CP2：ELECTROMAGNETISM

https：／／canvas．ox．ac．uk／courses／224992／pages／cp2－electromagnetism

Lecture 19：

Motion in E \＆B Fields

Claire Gwenlan ${ }^{1}$
University of Oxford HT 2024

$$
\begin{gathered}
\underline{\nabla} \cdot \underline{\mathbf{E}}=\frac{\rho}{\epsilon_{0}} \\
\underline{\nabla} \cdot \underline{\mathbf{B}}=0 \\
\underline{\nabla} \times \underline{\mathbf{E}}=-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \underline{\nabla} \times \underline{\mathbf{B}}=\underline{\mathbf{J}}+\epsilon_{0} \frac{\partial \underline{\mathbf{E}}}{\partial t}
\end{gathered}
$$

[^0]
OUTLINE : 19. MOTION IN E \& B FIELDS

19.1 Motion of charged particles in E and B fields
19.2 Example : the mass spectrometer
19.3 Example : magnetic lenses

19.1 Motion of charged particles in E and B fields

- Force on a charged particle in an $\underline{\mathbf{E}}$ and $\underline{\mathbf{B}}$ field:

$$
\underline{\mathbf{F}}=q(\underbrace{\underline{\mathbf{E}}}_{\text {along } \underline{\mathbf{E}}}+\underbrace{\mathbf{\text { and }} \underline{\mathbf{B}}}_{\perp \text { to both } \underline{\mathbf{v}} \times \underline{\mathbf{B}}}
$$

- Newton's Second Law gives equation of motion:

$$
\underline{\mathbf{F}}=m \underline{\mathbf{a}}=m \underline{\ddot{\mathbf{r}}}=q(\underline{\mathbf{E}}+\underline{\mathbf{v}} \times \underline{\mathbf{B}})
$$

- Will demonstrate with 2 examples:

1. Mass spectrometer
2. Magnetic lens

19.2 Example : the mass spectrometer

Used for identifying small charged particles (molecules, ions) by their mass m

Stage A: The velocity filter

- The particle will pass through both slits if it experiences no net force inside the filter
- The region has both $\underline{\mathbf{E}}$ and $\underline{\mathbf{B}}$ fields

$$
\begin{aligned}
& \underline{\mathbf{F}}=q(\underline{\mathbf{E}}+\underline{\mathbf{v}} \times \underline{\mathbf{B}})=0 \\
& \rightarrow \text { need } \left.\underline{\mathbf{E}}=-\underline{\mathbf{v}} \times \underline{\mathbf{B}} \rightarrow v=\frac{|\underline{\mathbf{E}}|}{\mid \underline{B}} \right\rvert\, \\
& \quad(\underline{\mathbf{E}} \perp \underline{\mathbf{v}} \& \underline{\mathbf{B}})
\end{aligned}
$$

- Will filter particles with $v=\frac{|E|}{|\underline{B}|}$ and the spread $\pm \Delta v$ is given by the slit width

Stage B: The mass filter

- This region has only a \underline{B} field $m \underline{\ddot{r}}=q \underline{\dot{r}} \times \underline{\mathbf{B}}$
with $\underline{\mathbf{B}}=\left(\begin{array}{c}0 \\ 0 \\ B\end{array}\right)$ and $\dot{\underline{r}}=\left(\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{z}\end{array}\right)$
$\rightarrow\left(\begin{array}{c}\ddot{x} \\ \ddot{y} \\ \ddot{z}\end{array}\right)=\frac{q}{m}\left(\begin{array}{c}\dot{y} B \\ -\dot{x} B \\ 0\end{array}\right)$
$\rightarrow \ddot{z}=0 \rightarrow v_{z}=$ constant $(=0)$
- $|\ddot{\underline{r}}|^{2}=\ddot{x}^{2}+\ddot{y}^{2}=\frac{q^{2}}{m^{2}} \underbrace{\left(\dot{x}^{2}+\dot{y}^{2}\right)}_{v^{2}} B^{2}$
- Circular motion in $x-y$ plane with :

$$
\frac{v^{2}}{R}=\frac{q}{m} v B \rightarrow R=\frac{m v}{q B}
$$

- Since q and v are constant, then $R \propto m$

Mass spectrometer summary

In the presence of both E- and B-fields, a charge experiences the force:

$$
\mathbf{F}_{\mathrm{EM}}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Mass Spectrometer.
A. velocity filter:

E\&B-fields present. Charged particles pass through Stage A if their velocity equals the amplitude ratio:

$$
v=\frac{|\mathbf{E}|}{|\mathbf{B}|}
$$

B. Filter stage:

Only B-field present. Charged particles are forced on circular path with radius:

$$
R=\frac{m v}{q B}
$$

19．3 Example ：magnetic lenses

－Magnetic lenses are used for focusing and collimating charged particle beams（used in electron microscopes，particle accelerators etc．）
－Quadrupole lens：four identical coils in $x-y$ plane
－Sum of 4 dipole fields：for small values of x, y close to the axis of symmetry，$B_{x} \propto y, B_{y} \propto x$

Quadrupole lens

- Along x-axis: only B_{y} component
- Along y-axis: only B_{x} component
- No z-component (symmetry)
- Inside the lens, close to the z-axis $\underline{\mathbf{B}}=\left(\begin{array}{c}k y \\ k x \\ 0\end{array}\right)$ where k is a constant

- Equation of motion $\underline{\mathbf{F}}=q \underline{\mathbf{v}} \times \underline{\mathbf{B}}$

$$
\mathrm{m}\left(\begin{array}{c}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{array}\right)=q\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \mathbf{j} & \underline{\mathbf{k}} \\
\dot{x} & \dot{\dot{y}} & \dot{z} \\
k y & k x & 0
\end{array}\right|=q k\left(\begin{array}{c}
-x \dot{z} \\
y \dot{z} \\
x \dot{x}-y \dot{y}
\end{array}\right)
$$

- Assume particle travels at a small angle wrt the z-axis:

$$
\rightarrow \dot{x}, \dot{y} \approx 0 \rightarrow \ddot{z}=0 \rightarrow \dot{z}=v=\text { constant } \rightarrow z=v t
$$

- Equations of motion in the $x-y$ plane:

$$
\ddot{x}=-\frac{q}{m} k v x \text { and } \ddot{y}=\frac{q}{m} k v y
$$

Quadrupole lens (cont.)

- Equations of motion : $\ddot{x}=-\alpha^{2} x \& \ddot{y}=\alpha^{2} y$, where $\alpha=\sqrt{\frac{q k v}{m}}$
- Focal points in z direction $(x=0)$ at $f_{n}=\frac{\pi}{2} \sqrt{\frac{m v}{q k}}+n \pi \sqrt{\frac{m v}{q k}}$
- Use lens pair with 90° angle for collimating a charged beam

Quadrupole lens (cont.)

Lens pulls beam on-axis in x and removes particles deviating in y

Magnetic lens summary

CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 20:

Displacement Current \& Maxwell's Equations

Claire Gwenlan ${ }^{1}$
University of Oxford
HT 2024

$$
\begin{gathered}
\underline{\nabla} \cdot \underline{\mathbf{E}}=\frac{\rho}{\epsilon_{0}} \\
\underline{\nabla} \cdot \underline{\mathbf{B}}=0 \\
\underline{\nabla} \times \underline{\mathbf{E}}=-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{1}{\mu_{0}} \underline{\nabla} \times \underline{\mathbf{B}}=\underline{\mathbf{J}}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{gathered}
$$

OUTLINE : 20. DISPLACEMENT CURRENT \& MAXWELL'S EQUATIONS

20.1 Electrodynamics "before Maxwell"
20.2 Revisit Ampere’s Law
20.3 Fixing Ampere's Law : displacement current
20.4 Example : Ampere's Law and a charging capacitor
20.5 Example : B-field of a short current-carrying wire
20.6 Maxwell's equations

20.1 Electrodynamics "before Maxwell"

Time-varying B-fields generate E-fields. However, time-varying E-fields do not seem to create B-fields in this version. Is there something wrong?

20.2 Revisit Ampere's Law

- Therefore Ampere's Law in its current form violates the continuity equation (and hence charge conservation)!
- But this is not surprising since Ampere's Law is derived from the Biot-Savart Law assuming that $\frac{\partial}{\partial t}(\rho)=0$
\rightarrow we have to "fix" Ampere's Law !

20.3 Fixing Ampere's Law : displacement current

- Add a term to Ampere's Law to make it compatible with the continuity equation: $\underline{\nabla} \cdot \underline{\mathbf{J}}=-\frac{\partial}{\partial t}(\rho)$

The term $\left(\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)$ is called the displacement current $\underline{\mathbf{J}}_{D}$ (note that it is actually a time-varying electric field)

- Time-varying $\underline{\mathbf{E}}$ fields now generate $\underline{\mathbf{B}}$ fields and vice versa. Also satisfies charge conservation.

Summary : Ampere's Law with Maxwell's correction

Ampere's Law does not comply with the Equation of Continuity:

$$
\begin{aligned}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \text { apply divergence: } \underbrace{\nabla \cdot(\nabla \times \mathbf{B})}_{\begin{array}{c}
=0 \\
\text { always }
\end{array}}=\mu_{0} \underbrace{=\underbrace{\nabla \cdot \mathbf{J}}}_{=-\frac{\partial \rho}{\partial t}} \quad \partial \text { only for statics! }
\end{aligned}
$$

This lack of charge conservation is unphysical! As a solution, add a so-called "displacement current" to J , which will ensure compliance with the equation of continuity:

$$
\nabla \cdot \mathbf{J}=-\frac{\partial \rho}{\partial t}=-\frac{\partial}{\partial t}\left(\varepsilon_{0} \nabla \cdot \mathbf{E}\right)=-\nabla \cdot\left(\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
$$

Obtain Ampere's Law with "displacement current":$\quad \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)$

Using Stoke's theorem: $\oint_{C} \underline{\mathbf{B}} \cdot d \underline{\ell}=\int_{S}(\underline{\nabla} \times \underline{\mathbf{B}}) \cdot d \underline{\mathbf{a}}$ gives the integral form : $\oint_{C} \underline{\mathbf{B}} \cdot d \underline{\ell}=\mu_{0} \underbrace{\int_{S} \mathbf{J} \cdot d \underline{\mathbf{a}}}_{I_{\text {enc }}}+\mu_{0} \epsilon_{0} \int_{S} \frac{\partial \mathbf{E}}{\partial t} \cdot d \underline{\mathbf{a}}$

20.4 Example : Ampere's Law and a charging

 capacitor- This is the first example, showing why Ampere's Law fails without adding the displacement current : a straight wire, and add a capacitor into the circuit
- Previously we used Ampere's Law to calculate the magnetic field along Amperian loop $\oint_{C} \underline{\mathbf{B}} \cdot \underline{\mathbf{d} \ell}=\mu_{0} I_{\text {enc }}$

Ampere's Law and a charging capacitor (cont.)

- In differential form :

$$
\underline{\nabla} \times \underline{\mathbf{B}}=\mu_{0}\left(\underline{\mathbf{J}}+\epsilon_{0} \frac{\partial \underline{\mathbf{E}}}{\partial t}\right)
$$

20.5 Example : B-field of a short current-carrying wire

- Recall B-field from Biot-Savart Law at a distance a from centre of a wire of length $2 b \rightarrow B=\frac{\mu_{0} I}{2 \pi a} \frac{b}{\sqrt{b^{2}+a^{2}}}$
- Again, Ampere's Law fails. Need to use displacement current.
- $\oint_{C} \underline{\mathbf{B}} \cdot \underline{\mathbf{d} \ell}=\mu_{0} I_{\text {enc }}+\mu_{0} \epsilon_{0} \int_{S} \frac{\partial \mathbf{E}}{\partial t} \cdot d \underline{\mathbf{a}}$
- Wire is short, so charge builds up at the ends giving time-varying E-field

B-field of a short current-carrying wire (cont.)

- Form Amperian loop of radius a, and integrate $\frac{\partial E}{\partial t}$ over enclosed area
- Calculate E-field due to two point charges at wire ends, $\pm b$

20.6 Maxwell's equations

$$
\oint_{S} \mathbf{E} . \mathbf{d a}=\frac{Q}{\varepsilon_{0}} \leftrightarrow \nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}
$$

Gauss's Law: Charge generates an electric field. Electric field lines begin and end on charge.

$$
\oint_{S} \boldsymbol{B} \cdot d \boldsymbol{a}=0 \quad \leftrightarrow \quad \nabla \cdot \mathbf{B}=0
$$

There are no magnetic monopoles. Magnetic field lines form closed loops.

$$
\begin{aligned}
& \oint_{C} \mathbf{E} \cdot \mathbf{d} \boldsymbol{l}=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{d a} \\
& \leftrightarrow \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
\end{aligned}
$$

Maxwell-Faraday's Law: time-varying magnetic fields create electric fields (induction)

$$
\begin{array}{r}
\oint_{C} \mathbf{B} \cdot \mathbf{d} \boldsymbol{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \int_{S} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathbf{d a} \\
\leftrightarrow \nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

Ampere's Law with Maxwell's correction: electric currents and time-varying electric fields generate magnetic fields

Maxwell's equations, together with the Lorentz force: $\underline{\mathbf{F}}=q(\underline{\mathbf{E}}+\underline{\mathbf{v}} \times \underline{\mathbf{B}})$ summarise the entire theoretical content of classical electrodynamics

CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 21:

Electromagnetic Waves \& Energy Flow

Claire Gwenlan ${ }^{1}$
University of Oxford
HT 2024

$$
\begin{gathered}
\underline{\nabla} \cdot \underline{\mathbf{E}}=\frac{\rho}{\epsilon_{0}} \\
\underline{\nabla} \cdot \underline{\mathbf{B}}=0 \\
\underline{\nabla} \times \underline{\mathbf{E}}=-\frac{\partial \mathbf{B}}{\partial t} \\
\frac{\mathbf{1}}{\mu_{0}} \underline{\nabla} \times \underline{\mathbf{B}}=\underline{\mathbf{J}}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{gathered}
$$

OUTLINE : 21. ELECTROMAGNETIC WAVES \& ENERGY FLOW

21.1 Electromagnetic waves in vacuum
21.2 Electromagnetic waves: 3D plane wave solutions
21.3 Divergence, time derivative, and curl of E and B
21.4 Electromagnetic waves: speed of propagation
21.5 Relationship between E and B
21.6 Electromagnetic wave travelling along the z direction
21.7 Characteristic impedance of free space
21.8 Energy flow and the Poynting vector

21.1 Electromagnetic waves in vacuum

- In the absence of electric charge or current
$\rightarrow \rho=0$ and $\underline{\mathbf{J}}=0$:
- Maxwell's Equations become:

$$
\begin{array}{ll}
\underline{\nabla} \cdot \underline{\mathbf{E}}=0 & \underline{\nabla} \cdot \underline{\mathbf{B}}=0 \\
\underline{\nabla} \times \underline{\mathbf{E}}=-\frac{\partial \mathbf{B}}{\partial t} & \underline{\nabla} \times \underline{\mathbf{B}}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

(note the symmetry between the $\underline{\mathbf{E}}$ and $\underline{\mathbf{B}}$ fields)

Electromagnetic waves in vacuum (cont.)

$$
\begin{array}{ll}
\underline{\nabla} \cdot \underline{\mathbf{E}}=0 & \underline{\nabla} \cdot \underline{\mathbf{B}}=0 \\
\underline{\nabla} \times \underline{\mathbf{E}}=-\frac{\partial \mathbf{B}}{\partial t} & \underline{\nabla} \times \underline{\mathbf{B}}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{array}
$$

This gives us a wave equation in $\underline{\mathbf{B}}$:

$$
\underline{\nabla}^{2} \underline{\mathbf{B}}-\epsilon_{0} \mu_{0} \underline{\ddot{B}}=0
$$

together with: $\quad \underline{\nabla}^{2} \underline{\mathbf{E}}-\epsilon_{0} \mu_{0} \underline{\ddot{\underline{E}}}=0$

- These equations have general solutions (in 1D) of the form :
- $E(x, t)=F(x-c t)+G(x+c t)$ and $B(x, t)=F^{\prime}(x-c t)+G^{\prime}(x+c t)$ where $F, G, F^{\prime}, G^{\prime}$ are any functions of $(x-c t),(x+c t)$

21.2 Electromagnetic waves: 3D plane wave solutions

Plane waves

- \mathbf{k} is in the direction normal to the wave-fronts
- All points P form a wave-front with the same phase
- Maxima are separated by the wavelength λ where $\lambda=2 \pi / k$

- Phase velocity (or propagation velocity) of wave-fronts given by $c=\omega / k$

21.3 Divergence, time derivative, curl of \underline{E} and \underline{B}

- The divergence of \underline{E} :
- The time derivative of \boldsymbol{E} :
- The curl of E:

21.4 Electromagnetic waves : speed of propagation

- To get speed of propagation, substitute

$$
\begin{aligned}
& \underline{\mathbf{E}}=\mathbf{E}_{0} \exp (i(\omega t-\underline{\mathbf{k}} \cdot \underline{\mathbf{r}})) \text { into the wave equation } \\
& \underline{\nabla}^{2} \underline{\mathbf{E}}=\epsilon_{0} \mu_{0} \frac{\partial^{2}}{\partial t^{2}} \underline{\mathbf{E}}
\end{aligned}
$$

21.5 Relationship between \underline{E} and \underline{B}

- Electric and magnetic fields in vacuum are perpendicular to direction of propogation \rightarrow EM waves are transverse
- $\underline{\mathbf{E}}, \underline{\mathbf{B}} \& \underline{\mathbf{k}}$ are mutually orthogonal (NB. $\underline{\mathbf{k}} \times \underline{\mathbf{B}}=k B \sin \frac{\pi}{2} \underline{\hat{\mathbf{E}}}$)
- \underline{E} and \underline{B} are in phase and lie in the plane of the wavefront
- Field magnitude ratio :

$$
|\underline{\mathbf{E}}| /|\underline{\mathbf{B}}|=\frac{c^{2}}{\omega} k=c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}
$$

21.6 Electromagnetic wave travelling along the z direction

Figure adapted from Physics Stack Exchange

$$
\begin{aligned}
& \underline{\mathbf{E}}=\underline{\mathbf{E}}_{0} \sin (\omega(t-z / c)) \underline{\hat{\mathbf{x}}} \\
& \underline{\mathbf{B}}=\underline{\mathbf{B}}_{0} \sin (\omega(t-z / c)) \underline{\hat{\mathbf{y}}}
\end{aligned}
$$

21.7 Characteristic impedance of free space

Take the ratio $Z=\frac{|\underline{\mathbf{E}}|}{|\underline{\mathbf{H}}|}$ where $\quad|\underline{\mathbf{H}}|=\frac{1}{\mu_{0}}|\underline{\mathbf{B}}|$
Z has units $\left[\mathrm{Vm}^{-1}\right] /\left[\mathrm{Am}^{-1}\right]=[\mathrm{Ohms}]$
Z is called the characteristic impedance of free space

$$
Z=\mu_{0} \frac{|\underline{\mathbf{E}}|}{|\underline{B}|}=\mu_{0} c=\frac{\mu_{0}}{\sqrt{\mu_{0} \epsilon_{0}}}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=376.7 \Omega
$$

Electromagnetic waves : summary

In vacuum, free of charge or currents $(\rho, \mathbf{J}=0)$:

$$
\left.\begin{array}{ll}
\nabla \cdot \mathbf{E}=0 & \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\varepsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{array}\right] \quad \begin{array}{r}
\nabla^{2} \mathbf{E}=\varepsilon_{0} \mu_{0} \ddot{\mathbf{E}} \\
\nabla^{2} \mathbf{B}=\varepsilon_{0} \mu_{0} \ddot{\mathbf{B}} \\
\text { Wave equations in } \mathbf{E}, \mathrm{B}!
\end{array}
$$

Electromagnetic waves propagate in free space:
Plane EM wave fronts: $\mathbf{E}=\mathbf{E}_{\mathbf{0}} \exp \{i(\omega t-\mathbf{k} \cdot \mathbf{r})\} \quad$ with wavelength $\quad \lambda=\frac{2 \pi}{k}$
Propagation velocity of wave fronts: $\quad c=\frac{\omega}{k}=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Relationship between E and B:
(in phase and mutually orthogonal $\mathbf{B}=\frac{\mathbf{k}}{\omega} \times \mathbf{E} \quad \mathbf{E}=-c^{2} \frac{\mathbf{k}}{\omega} \times \mathbf{B} \quad \frac{|\mathbf{E}|}{|\mathbf{B}|}=c$ with wave vector \mathbf{k})

$$
Z=\frac{|\mathbf{E}|}{|\mathbf{B}| / \mu_{0}}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=376.7 \Omega
$$

21.8 Energy flow and the Poynting vector

- Consider how the energy in an EM wave can leave a volume
- Recall: energy density of electric field: $u_{e}=\frac{1}{2} \epsilon_{0} \underline{\mathbf{E}}^{2}$ energy density of magnetic field: $u_{m}=\frac{1}{2 \mu_{0}} \underline{\mathbf{B}}^{2}$

Energy flow and the Poynting vector (cont.)

- $\frac{d U}{d t}=-\int_{\nu} \underline{\mathbf{J}} \cdot \underline{\mathbf{E}} d \nu-\frac{1}{\mu_{0}} \int_{\nu} \underline{\nabla} \cdot(\underline{\mathbf{E}} \times \underline{\mathbf{B}}) d \nu$

- Poynting's theorem (energy conservation for EM fields) :

$$
\begin{array}{lll}
-\left(\frac{d U}{d t}+\frac{d W}{d t}\right)=\oint_{S} \underline{\mathbf{N}} \cdot \underline{\mathbf{d a}} \quad \text { where : } & \underline{\mathbf{N}}=\frac{1}{\mu_{0}} \underline{\mathbf{E}} \times \underline{\mathbf{B}} \\
{[\text { Rate of energy loss of] }=[\text { Rate at which energy escapes] }} & {[\text { Poynting vector] }}
\end{array}
$$

Energy flow and the Poynting vector (cont.)

- Poynting's theorem (integral form) :
$\int_{\nu} \underline{\nabla} \cdot \underline{\mathbf{N}} d \nu=-\int_{\nu} \frac{\partial 山}{\partial t} d \nu-\int_{\nu} \underline{\mathbf{J}} \cdot \underline{\mathbf{E}} d \nu$ where the energy density $u=\frac{1}{2} \epsilon_{0} E^{2}+\frac{1}{2 \mu_{0}} B^{2}$
- In differential form : $\underline{\nabla} \cdot \underline{\mathbf{N}}=-\frac{\partial u}{\partial t}-\underline{\mathbf{J}} \cdot \underline{\mathbf{E}}$
- Note also that in free space $(\rho=0, \underline{\mathbf{J}}=\underline{\mathbf{0}})$:

$$
\underline{\nabla} \cdot \underline{\mathbf{N}}=-\frac{\partial u}{\partial t} \quad\left(\text { c.f. } \underline{\nabla} \cdot \underline{\mathbf{J}}=-\frac{\partial \rho}{\partial t}\right)
$$

\rightarrow the Poynting vector is to energy what $\underline{\mathbf{J}}$ is to charge
Poynting vector $\underline{\mathbf{N}}$ is the power per unit area flowing through the surface bounded by volume ν (it also gives direction of flow). Units of $\underline{\mathbf{N}}$: $\left[W \mathrm{~m}^{-2}\right]$

- For EM waves, the intensity is the time-average of $|\underline{\mathbf{N}}|$:

$$
\Im=\langle | \underline{\mathbf{N}}| \rangle=\frac{1}{\mu_{0}} E_{0} B_{0} \underbrace{\left\langle\cos ^{2}(\omega t-\underline{\mathbf{k}} \cdot \underline{\mathbf{r}})\right\rangle}_{1 / 2}=\frac{1}{2 \mu_{0} c} E_{0}^{2}
$$

Example: Poynting vector for a long resistive cylinder

- Calculate Poynting vector at the surface of a wire with applied potential difference V and current $I: \quad \underline{\mathbf{N}}=\frac{1}{\mu_{0}} \underline{\mathbf{E}} \times \underline{\mathbf{B}}$

- Total power dissipated in wire : $P=-\int_{S} \underline{\mathbf{N}} \cdot \underline{\mathbf{d a}}=V I$ as expected from circuit theory

Poynting Vector : summary

Total electromagnetic energy U contained in volume V :

$$
U=\int_{V} \underbrace{\frac{1}{2}\left(\varepsilon_{0} \mathbf{E} \cdot \mathbf{E}+\frac{1}{\mu_{0}} \mathbf{B} \cdot \mathbf{B}\right)}_{\text {energy density, } \mathrm{u}=\frac{d U}{d V}} \mathrm{~d} V
$$

In free space:

The intensity I of an EM wave is given by the time-average $I=\langle | \mathbf{N}| \rangle=\frac{1}{2 c \mu_{0}} E_{0}{ }^{2}$
over the magnitude of the Poynting vector:

[^0]: ${ }^{1}$ With many thanks to Prof Neville Harnew and Prof Laura Herz

