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OUTLINE : 18. TRANSFORMERS, MAGNETIC
ENERGY

18.1 Coaxial solenoids sharing the same area

18.2 Inductors in series and parallel

18.3 The transformer

18.4 Energy of the magnetic field
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18.1 Coaxial solenoids sharing the same area
From before, mutual inductance between coils :

M21 = M12 = µ0
N1 N2
ℓ1

A2 (= M)

• Self inductance of coils 1 & 2

L1 = µ0
N2
1

ℓ1
A1 and

L2 = µ0
N2
2

ℓ2
A2

• If A1 = A2 :

M =
(√

ℓ2
ℓ1

)√
(L1 L2)

If ℓ1 = ℓ2 then M =
√
(L1 L2)

• Hence the mutual inductance is
proportional to the geometric mean
of the self inductances

In general, circuits may not be tightly coupled → M = k
√

(L1 L2) ,
where k < 1 ( k is the coefficient of coupling )

3



18.2 Inductors in series and parallel

1. In series with no mutual inductance
between coils :

V = L1
dI
dt + L2

dI
dt = (L1 + L2)

dI
dt

L = L1 + L2

2. In series with mutual inductance between
coils :

V = (L1 +M) dI
dt + (L2 +M) dI

dt

= (L1 + L2 + 2M) dI
dt

L = L1 + L2 + 2M

3. In parallel with no mutual inductance :

V = L1
dI1
dt = L2

dI2
dt where I = I1 + I2

Write : V = L dI
dt → V = L

(
dI1
dt + dI2

dt

)
= L

(
V
L1

+ V
L2

)
1
L = 1

L1
+ 1

L2
(4. with mutual inductance: L = L1L2−M2

L1+L2−2M )
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18.3 The transformer

Primary coil creates flux Φp = Ap Bp

per winding → secondary coil gives
EMF per winding ES = −dΦS

dt

Coils are coupled : ΦS = kΦP

where k = 1 for an ideal transformer
(k depends on geometry, materials in vicinity, etc.)

Ratio of EMFs :

EP = −NP
dΦP
dt

ES = −NS
dΦS
dt

→ VS
VP

=
dΦS

dΦP︸ ︷︷ ︸
k

× NS

NP︸ ︷︷ ︸
winding ratio

• Transformer will step up or step down applied voltage VP by a

factor of the winding ratio

• There is no power consumed in the transformer (ideally) →
input and output powers are equal :

VSIS = VPIP → IS
IP

= VP
VS

= dΦP
dΦS

NP
NS

= 1
k

NP
NS
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Transformer summary
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18.4 Energy of the magnetic field
• Consider the energy stored in an inductor L :
• Change in current results in a back EMF E = −LdI

dt

Work done against EMF to increase current : dU = −E dQ

→ work per unit time : dU
dt = −E dQ

dt = −EI ≡
(
L dI

dt

)
I

Total energy required to raise the current :

U = −
∫

E I ′︸︷︷︸
power

dt =
∫
L
dI ′

dt︸ ︷︷ ︸
−E

I ′ dt =
∫ I
0 L I ′ dI ′

U = 1
2 L I

2 = 1
2 Φ I (L = Φ

I )

regardless of circuit / current geometry !

Energy in terms of the magnetic field :

EG , for long solenoid : L = µ0
N2

ℓ A and B = µ0
N
ℓ I (Ampere)

→ U = 1
2

(
µ0

N2

ℓ A
)(

B2

µ2
0
N2

ℓ2

)
= 1

2
B2

µ0
A ℓ = 1

2
B2

µ0
ν︸︷︷︸

volume

General case : U = 1
2µ0

∫
B2 dν where ν = over all space
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Energy of the magnetic field (cont.)

• General Case: U = 1
2LI

2 = 1
2ΦI

• Consider magnetic flux through surface bound by loop :

Φ =
∫
B · da =

∫
(∇× A) · da =

∮
A · dℓ ≡ LI

• Energy : U = 1
2I

∮
A · dℓ = 1

2

∮
(A · I) dℓ

and generalised to volume currents : U = 1
2

∫
ν(A · J) dν

• Ampere’s Law : ∇× B = µ0 J → U = 1
2µ0

∫
ν A · (∇× B) dν

• Vector identity : ∇ · (A× B) = B · (∇× A)− A · (∇× B)

U = 1
2µ0

{∫
ν B · (∇× A) dν −

∫
ν ∇ · (A× B) dν

}
• Then, using B = ∇× A and the Divergence Theorem :

U = 1
2µ0

{∫
ν B2 dν −

∮
S
(A× B) · da

}
• This relationship holds true for any volume ν that encloses all the

current → if the integration volume is chosen as “all space”, then

the surface integral vanishes :

U = 1
2µ0

∫
ν B2dν (where integration volume ν = all space)
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Summary of energy in E and B fields

Electric field energy

• In terms of circuits :

UE = 1
2
C V 2

= 1
2
Q V

• In terms of fields :

UE = ϵ0
2

∫
all space

E 2 dν

Magnetic field energy

• In terms of circuits :

UM = 1
2
L I2

= 1
2
Φ I

• In terms of fields :

UM = 1
2µ0

∫
all space

B2 dν
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OUTLINE : 19. MOTION IN E & B FIELDS

19.1 Motion of charged particles in E and B fields

19.2 Example : the mass spectrometer

19.3 Example : magnetic lenses
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19.1 Motion of charged particles in E and B fields

• Force on a charged particle in an E and B field :

F = q
(

E︸︷︷︸+ v × B︸ ︷︷ ︸)
along E ⊥ to both v and B

• Newton’s Second Law provides equation of motion :

F = m a = m r̈ = q ( E + v × B)

• Will demonstrate with 2 examples :

1. Mass spectrometer

2. Magnetic lens
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19.2 Example : the mass spectrometer

Used for identifying small charged particles (molecules, ions) by
their mass m

4



Stage A : The velocity filter

• The particle will pass through both
slits if it experiences no net force
inside the filter

• The region has both E and B fields

F = q ( E + v × B) = 0

→ need E = −v × B → v = |E|
|B|

(E ⊥ v&B)

• Will filter particles with v = |E|
|B|

and the spread ±∆v is given by
the slit width
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Stage B : The mass filter

• This region has only a B field

m r̈ = q ṙ × B

with B =

 0
0
B

 and ṙ =

 ẋ
ẏ
ż


→

 ẍ
ÿ
z̈

 = q
m

 ẏ B
−ẋ B
0


→ z̈ = 0 → vz = constant (= 0)

|̈r|2 = ẍ2 + ÿ2 = q2

m2

(
ẋ2 + ẏ2

)︸ ︷︷ ︸B2

v2

Circular motion in x − y plane with :

v2

R = q
mv B → R = mv

qB

Since q and v are constant, then R ∝ m
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Mass spectrometer summary
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19.3 Example : magnetic lenses
• Magnetic lenses are used for focusing and collimating charged
particle beams (used in electron microscopes, particle
accelerators etc.)

• Quadrupole lens : four identical coils in x − y plane

• Sum of 4 dipole fields : for small values of x , y close to the
axis of symmetry, Bx ∝ y , By ∝ x
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Quadrupole lens

• Along x-axis : only By component

• Along y -axis : only Bx component

• No z-component (symmetry)

Inside the lens, close to the z-axis

B =

 k y
k x
0

 where k is a constant

Equation of motion F = q v × B

m

 ẍ
ÿ
z̈

 = q

∣∣∣∣∣∣
i j k
ẋ ẏ ż
k y k x 0

∣∣∣∣∣∣ = q k

 −x ż
y ż

x ẋ − y ẏ


Assume particle travels at a small angle wrt the z-axis :

→ ẋ , ẏ ≈ 0 → z̈ = 0 → ż = v = constant → z = v t

Equations of motion in the x − y plane :

ẍ = − q
mk v x and ÿ = q

mk v y
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Quadrupole lens (cont.)

• Equations of motion : ẍ = −α2x & ÿ = α2y , where α =
√

q k v
m

Solutions : x(t) = A sinα t + B cosα t

Solutions : y(t) = C sinhα t + D coshα t

where cosh y , sinh y = (ey ± e−y )/2

Boundary conditions :
At t = 0 → z = 0, x = x0 and ẋ = 0, y = y0 and ẏ = 0

Solutions : x(t) = x0 cosαt = x0 cos
α
v z : focusing

Solutions : y(t) = y0 coshαt = y0 cosh
α
v z : de-focusing

(where t = z/v ) → x = 0 for α
v z = π

2 + n π

• Focal points in z direction (x=0) at fn = π
2

√
mv
q k + n π

√
mv
q k

• Use lens pair with 90◦ angle for collimating a charged beam
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Quadrupole lens (cont.)

Lens pulls beam on-axis in x and removes particles deviating in y

fn =
π
2

√
mv
q k + n π

√
mv
q k
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Magnetic lens summary
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OUTLINE : 20. DISPLACEMENT CURRENT &
MAXWELL’S EQUATIONS

20.1 Electrodynamics “before Maxwell”

20.2 Revisit Ampere’s Law

20.3 Fixing Ampere’s Law : displacement current

20.4 Example : Ampere’s Law and a charging capacitor

20.5 Example : B-field of a short current-carrying wire

20.6 Maxwell’s equations
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20.1 Electrodynamics “before Maxwell”

Gauss’s Law :∮
S
E · da = Qenc/ϵ0 → ∇ · E = ρ/ϵ0

No magnetic monopoles :∮
S
B · da = 0 → ∇ · B = 0

(Maxwell-) Faraday’s Law :∮
C
E · dℓ = −

∫
S

∂B
∂t · da → ∇× E = −∂B

∂t

Ampere’s Law :∮
C
B · dℓ = µ0 Ienc → ∇× B = µ0 J

Time-varying B-fields generate E-fields. However , time-varying
E-fields do not seem to create B-fields in this version.
Is there something wrong ?
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20.2 Revisit Ampere’s Law

Ampere’s Law : → ∇× B = µ0 J

Divergence : ∇ · (∇× B)︸ ︷︷ ︸
always zero

= µ0∇ · J︸ ︷︷ ︸
not always zero !!

Recall the continuity equation :∫
S J · da = − d

dt

∫
ν ρ(ν) dν → ∇ · J = −∂ρ

∂t

[Current leaving volume ] = [ Rate of decrease of charge ]
through surface inside volume

• Therefore Ampere’s Law in its current form violates the
continuity equation (and hence charge conservation) !

• But this is not surprising since Ampere’s Law is derived from
the Biot-Savart Law assuming that ∂

∂t (ρ) = 0

→ we have to “fix” Ampere’s Law !
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20.3 Fixing Ampere’s Law : displacement current

• Add a term to Ampere’s Law to make it compatible with the
continuity equation : ∇ · J = − ∂

∂t (ρ)

Apply Gauss’s Law ∇ · E = ρ/ϵ0

→ ∇ · J = − ∂
∂t (ϵ0∇ · E) = −∇ · (ϵ0 ∂E

∂t )

→ ∇ · (J+ ϵ0
∂E
∂t ) = 0

Implies we need to add
(
ϵ0

∂E
∂t

)
to J in Ampere’s Law

∇× B = µ0

(
J+ ϵ0

∂E
∂t

)
The term

(
ϵ0

∂E
∂t

)
is called the displacement current JD

(note that it is actually a time-varying electric field)

• Time-varying E fields now generate B fields and vice versa.

Also satisfies charge conservation.
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Summary : Ampere’s Law with Maxwell’s correction4.1. Ampere’s Law and the Displacement Current

Ampere’s Law does not comply with the Equation of Continuity:

apply divergence: 

This lack of charge conservation is unphysical! As a solution, add a so-called 
“displacement current” to J, which will ensure compliance with the equation of 
continuity: 

always
only for statics!

Obtain Ampere’s Law 
with “displacement current”:

displacement 
current JD

Using Stoke’s theorem :
∮
C
B · dℓ =

∫
S
(∇× B) · da

gives the integral form :
∮
C
B · dℓ = µ0

∫
S

J · da︸ ︷︷ ︸ +µ0ϵ0
∫
S

∂E
∂t · da

gives the integral form :
∮
C
B · dℓ = Ienc
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20.4 Example : Ampere’s Law and a charging
capacitor

• This is the first example, showing why Ampere’s Law fails
without adding the displacement current : a straight wire, and
add a capacitor into the circuit

• Previously we used Ampere’s Law to calculate the magnetic
field along Amperian loop

∮
C B · dℓ = µ0 Ienc

But there is not one unique surface :

(i) Surface 1: smallest area
(plane surface) → Ienc = I

(ii) Surface 2: “bulged” surface that
passes between capacitor plates
→ Ienc = 0

4.1. Ampere’s Law and the Displacement Current

V

+Q -Q B
Surface 1

Surface 2

B -field must be the same no matter which surface we choose

The issue is that the E-field is changing in the capacitor!
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Ampere’s Law and a charging capacitor (cont.)

Gauss’s Law for a parallel plate
capacitor : E = Q

ϵ0A

∂E
∂t = 1

ϵ0A
∂Q
∂t = 1

ϵ0A
I

ID = ϵ0
∫
S

∂E
∂t · da added to

Ampere’s Law gives :

4.1. Ampere’s Law and the Displacement Current

V

+Q -Q B
Surface 1

Surface 2

∮
C B · dℓ = µ0 Ienc︸ ︷︷ ︸

Term 1

+µ0ϵ0

∫
S

∂E

∂t
· da︸ ︷︷ ︸

Term 2

Surface 1 : Term 1 = µ0 I , Term 2 = 0

Surface 2 : Term 1 = 0 , Term 2 = µ0ϵ0 × 1
ϵ0A

I × A = µ0 I

→ RHS = µ0 I , regardless of choice of surface ✓✓

• In differential form : ∇× B = µ0

(
J+ ϵ0

∂E
∂t

)
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20.5 Example : B-field of a short current-carrying
wire

• Recall B-field from Biot-Savart Law at a distance a from
centre of a wire of length 2b → B = µ0 I

2π a
b√

b2+a2

• Again, Ampere’s Law fails depending on which path we use.
Need to use displacement current.

•
∮
C B · dℓ = µ0 Ienc + µ0ϵ0

∫
S

∂E
∂t · da

• Wire is short, so charge builds up at the ends giving
time-varying E-field
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B-field of a short current-carrying wire (cont.)
• Form Amperian loop of radius a, and

integrate ∂E
∂t over enclosed area

• Calculate E-field due to two point
charges at wire ends, ±b

E (r) = − 2Q/(4πϵ0)

(r2 + b2)︸ ︷︷ ︸
b√

r2 + b2︸ ︷︷ ︸
r ′2 cos θ

(2 field components E+ and E−, and
note ID and I have opposite signs)

ID = ϵ0
∫ a

0
∂E(r)
∂t 2π r dr = ϵ0

dQ
dt

∫ a

0
− b/(2πϵ0)

(r2+b2)
3
2
2π r dr

ID = dQ
dt

[
b√

(r2+b2)

]r=a

r=0

= I

[
b√

(a2+b2)
− 1

]
∮
C
B · dℓ = B · 2π a = µ0 I + µ0 I

[
b√

(a2+b2)
− 1

]
So : B = µ0 I

2π a
b√

b2+a2
as from Biot-Savart Law ✓✓
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20.6 Maxwell’s equations

Gauss’s Law: Charge generates an electric 
field. Electric field lines begin and end on 
charge.

Maxwell-Faraday’s Law: time-varying magnetic 
fields create electric fields (induction)

There are no magnetic monopoles.
Magnetic field lines form closed loops.

Ampere’s Law with Maxwell’s correction: 
electric currents and time-varying electric 
fields generate magnetic fields

!
!
𝐄 . 𝐝𝐚 =

𝑄
𝜀0

!𝐄 .𝐝𝒍 = −+
!

𝐁 . 𝐝𝐚

!
!
𝑩 .𝒅𝒂 = 0

!𝐁 .𝐝𝒍 = 𝜇0𝐼 + 𝜇0 𝜀0+
!

𝐄 . 𝐝𝐚

C

C

Gauss’s Law: Charge generates an electric 
field. Electric field lines begin and end on 
charge.

Maxwell-Faraday’s Law: time-varying magnetic 
fields create electric fields (induction)

There are no magnetic monopoles.
Magnetic field lines form closed loops.

Ampere’s Law with Maxwell’s correction: 
electric currents and time-varying electric 
fields generate magnetic fields

!
!
" . $% = '

(0
!" .$) = −+

!
, . $%

!
!
- ../ = 0 !, .$) = 102 + 10 (0+

!
" . $%

C

C

Gauss’s Law: Charge generates an electric 
field. Electric field lines begin and end on 
charge.

Maxwell-Faraday’s Law: time-varying magnetic 
fields create electric fields (induction)

There are no magnetic monopoles.
Magnetic field lines form closed loops.

Ampere’s Law with Maxwell’s correction: 
electric currents and time-varying electric 
fields generate magnetic fields

!
!
" . $% = '

(0
!" .$) = −+

!
, . $%

!
!
- ../ = 0 !, .$) = 102 + 10 (0+

!
" . $%

C

C

Maxwell’s equations, together with the Lorentz force : F = q (E+ v × B)

summarise the entire theoretical content of classical electrodynamics
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