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OUTLINE : 19. MOTION IN E & B FIELDS

19.1 Motion of charged particles in E and B fields

19.2 Example : the mass spectrometer

19.3 Example : magnetic lenses
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19.1 Motion of charged particles in E and B fields

• Force on a charged particle in an E and B field :

F = q
⇣

E|{z}+ v ⇥ B| {z }
⌘

along E ? to both v and B

• Newton’s Second Law gives equation of motion :

F = m a = m r̈ = q ( E + v ⇥ B)

• Will demonstrate with 2 examples :

1. Mass spectrometer

2. Magnetic lens
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19.2 Example : the mass spectrometer

Used for identifying small charged particles (molecules, ions) by
their mass m
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Stage A : The velocity filter

• The particle will pass through both
slits if it experiences no net force
inside the filter

• The region has both E and B fields

F = q ( E + v ⇥ B) = 0

! need E = �v ⇥ B ! v = |E|
|B|

(E ? v&B)

• Will filter particles with v = |E|
|B|

and the spread ±�v is given by
the slit width
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Stage B : The mass filter

• This region has only a B field

m r̈ = q ṙ ⇥ B

with B =

0
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ẍ
ÿ
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! z̈ = 0 ! vz = constant (= 0)

• |̈r|2 = ẍ2 + ÿ2 = q2

m2

�
ẋ2 + ẏ2

�
| {z }

B2

v2

• Circular motion in x � y plane with :

v2

R = q
mv B ! R = mv

qB

• Since q and v are constant, then R / m

6



Mass spectrometer summary
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19.3 Example : magnetic lenses

• Magnetic lenses are used for focusing and collimating charged
particle beams (used in electron microscopes, particle
accelerators etc.)

• Quadrupole lens : four identical coils in x � y plane

• Sum of 4 dipole fields : for small values of x , y close to the
axis of symmetry, Bx / y , By / x
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Quadrupole lens

• Along x-axis : only By component

• Along y -axis : only Bx component

• No z-component (symmetry)

• Inside the lens, close to the z-axis

B =

0

@
k y
k x
0

1

A where k is a constant

• Equation of motion F = q v ⇥ B

m

0

@
ẍ
ÿ
z̈

1

A = q

������

i j k

ẋ ẏ ż
k y k x 0

������
= q k

0

@
�x ż
y ż

x ẋ � y ẏ

1

A

• Assume particle travels at a small angle wrt the z-axis :

! ẋ , ẏ ⇡ 0 ! z̈ = 0 ! ż = v = constant ! z = v t

• Equations of motion in the x � y plane :

ẍ = � q
mk v x and ÿ = q

mk v y
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Quadrupole lens (cont.)

• Equations of motion : ẍ = �↵2x & ÿ = ↵2y , where ↵ =
q

q k v
m

Solutions : x(t) = A sin↵ t + B cos↵ t

Solutions : y(t) = C sinh↵ t + D cosh↵ t

where cosh y , sinh y = (ey ± e�y )/2

Boundary conditions :
At t = 0 ! z = 0, x = x0 and ẋ = 0, y = y0 and ẏ = 0

Solutions : x(t) = x0 cos↵t = x0 cos
↵
v z : focusing

Solutions : y(t) = y0 cosh↵t = y0 cosh
↵
v z : de-focusing

(where t = z/v ) ! x = 0 for ↵
v z = ⇡

2 + n ⇡

• Focal points in z direction (x=0) at fn = ⇡
2

q
mv
q k + n ⇡

q
mv
q k

• Use lens pair with 90� angle for collimating a charged beam
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Quadrupole lens (cont.)

Lens pulls beam on-axis in x and removes particles deviating in y

fn =
⇡
2

q
mv
q k + n ⇡

q
mv
q k
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Magnetic lens summary
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OUTLINE : 20. DISPLACEMENT CURRENT &
MAXWELL’S EQUATIONS

20.1 Electrodynamics “before Maxwell”

20.2 Revisit Ampere’s Law

20.3 Fixing Ampere’s Law : displacement current

20.4 Example : Ampere’s Law and a charging capacitor

20.5 Example : B-field of a short current-carrying wire

20.6 Maxwell’s equations
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20.1 Electrodynamics “before Maxwell”

Gauss’s Law :∮
S
E · da = Qenc/ϵ0 → ∇ · E = ρ/ϵ0

No magnetic monopoles :∮
S
B · da = 0 → ∇ · B = 0

(Maxwell-) Faraday’s Law :∮
C
E · dℓ = −

∫
S

∂B
∂t · da → ∇× E = −∂B

∂t

Ampere’s Law :∮
C
B · dℓ = µ0 Ienc → ∇× B = µ0 J

Time-varying B-fields generate E-fields. However , time-varying
E-fields do not seem to create B-fields in this version.
Is there something wrong ?
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20.2 Revisit Ampere’s Law

Ampere’s Law : → ∇× B = µ0 J

Divergence : ∇ · (∇× B)︸ ︷︷ ︸
always zero

= µ0∇ · J︸ ︷︷ ︸
not always zero !!

Recall the continuity equation :∫
S J · da = − d

dt

∫
ν ρ(ν) dν → ∇ · J = −∂ρ

∂t

[Current leaving volume ] = [ Rate of decrease of charge ]
through surface inside volume

• Therefore Ampere’s Law in its current form violates the
continuity equation (and hence charge conservation) !

• But this is not surprising since Ampere’s Law is derived from
the Biot-Savart Law assuming that ∂

∂t (ρ) = 0

→ we have to “fix” Ampere’s Law !
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20.3 Fixing Ampere’s Law : displacement current

• Add a term to Ampere’s Law to make it compatible with the
continuity equation : ∇ · J = − ∂

∂t (ρ)

Apply Gauss’s Law ∇ · E = ρ/ϵ0

→ ∇ · J = − ∂
∂t (ϵ0∇ · E) = −∇ · (ϵ0 ∂E

∂t )

→ ∇ · (J+ ϵ0
∂E
∂t ) = 0

Implies we need to add
(
ϵ0

∂E
∂t

)
to J in Ampere’s Law

∇× B = µ0

(
J+ ϵ0

∂E
∂t

)
The term

(
ϵ0

∂E
∂t

)
is called the displacement current JD

(note that it is actually a time-varying electric field)

• Time-varying E fields now generate B fields and vice versa.

Also satisfies charge conservation.
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Summary : Ampere’s Law with Maxwell’s correction4.1. Ampere’s Law and the Displacement Current

Ampere’s Law does not comply with the Equation of Continuity:

apply divergence: 

This lack of charge conservation is unphysical! As a solution, add a so-called 
“displacement current” to J, which will ensure compliance with the equation of 
continuity: 

always
only for statics!

Obtain Ampere’s Law 
with “displacement current”:

displacement 
current JD

Using Stoke’s theorem :
∮
C
B · dℓ =

∫
S
(∇× B) · da

gives the integral form :
∮
C
B · dℓ = µ0

∫
S

J · da︸ ︷︷ ︸ +µ0ϵ0
∫
S

∂E
∂t · da

gives the integral form :
∮
C
B · dℓ = Ienc
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20.4 Example : Ampere’s Law and a charging
capacitor

• This is the first example, showing why Ampere’s Law fails
without adding the displacement current : a straight wire, and
add a capacitor into the circuit

• Previously we used Ampere’s Law to calculate the magnetic
field along Amperian loop

∮
C B · dℓ = µ0 Ienc

But there is not one unique surface :

(i) Surface 1: smallest area
(plane surface) → Ienc = I

(ii) Surface 2: “bulged” surface that
passes between capacitor plates
→ Ienc = 0

4.1. Ampere’s Law and the Displacement Current

V

+Q -Q B
Surface 1

Surface 2

B -field must be the same no matter which surface we choose

The issue is that the E-field is changing in the capacitor!
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Ampere’s Law and a charging capacitor (cont.)

Gauss’s Law for a parallel plate
capacitor : E = Q

ϵ0A

∂E
∂t = 1

ϵ0A
∂Q
∂t = 1

ϵ0A
I

ID = ϵ0
∫
S

∂E
∂t · da added to

Ampere’s Law gives :

4.1. Ampere’s Law and the Displacement Current

V

+Q -Q B
Surface 1

Surface 2

∮
C B · dℓ = µ0 Ienc︸ ︷︷ ︸

Term 1

+µ0ϵ0

∫
S

∂E

∂t
· da︸ ︷︷ ︸

Term 2

Surface 1 : Term 1 = µ0 I , Term 2 = 0

Surface 2 : Term 1 = 0 , Term 2 = µ0ϵ0 × 1
ϵ0A

I × A = µ0 I

→ RHS = µ0 I , regardless of choice of surface ✓✓

• In differential form : ∇× B = µ0

(
J+ ϵ0

∂E
∂t

)
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20.5 Example : B-field of a short current-carrying
wire

• Recall B-field from Biot-Savart Law at a distance a from
centre of a wire of length 2b → B = µ0 I

2π a
b√

b2+a2

• Again, Ampere’s Law fails. Need to use displacement current.

•
∮
C B · dℓ = µ0 Ienc + µ0ϵ0

∫
S

∂E
∂t · da

• Wire is short, so charge builds up at the ends giving
time-varying E-field
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B-field of a short current-carrying wire (cont.)
• Form Amperian loop of radius a, and

integrate ∂E
∂t over enclosed area

• Calculate E-field due to two point
charges at wire ends, ±b

E (r) = − 2Q/(4πϵ0)

(r2 + b2)︸ ︷︷ ︸
b√

r2 + b2︸ ︷︷ ︸
r ′2 cos θ

(2 field components E+ and E−, and
note ID and I have opposite signs)

ID = ϵ0
∫ a

0
∂E(r)
∂t 2π r dr = ϵ0

dQ
dt

∫ a

0
− b/(2πϵ0)

(r2+b2)
3
2
2π r dr

ID = dQ
dt

[
b√

(r2+b2)

]r=a

r=0

= I

[
b√

(a2+b2)
− 1

]
∮
C
B · dℓ = B · 2π a = µ0 I + µ0 I

[
b√

(a2+b2)
− 1

]
So : B = µ0 I

2π a
b√

b2+a2
as from Biot-Savart Law ✓✓
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20.6 Maxwell’s equations

Gauss’s Law: Charge generates an electric 
field. Electric field lines begin and end on 
charge.

Maxwell-Faraday’s Law: time-varying magnetic 
fields create electric fields (induction)

There are no magnetic monopoles.
Magnetic field lines form closed loops.

Ampere’s Law with Maxwell’s correction: 
electric currents and time-varying electric 
fields generate magnetic fields

!
!
𝐄 . 𝐝𝐚 =

𝑄
𝜀0

!𝐄 .𝐝𝒍 = −+
!

𝐁 . 𝐝𝐚

!
!
𝑩 .𝒅𝒂 = 0

!𝐁 .𝐝𝒍 = 𝜇0𝐼 + 𝜇0 𝜀0+
!

𝐄 . 𝐝𝐚

C

C

Gauss’s Law: Charge generates an electric 
field. Electric field lines begin and end on 
charge.

Maxwell-Faraday’s Law: time-varying magnetic 
fields create electric fields (induction)

There are no magnetic monopoles.
Magnetic field lines form closed loops.

Ampere’s Law with Maxwell’s correction: 
electric currents and time-varying electric 
fields generate magnetic fields

!
!
" . $% = '

(0
!" .$) = −+

!
, . $%

!
!
- ../ = 0 !, .$) = 102 + 10 (0+

!
" . $%

C

C

Gauss’s Law: Charge generates an electric 
field. Electric field lines begin and end on 
charge.

Maxwell-Faraday’s Law: time-varying magnetic 
fields create electric fields (induction)

There are no magnetic monopoles.
Magnetic field lines form closed loops.

Ampere’s Law with Maxwell’s correction: 
electric currents and time-varying electric 
fields generate magnetic fields

!
!
" . $% = '

(0
!" .$) = −+

!
, . $%

!
!
- ../ = 0 !, .$) = 102 + 10 (0+

!
" . $%

C

C

Maxwell’s equations, together with the Lorentz force : F = q (E+ v × B)

summarise the entire theoretical content of classical electrodynamics
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21.2 Electromagnetic waves : 3D plane wave solutions

21.3 Divergence, time derivative, and curl of E and B

21.4 Electromagnetic waves : speed of propagation

21.5 Relationship between E and B

21.6 Electromagnetic wave travelling along the z direction
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21.8 Energy flow and the Poynting vector
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21.1 Electromagnetic waves in vacuum

• In the absence of electric charge or current
→ ρ = 0 and J = 0 :

• Maxwell’s Equations become :

∇ · E = 0

∇×E = −∂B
∂t

∇ · B = 0

∇× B = µ0 ϵ0
∂E
∂t

.

(note the symmetry between the E and B fields)

Apply curl to the Maxwell-Faraday Law :

∇×∇× E = ∇×
(
−∂B

∂t

)
= − ∂

∂t (∇× B) = −µ0 ϵ0
∂2

∂t2
E

Use the vector identity : ∇×∇× E = ∇ (∇ · E)︸ ︷︷ ︸
= 0

−∇2 E

This gives us a wave equation in E :

∇2 E− ϵ0 µ0 Ë = 0
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Electromagnetic waves in vacuum (cont.)

∇ · E = 0

∇×E = −∂B
∂t

∇ · B = 0

∇× B = µ0 ϵ0
∂E
∂t

.

Apply curl to Ampere’s Law :

∇×∇×B = ϵ0 µ0∇×
(
∂E
∂t

)
= ϵ0 µ0

∂
∂t ∇×E = −µ0 ϵ0

∂2

∂t2
B

Use the vector identity : ∇×∇× B = ∇ (∇ · B)︸ ︷︷ ︸
= 0

−∇2B

This gives us a wave equation in B :

together with : ∇2B− ϵ0 µ0 B̈ = 0

together with : ∇2 E− ϵ0 µ0 Ë = 0

• These equations have general solutions (in 1D) of the form :

• E (x , t) = F (x − ct) + G (x + ct) and
B (x , t) = F ′ (x − ct) + G ′ (x + ct)

where F ,G ,F ′,G ′ are any functions of (x − ct), (x + ct)
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21.2 Electromagnetic waves : 3D plane wave
solutions

Consider the simplest form of solution :
3D plane waves of the form

E = E0 exp (i(ωt − k · r)) and

B = B0 exp (i(ωt − k · r))
Real part : Re[E] = E0 cos (ωt − k · r)︸ ︷︷ ︸

phase

• k is in the direction normal to the
wave-fronts

• All points P form a wave-front with the
same phase

• Maxima are separated by the wavelength
λ where λ = 2π/k

• Phase velocity (or propagation velocity)
of wave-fronts given by c = ω/k

Plane waves
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21.3 Divergence, time derivative, curl of E and B

• The divergence of E : ∇ · E = ∇ · E0 exp [i(ωt − k · r)]

=
[

∂
∂ x ,

∂
∂ y ,

∂
∂ z

]
· E0 exp (i(ωt − kxx − kyy − kzz))

= [(−i) kxEx + (−i) kyEy + (−i) kzEz ] exp (i(ωt − k · r))
= (−i) k · E : hence ∇ ≡ −i k

• The time derivative of E : ∂
∂ t E = ∂

∂ t E0 exp [i(ωt − k · r)]

= i ω E : hence ∂
∂ t ≡ i ω

• The curl of E :

∇× E =

∣∣∣∣∣∣
i j k
∂
∂ x

∂
∂ y

∂
∂ z

Ex Ey Ez

∣∣∣∣∣∣ =
 ∂Ez

∂ y − ∂Ey

∂ z
∂Ex

∂ z − ∂Ez

∂ x
∂Ey

∂ x − ∂Ex

∂ y

 = (-i)

 kyEz − kzEy

kzEx − kxEz

kxEy − kyEx

 = (−i) k× E & again ∇ ≡ −i k
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21.4 Electromagnetic waves : speed of propagation

• To get speed of propagation, substitute
E = E0 exp (i(ωt − k · r)) into the wave equation

∇2 E = ϵ0 µ0
∂2

∂ t2
E

Use ∇ ≡ −i k → ∇2 ≡ (−i k)2 = −k2

∂
∂ t ≡ i ω → ∂2

∂ t2
≡ (i ω)2 = −ω2

−k2 E0 exp (i(ωt − k · r)) = −ω2 ϵ0 µ0 E0 exp (i(ωt − k · r))

→ k2 = ω2 ϵ0 µ0

Fields of this form are solutions to the wave equation with
velocity of propagation :

c = ω
k
= 1√

ϵ0 µ0
= 3× 108 ms−1

i.e. the speed of light

→ speed of an EM wave in vacuum
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21.5 Relationship between E and B
Substitute E = E0 exp (i(ωt − k · r)) into Maxwell eqn’s :

∇ · E = −i k · E = 0

∇ · B = −i k · B = 0

Hence k · E = 0 and k · B = 0

• Electric and magnetic fields in vacuum are perpendicular to
direction of propogation → EM waves are transverse

Substitute into Faraday’s Law : ∇× E = −∂B
∂t

−i k× E = −i ωB → B = 1
ω k× E

Substitute into Ampere’s Law : ∇× B = µ0 ϵ0
∂E
∂t

−i k× B = i ω µ0 ϵ0 E → E = − c2

ω k× B

• E, B & k are mutually orthogonal (NB. k× B = kB sin π
2 Ê )

• E and B are in phase and lie in the plane of the wavefront

• Field magnitude ratio : |E|/|B| = c2

ω k = c = 1√
µ0 ϵ0
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21.6 Electromagnetic wave travelling along the z
direction

λ = 2π / k

E

B

x

y

z

Figure adapted from Physics Stack Exchange

E = E0 sin (ω(t − z/c)) x̂

B = B0 sin (ω(t − z/c)) ŷ
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21.7 Characteristic impedance of free space

Take the ratio Z = |E|
|H| where |H| = 1

µ0
|B|

Z has units [V m−1] / [Am−1 ] = [Ohms]

Z is called the characteristic impedance of free
space

Z = µ0
|E|
|B| = µ0 c = µ0√

µ0 ϵ0
=

√
µ0

ϵ0
= 376.7Ω
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Electromagnetic waves : summary
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21.8 Energy flow and the Poynting vector

• Consider how the energy in an EM wave can leave a volume

• Recall : energy density of electric field : ue = 1
2 ϵ0 E

2

Recall : energy density of magnetic field : um = 1
2µ0

B2

EM energy in a finite volume ν :

U =
∫
ν
1

2

(
ϵ0 E · E+

1

µ0
B · B

)
︸ ︷︷ ︸

energy density, u

dν

Maxwell : ∇× E = −∂B
∂t and ∇× B = µ0 J+ µ0 ϵ0

∂E
∂t

Calculate the rate of change of energy in ν :

dU
dt =

∫
ν

(
ϵ0 E · ∂E

∂t + 1
µ0

B · ∂B
∂t

)
dν

dU
dt =

∫
ν

(
1
µ0

E · (∇× B)− E · J− 1
µ0

B · (∇× E)
)
dν

dU
dt = −

∫
ν J ·E dν − 1

µ0

∫
ν ∇· (E×B) dν (from vector identity)
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Energy flow and the Poynting vector (cont.)

• dU
dt = −

∫
ν J · E dν − 1

µ0

∫
ν ∇ · (E× B) dν

• Apply divergence theorem and write as :(
dU
dt + dW

dt

)
= −

∮
S (

1
µ0

E× B) · da

dU
dt

≡ rate of increase of energy in EM field in volume ν
dW
dt

=
∫
ν J · E dν ≡ rate of increase of energy in ν of

V l
B

a

E
N

I
N N

N

N

N

N

N

N

N
N

d(U+W)

Volume V

Surface S

dt

charged particles in EM field i.e. consider work done on charge dq with velocity v :

F · dℓ = dq (E+ v × B) · vdt = dq E · vdt with dq = ρ dν and ρ v = J

→ integrate over volume containing charges : dW
dt

=
∫
ν J · E dν∮

S (
1

µ0
E× B)︸ ︷︷ ︸

Poynting vector N

· da ≡ rate of energy escaping through surface S

• Poynting’s theorem (energy conservation for EM fields) :

−
(
dU
dt + dW

dt

)
=

∮
S N · da where : N = 1

µ0
E× B

[ Rate of energy loss of ] = [ Rate at which energy escapes ] [ Poynting vector ]
fields and particles in ν through surface S bounding ν
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Energy flow and the Poynting vector (cont.)

• Poynting’s theorem (integral form) :∫
ν ∇ ·N dν = −

∫
ν

∂u
∂t dν −

∫
ν J · E dν

where the energy density u = 1
2
ϵ0 E2 + 1

2µ0
B2

• In differential form : ∇ ·N = −∂u
∂t − J · E

• Note also that in free space (ρ = 0 , J = 0) :

∇ ·N = −∂u
∂t

(c.f. ∇ · J = −∂ρ
∂t )

→ the Poynting vector is to energy what J is to charge

Poynting vector N is the power per unit area flowing through the

surface bounded by volume ν (it also gives direction of flow).

Units of N : [W m−2]

• For EM waves, the intensity is the time-average of |N| :
ℑ = ⟨|N|⟩ = 1

µ0
E0 B0

〈
cos2(ωt − k · r)

〉︸ ︷︷ ︸
1/2

= 1
2µ0 c

E 2
0
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Example : Poynting vector for a long resistive
cylinder

• Calculate Poynting vector at the surface of a wire with applied

potential difference V and current I : N = 1
µ0
E× B

Electric field along wire axis : E = V /ℓ

Magnetic flux density at wire surface :∮
B · dℓ = B · 2πa = µ0I

(tangential – along circumference)

N = 1
µ0

V
ℓ
µ0I
2πa

(in radial direction pointing inwards –
i.e. wire heats up !)

Hence : N = (V I)/ 2πℓa︸︷︷︸
Hence : N = (V ))surface area

• Total power dissipated in wire : P = −
∫
S N · da = V I

as expected from circuit theory
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Poynting Vector : summary

Total electromagnetic energy U contained in volume V:

energy density,

N N

N

N

N

N

N

N

N
N

U
Volume V

The intensity I of an EM wave is given by the time-average 
over the magnitude of the Poynting vector: 

1
2#µ0

$0!

U

u= !"!#

Energy flow rate 
out of volume V

Power per unit 
area through area 

bounding V

with Poynting
vector

[N]=W/m2

− "#
"$ = &

!
' .)*

In free space:
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