-32, 579 
for gradients, 29-30, 577 

Future, 529-530 



Galilean transformation, 
519-520,527 

Galileo Galilei, 502 

Index 

principle of relativity, 502 
velocity addition rule, 507, 508 

Gauge 
Coulomb, 440-441,569 
Lorenu,441-442,464,570 

Gaugeinvariance,570 
Gauge transformation, 439-440 
Gauss (unit), 224, 588 
Gaussian "pillbox," 74-75 
Gaussian surface, 71-7 4 
Gaussian units, xviii, 586-588 
Gauss's law, 68-70, 241, 332, 

567 
applications of, 71-76 
inside matter, 181-183 
symmetry for, 72-73 

Gauss's theorem, 32 
Gedanken (thought) experiment, 

508 
Generator, 305-312 
Gilbert dipole, 269,294,477 
Gradient, 13, 14, 576 

in Cartesian coordinates, 13, 14 
in curvilinear coordinates, 576 
in cylindrical coordinates, 44 
four-dimensional, 570 
in spherical coordinates, 42 
theorem, 29, 577 

Green's identity, 57, 124 
Green's reciprocity theorem, 164 
Green's theorem, 32,57 
Ground, 121 
Group velocity, 418,429 
Guided wave, 425-432 
Gyromagnetic ratio, 263 

H, 279-285 
Hall effect, 257 
Harmonic function, 114 
Heaviside-Lorenu units, xviii, 

587 
Helical motion, 213 
Helmholu coil, 259 
Helmholu theorem, 52-53, 

582-584 
Henry (unit), 324 

Hem, H., xvi, 335 
Homogeneous medium, 189 
Horizon, 456 
Hyperbolic geometry, 530-532 
Hyperbolic motion, 456, 

463-464,501,535,543, 
571 

Hysteresis, 290 

Images, method of, 124--130 
dipole and conducting plane, 

172 
parallel cylinders, 131 
point charge and conducting 

plane, 124--127, 500 
point charge and conducting 

sphere, 127-130 
point charge and dielectric 

plane, 196 
Incidence 

angle of, 407 
plane of, 406-407 

Incident wave, 388, 403 
Induced charge, 98-102, 

125-126, 130 
Induced current, 315 
Induced dipole, 167-170 
Induced electric field, 313-314, 

316-321 
Induced emf, 313-314 
Inductance, 321-327 

mutual, 321-323, 332 
self, 324--327, 331 

Induction,282,312-332 
Inertial system, 502 
Inhomogeneous wave equation, 

442 
Insulator, 97, 167 
Integration by parts, 36-37 
Intensity, 399 
Internal reflection, 433 
Internal resistance, 304, 305 
Interval, spacetime, 528-529 

lightlike, 528, 530--531 
spacelike,528,530--531 
timelike, 528, 530--531 

Invariance 
of charge, 553 
of mass, 537 

593 

time-reversal, 447 
Invariant, 526,536-537,562, 

565 
Invariant interval, 526-529 
Invariant product, 526 
Inversion, 12, 432 
Irrotational field, 53, 78-80 
Isotropic medium, 190 

Jefimenko's equations, 449-451 
Joule heating law, 301 
Jumping ring, 316 

Kinetic energy, 536 
Kronecker delta, 165, 363 

Langevin equation, 209 
Laplace's equation, 84, 113-119 

in one dimension, 114--115 
in three dimensions, 117-119 
in two dimensions, 115-117 

Laplacian, 23 
in Cartesian coordinates, 22, 

114 
in curvilinear coordinates, 581 
in cylindrical coordinates, 44 
of a scalar, 23 
in spherical coordinates, 42 
of V, 84, 88, 113 
of a vector, 23-24 

Larmor formula, 481, 484 
LC circuit, 327 
Left-handed coordinates, 6 
Legendre polynomials, 142, 153 
Lenz's law, 315-316 
Levi-Civita symbol, 292 
Levitation, 34 7 
Lienard formula, 485,573 
Lienard-Wiechert potentials, 

451-456,463-464 
Lifetime, 511, 513 
Light, 382-435 

speed of 
linear medium, 401-402 
universal, 506-507 
in vacuum, 394, 505-506 

Lightcone,530 
Lightlike interval, 528 
Line charge, 63 
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Line current, 216--217 
Line element 

Cartesian, 9 
curvilinear, 575 
cylindrical, 44 
spherical, 40 

Line integral, 24 
Linear algebra, 11 

Index 

Linear combination, 133, 387-388 
Linear equation, 133, 385 
Linear medium, 401-402 

electric, 185-193 
magnetic,284-287 

Linear polarization, 393 
Local conservation. See 

Continuity equation 
Longitudinal wave, 391-392 
Lorentz, H. A., xvi, 492, 506 
Lorentz contraction, 506, 

514-518,522 
Lorentz contraction paradox, 

515-516 
Lorentz force law, 210-223, 241, 

375,378,545,568,573 
in potential form, 442-444 

Lorentz gauge, 440-442, 448, 
464,570 

Lorentz-Lorenz equation, 208 
Lorentz transformation, 

519-526,570-571 

Macroscopic field, 179-181, 
199,279 

Madelung constant, 94 
Magnet, 276, 284 
Magnetic field, 210-212, 282, 

550-552. See also 
Charge; Dipole; Energy; 
Flux; Force: magnetic; 
Magnetization; Potential; 
Susceptibility 

average over a sphere, 
263-264 

curl of, 229-234 
divergence of, 229-232 
of dynamic configurations 

arbitrary charge 
distribution, 450, 
479-480 

charging capacitor, 336--337 
oscillating electric dipole, 

470 
oscillating magnetic dipole, 

475-476 
parallel-plate capacitor, 

moving, 556-558 
point charge, arbitrary 

motion, 228, 456-461 
point charge, constant 

velocity, 462, 560 
solenoid, moving, 558-559 

ofearth,224 
macroscopic, 279 
microscopic, 279 
of static configurations 

bar magnet, 276, 284 
in cavity, 282-283 
circular loop, 227 
dipole, 255, 263-265 
finite solenoid, 229 
finite straight line, 225 
infinite plane, 235 
infinite solenoid, 229, 236, 

240,259 
infinite straight line, 

225-226,229-230,235 
magnetized object, 

274-275,279 
solenoid filled with 

magnetic material, 286 
sphere of linear material in 

external field, 287 
spinning sphere, 246--247, 

249,263-264 
toroidal coil, 238-239 
uniformly magnetized 

cylinder, 276 
uniformly magnetized 

object, 293, 299 
uniformly magnetized 

sphere, 275-276 
in superconductor, 337 
work done by, 373-378 

Magneticinduction,282, 
312-332 

Magnetic monopole, 241-242, 
269,339 

Magnetic susceptibility, 284-286 

Magnetization,266--274, 
340-342 

Magnetomechanical ratio, 263 
Magnetostatics, 223, 234, 241, 

249,351-352 
Mass 

electromagnetic, 495 
relativistic, 536 
rest, 536 

Mass renormalization, 495 
Massless particle, 538-541 
Matrix 

Lorentz transformation, 
525-526 

rotation, 11 
Maxwell, J. C., xvi, 332-335, 

394 
Maxwell stress tensor, 362-366 
Maxwell's equations, 241, 

332-339,567,570 
in Gaussian units, 588 
inside matter, 340-342 
with magnetic monopoles, 

337-338 
tensor form, 567 

Meissner effect, 346--347 
Merzbacher's puzzle, 347 
Method. See Images; Relaxation; 

Separation of variables 
Michelson-Morley experiment, 

505-506 
Microscopic field, 179-181, 279 
Minkowski, H., 530, 573 
Minkowski diagram, 529 
Minkowski force, 545, 549, 568, 

571 
Minkowski's formula, 382 
mks units, xviii, 585-588 
Momentum 

angular, 370-373 
canonical, 443 
conservation of, 366--370, 536 
in electromagnetic field, 

360-370 
in electromagnetic wave, 

398-400 
four-vector, 536 
hidden, 547-549 
relativistic, 535-537 



Momentum density, 367-368, 
399 

Index 

Monochromatic wave, 394-398 
Monopole 

electric, 152, 154-155, 481 
magnetic,241-242,252-253, 

339,380 
Motional emf, 305-312, 

503-504 
Multipole expansion 

of electrostatic potential, 
151-158 

of magnetostatic potential, 252 
of radiation fields, 481 

Mutual inductance, 321-323, 
332 

Neumann formula, 322-323 
Newton's laws 

first law, 502 
secondlaw,495,542 
third law, 360--362, 464, 492, 

544 
Normal derivative, 90 
Normal incidence, reflection and 

transmission at, 403-405 
Normal vector, 26, 89-90, 251 

Oblique incidence, 405-411 
Observer, 509 
Octopole, 152, 156, 165, 482 
Oersted, C., xv-xvi, 564 
Ohm (unit), 298-299 
Ohm's law, 296--303 
Operator, 16 
Orthogonal coordinates, 575 
Orthogonal functions, 136, 144 
Orthogonality, 135-136, 144 

Paradoxes. See Barn and ladder 
paradox; Ehrenfest's 
paradox; Electromagnetic 
paradox; Feynman disk 
paradox; Lorentz 
contraction paradox; 
Merzbacher's puzzle; 
Time paradox; Twin 
paradox 

Parallel-plate capacitor, 75, 
105-106, 190, 240, 
553-555 

Paramagnetism, 266--270, 
273-274 

Past, 530 
Pathindependence,24-25,30, 

53, 79-80 
Path integral, 24 
Permanent magnet, 276,288-289 
Permeability, 224, 284-286, 288, 

573 
of free space, 224, 285 
relative, 285 

Permittivity, 186, 573 
complex, 421 
of free space, 60, 186 
relative, 186 

Phase, 385 
Phase constant, 385, 415 
Phase transition, 291 
Phase velocity, 418 
Photon,530,538-541 
Pill box, 74-75 
Pinch effect, 256 
Planck formula, 539 
Plane 

of incidence, 406-407 
of polarization, 405 

Plane wave, 394-398 
Plasma, 256 
Point charge. See Electric field; 

Force; Magnetic field; 
Monopole; Potential 

Poisson's equation, 84, 113, 244, 
284 

for A, 244 
for V, 84, 88, 113 

Polar angle, 38 
Polar molecule, 169-170 
Polarizability 

atomic, 168 
tensor, 169 

Polarization (of a medium), 168, 
172-173 

current, 340--341 
electric, 168, 172, 340-342 
induced, 168 
magnetic (see Magnetization) 

Polarization (of a wave), 
391-393 

circular, 393 
linear, 393 

Polarization angle, 393 
Polarization vector, 392 
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Pole (magnetic), 241-242,269 
Position-time four-vector, 

525-526 
Position vector, 8-9 
Potential, 584. See also Scalar; 

Vectors 
advanced,446 
electric, 78-83 
in electrodynamics, 436-442 
four-vector, 569-571 
Lienard-Wiechert, 451-456, 

464 
magnetic scalar, 249-250, 262 
magnetic vector, 243-245, 262 
magnetostatic scalar, 245 
retarded, 444-448 

Potential energy, 80 
of a charge configuration, 93 
of a point charge, 92 

Power 
dissipated in resistor, 301, 359 
in electromagnetic wave, 399 
radiated 

by arbitrary source, 
479-482 

by oscillating electric 
dipole, 471, 477 

by oscillating magnetic 
dipole, 476 

by point charge, 482-488 
Poynting vector, 358, 398-402 
Poynting's theorem, 357-360 
Preacceleration, 490, 492, 500 
Present, 530 
Pressure 

electromagnetic, 364 
electrostatic, 104 
radiation, 400 

Product rules, 20 
Propagation vector, 397 
Pseudoscalar, 12 
Pseudovector, 12, 212 
Pulsar, 498 
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Quadrupole 
electric, 152, 156, 165, 

481-482 
magnetic, 252 
radiation, 480-481 

Quadrupole moment, 165 
Quasistatic approximation, 

319-320,450,451 
Quotient rules, 21 

Radiation, 466-501 

Index 

by arbitrary source, 477-482 
by electric dipole, 467-473 
by electric quadrupole, 482 
electromagnetic, xvii, 

466-467,482 
by magnetic dipole, 473-477, 

497-499 
by point charge, 482-488 

in hyperbolic motion, 501 
by rotating electric dipole, 

473-474 
by surface current, 499 
synchrotron, 488 

Radiation damping, 490 
Radiation field, 460, 483 
Radiation pressure, 400 
Radiation reaction, 488-496, 

501 
Radiation resistance, 472, 477 
Radiation zone, 469, 475-476, 

479 
Rapidity, 528 
RC circuit, 302 
Reference point 

for electric dipole, 157-158 
for magnetic dipole, 254 
for potential, 79, 81, 83 

Reftection,403-411 
angle of, 407 
at conducting surface, 

416-417 
internal, 433 
law of, 407 
waves on a string, 388-391 

Reflection coefficient, 405, 411 
Refraction,403-411 

angle of, 407 
coefficient of, 424 

index of, 401, 418, 422 
law of, 407 

Relativistic constitutive relations, 
573 

Relativistic dynamics, 542-549 
Relativistic electrodynamics, 

550-570 
Relativistic energy, 535-537 
Relativistic kinematics, 537-542 
Relativistic mass, 536 
Relativistic mechanics, 532-549 
Relativistic momentum, 535-537 
Relativistic potentials, 569-571 
Relativity 

principle of, 502-508 
of simultaneity, 509-510, 

521-522 
special, xiv, 502-574 

Relaxation, method of, 116 
Renormalization 

ofcharge, 189-190 
of mass, 495 

Resistance, 298 
Resistivity, 296-297 
Resistor, 297 
Resonant cavity, 435 
Rest energy, 536 
Rest mass, 536 
Retarded position, 451-454 

potentials, 444-448 
Retarded position time, 445 
Reversion of series, 494 
Right hand rule, 3 
Right-handed coordinates, 6 
RL circuit, 331 
Rodrigues formula, 142, 149 
Rotation, 10 
Rotation matrix, 11 
Runaway motion, 490, 492 

Saturation,289 
Scalar, 1 
Scalar potential, 53, 436-464 

dynamic configurations 
arbitrary charge 

distribution, 445, 479 
oscillating electric dipole, 

469 

oscillating magnetic dipole, 
473-474 

point charge, arbitrary 
motion, 454 

point charge, constant 
velocity, 454-456 

magnetic, 245, 249-250, 262, 
284 

static configurations 
average over a sphere, 

117-118 
conducting sphere in 

external field, 146--14 7 
continuous charge 

distribution, 84-85 
disk, 87 
electric dipole, 154-155 
finite cylinder, 87 
infinite line, 85-87 
multipole expansion, 

151-158 
point charges, 84-85 
polarized matter, 173-176 
ring, 87 
specified charge on surface 

ofsphere, 147-148 
specified electric field, 79, 

262 
specified potential on 

surface of sphere, 
143-144 

spherical shell, 82, 86, 149 
surface charge, 85 
uniformly charged object, 

293 
uniformly charged sphere, 

83,88 
uniformly polarized sphere, 

174-175, 178-179 
volume charge, 85 

Scalar product, 2, 5, 7, 526-528 
Second derivative, 22-23 
Second-rank tensor, 11-12, 

562-563 
Self-force, 492-496 
Self-inductance, 324-327, 331 
Semiconductor, 297 
Separation of variables, 130--150 



Cartesian coordinates, 
130--141 

Index 

cylindrical coordinates, 150 
spherical coordinates, 

141-150 
Separation vector, xii, 9, 15, 60 
Shears, 364 
Shielding, 190 
Siuni~,xviii,585-588 

Simultaneity, 509-510, 521-522 
Sinusoidal waves, 385-388 
Skin depth, 413-414 
Sky, blueness of, 471 
Snell's law, 407 
Solenoid, 229, 236--237 
Solenoidal field, 54, 249 
Source charge, 9, 59, 210 
Source point, 9, 61 
Space charge, 109 
Spacelike interval, 528 
Spacetime, structure of, 525-532 
Spacetime diagram, 528-532 
Spacetime interval, 528-529 
Special relativity, xiv, 502-574 
Speed 

of charges in wire, 242, 300 
of light in linear medium, 

401-402 
of light in vacuum, 394, 

505-506 
of waves on a string, 384 

Spheres 
defined, 51 
terminology for, 51 

Spherical coordinates, 38-43 
Spherical surface, 51 
Spherical volume, 51 
Spherical wave, 432 
Standing waves, 385, 429 
Stationary charge, 60, 223 
Steady current, 223 
Step function, 49 
Stokes' theorem, 34, 55, 56, 

580--581 
Stress, 364 
Stress tensor, 362-366 
String, waves on, 382-393 
Summation convention, 527 
Sun, age of, 110-111 

Sunset, redness of, 4 72 
Superconductor, 346 
Superluminal velocity, 418, 

510 
Superposition principle, 59, 82, 

97, 162 
Surface charge, 63, 103-104, 

299 
Surface current, 220--221 
Surface element, 26, 40 
Surface integral, 24, 26 
Susceptibility 

complex, 421 
electric, 185-186, 208 
magnetic,284-286,288 

Susceptibility tensor, 190 
Symmetric tensor, 563, 564 
Symmetry 

for Ampere's law, 237 
azimuthal, 141 
ofE, B, D, and H, 293 
for Gauss's law, 72-73 
of Maxwell's equation, 

338-339 
Synchronization, 509-510, 

512-513,521-522 
Synchrotron radiation, 488 

TE waves, 427-431 
TEM waves, 427 
Tensor, 11-12 

antisymmetric,562-564 
contravariant, 565 
covariant, 565 
dual, 564, 573 
field, 562-565 
polarizability, 169 
second-rank, 11-12, 562-563 
stress, 362-366 
susceptibility, 190 
symmetric,563-564 

Terminal velocity, 311-312 
Tesla (unit), 224, 586 
Test charge, 59, 210 
Theta function, 49 
Thirdlaw,360-362,464,492, 

544 
Thompson-Lampard theorem, 

166 

Thomson's dipole, 380 
Three-dimensional wave 

equation,394 
Threshold, 571 
Time 

advanced,446 
proper, 532-535 
retarded, 445 
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Time constant, 302, 326,412 
Time dilation, 510--514, 521-522 
Time paradox, 512-514 
Time reversal, 447 
Timelike interval, 528 
TM waves, 427 
Toroidal coil, 238-239, 331 
Torque 

on electric dipole, 170-171 
on magnetic dipole, 266-270 

Total internal reflection, 433 
Transformation 

of angles, 518, 524 
of charge and current density, 

566 
duality, 353-354, 477 
of electromagnetic fields, 

553-560 
of forces, 545 
Galilean, 519-520,527 
gauge,439-440 
oflengths,514-518,522 
Lorentz, 519-526, 570-571 
of momentum and energy, 

536 
of velocity, 534 

Transforme~ 350 
Translation, 12 
Transmission coefficient, 405, 

411 
Transmission line, 319, 352, 

431-432 
Transmission of waves on a 

string, 388-391 
Transparency,401 
Transverse wave, 391-393, 

395-396,414 
Triangle diagram 

electrodynamics, 463 
electrostatics, 88 
magnetostatics, 249,259-261 



598 Index 

Triple product, 7 infinite line current, Visible range (electromagnetic 
Tunneling,434,500 248-249 spectrum), 396 
Twin paradox, 513-514, infinite plane current, Volt (unit), 82 

524-525 248-249 Voltmeter, 349 
infinite solenoid, 247 Volume charge, 63 

Uniqueness theorems, 119-124, magnetic dipole, 253-255 Volume current, 220 
207,262 magnetized material, Volume element 

Unit systems. See Gauss; 274-275 Cartesian, 27 
Heaviside-Lorentz units; multipole expansion, curvilinear, 577 
SI units 252-255 cylindrical, 43-44 

Unit vectors, xii, 3-4, 9, 39, 42 specified magnetic field, spherical, 40 
Cartesian, 4 262 Volume integral, 24, 27-28 
curvilinear, 39, 575 spinning sphere, 245-246, 
cylindrical, 43 263-264 Wave equation, 382-385, 
normal, 89-90 uniform magnetic field, 248 393-394 
spherical, 38, 42 Vector products, 3 for A, 441-442 

Units, 585-588 cross product, 3, 6 forB, 393-394 
ampere, 216, 224 dot product, 2, 5 forE, 393-394 
coulomb, 60, 585 multiplication by scalar, 2, 5, general solution, 384--385 
esu (electrostatic unit), 526-528 homogeneous,384,394 

585-586 Vector triple products, 7 inhomogeneous, 442 
farad, 105 

Vectors, 1 
one-dimensional, 384 

gauss, 224, 586 
addition, 1-2, 5 

three-dimensional, 394 
henry,324 

component, 5, 39 
for V, 441-442 

ohm,298-299 
contravariant, 526 

Wave guide, 425, 428 
tesla, 224, 585, 586 

covariant, 526-527 
Wave number, 385 

volt, 82 Wave vector, 397 
Universal speed of light, 506 displacement, 1, 8-9 Wavelength, 385 

four, 525-528 Waves 
Vector area, 57, 253 magnitude, 1 complex, 387 
Vector operator, 16 polarization, 392 in conductors, 412-417 
Vector potential, 54, 243-245, position, 8 dispersive, 417-418 

436-464 propagation, 397 electromagnetic, 382-435 
direction of, 247-248 pseudovectors, 12, 212 evanescent, 434 
dynamic configurations separation, xii, 9, 15, 60 in free space, 393-400 

arbitrary charge subtraction, 2 guided, 425-432 
distribution, 445, 479 unit (see Unit vectors) in linear media, 401-411 

oscillating electric dipole, Velocity. See also Speed longitudinal, 391-392 
469 4-velocity, 532-535 monochromatic,394 

oscillating magnetic dipole, drift, 242, 300 plane, 394--398 
475-476 group, 418 sinusoidal, 385-388 

point charge, arbitrary ordinary, 533 spherical, 432 
motion, 454-455 phase, 418 standing, 385, 429-430 

point charge, constant proper, 532-535 on a string, 382-393 
velocity, 454-456 wave, 418 transverse, 391-393, 395 

static configurations of waves on a string, 384 velocity, 384, 394, 418 
arbitrary current Velocity addition rules, 507-508, water, 424 

configuration,244--245 523-524 Work 
finite line current, 249 Velocity field, 460, 482 and emf, 306, 328 



and potential, 91-92 
relativistic, 542 

Work done. See also Energy 
against back emf, 328 
in charging a capacitor, 

106--107 

Index 

by magnetic forces, 215, 
218-220,373-378 

in moving a charge, 91-92 
in moving a dielectric, 

202-204 
in moving a wire loop, 305-308 

in polarizing a dielectric, 
197-202 
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in setting up a charge 
configuration,91-94 

Work energy theorem, 543-544 
World line, 529-530 
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VECTOR DERIVATIVES 

Cartesian. dl = dx i + dy y + dz z; dr = dx dy dz 

Gradient: 
at A at A at A 

Vt= - x+ - y+ - z 
ax ay az 

avx avy avz 
Divergence: V · v = - + - + -

ax ay az 

Curl: (
avz avy) A (avx avz) A (avy avx) A Vxv= - - - x+ - - - y+ - - - z 
ay az az ax ax ay 

Laplacian: 

Spherical. dl = dr r + r dO i + r sinO dl/J ~; dr = r2 sinO dr dO dl/J 

Gradient: 
at A 1 at A 1 at A 

Vt = - r+ -- 0 + ---q, 
ar r ao r sin() aljJ 

1 a 2 1 a . 1 avi/J 
Divergence: V · v = --(r v) + ---(sm() vo) + ---

r2ar r rsinoao rsin() aljJ 

Curl: 1 [ a . avo J A V x v = -- - (sm() VifJ)- - r 
r sin() ao aljJ 

1 [ 1 avr a J A 1 [ a avr J A + - -. --- - - (rvifJ) () + - - (rvo)- - q, 
r sm() aljJ ar r ar ao 

Laplacian: V t = -- r - + --- smO - + -----=--2 1 a ( 2 at) 1 a ( . at) 1 a
2
t 

r2 ar ar r2 sin() ao ao r2 sin2 () aljJ2 

Cylindrical. dl = ds s + s d¢ ~ + dz z; dr = s ds dl/J dz 

Gradient: 
at A 1 at A at A 

Vt = - s+ --q,+ - z 
as sa¢ az 

. 1 a 1 avi/J avz 
Dzvergence: V · v = --(svs) + -- + -

s as s aljJ az 

Curl: 

Laplacian: 



Triple Products 

(1) A. (B X C) = B . (C X A) = c . (A X B) 

(2) A x (B x C) = B(A · C) - C(A · B) 

Product Rules 

(3) V(fg) = f(Vg) + g(V f) 

VECTOR IDENTITIES 

(4) v (A . B) = A X (V X B) + B X (V X A) + (A . V)B + (B . V)A 

(5) V ·(fA)= f(V ·A)+ A· (V f) 

(6) V · (A x B) = B · (V x A) - A · (V x B) 

(7) v X (fA) = f (V X A) - A X (V f) 

(8) V x (A x B) = (B · V)A - (A · V)B + A(V · B) - B(V · A) 

Second Derivatives 

(9) v . (V X A) = 0 

(10) V X (V f) = 0 

(11) v X (V X A)= V(V. A)- V2A 

FUNDAMENTAL THEOREMS 

Gradient Theorem: fab(V f)· dl = f(b)- f(a) 

Divergence Theorem: J (V · A) d r: = j A · da 

Curl Theorem: j(V x A)· da = j A· dl 



BASIC EQUATIONS OF ELECTRODYNAMICS 

Maxwell's Equations 

In general: 

1 
V ·E= - p 

Eo 
aB 

V xE=-­at 

aE 
V x B = J.LoJ + J.LoEo ­at 

Auxiliary Fields 

Definitions : 

{ 

D = E~E+P 

H= - B-M 
J.Lo 

Potentials 

In matter: 

V ·D = P! 

aB 
V xE=- ­at 
V ·B=O 

Linear media: 

{ 

P = EoXeE, D = E~ 

M= XmH. H= - B 
f.L 

a A 
E=-VV- ­at · B=VxA 

Lorentz force law 

F = q(E + v X B) 

Energy, Momentum, and Power 

Energy: 

Momentum: 

Poynting vector: 

Larmor formula: 

1 f ( 2 1 2) U = '2 EoE + J.Lo B dr 

P = Eoj(E x B)dr 

1 s = - (EX B) 
J.Lo 

P J.Lo 2 2 = - qa 
6nc 



FUNDAMENTAL CONSTANTS 

Eo = 8.85 X 10-12 C2 jNm2 (permittivity of free space) 

(permeability of free space) 

c = 3.00 x 108 mjs (speed of light) 

e = 1.60 x 10-19 C (charge of the electron) 

m = 9.11 x 10-31 kg (mass of the electron) 

SPHERICAL AND CYLINDRICAL COORDINATES 

Spherical 

{ 
x = r sin 0 cos ljJ 

{ 
i = sin 0 cos l/J r + cos 0 cos l/J 6 - sin l/J ~ 

y = r sinO sinl/J y = sin 0 sin l/J r + cos 0 sin l/J 6 + cos l/J ~ 
z = r cosO z = cos 0 r - sin 0 6 

{ 
r = .j x2 + y2 + z2 

{ 
r = sin 0 cos l/J i + sin 0 sin l/J y + cos 0 z 

0 = tan-1 
( .jx2 + y2fz) 6 = cos 0 cos ljJ i + cos 0 sin ljJ y - sin 0 z 

ljJ = tan-1(yjx) ~ = - sin ljJ i + cos ljJ y 

Cylindrical 

{ 
x = scosljJ 

{ 
i = cos ljJ s - sin ljJ ~ 

y = s sinljJ y = sin ljJ s + cos ljJ ~ 
z = z z=z 

{ 
s = .jx2 + y2 

{ 
s = cos ljJ i + sin ljJ y 

ljJ = tan-1(yjx) ~ = - sin ljJ i + cos ljJ y 
z = z z = z 
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