CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 18: Transformers & Magnetic Energy

Claire Gwenlan¹

University of Oxford

HT 2024

 $\underline{\nabla} \cdot \underline{\mathbf{E}} = \frac{\rho}{\epsilon_0}$ $\nabla \cdot \mathbf{B} = 0$ $\underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\partial \mathbf{B}}{\partial t}$ $\frac{1}{\mu_0} \nabla \times \underline{\mathbf{B}} = \underline{\mathbf{J}} + \epsilon_0 \frac{\partial \underline{\mathbf{E}}}{\partial t}$

¹With many thanks to Prof Neville Harnew and Prof Laura Herz (1) and the second seco

OUTLINE : 18. TRANSFORMERS, MAGNETIC ENERGY

18.1 Coaxial solenoids sharing the same area

18.2 Inductors in series and parallel

18.3 The transformer

18.4 Energy of the magnetic field

18.1 Coaxial solenoids sharing the same area

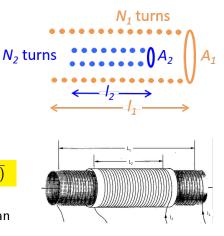
From before, mutual inductance between coils:

$$M_{21} = M_{12} = \mu_0 \frac{N_1 N_2}{\ell_1} A_2 \ (= M)$$

• Self inductance of coils 1 & 2
$$L_1 = \mu_0 \frac{N_1^2}{\ell_1} A_1 \text{ and}$$
$$L_2 = \mu_0 \frac{N_2^2}{\ell_2} A_2$$

• If $A_1 = A_2$:
$$M = \left(\sqrt{\frac{\ell_2}{\ell_1}}\right) \sqrt{(L_1 L_2)}$$

• Hence the mutual inductance is proportional to the geometric mean of the self inductances



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

In general, circuits may not be tightly coupled $\rightarrow M = k\sqrt{(L_1 L_2)}$, where k < 1 (k is the coefficient of coupling)

18.2 Inductors in series and parallel

1. In series with no mutual inductance between coils :

$$V = L_1 \frac{dI}{dt} + L_2 \frac{dI}{dt} = (L_1 + L_2) \frac{dI}{dt}$$
$$L = L_1 + L_2$$

2. In series with mutual inductance between coils :

$$V = (L_1 + M) \frac{dI}{dt} + (L_2 + M) \frac{dI}{dt}$$

= (L_1 + L_2 + 2M) $\frac{dI}{dt}$
L = L_1 + L_2 + 2M

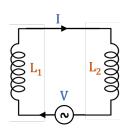
 $\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2}$

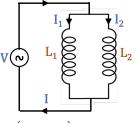
3. In parallel with no mutual inductance:

$$V = L_1 \frac{dI_1}{dt} = L_2 \frac{dI_2}{dt} \text{ where } I = I_1 + I_2$$

Write: $V = L \frac{dI}{dt} \rightarrow V = L \left(\frac{dI_1}{dt} + \frac{dI_2}{dt}\right) = L \left(\frac{V}{L_1} + \frac{V}{L_2}\right)$

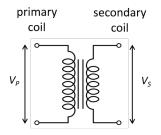
(4. with mutual inductance:
$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M}$$
)





◆□ > ◆□ > ◆三 > ◆三 > 三 - のへぐ

18.3 The transformer

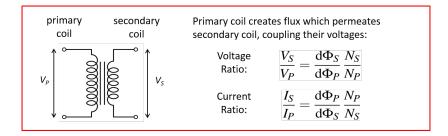


(日)

- Transformer will step up or step down applied voltage V_P by a factor of the winding ratio
- There is no power consumed in the transformer (ideally) \rightarrow input and output powers are equal :

$$V_S I_S = V_P I_P \rightarrow \frac{I_S}{I_P} = \frac{V_P}{V_S} = \frac{d\Phi_P}{d\Phi_S} \frac{N_P}{N_S} = \frac{1}{k} \frac{N_P}{N_S}$$

Transformer summary



18.4 Energy of the magnetic field

- Consider the energy stored in an inductor *L*:
- Change in current results in a back EMF $\mathcal{E} = -L \frac{dI}{dt}$

Energy of the magnetic field (cont.)

- General Case: $U = \frac{1}{2}LI^2 = \frac{1}{2}\Phi I$
- Consider magnetic flux through surface bound by loop : $\Phi = \int \mathbf{B} \cdot \mathbf{da} = \int (\nabla \times \mathbf{A}) \cdot \mathbf{da} = \oint \mathbf{A} \cdot \mathbf{d}\ell \equiv LI$
- Energy : $U = \frac{1}{2}I \oint \underline{\mathbf{A}} \cdot \underline{d\ell} = \frac{1}{2} \oint (\underline{\mathbf{A}} \cdot \underline{\mathbf{I}}) d\ell$ and generalised to volume currents : $U = \frac{1}{2} \int_{\mathcal{V}} (\underline{\mathbf{A}} \cdot \underline{\mathbf{J}}) d\mathcal{V}$
- Ampere's Law: $\underline{\nabla} \times \underline{\mathbf{B}} = \mu_0 \, \underline{\mathbf{J}} \ \rightarrow \ U = \frac{1}{2 \, \mu_0} \int_{\mathcal{V}} \underline{\mathbf{A}} \cdot (\underline{\nabla} \times \underline{\mathbf{B}}) \, d\mathcal{V}$
- Vector identity: $\underline{\nabla} \cdot (\underline{\mathbf{A}} \times \underline{\mathbf{B}}) = \underline{\mathbf{B}} \cdot (\underline{\nabla} \times \underline{\mathbf{A}}) \underline{\mathbf{A}} \cdot (\underline{\nabla} \times \underline{\mathbf{B}})$ $U = \frac{1}{2\mu_0} \left\{ \int_{\mathcal{V}} \underline{\mathbf{B}} \cdot (\underline{\nabla} \times \underline{\mathbf{A}}) \, d\mathcal{V} - \int_{\mathcal{V}} \underline{\nabla} \cdot (\underline{\mathbf{A}} \times \underline{\mathbf{B}}) \, d\mathcal{V} \right\}$
- Then, using $\underline{\mathbf{B}} = \underline{\nabla} \times \underline{\mathbf{A}}$ and the Divergence Theorem : $U = \frac{1}{2\mu_0} \left\{ \int_{\mathcal{V}} B^2 d\mathcal{V} - \oint_{\mathcal{S}} (\underline{\mathbf{A}} \times \underline{\mathbf{B}}) \cdot \underline{\mathbf{da}} \right\}$
- This relationship holds true for any volume \mathcal{V} that encloses all the current \rightarrow *if* the integration volume is chosen as "all space", then the surface integral vanishes :

$$U = rac{1}{2\,\mu_0}\int_{\mathcal{V}}B^2d\mathcal{V}$$
 (where integration volume $\mathcal{V}=$ all space)

Summary of energy in E and B fields

Electric field energy

• In terms of circuits :

$$U_E = \frac{1}{2} C V^2$$
$$= \frac{1}{2} Q V$$

• In terms of fields :

9

$$U_{E}=rac{\epsilon_{0}}{2}\int_{\mathit{all space}}E^{2}\,d\mathcal{V}$$

Magnetic field energy

• In terms of circuits :

$$U_M = \frac{1}{2} L I^2$$
$$= \frac{1}{2} \Phi I$$

• In terms of fields :

$$U_{M}=rac{1}{2\,\mu_{0}}\int_{\mathit{all\,space}}B^{2}\,d\mathcal{V}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 19: Motion in E & B Fields

Claire Gwenlan¹

University of Oxford

HT 2024

$$\begin{split} \underline{\nabla} \cdot \underline{\mathbf{E}} &= \frac{\rho}{\epsilon_0} \\ \underline{\nabla} \cdot \underline{\mathbf{B}} &= \mathbf{0} \\ \underline{\nabla} \times \underline{\mathbf{E}} &= -\frac{\partial \underline{\mathbf{B}}}{\partial t} \\ \frac{1}{\mu_0} \underline{\nabla} \times \underline{\mathbf{B}} &= \underline{\mathbf{J}} + \epsilon_0 \frac{\partial \underline{\mathbf{E}}}{\partial t} \end{split}$$

¹With many thanks to Prof Neville Harnew and Prof Laura Herz () Solution ()

OUTLINE : 19. MOTION IN E & B FIELDS

19.1 Motion of charged particles in E and B fields

19.2 Example : the mass spectrometer

19.3 Example : magnetic lenses

19.1 Motion of charged particles in E and B fields

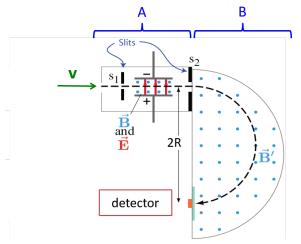
• Force on a charged particle in an \underline{E} and \underline{B} field :

• Newton's Second Law provides equation of motion :

- Will demonstrate with 2 examples :
 - 1. Mass spectrometer
 - 2. Magnetic lens

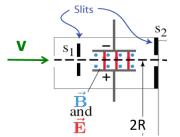
19.2 Example : the mass spectrometer

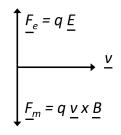
Used for identifying small charged particles (molecules, ions) by their mass m



Stage A : The velocity filter

- The particle will pass through both slits if it experiences no net force inside the filter
- The region has both <u>E</u> and <u>B</u> fields

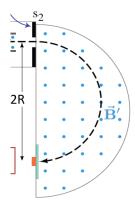




• Will filter particles with $v = \frac{|\underline{E}|}{|\underline{B}|}$ and the spread $\pm \Delta v$ is given by the slit width

Stage B : The mass filter

• This region has only a <u>B</u> field



Mass spectrometer summary

In the presence of both E- and B-fields, a charge experiences the force:

B

Mass Spectrometer.

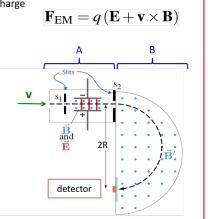
A. velocity filter:

E&B-fields present. Charged particles pass through Stage A if their velocity equals the amplitude ratio:

B. Filter stage:

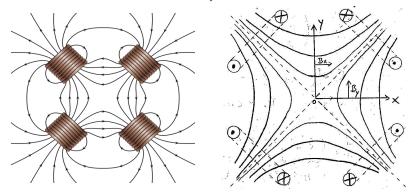
Only B-field present. Charged particles are forced on circular path with radius:

$$R = \frac{mv}{qB}$$



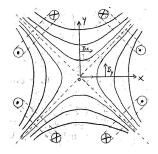
19.3 Example : magnetic lenses

- Magnetic lenses are used for focusing and collimating charged particle beams (used in electron microscopes, particle accelerators etc.)
- Quadrupole lens : four identical coils in x y plane
- Sum of 4 dipole fields : for small values of x, y close to the axis of symmetry, $B_x \propto y$, $B_y \propto x$



Quadrupole lens

- Along x-axis : only By component
- Along y-axis : only B_x component
- No *z*-component (symmetry)



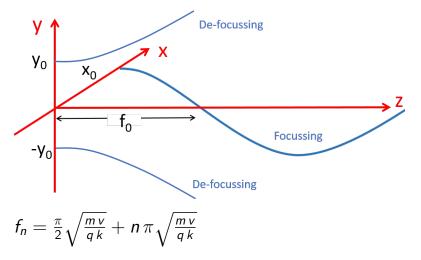
Quadrupole lens (cont.)

• Equations of motion :
$$\ddot{x} = -\alpha^2 x \& \ddot{y} = \alpha^2 y$$
, where $\alpha = \sqrt{\frac{q \, k \, v}{m}}$

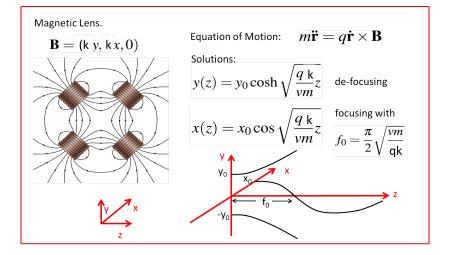
- Focal points in z direction (x=0) at $f_n = \frac{\pi}{2} \sqrt{\frac{mv}{qk}} + n \pi \sqrt{\frac{mv}{qk}}$
- Use lens pair with 90° angle for collimating a charged beam

Quadrupole lens (cont.)

Lens pulls beam on-axis in x and removes particles deviating in y



Magnetic lens summary



CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 20:

Displacement Current & Maxwell's Equations

Claire Gwenlan¹

University of Oxford

HT 2024

$$\begin{split} \underline{\nabla} \cdot \underline{\mathbf{E}} &= \frac{\rho}{\epsilon_0} \\ \underline{\nabla} \cdot \underline{\mathbf{B}} &= \mathbf{0} \\ \underline{\nabla} \times \underline{\mathbf{E}} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \frac{1}{\mu_0} \underline{\nabla} \times \underline{\mathbf{B}} &= \underline{\mathbf{J}} + \epsilon_0 \frac{\partial \underline{\mathbf{E}}}{\partial t} \end{split}$$

¹With many thanks to Prof Neville Harnew and Prof Laura Herz 🚛 🚌 🧠

OUTLINE : 20. DISPLACEMENT CURRENT & MAXWELL'S EQUATIONS

20.1 Electrodynamics "before Maxwell"

20.2 Revisit Ampere's Law

20.3 Fixing Ampere's Law : displacement current

20.4 Example : Ampere's Law and a charging capacitor

20.5 Example : B-field of a short current-carrying wire

20.6 Maxwell's equations

20.1 Electrodynamics "before Maxwell"

Time-varying B-fields generate E-fields. *However*, time-varying E-fields do not seem to create B-fields in this version. Is there something wrong?

20.2 Revisit Ampere's Law

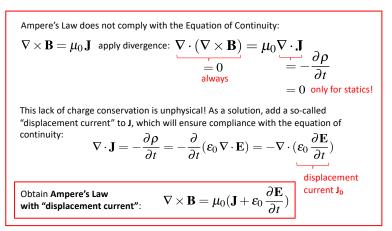
- Therefore Ampere's Law in its current form violates the continuity equation (and hence charge conservation) !
- But this is not surprising since Ampere's Law is derived from the Biot-Savart Law assuming that $\frac{\partial}{\partial t}(\rho) = 0$
 - $\rightarrow\,$ we have to "fix" Ampere's Law !

20.3 Fixing Ampere's Law : displacement current

Add a term to Ampere's Law to make it compatible with the continuity equation : <u>Σ</u> · <u>J</u> = − ∂/∂t(ρ)

- The term $\left(\epsilon_0 \frac{\partial \mathbf{E}}{\partial t}\right)$ is called the *displacement current* $\underline{\mathbf{J}}_D$ (note that it is actually a time-varying electric field)
- Time-varying <u>E</u> fields now generate <u>B</u> fields and vice versa. Also satisfies charge conservation.

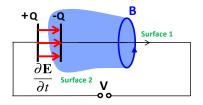
Summary : Ampere's Law with Maxwell's correction



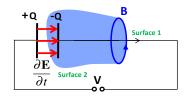
Using Stoke's theorem : $\oint_C \underline{\mathbf{B}} \cdot d\underline{\ell} = \int_S (\underline{\nabla} \times \underline{\mathbf{B}}) \cdot d\underline{\mathbf{a}}$ gives the integral form: $\oint_C \underline{\mathbf{B}} \cdot d\underline{\ell} = \mu_0 \int_S \underline{\mathbf{J}} \cdot d\underline{\mathbf{a}} + \mu_0 \epsilon_0 \int_S \frac{\partial \underline{\mathbf{E}}}{\partial t} \cdot d\underline{\mathbf{a}}$ Lenc

20.4 Example : Ampere's Law and a charging capacitor

- This is the first example, showing why Ampere's Law fails without adding the displacement current : a straight wire, and add a capacitor into the circuit
- Previously we used Ampere's Law to calculate the magnetic field along Amperian loop
 ∮_C <u>**B**</u> · <u>**d**</u>ℓ = μ₀ I_{enc}



Ampere's Law and a charging capacitor (cont.)



• In differential form :

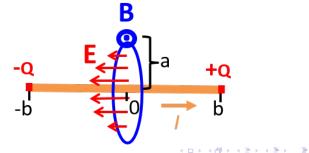
$$\underline{\nabla} \times \underline{\mathbf{B}} = \mu_0 \left(\underline{\mathbf{J}} + \epsilon_0 \, \frac{\partial \underline{\mathbf{E}}}{\partial t} \right)$$

20.5 Example : B-field of a short current-carrying wire

- Recall B-field from Biot-Savart Law at a distance *a* from centre of a wire of length $2b \rightarrow B = \frac{\mu_0 I}{2\pi a} \frac{b}{\sqrt{b^2 + a^2}}$
- Again, Ampere's Law fails depending on which path we use. Need to use displacement current.

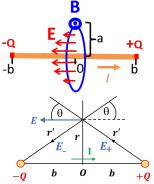
•
$$\oint_C \underline{\mathbf{B}} \cdot \underline{\mathbf{d}} \underline{\ell} = \mu_0 I_{enc} + \mu_0 \epsilon_0 \int_S \frac{\partial \underline{\mathbf{E}}}{\partial t} \cdot d\underline{\mathbf{a}}$$

 Wire is short, so charge builds up at the ends giving time-varying <u>E</u>-field



B-field of a short current-carrying wire (cont.)

- Form Amperian loop of radius *a*, and integrate $\frac{\partial E}{\partial t}$ over enclosed area
- Calculate <u>E</u>-field due to two point charges at wire ends, ±*b*



20.6 Maxwell's equations

$$\oint_{S} \mathbf{E} \cdot \mathbf{d}\mathbf{a} = \frac{Q}{\varepsilon_{0}} \iff \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_{0}}$$

Gauss's Law: Charge generates an electric field. Electric field lines begin and end on charge.

$$\oint_C \mathbf{E} \cdot \mathbf{d}\boldsymbol{l} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{d}\mathbf{a}$$
$$\longleftrightarrow \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Maxwell-Faraday's Law: time-varying magnetic fields create electric fields (induction)

$$\oint_{S} \boldsymbol{B} \cdot \boldsymbol{d}\boldsymbol{a} = 0 \quad \Longleftrightarrow \quad \nabla \cdot \mathbf{B} = 0$$

There are **no magnetic monopoles.** Magnetic field lines form closed loops.

$$\oint_{C} \mathbf{B} \cdot \mathbf{d} \boldsymbol{l} = \mu_{0} \boldsymbol{I} + \mu_{0} \varepsilon_{0} \int_{S} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathbf{d} \mathbf{a}$$
$$\longleftrightarrow \nabla \times \mathbf{B} = \mu_{0} \mathbf{J} + \mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$$

Ampere's Law with Maxwell's correction: electric currents and time-varying electric fields generate magnetic fields

Maxwell's equations, together with the Lorentz force: $\underline{\mathbf{F}} = q (\underline{\mathbf{E}} + \underline{\mathbf{v}} \times \underline{\mathbf{B}})$ summarise the entire theoretical content of classical electrodynamics