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OUTLINE: 15. ELECTROMAGNETIC INDUCTION

15.1 Summary: Electrostatics & Magnetostatics

15.2 Electromagnetic induction - outline

15.3 Faraday’s and Lenz’s Laws of Induction

15.4 Maxwell-Faraday equation in differential form



15.1.1 Summarising where we are: electrostatics

1. Coulomb’s Law :
E(N) = 525 Jy ZRp(t - R) dV
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2. Gauss's Law :

V-E=
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differential form

integral form

® Electric charges generate electric fields. Electric field lines begin
and end on charge or at cc.

3. Electric field is conservative :
® §E-dl =0 (work done is independent of path)
® Stokes' Theorem: §E-dl= [((VxE)-da - VXE=0

® — there is a well defined potential V such that E= -V V
such a V always exists since: VX E= -V x VV =0 (vector identity)



15.1.2 Summarising where we are: magnetostatics

1. Biot-Savart Law:
B(r) = ff;fy% x (r— R)dV

2. Gauss's Law for magnetism:
V-B=0

fBda-0 5 —=—
S differential form
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integral form

® No magnetic monopoles. Magnetic field lines form closed loops.
3. Ampere's Law:
® Magnetic fields are generated by electric currents
— fﬁ'iﬂ:ﬂolenc - VY xB=pod
4. Continuity equation:

® fsidj = _dt f,/ VdV — Y-J=-— (charge conserved)



Maxwell’s equations in static limit

Electrostatics Coulomb’s law:

E(r)=
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Maxwell 1: Gauss’s law. Charge generates an
electric field. Electric field lines begin and end
on charge.
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Maxwell 3: There is a well-defined electric
scalar potential V, with: E(r) = —VV(r)

Magnetostatics Biot-Savart law:

B(r) =
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Maxwell 2: There are no magnetic
monopoles. Magnetic field lines form closed
loops.

VXBZ/J()JH]{B'(H = ol

Maxwell 4: Electric currents generate
magnetic fields.




Magnetic vector and scalar potentials

Off syllabus, but worth a mention:

Magnetic vector potential A defined through: B=VxA
Such A always exists because: V-B=V. (V X A) =0
Inserting into Ampere’s law: VxB=Vx(VxA)

=V(V-A)—V?A =puoJ

There is a certain degree of freedom in which to choose A (i.e. can add any function
with zero curl to it) — one convenient choice is to ensure /. A = ()

Poisson equations for magnetostatics: 2
(one for each J & A coordinate) VA = _quJ
. - . 1 B
Magnetic scalar potential V,,: B=—uyVV, >V, = _%/ B.dl
A

Caution: V,, is pathway-dependent and not single-valued because V x B # 0 .
But V,, can be used with care in simply-connected, current-free regions

Being a scalar, V,,, is mathematically easier to use than the vector potential




15.2 Electromagnetic induction - outline

So far we have considered only stationary charges and steady currents:

— electro- and magneto-statics (%2 =0 and 22 = 0)

Now consider what happens when either E or B varies with time:

1. Introduction: Electromagnetic Induction
2. Faraday’s and Lenz’s Laws of Induction
3. Self-Inductance and Mutual Inductance
4. The Transformer

5. Energy of the Magnetic Field

6. Charged Particles in E- and B-Fields

Problem
Set4

Problem
Set5




Origins of electromagnetic induction

1831: Michael Faraday carries out a series of experiments and observes:

Two coils are arranged in a way so that the
magnetic flux density of coil A penetrates
through coil B. He finds that if the B-field in one
coil is changing, this induces an electrical
current in coil B.

Moving a circuit (wire loop) through a
magnetic field generates a current in the
circuit. Moving instead the magnet w.r.t. the v
circuit, gives the same result. Varying the >
field strength, with circuit and magnet

stationary, also generates a current.

“electromotive force” that moves charges along the circuit.

A change with time in the magnetic flux density through a circuit causes an




15.3 Faraday’s and Lenz’s Laws of Induction

15.3.1 Motional electromotive force (EMF) from Lorentz force

e Consider a wire moving with velocity v

through a B-field d/ | Vv
® Free charges in the wire experience a €

Lorentz force, perpendicular to v & B: e B

F=quvxB
® This moves charge to one side/end of the wire, which will
create an electric potential drop along the wire :

&= [, % q =/, que (by definition, V' = work/unit charge )

® Hence &= [,(vxB)-dl
& is the electromotive force (or electromotance) (EMF)

® Note that £ is not a force but a line integral over a force
(i.e. a potential difference) !



15.3.2 Relation to magnetic flux

® Now consider a wire circuit
loop being pulled with
velocity v out of a region
containing a B-field
® EMF on vertical side:
&= fg (vxB)-d¢
=vBL

¢ No contribution to EMF from horizontal sides (since v x B L d¢)

® Define magnetic flux: & = [ B-da

® Rate of change of flux: E dt fs
(since B || da)

o 4 = 4(BLx)=B%L =-vBL = —

dt

(negative since x decreases with positive v)

® In general, £ from magnetic flux:
10

=t fS B da

% =g JsB-da= €



15.3.3 EMF due to time-varying B-fields

® So far we have considered EMFs induced due to the motion of
charges in the presence of magnetic fields, i.e. due to the
Lorentz force (these are so-called “motional EMFs")

® Faraday also observed that EMFs are induced if magnetic
fields vary in time, even if no charges are moving

— concluded that time-varying B-fields give rise to electric
fields, which result in an electric potential £

g = ﬂ E . d_€ = fs 8t QAad (Maxwell-Faraday equation)

(sometimes called “Faraday’s Law" in the literature, but strictly describes only

EMFs due to time-varying magnetic fields)

— used together with the Lorentz force (F/q = v x B),
Faraday's Law (sometimes called the Universal Flux Rule), which was
first developed empirically, can be derived

11



Faraday’s and Lenz’s Laws of Induction

12

e Faraday’s Law (or the Universal Flux Rule):

The induced electromotive force (EMF) £ in any closed circuit
is equal to (the negative of) the time rate of change of the
magnetic flux ¢ through the circuit:

__do
£=- gt dtSBda

This states that any change in magnetic flux through a loop, no
matter the reason, i.e. whether it be from a time-dependent B-field
or to a changing circuit, induces an EMF £ in the loop

Lenz’s Law:

The induced EMF gives rise to a current whose magnetic field
opposes the original change in magnetic flux that caused it

(Lenz’s Law is the minus sign in Faraday's Law)



Example : consequence of Lenz's Law

® Revisit circuit loop being
pulled with velocity v out
of a region containing a
B-field

® &£ from magnetic flux:

_ _do
&= dt

What consequence does the minus sign have?

® Current will flow in a circuit in a direction soas to oppose the
change in flux that caused it

® |n this example, the flux cutting area A is decreasing with time
— current must flow in a direction to increase the flux

— current will flow clockwise, reinforcing existing B-field

(Alternatively, consider the Lorentz force produced by the current: F' = Id¢ x B ;

a clockwise current flow provides a force in a direction to oppose the motion)
13



15.4 Maxwell-Faraday equation in differential form

® Maxwell-Faraday equation in integral form:

fEE-d_E— fs ot
Apply Stokes' theorem to LHS:
e (VxE)-da=— ;% da

® Gives the Maxwell-Faraday equation in differential form :

OB
VXE=-— 3

® Any time-varying magnetic field generates an electric field
which results in an electric potential £

(c.f. YV xE=0 for electro-/magneto-statics)

14



Faraday’'s Law (or the Universal Flux Rule):

The induced electromotive force (EMF) £ in any closed circuit
is equal to (the negative of) the time rate of change of the
magnetic flux ® through the circuit:

_ _ do d
E=—%="alsB dS

Why? (lecture note extracts taken from David Tong, Cambridge)

* Consider moving loop C(t) — change in flux through surface S has two
terms: one because B may change and one because C is changing
* Inasmall time 6t:

5<I>:<I>(t+5t)—<b():/ B(t+5t)-dS—/ B(t) - S
S(t+6t) S(t)

[ Baaws[[ [ |mo
S(t+st)  JS(t)

* Consider closed surface created by S(t), S(t+6t) and the cylindrical
region swept out by C(t), called Sc —since v.-B=0 then:

C (t+¢)

 S——

C(t)

General Case: moving circuit with
time varying B-field

dS = (d¢ x v)dit

where dlis a line element along C(t)
and v is the velocity of point on C

\

-dS + O(6t?)

* Andso: dd 5> OB
= lim — dS—/ (vxB)-de Having also used: (d¢ x v)-B =d¢ - (v x B)
dt ot—0 (St S(t) 8t C(t)
: : 0B dd
*  Finally, using Maxwell: § E-dl = — [, 5= dS o=

—/(E+v><B)-d_€ ==&
C
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