CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 19: Motion in E & B Fields

Claire Gwenlan¹

University of Oxford

HT 2024

 $\underline{\nabla} \cdot \underline{\mathbf{E}} = \frac{\rho}{\epsilon_0}$ $\underline{\nabla} \cdot \underline{\mathbf{B}} = \mathbf{0}$ $\underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\partial \underline{\mathbf{B}}}{\partial t}$ $\frac{1}{\mu_0} \nabla \times \underline{\mathbf{B}} = \underline{\mathbf{J}} + \epsilon_0 \frac{\partial \underline{\mathbf{E}}}{\partial t}$

¹With many thanks to Prof Neville Harnew and Prof Laura Herz $A \equiv A = -9$

OUTLINE : 19. MOTION IN E & B FIELDS

19.1 Motion of charged particles in E and B fields

19.2 Example : the mass spectrometer

19.3 Example : magnetic lenses

19.1 Motion of charged particles in E and B fields

• Force on a charged particle in an $\underline{\mathbf{E}}$ and $\underline{\mathbf{B}}$ field :

$$\underline{\mathbf{F}} = q \left(\underbrace{\underline{\mathbf{E}}}_{\text{along }\underline{\mathbf{E}}} + \underbrace{\underline{\mathbf{v}} \times \underline{\mathbf{B}}}_{\perp \text{ to both }\underline{\mathbf{v}} \text{ and }\underline{\mathbf{B}}} \right)$$

• Newton's Second Law gives equation of motion :

$$\underline{\mathbf{F}} = m \, \underline{\mathbf{a}} = m \, \underline{\ddot{\mathbf{r}}} = q \, \left(\, \underline{\mathbf{E}} \, + \, \underline{\mathbf{v}} \times \underline{\mathbf{B}} \right)$$

- Will demonstrate with 2 examples :
 - 1. Mass spectrometer
 - 2. Magnetic lens

19.2 Example : the mass spectrometer

Used for identifying small charged particles (molecules, ions) by their mass m

Stage A : The velocity filter

- The particle will pass through both slits if it experiences no net force inside the filter
- The region has both \underline{E} and \underline{B} fields

$$\underline{\mathbf{F}} = q \ (\ \underline{\mathbf{E}} \ + \ \underline{\mathbf{v}} \times \underline{\mathbf{B}}) = 0$$

- $\rightarrow \text{ need } \underline{\mathbf{E}} = -\underline{\mathbf{v}} \times \underline{\mathbf{B}} \rightarrow v = \frac{|\underline{\mathbf{E}}|}{|\underline{\mathbf{B}}|} \\ (\underline{\mathbf{E}} \perp \underline{\mathbf{v}} \& \underline{\mathbf{B}})$
- Will filter particles with $v = \frac{|\underline{E}|}{|\underline{B}|}$ and the spread $\pm \Delta v$ is given by the slit width

Stage B : The mass filter

• This region has only a B field

$$m \ddot{\mathbf{r}} = q \, \dot{\mathbf{r}} \times \underline{\mathbf{B}}$$
with $\underline{\mathbf{B}} = \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix}$ and $\dot{\mathbf{r}} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix}$
 $\rightarrow \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = \frac{q}{m} \begin{pmatrix} \dot{y} B \\ -\dot{x} B \\ 0 \end{pmatrix}$
 $\rightarrow \ddot{z} = 0 \rightarrow v_z = \text{constant} (= 0)$
• $|\underline{\mathbf{r}}|^2 = \ddot{x}^2 + \ddot{y}^2 = \frac{q^2}{m^2} \underbrace{(\dot{x}^2 + \dot{y}^2)}_{v^2} B^2$

• Circular motion in x - y plane with :

$$\frac{v^2}{R} = \frac{q}{m}v B \rightarrow R = \frac{mv}{qB}$$

• Since q and v are constant, then $R \propto m$

Mass spectrometer summary

19.3 Example : magnetic lenses

- Magnetic lenses are used for focusing and collimating charged particle beams (used in electron microscopes, particle accelerators etc.)
- Quadrupole lens: four identical coils in x y plane
- Sum of 4 dipole fields : for small values of x, y close to the axis of symmetry, $B_x \propto y$, $B_y \propto x$

Quadrupole lens

- Along x-axis: only By component
- Along y-axis: only B_x component
- No *z*-component (symmetry)
- Inside the lens, close to the *z*-axis

$$\underline{\mathbf{B}} = \begin{pmatrix} k y \\ k x \\ 0 \end{pmatrix} \text{ where } k \text{ is a constant}$$

• Equation of motion $\underline{\mathbf{F}} = q \, \underline{\mathbf{v}} \times \underline{\mathbf{B}}$

$$m\begin{pmatrix} \ddot{x}\\ \ddot{y}\\ \ddot{z} \end{pmatrix} = q \begin{vmatrix} \dot{\mathbf{i}} & \dot{\mathbf{j}} & \dot{\mathbf{k}} \\ \dot{x} & \dot{y} & \dot{z} \\ ky & kx & 0 \end{vmatrix} = q k \begin{pmatrix} -x \dot{z}\\ y \dot{z}\\ x \dot{x} - y \dot{y} \end{pmatrix}$$

• Assume particle travels at a small angle wrt the *z*-axis :

 $ightarrow \dot{x}, \dot{y} pprox 0
ightarrow \ddot{z} = 0
ightarrow \dot{z} = v = ext{constant}
ightarrow z = v t$

• Equations of motion in the x - y plane: $\ddot{x} = -\frac{q}{m}k v x$ and $\ddot{y} = \frac{q}{m}k v y$

Quadrupole lens (cont.)

• Equations of motion :
$$\ddot{x} = -\alpha^2 x \& \ddot{y} = \alpha^2 y$$
, where $\alpha = \sqrt{\frac{q \, k \, v}{m}}$

- Focal points in z direction (x=0) at $f_n = \frac{\pi}{2} \sqrt{\frac{mv}{qk}} + n \pi \sqrt{\frac{mv}{qk}}$
- Use lens pair with 90° angle for collimating a charged beam

Quadrupole lens (cont.)

Lens pulls beam on-axis in x and removes particles deviating in y

Magnetic lens summary

CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 20:

Displacement Current & Maxwell's Equations

Claire Gwenlan¹

University of Oxford

HT 2024

$$\begin{split} \underline{\nabla} \cdot \underline{\mathbf{E}} &= \frac{\rho}{\epsilon_0} \\ \underline{\nabla} \cdot \underline{\mathbf{B}} &= \mathbf{0} \\ \underline{\nabla} \times \underline{\mathbf{E}} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \frac{1}{\mu_0} \underline{\nabla} \times \underline{\mathbf{B}} &= \underline{\mathbf{J}} + \epsilon_0 \frac{\partial \underline{\mathbf{E}}}{\partial t} \end{split}$$

¹With many thanks to Prof Neville Harnew and Prof Laura Herz 🚛 🚌 🧠

OUTLINE : 20. DISPLACEMENT CURRENT & MAXWELL'S EQUATIONS

20.1 Electrodynamics "before Maxwell"

20.2 Revisit Ampere's Law

20.3 Fixing Ampere's Law : displacement current

20.4 Example : Ampere's Law and a charging capacitor

20.5 Example : B-field of a short current-carrying wire

20.6 Maxwell's equations

20.1 Electrodynamics "before Maxwell"

Time-varying B-fields generate E-fields. *However*, time-varying E-fields do not seem to create B-fields in this version. Is there something wrong?

20.2 Revisit Ampere's Law

- Therefore Ampere's Law in its current form violates the continuity equation (and hence charge conservation) !
- But this is not surprising since Ampere's Law is derived from the Biot-Savart Law assuming that $\frac{\partial}{\partial t}(\rho) = 0$
 - $\rightarrow\,$ we have to "fix" Ampere's Law !

20.3 Fixing Ampere's Law : displacement current

Add a term to Ampere's Law to make it compatible with the continuity equation : <u>Σ</u> · <u>J</u> = − ∂/∂t(ρ)

- The term $\left(\epsilon_0 \frac{\partial \mathbf{E}}{\partial t}\right)$ is called the *displacement current* $\underline{\mathbf{J}}_D$ (note that it is actually a time-varying electric field)
- Time-varying <u>E</u> fields now generate <u>B</u> fields and vice versa. Also satisfies charge conservation.

Summary : Ampere's Law with Maxwell's correction

Using Stoke's theorem : $\oint_C \underline{\mathbf{B}} \cdot d\underline{\ell} = \int_S (\underline{\nabla} \times \underline{\mathbf{B}}) \cdot d\underline{\mathbf{a}}$ gives the integral form: $\oint_C \underline{\mathbf{B}} \cdot d\underline{\ell} = \mu_0 \int_S \underline{\mathbf{J}} \cdot d\underline{\mathbf{a}} + \mu_0 \epsilon_0 \int_S \frac{\partial \underline{\mathbf{E}}}{\partial t} \cdot d\underline{\mathbf{a}}$ Lenc

20.4 Example : Ampere's Law and a charging capacitor

- This is the first example, showing why Ampere's Law fails without adding the displacement current : a straight wire, and add a capacitor into the circuit
- Previously we used Ampere's Law to calculate the magnetic field along Amperian loop
 ∮_C <u>**B**</u> · <u>**d**</u>ℓ = μ₀ I_{enc}

Ampere's Law and a charging capacitor (cont.)

• In differential form :

$$\underline{\nabla} \times \underline{\mathbf{B}} = \mu_0 \left(\underline{\mathbf{J}} + \epsilon_0 \, \frac{\partial \underline{\mathbf{E}}}{\partial t} \right)$$

20.5 Example : B-field of a short current-carrying wire

- Recall B-field from Biot-Savart Law at a distance *a* from centre of a wire of length $2b \rightarrow B = \frac{\mu_0 I}{2\pi a} \frac{b}{\sqrt{b^2 + a^2}}$
- Again, Ampere's Law fails. Need to use displacement current.

•
$$\oint_C \underline{\mathbf{B}} \cdot \underline{\mathbf{d}} \ell = \mu_0 I_{enc} + \mu_0 \epsilon_0 \int_S \frac{\partial \underline{\mathbf{E}}}{\partial t} \cdot d\underline{\mathbf{a}}$$

 Wire is short, so charge builds up at the ends giving time-varying <u>E</u>-field

B-field of a short current-carrying wire (cont.)

- Form Amperian loop of radius *a*, and integrate $\frac{\partial E}{\partial t}$ over enclosed area
- Calculate <u>E</u>-field due to two point charges at wire ends, ±*b*

20.6 Maxwell's equations

$$\oint_{S} \mathbf{E} \cdot \mathbf{d}\mathbf{a} = \frac{Q}{\varepsilon_{0}} \iff \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_{0}}$$

Gauss's Law: Charge generates an electric field. Electric field lines begin and end on charge.

$$\oint_C \mathbf{E} \cdot \mathbf{d}\boldsymbol{l} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{d}\mathbf{a}$$
$$\longleftrightarrow \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Maxwell-Faraday's Law: time-varying magnetic fields create electric fields (induction)

$$\oint_{S} \boldsymbol{B} \cdot \boldsymbol{d}\boldsymbol{a} = 0 \quad \Longleftrightarrow \quad \nabla \cdot \mathbf{B} = 0$$

There are **no magnetic monopoles.** Magnetic field lines form closed loops.

$$\oint_{C} \mathbf{B} \cdot \mathbf{d} \boldsymbol{l} = \mu_{0} \boldsymbol{I} + \mu_{0} \varepsilon_{0} \int_{S} \frac{\partial \mathbf{E}}{\partial t} \cdot \mathbf{d} \mathbf{a}$$
$$\longleftrightarrow \nabla \times \mathbf{B} = \mu_{0} \mathbf{J} + \mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$$

Ampere's Law with Maxwell's correction: electric currents and time-varying electric fields generate magnetic fields

Maxwell's equations, together with the Lorentz force: $\underline{\mathbf{F}} = q \left(\underline{\mathbf{E}} + \underline{\mathbf{v}} \times \underline{\mathbf{B}}\right)$ summarise the entire theoretical content of classical electrodynamics

CP2: ELECTROMAGNETISM

https://canvas.ox.ac.uk/courses/224992/pages/cp2-electromagnetism

Lecture 21:

Electromagnetic Waves & Energy Flow

Claire Gwenlan¹

University of Oxford

HT 2024

$$\begin{split} \underline{\nabla} \cdot \underline{\mathbf{E}} &= \frac{\rho}{\epsilon_0} \\ \underline{\nabla} \cdot \underline{\mathbf{B}} &= \mathbf{0} \\ \underline{\nabla} \times \underline{\mathbf{E}} &= -\frac{\partial \underline{\mathbf{B}}}{\partial t} \\ \frac{1}{\mu_0} \underline{\nabla} \times \underline{\mathbf{B}} &= \underline{\mathbf{J}} + \epsilon_0 \frac{\partial \underline{\mathbf{E}}}{\partial t} \end{split}$$

¹With many thanks to Prof Neville Harnew and Prof Laura Herz , and so so

OUTLINE : 21. ELECTROMAGNETIC WAVES & ENERGY FLOW

- 21.1 Electromagnetic waves in vacuum
- 21.2 Electromagnetic waves : 3D plane wave solutions
- 21.3 Divergence, time derivative, and curl of E and B
- 21.4 Electromagnetic waves : speed of propagation
- 21.5 Relationship between E and B
- 21.6 Electromagnetic wave travelling along the z direction
- 21.7 Characteristic impedance of free space
- 21.8 Energy flow and the Poynting vector

21.1 Electromagnetic waves in vacuum

- In the absence of electric charge or current $\rightarrow \rho = 0$ and $\underline{J} = 0$:
- Maxwell's Equations become :

$$\underline{\nabla} \cdot \underline{\mathbf{E}} = 0 \qquad \qquad \underline{\nabla} \cdot \underline{\mathbf{B}} = 0 \underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\partial \underline{\mathbf{B}}}{\partial t} \qquad \qquad \underline{\nabla} \times \underline{\mathbf{B}} = \mu_0 \, \epsilon_0 \, \frac{\partial \underline{\mathbf{E}}}{\partial t}$$

(note the symmetry between the \underline{E} and \underline{B} fields)

Electromagnetic waves in vacuum (cont.)

$$\underline{\nabla} \cdot \underline{\mathbf{E}} = 0 \qquad \qquad \underline{\nabla} \cdot \underline{\mathbf{B}} = 0 \underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\partial \underline{\mathbf{B}}}{\partial t} \qquad \qquad \underline{\nabla} \times \underline{\mathbf{B}} = \mu_0 \, \epsilon_0 \, \frac{\partial \underline{\mathbf{E}}}{\partial t}$$

This gives us a *wave equation* in $\underline{\mathbf{B}}$:

together with :
$$\frac{\nabla^2 \mathbf{\underline{B}} - \epsilon_0 \mu_0 \mathbf{\underline{B}} = 0}{\sum^2 \mathbf{\underline{E}} - \epsilon_0 \mu_0 \mathbf{\underline{\underline{E}}} = 0}$$

• These equations have general solutions (in 1D) of the form :

•
$$E(x,t) = F(x-ct) + G(x+ct)$$
 and
 $B(x,t) = F'(x-ct) + G'(x+ct)$
where F, G, F', G' are any functions of $(x-ct), (x+ct)$

21.2 Electromagnetic waves : 3D plane wave solutions

- <u>k</u> is in the direction normal to the wave-fronts
- All points *P* form a wave-front with the same phase
- Maxima are separated by the wavelength λ where $\lambda=2\pi/k$
- Phase velocity (or propagation velocity) of wave-fronts given by $c = \omega/k$

人口 医水黄 医水黄 医水黄素 化甘油

Plane waves

21.3 Divergence, time derivative, curl of \underline{E} and \underline{B}

• The divergence of <u>E</u> :

- The time derivative of <u>E</u> :
- The curl of <u>E</u> :

21.4 Electromagnetic waves : speed of propagation

• To get speed of propagation, substitute $\underline{\mathbf{E}} = \underline{\mathbf{E}}_0 \exp(i(\omega t - \underline{\mathbf{k}} \cdot \underline{\mathbf{r}})) \text{ into the wave equation}$ $\underline{\nabla}^2 \underline{\mathbf{E}} = \epsilon_0 \,\mu_0 \, \frac{\partial^2}{\partial t^2} \underline{\mathbf{E}}$

21.5 Relationship between \underline{E} and \underline{B}

 Electric and magnetic fields in vacuum are *perpendicular* to direction of propogation → *EM waves are transverse*

- $\underline{\mathbf{E}}, \underline{\mathbf{B}} \& \underline{\mathbf{k}}$ are mutually orthogonal (NB. $\underline{\mathbf{k}} \times \underline{\mathbf{B}} = kB \sin \frac{\pi}{2} \underline{\hat{\mathbf{E}}}$)
- <u>E</u> and <u>B</u> are in phase and lie in the plane of the wavefront
- Field magnitude ratio :

$$|\underline{\mathbf{E}}|/|\underline{\mathbf{B}}|=rac{c^2}{\omega}k=c=rac{1}{\sqrt{\mu_0\,\epsilon_0}}$$

21.6 Electromagnetic wave travelling along the *z* **direction**

Figure adapted from Physics Stack Exchange

$$\underline{\mathbf{E}} = \underline{\mathbf{E}}_0 \sin \left(\omega(t - z/c) \right) \, \underline{\mathbf{\hat{x}}} \\ \underline{\mathbf{B}} = \underline{\mathbf{B}}_0 \sin \left(\omega(t - z/c) \right) \, \underline{\mathbf{\hat{y}}}$$

21.7 Characteristic impedance of free space

Take the ratio
$$Z = \frac{|\mathbf{E}|}{|\mathbf{H}|}$$
 where $|\mathbf{H}| = \frac{1}{\mu_0} |\mathbf{B}|$
Z has units $[V m^{-1}] / [A m^{-1}] = [Ohms]$
Z is called the *characteristic impedance of free*

space

$$Z = \mu_0 \, \frac{|\mathbf{E}|}{|\mathbf{B}|} = \mu_0 \, \mathbf{c} = \frac{\mu_0}{\sqrt{\mu_0 \, \epsilon_0}} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 376.7 \, \Omega$$

-

Electromagnetic waves : summary

In vacuum, free of charge or currents (
$$\rho$$
, J = 0):
 $\nabla \cdot \mathbf{E} = 0$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{B} = \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$ $\nabla^2 \mathbf{E} = \varepsilon_0 \mu_0 \ddot{\mathbf{E}}$
 $\nabla \cdot \mathbf{B} = 0$ $\nabla \times \mathbf{B} = \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$ $\nabla^2 \mathbf{B} = \varepsilon_0 \mu_0 \ddot{\mathbf{B}}$
Wave equations in \mathbf{E} , B!
Electromagnetic waves propagate in free space:
Plane EM wave fronts: $\mathbf{E} = \mathbf{E}_0 \exp\{i(\omega t - \mathbf{k} \cdot \mathbf{r})\}$ with wavelength $\lambda = \frac{2\pi}{k}$
Propagation velocity of wave fronts: $c = \frac{\omega}{k} = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 3 \times 10^8 \,\mathrm{m \, s^{-1}}$
Relationship between E and B:
(in phase and mutually orthogonal $\mathbf{B} = \frac{\mathbf{k}}{\omega} \times \mathbf{E}$ $\mathbf{E} = -c^2 \frac{\mathbf{k}}{\omega} \times \mathbf{B}$ $\frac{|\mathbf{E}|}{|\mathbf{B}|} = c$
with wave vector k)
Impedance of free space: $Z = \frac{|\mathbf{E}|}{|\mathbf{B}|/\mu_0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 376.7 \,\Omega$

21.8 Energy flow and the Poynting vector

- Consider how the energy in an EM wave can leave a volume
- Recall: energy density of electric field: $u_e = \frac{1}{2} \epsilon_0 \underline{\mathbf{E}}^2$ energy density of magnetic field: $u_m = \frac{1}{2\mu_0} \underline{\mathbf{B}}^2$

Energy flow and the Poynting vector (cont.)

•
$$\frac{dU}{dt} = -\int_{\mathcal{V}} \underline{\mathbf{J}} \cdot \underline{\mathbf{E}} \, d\mathcal{V} - \frac{1}{\mu_0} \, \int_{\mathcal{V}} \, \underline{\nabla} \cdot (\underline{\mathbf{E}} \times \underline{\mathbf{B}}) \, d\mathcal{V}$$

Apply divergence theorem and write as :

$$\left(\frac{dU}{dt} + \frac{dW}{dt}\right) = -\oint_{\mathcal{S}} \left(\frac{1}{\mu_0} \mathbf{\underline{E}} \times \mathbf{\underline{B}}\right) \cdot \mathbf{\underline{da}}$$

• Poynting's theorem (energy conservation for EM fields):

 $-\left(\frac{dU}{dt} + \frac{dW}{dt}\right) = \oint_{S} \underline{\mathbf{N}} \cdot \underline{\mathbf{da}} \quad \text{where :}$

[Rate of energy loss of] = [Rate at which energy escapes]fields and particles in ν through surface S bounding ν

13

 $\underline{\mathbf{N}} = \frac{1}{\mu_0} \underline{\mathbf{E}} \times \underline{\mathbf{B}}$ [Poynting vector]

-

Energy flow and the Poynting vector (cont.)

• Poynting's theorem (integral form):

$$\int_{\mathcal{V}} \underline{\nabla} \cdot \underline{\mathbf{N}} \, d\mathcal{V} = -\int_{\mathcal{V}} \frac{\partial u}{\partial t} \, d\mathcal{V} - \int_{\mathcal{V}} \underline{\mathbf{J}} \cdot \underline{\mathbf{E}} \, d\mathcal{V}$$
where the energy density $u = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2\mu_0} B^2$

- In differential form : $\underline{\nabla} \cdot \underline{\mathbf{N}} = -\frac{\partial u}{\partial t} \underline{\mathbf{J}} \cdot \underline{\mathbf{E}}$
- Note also that in free space $(\rho = 0, \mathbf{J} = \mathbf{0})$:

$$\underline{\nabla} \cdot \underline{\mathbf{N}} = -\frac{\partial u}{\partial t} \qquad (\text{c.f. } \underline{\nabla} \cdot \underline{\mathbf{J}} = -\frac{\partial \rho}{\partial t})$$

 \rightarrow the Poynting vector is to energy what **J** is to charge

Poynting vector **N** is the power per unit area flowing through the surface bounded by volume \mathcal{V} (it also gives direction of flow). Units of **N** : $[W m^{-2}]$

 For EM waves, the intensity is the time-average of |N|: $\Im = \langle |\underline{\mathbf{N}}| \rangle = \frac{1}{\mu_0} E_0 B_0 \langle \cos^2(\omega t - \underline{\mathbf{k}} \cdot \underline{\mathbf{r}}) \rangle = \frac{1}{2\mu_0 c} E_0^2$ 1/2(日本)(四本)(日本)(日本)(日本)

Example: Poynting vector for a long resistive cylinder

• Calculate Poynting vector at the surface of a wire with applied potential difference V and current $I: \underline{N} = \frac{1}{\mu_0} \underline{E} \times \underline{B}$

・ロト ・ 同ト ・ ヨト ・ ヨト

 Total power dissipated in wire : P = − ∫_S <u>N</u> · <u>da</u> = V I as expected from circuit theory

Poynting Vector : summary

