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OUTLINE : 19. MOTION IN E & B FIELDS

19.1 Motion of charged particles in E and B fields

19.2 Example : the mass spectrometer

19.3 Example : magnetic lenses



19.1 Motion of charged particles in E and B fields

® Force on a charged particle in an E and B field :

F-q(E +yxB)
~ =
along E 1 to bothv and B

® Newton's Second Law gives equation of motion :
F=ma=mi=q(E + vxB)
® Will demonstrate with 2 examples:

1. Mass spectrometer

2. Magpnetic lens



19.2 Example : the mass spectrometer

Used for identifying small charged particles (molecules, ions) by
their mass m
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Stage A : The velocity filter

® The particle will pass through both
slits if it experiences no net force
inside the filter

® The region has both E and B fields
F=g(E +vxB)=0

— needE=-vxB — v
(E_Lv&B)

o Will filter particles with v = ‘%

and the spread +=Av is given by
the slit width




Stage B : The mass filter

® This region has only a B field
mr=qrxB
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e Circular motion in x — y plane with :

v2

= 49yB — R=

® Since g and v are constant, then R x m



Mass spectrometer summary

In the presence of both E- and B-fields, a charge
experiences the force: Fegm = q (E +Vv X B)

Mass Spectrometer.

A. velocity filter:

E&B-fields present. Charged particles
pass through Stage A if their velocity
equals the amplitude ratio: |E|

y =
. B
B. Filter stage:
Only B-field present. Charged particles
are forced on circular path with radius:
my
R=—
qB




19.3 Example : magnetic lenses

® Magnetic lenses are used for focusing and collimating charged
particle beams (used in electron microscopes, particle
accelerators etc.)

® Quadrupole lens: four identical coils in x — y plane

® Sum of 4 dipole fields: for small values of x, y close to the
axis of symmetry, By < y, B, o< x




Quadrupole lens

® Along x-axis: only B, component
® Along y-axis: only By component
® No z-component (symmetry)

® |nside the lens, close to the z-axis

ky
B = k x where k is a constant
0
® Equation of motion F =qv x B
X i ik —Xz
m y =q| x y z|=gqgk yz
z ky kx 0 XX—yy

® Assume particle travels at a small angle wrt the z-axis:
- X, y~0 =+ z=0 -+ z=v=constant - z=vt
® Equations of motion in the x — y plane:

X=—-dkvx and y=Zkvy



Quadrupole lens (cont.)

qkv
m

® Equations of motion: ¥ = —ax & y = oy, where o =

® Focal points in z direction (x=0) at f, = 3, /7% + nm, [ T¢

® Use lens pair with 90° angle for collimating a charged beam
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Quadrupole lens (cont.)

Lens pulls beam on-axis in x and removes particles deviating in y
y A De-focussing
Yo
5 Z

B fo \\_/
Focussing
Yo

De-focussing
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Magnetic lens summary

Magnetic Lens.
Equation of Motion:  mF = ql" x B

B = (ky, kx,0)
Solutions:
qk )
y(z) = yocoshy/ —z de-focusing
vm
focusing with
k
x(z) =xpcos/ gk, x [om
vm: fo=3 [y
YA ak

Yo

Yo
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OUTLINE : 20. DISPLACEMENT CURRENT &
MAXWELL'’S EQUATIONS

20.1 Electrodynamics “before Maxwell”

20.2 Revisit Ampere’s Law

20.3 Fixing Ampere’s Law : displacement current

20.4 Example : Ampere’s Law and a charging capacitor
20.5 Example : B-field of a short current-carrying wire

20.6 Maxwell’s equations



20.1 Electrodynamics “before Maxwell”

Time-varying B-fields generate E-fields. However, time-varying
E-fields do not seem to create B-fields in this version.
Is there something wrong ?



20.2 Revisit Ampere’s Law

® Therefore Ampere’s Law in its current form violates the
continuity equation (and hence charge conservation) !

® But this is not surprising since Ampere's Law is derived from
the Biot-Savart Law assuming that %(p) =0

— we have to “fix" Ampere's Law !



20.3 Fixing Ampere’s Law : displacement current

® Add a term to Ampere's Law to make it compatible with the

continuity equation: V-J = —%(p)

The term (eo %) is called the displacement current Jp
(note that it is actually a time-varying electric field)

® Time-varying E fields now generate B fields and vice versa.
Also satisfies charge conservation.



Summary : Ampere’s Law with Maxwell’s correction

Ampere’s Law does not comply with the Equation of Continuity:
V xB = lpJ applydivergence: V - (V X B) = ‘u,OV -J
always 4

= 0 only for statics!

This lack of charge conservation is unphysical! As a solution, add a so-called
“displacement current” to J, which will ensure compliance with the equation of

continuity: ap 9 OE
V]=—F=—— VE)=-V.(g—
J ot &V E) (&0 5,)
\ﬁ_J
displacement
Obtain Ampere’s Law current Jp

JE
with “displacement current”: VxB= .uO(J + & E)

Using Stoke's theorem: §.B-dl= [.(V x B)-da

gives the integral form: §.B-dl=po [ J-da + poeo [ % -da
s

—
Tenc



20.4 Example : Ampere’s Law and a charging
capacitor

® This is the first example, showing why Ampere's Law fails
without adding the displacement current : a straight wire, and
add a capacitor into the circuit

® Previously we used Ampere's Law to calculate the magnetic
field along Amperian loop fcﬁ -dl = po Lenc

+Q ¢q B
A Surface 1
b U
81‘ Surface 2 V
—O0 O




Ampere’s Law and a charging capacitor (cont.)

+Q

Surface 1

Surface 2
ot \J

[

® |n differential form

Y xB =i (I+c0 5%)



20.5 Example : B-field of a short current-carrying
wire

® Recall B-field from Biot-Savart Law at a distance a from

i _ ol b
centre of a wire of length 2b — B = 52— N

® Again, Ampere's Law fails depending on which path we use.
Need to use displacement current.

* ¢-B-dl = g Ienc + o€ [ % -da

® Wire is short, so charge builds up at the ends giving
time-varying E-field

-Q E d

é
T =
b pa

Iy




B-field of a short current-carrying wire (cont.)
B

® Form Amperian loop of radius a, and

integrate % over enclosed area E <
-Q <

® Calculate E-field due to two point ' :::
charges at wire ends, b -b <«
<

10



20.6 Maxwell’s equations

<« V-E:B
)

Gauss’s Law: Charge generates an electric
field. Electric field lines begin and end on
charge.

3€E.dl=—f IB da
c s ot

g VXE:—%—I:

Maxwell-Faraday’s Law: time-varying magnetic
fields create electric fields (induction)

fB.da=0 «— V.B=0
s

There are no magnetic monopoles.
Magnetic field lines form closed loops.

del=/.101+l,l0£0J- a_Eda
c s ot

JE
g VXB:I»LOJJFP'O&)W

Ampere’s Law with Maxwell’s correction:
electric currents and time-varying electric
fields generate magnetic fields

Maxwell's equations, together with the Lorentz force: F = q(E + v x B)

summarise the entire theoretical content of classical electrodynamics
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