
TT-2023 Revision Lectures on

ELECTROMAGNETISM (CP2)

• Electrostatics
• Magnetostatics
• Induction
• EM waves

… taken from previous years’ Prelims questions
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11.4 Example : B-field of a circular current loop

Calculate the B-field due to a circular wire with current I, radius
a, at a distance z along its axis from the centre

• Field due to d` : dB = µ0 I d`⇥r̂
4⇡ r2

• |d` ⇥ r̂| = d` , since r ? d`

• Components of dB perpendicular to
z-axis cancel due to symmetry !
field is along the z-axis

! B =
R

dB sin ✓ =
R

a
r dB

• B =
R µ0 I

4⇡ r2
a
r d` along ẑ

• a and r both constant for given point.
R

d` = 2⇡ a

• Hence B = µ0 I a2

2(z2+a2)
3
2

• Or since sin ✓ = ap
(z2+a2)

, B = µ0 I
2a sin3 ✓
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State the Biot-Savart law :
0 3
d
4

I
r

µ
p
´

= ×
l rdB

Find the magnitude of B on axis            
for a coil of n turns. Symmetry:

dB has z-component only.
Perp. components cancel.

And also: dl is perp. to r
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dB

= | dl | = 

z

U =
R
V (q0)dq0 =

R
V ⇢ d3r

U =
R q
0 V (q0)dq0 =

R q
0

q0dq0

4⇡✏0a
= q2

8⇡✏0a

R
V dq0

U = 1
2✏0

R
all spaceE
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U = 1
2

R
⇢V d3r

r̂
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11.1 The Biot-Savart Law for calculating magnetic
fields

The Biot-Savart is here taken as an empirical starting point for

calculation of magnetic fields, but can be derived from Maxwell’s

equations and the magnetic vector potential (see later)

• The Biot-Savart Law states the field at
point P :

dB = µ0 I d`⇥r̂
4⇡ r2

• µ0 = 4⇡ ⇥ 10�7 N A�2 permeability of free space

• dB is the magnetic flux density contribution at P

• I is the current flowing through element d`

• r is the vector connecting d` and P

• dB is oriented perpendicular to r and the current

Then integrate dB to get total field from a circuit that is carrying

current, i.e. Principle of Superposition applies
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dB
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Symmetry:
dB has z-component only.
Perp. components cancel.

And also: dl is perp. to r

Induced e.m.f. emfV = −
d
dt

B•dS∫ = B cosθ dA
dt

where A=d l

emfV = −Bcosθ d dl
dt

=B cos θ d v

Induced current: I=Vemf /R

Equation of Motion - consider magnetic (Lorentz) force on 
current-carrying bar: dF=I dl × B

Fpara= I d B cos θ  = Vemf /R  d B cos θ  =  B2 d2 cos2θ v / R

d
dt

m     v = mg sinθ – B2 d2 cos2θ v / R  Equation of Motion:

d
dt

v + B2 d2 cos2θ /(mR) v  = g sinθ

k

gravitational magnetic
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Two such coils are placed a 
distance d apart on the same 
axis. Find B as function of x.
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Show that the derivative of B’ is 0 for x=0
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Find the value of d for which the second 
derivative of B’(0) is 0.
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Show that the variation of B between the coils is <6% 

5.57%B
B

 

Two such coils are placed a 
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When a = d, show that the variation of B between the 
coils is <6%

5.57%B
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When a = d, show that the variation of B’                  
between x=0 and x=d/2 is <6%
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Sketch of the field of a pair of Helmholtz coils

B in units of 0
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Ampere's law in its integral form: 0d  

 (  enclosed)

I

I

µ× =ò B l—

0 0       with   ,   thus  NB N I N B N Iµ µ
¢

¢× = × × = = × ×


For infinite solenoid, B constant within it (and zero outside)  
→ radially uniform field; symmetry means no azimuthal dependence

N turns of wire per unit length. 
Winding carries a current I.
Find B and show it is radially uniform inside the coil.
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0 0

0

d  ln
2 2

ln
2

b

a

I I bdr
r a

bL
I a

µ µ
p p

µ
p

æ öF = × = × = ×ç ÷
è ø

F æ ö= = ×ç ÷
è ø

ò òB S  



32

(surface  dS= r.dl ) 14.2 Example : B-field of a long solenoid

• Infinitely long solenoid carrying current I , with n turns per unit length

• B-field is uniform and parallel to principal axis inside solenoid , and
zero outside (if “infinitely” long)

• Amperian path is a rectangle spanning inside and outside of solenoid

• Side 3 does not contribute (B = 0; easily seen

by taking ! 1); sides 2 and 4 also contribute
nothing (B ? d` , or B is zero)

• Contribution from side 1 only :
H

B · d` = B · ` = µ0 N I = µ0 (n `) I

where N = (n `) is the number of turns enclosed

within the Amperian loop

l

4 2

3

1 B
⊗⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

! B = µ0
N
` I = µ0 n I same as from Biot-Savart Law (⇤)

(*) Note that if coil is not “infinite”, end e↵ects must be taken into account and here

the field will not be uniform, i.e. Ampere’s Law not as useful as presented here
131



Calculate the self-inductance per unit length.
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                       ... and per length:  
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Calculate the magnetic induction and the energy stored.
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Ampere’s Law: 0d d Iµ× = × =ò òòB l J A—
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Calculate magnetic field inside a pair of co-axial 
cylinders due to current I flowing as shown.

= 0

(direction azimuthal : cf. RH screw)
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(surface  dS= r.dl ) 



Calculate the self-inductance:
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(surface  dS= r.dl ) 
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(surface  dS= r.dl ) 
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(surface  dS= r.dl ) 

⇒



Sketch the magnitude of B when the inner 
cylinder is replaced by a solid wire
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State the laws of electromagnetic induction

13

Faraday’s and Lenz’s Laws of Induction

• Faraday’s Law (or the Universal Flux Rule) :

The induced electromotive force (EMF) E in any closed circuit
is equal to (the negative of) the time rate of change of the
magnetic flux � through the circuit :

E = �d�
dt = � d

dt

R
S B · da

This states that any change in magnetic flux through a loop, no

matter the reason, i.e. whether it be from a time-dependent B-field

or to a changing circuit, induces an EMF E in the loop

• Lenz’s Law :

The induced EMF gives rise to a current whose magnetic field
opposes the original change in magnetic flux that caused it

(Lenz’s Law is the minus sign in Faraday’s Law)
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The induced EMF gives rise to a current whose magnetic field
opposes the original change in magnetic flux that caused it

(Lenz’s Law is the minus sign in Faraday’s Law)
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Faraday disc (thickness d).

Brushes around entire inner 
and outer perimeter.

Magnetic flux density 
parallel to axis of rotation 
(comes later).

2
                    resistivity 

inner

outer

r a
r a r

=
=
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Calculate the electrical resistance of the disc

( )
/ 2

length
area

d ln 2
2 2

a

a

R

r
r d d

r

rr
p p

= ×

= × = ×
×ò

Find the potential difference for the disc rotating 
in a magnetic flux density B
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D
( r = resistivity )

E =
R r=a
r=a/2 (v ⇥B) · dr where v ? B ? dr and v = r !

E =
R a
a/2 !B r dr = 1

2!B
⇣
a2 �

�
a
2

�2⌘
= 3

8Ba2!

Electromagnetic Waves

SLIDE 49:

OK, so we move onto EM waves. Hopefully this part will not take too

long.

So, this first question asks us to consider ”Ampere’s Law applied to a

parallel plate capacitor being charged by a current Ic, and explain why it

is necessary to introduce a displacement current Id, given by: Id = ✏0A
dE
dt ”

(POINT).

OK, so we have discussed this in lectures, it is a standard sort of ques-

tion/proof, so lets quickly run through this:

What we need to do is consider this situation, with a capacitor, and we

are going to consider Ampere’s Law, around this wire, but we can consider

two di↵erent surfaces (DRAW). If we consider this surface (1), we get the

usual/classic
H
B·d` = µ0I. But, if we were to choose this more bubble-like

surface (number 2), then we’d get zero, using Ampere’s Law as is! Since

no current passes through this surface. So we have a problem!!

What is the explanation? Well, it is that we have a time-varying electtric

field, which is also a source of magnetic field. So, we are missing a term

in Ampere’s Law, and that term is mu0 times the displacement current,

Id. So, what exactly is the displacement current term? Well, if we look

at Gauss’ Law for this parallel plate capacitor, we find that the field is

given by E = Q
A✏0

. If we di↵erentiate Q with respect to time, well this will

simply be the current I, but we can see that it is given also in this case by

(READ) Id = ✏0A
dE
dt .

OK, so we need to add a term µ0Id into Ampere’s Law, and if we do that,

then we will retrieve the same result regardless of which surface we use.

29



Calculate the electrical resistance of the disc

( )
/ 2

length
area

d ln 2
2 2

a

a

R

r
r d d

r

rr
p p
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= × = ×
×ò

Find the potential difference for the disc rotating 
in a magnetic flux density B
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( r = resistivity )

2
2

2
2flux cut 3

2time 8

aB a
emf Ba

p
wp

w

æ öæ ö× -ç ÷ç ÷
è øè ø= = =

Alternative method: 
(see lectures)



Find the optimum value for a load resistor

D

emfI
R R

=
+

Power in load:   P = I2 R

( ) ( )
( )

( ) ( )

2
2

2

20 :     0 1 2

maximum power transfer for:   

D D D

D D

D

emfR RP emf
R R R R R R

P R R R R R
R

R R

= × = ×
+ + +

¶
= = + × - + ×

¶
=
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( )

( ) ( )
/ 4

   here:  2

ln 2
ln 4

2 2

a

D
a

R area r r t
area

drR
rt t t

r p

rrr
p p p

= × = ×

= × = × =ò
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As before



( )

2 2 2

2 2 2 2
2

1 1
2 4

15
32

rot

rot
dissipated

D L D L

E I ma

emfdE B aP
dt R R R R

w w

w

= =

æ ö= - = - = - × ×ç ÷+ +è ø

emf – same as before : 
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E =
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r=a/4 (v ⇥B) · dr where v ? B ? dr and v = r !
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= 15
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Electromagnetic Waves

SLIDE 49:

OK, so we move onto EM waves. Hopefully this part will not take too

long.

So, this first question asks us to consider ”Ampere’s Law applied to a

parallel plate capacitor being charged by a current Ic, and explain why it

is necessary to introduce a displacement current Id, given by: Id = ✏0A
dE
dt ”

(POINT).

OK, so we have discussed this in lectures, it is a standard sort of ques-

tion/proof, so lets quickly run through this:

What we need to do is consider this situation, with a capacitor, and we

are going to consider Ampere’s Law, around this wire, but we can consider

two di↵erent surfaces (DRAW). If we consider this surface (1), we get the

usual/classic
H
B·d` = µ0I. But, if we were to choose this more bubble-like

surface (number 2), then we’d get zero, using Ampere’s Law as is! Since

no current passes through this surface. So we have a problem!!

What is the explanation? Well, it is that we have a time-varying electtric

field, which is also a source of magnetic field. So, we are missing a term

in Ampere’s Law, and that term is mu0 times the displacement current,

Id. So, what exactly is the displacement current term? Well, if we look

at Gauss’ Law for this parallel plate capacitor, we find that the field is

given by E = Q
A✏0

. If we di↵erentiate Q with respect to time, well this will

simply be the current I, but we can see that it is given also in this case by

(READ) Id = ✏0A
dE
dt .

OK, so we need to add a term µ0Id into Ampere’s Law, and if we do that,

then we will retrieve the same result regardless of which surface we use.

29

Define magnetic flux and state Faraday's law 
of electromagnetic induction. 

     and     
dB area emf
dt


    

 Calculate the resistance of the disc RD measured 
between the brushes. 

 

   
/ 4

   here:  2

ln 2
ln 4

2 2

a

D
a

R area r r t
area

drR
rt t t

 


  

   

    
(NB, there is a mistake in this question: ID = ½ ma2  is 
assumed, but for an annulus a/4 →  a with the same 
mass, I is a factor 17/16 larger)
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Integrate :

(from [1])

(from [1])



A vertical loop is falling as shown below. 
Calculate the current in the loop.

     

B area B a y
d dyemf B a B a v
dt dt

V B a vR I
I R

F = × = × ×
F

= - = - × × = × ×

× ×
= ® =

21
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Describe the forces acting on the loop due to the 
magnetic field, and indicate their directions:

            q F I a B= × ´ = × ×F v B

F

F

F I• Current (+e) clockwise

• Force on these moving charges

• Sideways forces cancel

• Remaining force has decelerating effect
22
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… and the mass: 3
kg  with  8960
mm mm Vr r= × =

6 2 3
3
kg8960 0.4m 10 m 2.814 10 kg
m 4

m p - -= × × × = ×

Calculate the steady state velocity, if this is reached while 
the upper arm of the loop is still in the magnetic field.

2 2 0.0266 m/s

B a vF I a B a B m g
R

mgRv
a B

× ×
= × × = × × = ×

= =

Find R: 810cm,  1mm,  1.7 10 mea D r -= = = × W

8 3
2 -6 2

4 4

4 4 0.1m1.7 10 m 8.66 10
10 me

aR
Dp p

r - -×
= × = × W × = × W

×
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magnetic force = 
gravitational force



B

dS

θ

v
m

v

l

d R

side view top view
24



Induced e.m.f. emfV = −
d
dt

B•dS∫ = B cosθ dA
dt

where A=d l

emfV = −Bcosθ d dl
dt

=B cos θ d v

Induced current: I=Vemf /R

Equation of Motion - consider magnetic (Lorentz) force on 
current-carrying bar: dF=I dl × B

Fpara= I d B cos θ  = Vemf /R  d B cos θ  =  B2 d2 cos2θ v / R

d
dt

m     v = mg sinθ – B2 d2 cos2θ v / R  Equation of Motion:

d
dt

v + B2 d2 cos2θ /(mR) v  = g sinθ

k

gravitational magnetic

25



d
dt

v + k v = g sinθSolving Equation of Motion:

try v = A exp(–k t) +B B=sinθ g/kinsert into EoM

boundary condition: at t = 0, v = 0           A = –B

v = sinθ g/k (1 – exp(– k t))

v¥ = sinθ g/kfor t ¥, constant velocity: 

26

v¥ = g m R sinθ / (B2 d2 cos2θ)



θ

θ

r

r0
0

b

B

v
x Lorentz force acts perpendicular to v

and B.

Particle is forced onto circular 
path: F = q v B = mv2/r

r = mv/(qB)

The particle will reach the region x > b if b < r, so need:
b < mv/(qB)

If it reaches the region, it enters it at angle θ with sin θ = b/r

sin θ = b q B / (m v)
27
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starting
point

end
point

r

d

Acceleration in E-field provides kinetic energy:
½ m v2 = q V = q E d

v = (2qEd/m)½

Lorentz force provides centripetal acceleration 
in the second region (with B-field): q v B =mv2/r

If the particle is to re-enter the electric field at 
a distance d from where it left, we need r=d/2:
B =2mv/(qd) = 2m (2qEd/m)½/(qd) 

B =2 (2mE/(qd))½ is required

Time spent = [1/2 circumference] / [velocity] =  p r / v
28
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— J is the current density
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Surface 2:

Surface 1: Gauss inside capacitor
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(surface  dS= r.dl ) 

Ampere’s Law and a charging capacitor (cont.)

• Gauss’s Law for a parallel plate
capacitor : E = Q

✏0A

• @E
@t = 1

✏0A
dQ
dt = 1

✏0A
I

• ID = ✏0
R
S

@E
@t · da added to

Ampere’s Law gives :

4.1. Ampere’s Law and the Displacement Current

V

+Q -Q B
Surface 1

Surface 2

•
H
C B · d` = µ0 Ienc| {z }

Term 1

+ µ0✏0

Z

S

@E
@t

· da
| {z }

Term 2

• Surface 1 : Term 1 = µ0 I , Term 2 = 0

• Surface 2 : Term 1 = 0 , Term 2 = µ0✏0 ⇥ 1
✏0A

I ⇥ A = µ0 I

! RHS = µ0 I , regardless of choice of surface XX
• In di↵erential form : r ⇥ B = µ0

⇣
J + ✏0

@E
@t

⌘
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B J E

—
— J is the current density

[5]
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Surface 2:

Surface 1: Gauss inside capacitor
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(surface  dS= r.dl ) 
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(surface  dS= r.dl ) 

Ampere’s Law and a charging capacitor (cont.)

• Gauss’s Law for a parallel plate
capacitor : E = Q

✏0A

• @E
@t = 1

✏0A
dQ
dt = 1

✏0A
I

• ID = ✏0
R
S

@E
@t · da added to

Ampere’s Law gives :

4.1. Ampere’s Law and the Displacement Current

V

+Q -Q B
Surface 1

Surface 2

•
H
C B · d` = µ0 Ienc| {z }

Term 1

+ µ0✏0

Z

S

@E
@t

· da
| {z }

Term 2

• Surface 1 : Term 1 = µ0 I , Term 2 = 0
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! RHS = µ0 I , regardless of choice of surface XX
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Ampere’s Law and a charging capacitor (cont.)

• Gauss’s Law for a parallel plate
capacitor : E = Q

✏0A

• @E
@t = 1

✏0A
dQ
dt = 1

✏0A
I

• ID = ✏0
R
S

@E
@t · da added to

Ampere’s Law gives :

4.1. Ampere’s Law and the Displacement Current
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• Surface 1 : Term 1 = µ0 I , Term 2 = 0

• Surface 2 : Term 1 = 0 , Term 2 = µ0✏0 ⇥ 1
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! RHS = µ0 I , regardless of choice of surface XX
• In di↵erential form : r ⇥ B = µ0
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(surface  dS= r.dl ) 

Ampere’s Law and a charging capacitor (cont.)

• Gauss’s Law for a parallel plate
capacitor : E = Q

✏0A

• @E
@t = 1

✏0A
dQ
dt = 1

✏0A
I

• ID = ✏0
R
S

@E
@t · da added to

Ampere’s Law gives :

4.1. Ampere’s Law and the Displacement Current
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• Surface 1 : Term 1 = µ0 I , Term 2 = 0

• Surface 2 : Term 1 = 0 , Term 2 = µ0✏0 ⇥ 1
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! RHS = µ0 I , regardless of choice of surface XX
• In di↵erential form : r ⇥ B = µ0
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(surface  dS= r.dl ) 

Ampere’s Law and a charging capacitor (cont.)

• Gauss’s Law for a parallel plate
capacitor : E = Q

✏0A

• @E
@t = 1

✏0A
dQ
dt = 1

✏0A
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• ID = ✏0
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@t · da added to

Ampere’s Law gives :
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! RHS = µ0 I , regardless of choice of surface XX
• In di↵erential form : r ⇥ B = µ0

⇣
J + ✏0

@E
@t

⌘
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Maxwell’s 
equations in free 

space: 0 0

0 0
µ e

Ñ × = Ñ× =
Ñ´ = - Ñ´ =
E B
E B B E 

Wave equation 
from Maxwell 

equations: ( )

( )

0 0

0 0

2

2
0 0

0

 

wave equation:  

      

        

1with: exp   :  

0

i t kx v
e

e

w

µ

µ

µ e
=

-

- Ñ

Ñ´Ñ´ = -Ñ´ =

Ñ´Ñ´ = Ñ Ñ×

± =é ùë û

Ñ - =

E B E

EE E

E E









(And similarly 
for B)

( ) 2 2
0 0

0 0

from  exp :   0

1        (speed of light)

i t kz k

c
k

w µ e w

w
µ e

± - + =é ùë û

= ± = ± 30

Simplest form 
is a plane 
wave solution

E = E0 exp[i(!t⌥ k · r)]
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Maxwell’s equations with charges and currents:

Exactly as before, wave equation (for E and B fields):

( )
0

0 0

0

C

r
e

µ e

Ñ× = Ñ× =

Ñ´ = - Ñ´ = +

E B

E B B J E 

( ) 2 2
0 0

0 0

from  exp :   0

1        (speed of light)

i t kz k

c
k

w µ e w

w
µ e

± - + =é ùë û

= ± = ±
31

exp[i(!t⌥ k · r)]

40



Plane wave solution with Ey and Bx only:

0 0

0 0
0 0

y x

x y z

y

E B
z t

i j k

E

¶ ¶
- -
¶ ¶

æ ö æ ö
ç ÷ ç ÷
ç ÷ ç ÷Ñ´ = ¶ ¶ ¶ = = - =ç ÷ ç ÷
ç ÷ ç ÷

ç ÷ç ÷ è øè ø

E B

Ey ≡ Ey(z) only, 
not a function of x

32

→ direction of propagation is 
perpendicular to both E and B:

exp[i(!t⌥ kz)]

E = E0 exp[i(!t⌥ k · r)]

r · E = �ik · E = 0

r ·B = �ik ·B = 0

40

exp[i(!t⌥ kz)]

E = E0 exp[i(!t⌥ k · r)]

r · E = �ik · E = 0

r ·B = �ik ·B = 0

40

E = Ey ŷ = E0 exp[i(!t⌥ kz)] ŷ

B = Bx x̂ = B0 exp[i(!t⌥ kz)] ŷ

E = E0 exp[i(!t⌥ k · r)]

r · E = �ik · E = 0

r ·B = �ik ·B = 0

40

E = Ey ŷ = E0 exp[i(!t⌥ kz)] ŷ

B = Bx x̂ = B0 exp[i(!t⌥ kz)] ŷ

E = E0 exp[i(!t⌥ k · r)]

r · E = �ik · E = 0

r ·B = �ik ·B = 0

Ey = ⌥!
kBx = ⌥cBx

40

E = Ey ŷ = E0 exp[i(!t⌥ kz)] ŷ

B = Bx x̂ = B0 exp[i(!t⌥ kz)] ŷ

E = E0 exp[i(!t⌥ k · r)]

r · E = �ik · E = 0

r ·B = �ik ·B = 0

|Ey| = c|Bx|

40
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Sketch :
y

x

(-)z

Or in the other direction …

Can use Poynting vector to 
give direction of energy flow

0

1
µ= × ´N E B



That’s all!

Good luck in Prelims !!!
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