CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 15: Electromagnetic Induction

Claire Gwenlan¹

University of Oxford

HT 2024

 $\underline{\nabla} \cdot \underline{\mathbf{E}} = \frac{\rho}{\epsilon_0}$ $\nabla \cdot \mathbf{B} = 0$ $\underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\partial \mathbf{B}}{\partial t}$ $\frac{1}{\mu_0} \nabla \times \underline{\mathbf{B}} = \underline{\mathbf{J}} + \epsilon_0 \frac{\partial \underline{\mathbf{E}}}{\partial t}$

¹With many thanks to Prof Neville Harnew and Prof Laura Herz (1) and the second

OUTLINE: 15. ELECTROMAGNETIC INDUCTION

15.1 Summary : Electrostatics & Magnetostatics

15.2 Electromagnetic induction - outline

15.3 Faraday's and Lenz's Laws of Induction

15.4 Maxwell-Faraday equation in differential form

15.1.1 Summarising where we are : electrostatics

- $\underbrace{\oint_{S} \underline{\mathbf{E}} \cdot \underline{\mathbf{da}} = Q_{enc}/\epsilon_{0}}_{\text{integral form}} \rightarrow \underbrace{\underbrace{\nabla \cdot \underline{\mathbf{E}} = \rho/\epsilon_{0}}_{\text{differential form}}}_{\text{integral form}}$
- Electric charges generate electric fields. Electric field lines begin and end on charge or at $\infty.$
- 3. Electric field is conservative :
 - $\oint \underline{\mathbf{E}} \cdot \underline{\mathbf{d}} \ell = 0$ (work done is independent of path)
 - Stokes' Theorem : $\oint \underline{\mathbf{E}} \cdot \underline{\mathbf{d}} \ell = \int_{S} (\underline{\nabla} \times \underline{\mathbf{E}}) \cdot \underline{\mathbf{d}} \mathbf{a} \rightarrow \underline{\nabla} \times \underline{\mathbf{E}} = \mathbf{0}$
 - \rightarrow there is a well defined potential V such that $\underline{\mathbf{E}} = -\underline{\nabla} V$ such a V always exists since: $\underline{\nabla} \times \underline{\mathbf{E}} = -\underline{\nabla} \times \underline{\nabla} V = 0$ (vector identity)

15.1.2 Summarising where we are : magnetostatics

1. Biot-Savart Law :

$$\underline{\mathbf{B}}(\underline{\mathbf{r}}) = \frac{\mu_0}{4\pi} \int_{\mathcal{V}} \frac{\underline{\mathbf{J}}(\underline{\mathbf{R}})}{(\underline{\mathbf{r}} - \underline{\mathbf{R}})^2} \times (\widehat{\underline{\mathbf{r}} - \underline{\mathbf{R}}}) \, d\mathcal{V}$$

2. Gauss's Law for magnetism :

$$\oint_{S} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}} = 0$$
integral form
$$\xrightarrow{\nabla \cdot \underline{\mathbf{B}}} = 0$$
differential form

(日) (四) (日) (日) (日)

- No magnetic monopoles. Magnetic field lines form closed loops.
- 3. Ampere's Law :
 - Magnetic fields are generated by electric currents

$$\rightarrow \quad \oint \underline{\mathbf{B}} \cdot \underline{\mathbf{d}} \underline{\ell} = \mu_0 \, I_{enc} \quad \rightarrow \quad \underline{\nabla} \times \underline{\mathbf{B}} = \mu_0 \, \underline{\mathbf{J}}$$

4. Continuity equation :

•
$$\oint_{S} \underline{\mathbf{J}} \cdot \underline{\mathbf{da}} = -\frac{d}{dt} \int_{\mathcal{V}} \rho(\mathcal{V}) \, d\mathcal{V} \rightarrow \underline{\nabla} \cdot \underline{\mathbf{J}} = -\frac{\partial \rho}{\partial t}$$
 (charge conserved)

Maxwell's equations in static limit

Magnetic vector and scalar potentials

Off syllabus, but worth a mention :

Magnetic vector potential A defined through: $\mathbf{B} = \nabla \times \mathbf{A}$ Such A always exists because: $\nabla \cdot \mathbf{B} = \nabla \cdot (\nabla \times \mathbf{A}) = 0$ Inserting into Ampere's law: $\nabla \times \mathbf{B} = \nabla \times (\nabla \times \mathbf{A}) = 0$ $\nabla \times \mathbf{B} = \nabla \times (\nabla \times \mathbf{A}) = -\nabla (\nabla \cdot \mathbf{A}) = 0$ There is a certain degree of freedom in which to choose \mathbf{A} (i.e. can add any function with zero curl to it) – one convenient choice is to ensure $\nabla \cdot \mathbf{A} = 0$ Poisson equations for magnetostatics:
(one for each J & A coordinate) $\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$

Magnetic scalar potential V_m : $\mathbf{B} = -\mu_0 \nabla V_m \iff V_m = -\frac{1}{\mu_0} \int_A^B \mathbf{B} \cdot d\mathbf{I}$

Caution: V_m is pathway-dependent and not single-valued because $\nabla \times \mathbf{B} \neq 0$.

But V_m can be used with care in simply-connected, current-free regions

Being a scalar, V_m is mathematically easier to use than the vector potential

15.2 Electromagnetic induction - outline

So far we have considered only stationary charges and steady currents : \rightarrow electro- and magneto-statics ($\frac{\partial \rho}{\partial t} = 0$ and $\frac{\partial J}{\partial t} = 0$)

Now consider what happens when either \underline{E} or \underline{B} varies with time :

Origins of electromagnetic induction

1831: Michael Faraday carries out a series of experiments and observes:

Two coils are arranged in a way so that the magnetic flux density of coil A penetrates through coil B. He finds that if the B-field in one coil is changing, this induces an electrical current in coil B.

Moving a circuit (wire loop) through a magnetic field generates a current in the circuit. Moving instead the magnet w.r.t. the circuit, gives the same result. Varying the field strength, with circuit and magnet stationary, also generates a current.

A change with time in the magnetic flux density through a circuit causes an "electromotive force" that moves charges along the circuit.

15.3 Faraday's and Lenz's Laws of Induction

15.3.1 Motional electromotive force (EMF) from Lorentz force

- Consider a wire moving with velocity <u>v</u> through a <u>B</u>-field
- Free charges in the wire experience a Lorentz force, perpendicular to <u>v</u> & <u>B</u>:
 F = q v × B

• This moves charge to one side/end of the wire, which will create an electric potential drop along the wire :

 $\mathcal{E}=\int_\ell \frac{dW}{q}=\int_\ell \frac{{\bf F}\cdot {\bf d}\ell}{q}$ (by definition, $V={\rm work}/{\rm unit}$ charge)

• Hence $\mathcal{E} = \int_{\ell} (\underline{\mathbf{v}} \times \underline{\mathbf{B}}) \cdot \underline{\mathbf{d}} \ell$

 \mathcal{E} is the electromotive force (or electromotance) (EMF)

 Note that *E* is *not* a force but a line integral over a force (i.e. a potential difference)!

15.3.2 Relation to magnetic flux

- Now consider a wire circuit loop being pulled with velocity <u>v</u> out of a region containing a <u>B</u>-field
- EMF on vertical side :
 E = ∫_ℓ (**v** × **B**) · dℓ

$$= v B L$$

- No contribution to EMF from horizontal sides (since $\underline{v} \times \underline{B} \perp \underline{d\ell}$)
- Define *magnetic flux* : $\Phi = \int_{S} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}}$
- Rate of change of flux: ^{dΦ}/_{dt} = ^d/_{dt} ∫_S <u>B</u> · <u>da</u> = ^d/_{dt} ∫_S B da (since <u>B</u> || <u>da</u>)

•
$$\frac{d\Phi}{dt} = \frac{d}{dt}(BLx) = B\frac{dx}{dt}L = -vBL = -\mathcal{E}$$

(negative since x decreases with positive v)

• In general, ${\mathcal E}$ from magnetic flux :

$$\frac{d\Phi}{dt} = \frac{d}{dt} \int_{S} \underline{\mathbf{B}} \cdot \underline{\mathbf{da}} = -\mathcal{E}$$

15.3.3 EMF due to time-varying B-fields

- So far we have considered EMFs induced due to the motion of charges in the presence of magnetic fields, i.e. due to the Lorentz force (these are so-called "motional EMFs")
- Faraday also observed that EMFs are induced if magnetic fields vary in time, even if no charges are moving

 \to concluded that time-varying $\underline{B}\text{-fields}$ give rise to electric fields, which result in an electric potential $\mathcal E$

$$\mathcal{E}=\oint_\ell \underline{\mathbf{E}}\cdot \underline{\mathbf{d}}\ell=-\int_\mathcal{S}\,rac{\partial \underline{\mathbf{B}}}{\partial t}\cdot \underline{\mathbf{d}}\mathbf{a}$$
 (Maxwell-Faraday equation)

(sometimes called "Faraday's Law" in the literature, but strictly describes only EMFs due to time-varying magnetic fields)

 \rightarrow used *together* with the Lorentz force $(\underline{\mathbf{F}}/q = \underline{\mathbf{v}} \times \underline{\mathbf{B}})$, Faraday's Law (sometimes called the Universal Flux Rule), which was first developed empirically, can be derived

Faraday's and Lenz's Laws of Induction

• Faraday's Law (or the Universal Flux Rule):

The induced electromotive force (EMF) \mathcal{E} in any closed circuit is equal to (the negative of) the time rate of change of the magnetic flux Φ through the circuit :

$$\mathcal{E} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{S} \mathbf{\underline{B}} \cdot \mathbf{\underline{da}}$$

This states that *any* change in magnetic flux through a loop, no matter the reason, i.e. whether it be from a time-dependent <u>**B**</u>-field or to a changing circuit, induces an EMF \mathcal{E} in the loop

• Lenz's Law :

The induced EMF gives rise to a current whose magnetic field opposes the original change in magnetic flux that caused it (Lenz's Law *is* the minus sign in Faraday's Law)

Example : consequence of Lenz's Law

- Revisit circuit loop being pulled with velocity <u>v</u> out of a region containing a <u>B</u>-field
- *E* from magnetic flux :

 $\mathcal{E} = -\frac{d\Phi}{dt}$

What consequence does the minus sign have?

- Current will flow in a circuit in a direction soas to oppose the change in flux that caused it
- In this example, the flux cutting area A is *decreasing* with time
 - \rightarrow current must flow in a direction to $\mathit{increase}$ the flux
 - \rightarrow current will flow $\mathit{clockwise}$, reinforcing existing $\underline{B}\text{-field}$

(Alternatively, consider the Lorentz force produced by the current : $\underline{\mathbf{F}}' = I \underline{d\ell} \times \underline{\mathbf{B}}$; a clockwise current flow provides a force in a direction to *oppose* the motion)

15.4 Maxwell-Faraday equation in differential form

• Maxwell-Faraday equation in integral form :

$$\oint_{\ell} \underline{\mathbf{E}} \cdot \underline{\mathbf{d}}_{\ell} = -\int_{S} \frac{\partial \underline{\mathbf{B}}}{\partial t} \cdot \underline{\mathbf{da}}$$

Apply Stokes' theorem to LHS :

$$\int_{\mathcal{S}} \left(\underline{\nabla} \times \underline{\mathbf{E}} \right) \cdot \underline{\mathbf{da}} = - \int_{\mathcal{S}} \frac{\partial \underline{\mathbf{B}}}{\partial t} \cdot \underline{\mathbf{da}}$$

• Gives the Maxwell-Faraday equation in differential form :

$$\underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\partial \underline{\mathbf{B}}}{\partial t}$$

• Any time-varying magnetic field generates an electric field which results in an electric potential ${\cal E}$

(c.f. $\underline{\nabla} \times \underline{\mathbf{E}} = 0$ for electro-/magneto-statics)

Faraday's Law (or the Universal Flux Rule):

The induced electromotive force (EMF) \mathcal{E} in any closed circuit is equal to (the negative of) the time rate of change of the magnetic flux Φ through the circuit :

$$\mathcal{E} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \int_{\mathcal{S}} \mathbf{\underline{B}} \cdot d\mathbf{S}$$

Why? (lecture note extracts taken from David Tong, Cambridge)

- Consider moving loop C(t) change in flux through surface S has two terms: one because B may change and one because C is changing
- In a small time δt :

$$\begin{split} \delta \Phi &= \Phi(t + \delta t) - \Phi(t) = \int_{S(t + \delta t)} \mathbf{B}(t + \delta t) \cdot d\mathbf{S} - \int_{S(t)} \mathbf{B}(t) \cdot d\mathbf{S} \\ &= \int_{S(t)} \frac{\partial \mathbf{B}}{\partial t} \, \delta t \cdot d\mathbf{S} + \left[\int_{S(t + \delta t)} - \int_{S(t)} \right] \mathbf{B}(t) \cdot d\mathbf{S} + \mathcal{O}(\delta t^2) \end{split}$$

General Case: moving circuit with time varying B-field

 $d\mathbf{S} = (\underline{\mathbf{d}\ell} \times \mathbf{v})\delta t$

where dl is a line element along C(t) and ${\bf v}$ is the velocity of point on C

• Consider closed surface created by S(t), S(t+ δ t) and the cylindrical region swept out by C(t), called S_C – since $\nabla \cdot \mathbf{B} = 0$ then:

• And so:
$$\frac{d\Phi}{dt} = \lim_{\delta t \to 0} \frac{\delta \Phi}{\delta t} = \int_{S(t)} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} - \int_{C(t)} (\mathbf{v} \times \mathbf{B}) \cdot \underline{\mathbf{d}} \ell$$

 $\left[\int_{S(t+\delta t)} - \int_{S(t)}\right] \mathbf{B}(t) \cdot d\mathbf{S} = -\int_{S_c} \mathbf{B}(t) \cdot d\mathbf{S}$

Having also used:
$$(\underline{d\ell} \times \mathbf{v}) \cdot \mathbf{B} = \underline{d\ell} \cdot (\mathbf{v} \times \mathbf{B})$$

• Finally, using Maxwell: $\oint_{\ell} \underline{\mathbf{E}} \cdot \underline{\mathbf{d}}_{\ell} = -\int_{\mathcal{S}} \frac{\partial \underline{\mathbf{B}}}{\partial t} \cdot d\mathbf{S}$

$$\frac{d\Phi}{dt} = -\int_C (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \underline{\mathbf{d}}\ell = -\mathcal{E}$$