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QCD-improved parton model

SLAC circa 1970

Let’s apply some of the ideas we have learnt to the Parton Model: 

see also, EG. 
Halzen & Martin, Devenish & Cooper-Sarkar 
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scaling violation

Improving the parton model 71 

squared. To build up the expression for a structure function , the 'Y' -parton 
level cross-sections, aT,L, are needed. To begin with consider the calculation 
of F2 in terms of (aT + ad / ao (with an obvious notation). As outlined in 
Problem 1 at the end of this chapter, it is straightforward to show that for 
a massless quark of charge ei the 'Y' - quark interaction of Fig. 4.1(a) gives 

- z ), 
O. 

Substituting this in Eq. 4.1 gives 

x 11 dz 11 qi(OO(X - - z) 

11 
- -

x 

(x), 

which agrees with the QPM result for a single quark flavour. 

( 4.3) 

The first additional hard process beyond the QPM to be considered 
is gluon radiation from quark lines, there are two diagrams as shown in 
Fig. 4.2 . These are essentially the diagrams of the QCD Compton process 

")'. ")'. p' 
q 

)---+--p' 

q' q' 

(a) (b) (c) 

Fig. 4 .2 Diagrams for gluon radiation from quarks in DIS via QCDC, together 
with the parton CM frame. 

shown in Fig. 3.3. Using Eq. (3.14) with t --+ u and u --+ t and in terms 
of the kinematics of the hard scattering subprocess shown here, the parton 
level cross-section is 

a = _ + , 
3 sst st 

( 4.4) 

where S = (Pi + q)2, i = (q - p')2 , U = (q - q')2 . In the 'Y'parton CMS () is 
the scattering angle and k , k' the magnitudes of the initial and final state 
3-momenta. Then 
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observation of scaling violation

Region of 1st SLAC measurement (1972)

LO QCD: F2(x,Q2) = Σi ei
2(xq(x,Q2) + xqbar(x,Q2)) 
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DGLAP evolution equations

SLAC circa 1970

g
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72 QeD improved parton model 

k (8 + Q2)/(2V§) , k = V§/2, so k' / k = 1 - z 
i - 2kk'(1 - cosO), u = -2kk'(1 + cosO) 

and using these, the terms in the [] brackets in Eq. (4.4) become 

[ 1 (I -C) ( 2) 2z (I+C)] []-> - - +(I-z) - +- - , l - z 2 l-c 1- z l -c 
( 4.5) 

where c == cos O. As it stands there are singularities for z -> 1 and c -> l. 
The former corresponds to infrared gluon radiation and will be dealt with 
later as this singularity is cancelled by other terms. The angular integral 
will be dominated by the contribution from the the last two terms and the 
1/( 1 - c) singularity will have to be regulated. The singularities occur as 
o -> 0 which corresponds to the gluon being emitted collinear with the 
initial parton direction. The residue at the c = 1 pole is 2(1 + z2)/(1 - z). 
Rather than proceed with an angular integration directly, it is instructive 
to rewrite it in terms of the gluon (or quark) transverse momentum in the 
parton eMS, 

Similarly for small angles do' ::::' 47fdpZ! 8. Using these expressions and keep-
ing only the dominant 1/( 1 - c) terms 

a 4 [1 + z2 ] dp2 , , 2 s t 
(J::::' (JOe i -- -- -2 ' 

27f 3 1 - z 0 Pt 
(4.6) 

where = §/4 = Q2(1 - z)/4z. The integral is regulated at the 
lower limit by the introduction of a cut-off, ",2 , and it gives 

(Q2) (I -Z) 
-2 = In 2 + In -- . 

,,2 Pt '" 4z 

This result shows explicity where the large logs come from, gluon radiation 
introduces non-zero Pt and integrating over the characteristic dpZ!PF radia-
tion spectrum will introduce a In( Q2 / ",2) scaling violation in the structure 
function. Define the function 

P ( ) = [1 + z2 ] 
qq z 3 1 - z ' (4 .7) 

which is the probability distribution for q -> q(z)g(1 - z) splitting (where 
the () indicate the fractions of the initial quark momentum) , then a may 
be written 

(4.8) 
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the theory predicts the rate at  which the parton distribution functions 
(both quarks and gluons) evolve with energy scale of probe, Q2

BUT it does not predict their x-dependence, ie. their starting shape 

PDF

DGLAP
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DGLAP evolution equations

with LO splitting functions:

DGLAP equations are a set of (2nf+1) coupled equations for the evolution of quarks and gluon

Dokshitzer

Gribov

Lipatov

Altarelli

Parisi

The coupled DGLAP equations

• The qq, qg, gq and gg transitions lead to a set of 2nf + 1 coupled
evolution equations that can be written as59

@fi(x, µ2)

@ lnµ2
=

nfX

j=�nf

↵s

2⇡

Z 1

x

dy

y
Pij

✓
x

y

◆
fj(y, µ

2),

where the splitting function Pij(z) represents the probability that
a daughter parton i with momentum fraction z splits from a parent
parton j.60 Here the indexing is as follows

i, j =

8
<

:

�1 , . . . ,�nf antiquarks
0 gluon
1 , . . . , nf quarks

• To simplify the expressions for the evolution equations we write
the Mellin convolution in short-hand notation as

P ⌦ f ⌘
Z 1

x

dy

y
P

✓
x

y

◆
f (y, µ2)

With this notation the set of coupled equations reads

@fi
@ lnµ2

=

nfX

j=�nf

↵s

2⇡
Pij ⌦ fj

• In leading order QCD we can write for the splitting functions:61

Pq̄iq̄j
= Pqiqj

⌘ Pqq �ij, Pq̄ig = Pqig ⌘ Pqg, Pgq̄i
= Pgqi

⌘ Pgq

59Here nf is the number of ‘active’ quark flavours. Usually a quark species is considered to be active (i.e. it
participates in the QCD dynamics) when its mass m < µ.

60The conventional index notation for splitting functions is thus Pdaughter-parent.
61The splitting functions are flavour independent since the strong interaction is flavour independent. Fur-

thermore, leading order splitting cannot change the flavour of a quark, as is expressed by the delta function.
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The leading order splitting functions

• Here are the leading order splitting functions
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• The singularities showing up in Pqq and Pgg at (1�z) ! 0 are reg-
ulated by a so-called ‘plus’ prescription which guarantees that the
integral

R 1
x exists of the splitting function multiplied by a parton

density function (provided that the pdf ! 0 when x ! 1).

• For reference, we give here the definition of the plus prescription

[f (x)]+ = f (x) � �(1 � x)
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or, equivalently,
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x
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Z x

0
g(z) dz.
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Devenish & Cooper-Sarkar, p77 

NB, z=1 singularities cancelled by 
interference with virtual loop diagrams 
which give delta functions at z=1 
(use ‘+’ prescription to regularize the 1/(1 – z))

NB, previously we assumed that αs is constant; 
taking the running of αs into account is somewhat subtle, but leads to the same evolution equation  
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The DGLAP equations are a coupled set of equations for the evolution of quark and gluon densities

Where at LO But we may want to go beyond LO

And F2 is no longer so neatly expressed in 
terms of parton distributions at NLO
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But everything is still perturbatively 
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of qi and qj (where qj is any quark or antiquark density other than qi). 
There are two combinations that are particularly useful 

qi(X, Q2) 

qt(x, Q2) 

qi(X, Q2) - iji(X, Q2), 
2 - 2 1 2 qi(X , Q ) + qi(X, Q ) - Q ), 

nf 
( 4.38) 

where qi is the valence quark distribution for flavour i. The evolution of 
non-singlet distributions does not involve the gluon density, so 

( 4.39) 

where the splitting functions P±  are again constructed from Pqq and Pqij , 

reducing to Pqq at LO. 
The DGLAP equations give a formalism for calculating the changes to 

the parton densities as Q2 changes, however they do not allow a calcu-
lation of the distributions at the starting scale Q6. This information has 
to come either from non-perturbative methods or by parameterizing the x 
dependence of the parton density at Q6 and determining the parameters 
by fitting to data. A function of the form 

xf(x, Q6) = Ax"'(l - x){j 

where A and {3 are postive constants might seem a reasonable first guess. 
The valence quark density is expected to peak at x values a bit below 0.3 
and to vanish as x -> 0, 1. The above expression has the virtue of simplicity 
and being easy to manipulate analytically. When modified by a low order 
polynomial in x or .jX it is the form used in QCD fits . 

Can one say more about the exponents cy and {3? For cy this is the 
domain of low x physics and is discussed at length in Chapter 9. It will 
turn out that for valence functions CY is expected to be around 0.5 but for 
the sea and gluon distributions CY can be either negative or positive. A more 
detailed discussion of functional forms for fi(x, Q6) is given in Section 6.3. 

4.2.1 F2 and F L 

To connect the parton densities to structure functions, one needs the 'coef-
ficient functions ' appropriate to the chosen factorization scheme (the C (z) 
of Eq. (4.11)), in general for F2 

x 

( 4.40) 

where e2 = L:i e; and the sums run over all active quark and antiquark 
flavours. Cq and Cg are the coefficient functions, which are expanded as 
power series in CY s (Q2) , 
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82 QeD improved parton model 

6(1-z)+ aSC1(z)+ ... 
271" q 

as 1 - C (z) + .... 271" 9 

At LO, and to all orders in the DIS scheme, Cq(z, as) = 6(1 - z) and 
Cg(z,as) = 0, thus giving F2 = Note that 

i 
this 'QPM style' relation is only true for F2, XF3 and FL will require con-
volutions with coefficient functions. In the MS scheme 

- - (1 + z) In (1 - z) - -- In z 4[4In(1- Z)-3 1+ z2 
3 2(1 -zh 1-z 

(4.41) 

-8Z2+8Z-1]. (4.42) 

In the expressions for the structure functions, the terminology LO, NLO, 
etc, refers to the behaviour with respect to In Q2. One must be careful to 
account for the In Q2 behaviour implicit in as. At LO, this gives only the 
In Q2 from the O( as) 'one loop' contribute to the splitting functions. 5 At 
NLO, the one and two loop contributions to the splitting functions are 
included and the coefficient function from the one loop level. At NNLO, 
one then needs splitting functions at three loops and coefficient functions 
at two loops, etc. 

It must also be emphasized that the parton densities, the splitting func-
tions and the coefficient functions are all renormalization and factorization 
scheme dependent. Since physical quantities should be scheme indepen-
dent conversion formulae exist to move between schemes, but care must be 
exercised to ensure consistency in any given calculation. 

In the QPM, transverse momentum of the partons is assumed to be zero 
and one of the consequences of this for spin-1 quarks is that the longitudinal 
structure function (FL = F2-2xF1) is zero. The QCDC and BGF processes 
(and higher order diagrams) that give rise to the In Q2 scaling violations 
also give rise to partons with non-negligible Pt. In turn, this means that 
the Callan-Gross relation is no longer satisfied and FL =f. O. The QCD 
improved parton model gives an expression for FL , with O(as ) leading 
terms. A similar physical approach to that followed in the previous section 
but projecting out the longitudinal component of the parton level cross-
sections Ih gives the coefficient functions for FL (Altarelli and Martinelli 
1978). They are factorization scheme independent at O(a s ) giving 

5The 'loops ' referred to here come from the forms that the corresponding Feynman 
diagrams take. 
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x 

( 4.43) 

or the first term involving the quark densities may be replaced by F2(x, Q2) 
to give 

;; 11 2 Q2) + 

4.2.2 A useful approximation 

( 4.44) 

Already by Q2 = 100 GeV2, o. s (Q2)/(27r) 0.03 which is small enough to 
indicate that some useful approximations may be possible in the relations 
between the parton densities and structure functions. Looking at Eq. (4.40) 
for F2 and the expresssions for the coefficient functions one sees that 

nj 

F2(x,Q2) (qi(X,Q2) + iii{x,Q2)). ( 4.45) 

In the DIS factorization scheme this relation is exact. 
A modified from of Eq. (4.36) at leading order may be derived for the 

coupled evolution of F2 and xg 

[)F2(x, Q2) o.s (Q2) { -2 } 
[) In Q2 = 27r Pqq ® F2 + 2e Pqg ® xg , 

where e2 = eT. Prytz (1993) realised that for x < 0.01 the contribution 
of the Pqq term from quark splitting was negligible in comparison to the 
gluon term. Dropping the first term in the above equation and with an 
obvious change of integration variable, 

[)F2(x, Q2) _2o.s (Q2) l 1
-

x G(_x_)P ( )d 
!::> I Q2 e 1 qg Z z , un 7r 0 -z 

where G(x) = xg(x) . The splitting function Pqg(z) = + (1 - z)2) is 
symmetrical and slowly varying over the range (0,1) so the above convolu-
tion may be approximated by expanding G(x/(1 - z )) about z = 1/2, 

G(x/(1 - z)) = G(2x) + (z - 1/2)G'(2x) + ... 
Because Pqg(z) is symmetric about z = 1/2 the second term in the expan-
sion will integrate to zero and a good approximation is obtained by keeping 
only the first term (with 1 - x ----> 1 as the upper limit of integration) 

a. 11 Pqg( z)dz 
7r 0 
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of qi and qj (where qj is any quark or antiquark density other than qi). 
There are two combinations that are particularly useful 

qi(X, Q2) 

qt(x, Q2) 

qi(X, Q2) - iji(X, Q2), 
2 - 2 1 2 qi(X , Q ) + qi(X, Q ) - Q ), 

nf 
( 4.38) 

where qi is the valence quark distribution for flavour i. The evolution of 
non-singlet distributions does not involve the gluon density, so 

( 4.39) 

where the splitting functions P±  are again constructed from Pqq and Pqij , 

reducing to Pqq at LO. 
The DGLAP equations give a formalism for calculating the changes to 

the parton densities as Q2 changes, however they do not allow a calcu-
lation of the distributions at the starting scale Q6. This information has 
to come either from non-perturbative methods or by parameterizing the x 
dependence of the parton density at Q6 and determining the parameters 
by fitting to data. A function of the form 

xf(x, Q6) = Ax"'(l - x){j 

where A and {3 are postive constants might seem a reasonable first guess. 
The valence quark density is expected to peak at x values a bit below 0.3 
and to vanish as x -> 0, 1. The above expression has the virtue of simplicity 
and being easy to manipulate analytically. When modified by a low order 
polynomial in x or .jX it is the form used in QCD fits . 

Can one say more about the exponents cy and {3? For cy this is the 
domain of low x physics and is discussed at length in Chapter 9. It will 
turn out that for valence functions CY is expected to be around 0.5 but for 
the sea and gluon distributions CY can be either negative or positive. A more 
detailed discussion of functional forms for fi(x, Q6) is given in Section 6.3. 

4.2.1 F2 and F L 

To connect the parton densities to structure functions, one needs the 'coef-
ficient functions ' appropriate to the chosen factorization scheme (the C (z) 
of Eq. (4.11)), in general for F2 

x 

( 4.40) 

where e2 = L:i e; and the sums run over all active quark and antiquark 
flavours. Cq and Cg are the coefficient functions, which are expanded as 
power series in CY s (Q2) , 
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At LO, and to all orders in the DIS scheme, Cq(z, as) = 6(1 - z) and 
Cg(z,as) = 0, thus giving F2 = Note that 

i 
this 'QPM style' relation is only true for F2, XF3 and FL will require con-
volutions with coefficient functions. In the MS scheme 

- - (1 + z) In (1 - z) - -- In z 4[4In(1- Z)-3 1+ z2 
3 2(1 -zh 1-z 

(4.41) 

-8Z2+8Z-1]. (4.42) 

In the expressions for the structure functions, the terminology LO, NLO, 
etc, refers to the behaviour with respect to In Q2. One must be careful to 
account for the In Q2 behaviour implicit in as. At LO, this gives only the 
In Q2 from the O( as) 'one loop' contribute to the splitting functions. 5 At 
NLO, the one and two loop contributions to the splitting functions are 
included and the coefficient function from the one loop level. At NNLO, 
one then needs splitting functions at three loops and coefficient functions 
at two loops, etc. 

It must also be emphasized that the parton densities, the splitting func-
tions and the coefficient functions are all renormalization and factorization 
scheme dependent. Since physical quantities should be scheme indepen-
dent conversion formulae exist to move between schemes, but care must be 
exercised to ensure consistency in any given calculation. 

In the QPM, transverse momentum of the partons is assumed to be zero 
and one of the consequences of this for spin-1 quarks is that the longitudinal 
structure function (FL = F2-2xF1) is zero. The QCDC and BGF processes 
(and higher order diagrams) that give rise to the In Q2 scaling violations 
also give rise to partons with non-negligible Pt. In turn, this means that 
the Callan-Gross relation is no longer satisfied and FL =f. O. The QCD 
improved parton model gives an expression for FL , with O(as ) leading 
terms. A similar physical approach to that followed in the previous section 
but projecting out the longitudinal component of the parton level cross-
sections Ih gives the coefficient functions for FL (Altarelli and Martinelli 
1978). They are factorization scheme independent at O(a s ) giving 

5The 'loops ' referred to here come from the forms that the corresponding Feynman 
diagrams take. 
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In Q2 from the O( as) 'one loop' contribute to the splitting functions. 5 At 
NLO, the one and two loop contributions to the splitting functions are 
included and the coefficient function from the one loop level. At NNLO, 
one then needs splitting functions at three loops and coefficient functions 
at two loops, etc. 

It must also be emphasized that the parton densities, the splitting func-
tions and the coefficient functions are all renormalization and factorization 
scheme dependent. Since physical quantities should be scheme indepen-
dent conversion formulae exist to move between schemes, but care must be 
exercised to ensure consistency in any given calculation. 

In the QPM, transverse momentum of the partons is assumed to be zero 
and one of the consequences of this for spin-1 quarks is that the longitudinal 
structure function (FL = F2-2xF1) is zero. The QCDC and BGF processes 
(and higher order diagrams) that give rise to the In Q2 scaling violations 
also give rise to partons with non-negligible Pt. In turn, this means that 
the Callan-Gross relation is no longer satisfied and FL =f. O. The QCD 
improved parton model gives an expression for FL , with O(as ) leading 
terms. A similar physical approach to that followed in the previous section 
but projecting out the longitudinal component of the parton level cross-
sections Ih gives the coefficient functions for FL (Altarelli and Martinelli 
1978). They are factorization scheme independent at O(a s ) giving 

5The 'loops ' referred to here come from the forms that the corresponding Feynman 
diagrams take. 
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x 

( 4.43) 

or the first term involving the quark densities may be replaced by F2(x, Q2) 
to give 

;; 11 2 Q2) + 

4.2.2 A useful approximation 

( 4.44) 

Already by Q2 = 100 GeV2, o. s (Q2)/(27r) 0.03 which is small enough to 
indicate that some useful approximations may be possible in the relations 
between the parton densities and structure functions. Looking at Eq. (4.40) 
for F2 and the expresssions for the coefficient functions one sees that 

nj 

F2(x,Q2) (qi(X,Q2) + iii{x,Q2)). ( 4.45) 

In the DIS factorization scheme this relation is exact. 
A modified from of Eq. (4.36) at leading order may be derived for the 

coupled evolution of F2 and xg 

[)F2(x, Q2) o.s (Q2) { -2 } 
[) In Q2 = 27r Pqq ® F2 + 2e Pqg ® xg , 

where e2 = eT. Prytz (1993) realised that for x < 0.01 the contribution 
of the Pqq term from quark splitting was negligible in comparison to the 
gluon term. Dropping the first term in the above equation and with an 
obvious change of integration variable, 

[)F2(x, Q2) _2o.s (Q2) l 1
-

x G(_x_)P ( )d 
!::> I Q2 e 1 qg Z z , un 7r 0 -z 

where G(x) = xg(x) . The splitting function Pqg(z) = + (1 - z)2) is 
symmetrical and slowly varying over the range (0,1) so the above convolu-
tion may be approximated by expanding G(x/(1 - z )) about z = 1/2, 

G(x/(1 - z)) = G(2x) + (z - 1/2)G'(2x) + ... 
Because Pqg(z) is symmetric about z = 1/2 the second term in the expan-
sion will integrate to zero and a good approximation is obtained by keeping 
only the first term (with 1 - x ----> 1 as the upper limit of integration) 

a. 11 Pqg( z)dz 
7r 0 

The DGLAP equations 83 

x 

( 4.43) 

or the first term involving the quark densities may be replaced by F2(x, Q2) 
to give 

;; 11 2 Q2) + 

4.2.2 A useful approximation 

( 4.44) 

Already by Q2 = 100 GeV2, o. s (Q2)/(27r) 0.03 which is small enough to 
indicate that some useful approximations may be possible in the relations 
between the parton densities and structure functions. Looking at Eq. (4.40) 
for F2 and the expresssions for the coefficient functions one sees that 

nj 

F2(x,Q2) (qi(X,Q2) + iii{x,Q2)). ( 4.45) 

In the DIS factorization scheme this relation is exact. 
A modified from of Eq. (4.36) at leading order may be derived for the 

coupled evolution of F2 and xg 

[)F2(x, Q2) o.s (Q2) { -2 } 
[) In Q2 = 27r Pqq ® F2 + 2e Pqg ® xg , 

where e2 = eT. Prytz (1993) realised that for x < 0.01 the contribution 
of the Pqq term from quark splitting was negligible in comparison to the 
gluon term. Dropping the first term in the above equation and with an 
obvious change of integration variable, 

[)F2(x, Q2) _2o.s (Q2) l 1
-

x G(_x_)P ( )d 
!::> I Q2 e 1 qg Z z , un 7r 0 -z 

where G(x) = xg(x) . The splitting function Pqg(z) = + (1 - z)2) is 
symmetrical and slowly varying over the range (0,1) so the above convolu-
tion may be approximated by expanding G(x/(1 - z )) about z = 1/2, 

G(x/(1 - z)) = G(2x) + (z - 1/2)G'(2x) + ... 
Because Pqg(z) is symmetric about z = 1/2 the second term in the expan-
sion will integrate to zero and a good approximation is obtained by keeping 
only the first term (with 1 - x ----> 1 as the upper limit of integration) 

a. 11 Pqg( z)dz 
7r 0 

The DGLAP equations 81 

of qi and qj (where qj is any quark or antiquark density other than qi). 
There are two combinations that are particularly useful 

qi(X, Q2) 

qt(x, Q2) 

qi(X, Q2) - iji(X, Q2), 
2 - 2 1 2 qi(X , Q ) + qi(X, Q ) - Q ), 

nf 
( 4.38) 

where qi is the valence quark distribution for flavour i. The evolution of 
non-singlet distributions does not involve the gluon density, so 

( 4.39) 

where the splitting functions P±  are again constructed from Pqq and Pqij , 

reducing to Pqq at LO. 
The DGLAP equations give a formalism for calculating the changes to 

the parton densities as Q2 changes, however they do not allow a calcu-
lation of the distributions at the starting scale Q6. This information has 
to come either from non-perturbative methods or by parameterizing the x 
dependence of the parton density at Q6 and determining the parameters 
by fitting to data. A function of the form 

xf(x, Q6) = Ax"'(l - x){j 

where A and {3 are postive constants might seem a reasonable first guess. 
The valence quark density is expected to peak at x values a bit below 0.3 
and to vanish as x -> 0, 1. The above expression has the virtue of simplicity 
and being easy to manipulate analytically. When modified by a low order 
polynomial in x or .jX it is the form used in QCD fits . 

Can one say more about the exponents cy and {3? For cy this is the 
domain of low x physics and is discussed at length in Chapter 9. It will 
turn out that for valence functions CY is expected to be around 0.5 but for 
the sea and gluon distributions CY can be either negative or positive. A more 
detailed discussion of functional forms for fi(x, Q6) is given in Section 6.3. 

4.2.1 F2 and F L 

To connect the parton densities to structure functions, one needs the 'coef-
ficient functions ' appropriate to the chosen factorization scheme (the C (z) 
of Eq. (4.11)), in general for F2 

x 

( 4.40) 

where e2 = L:i e; and the sums run over all active quark and antiquark 
flavours. Cq and Cg are the coefficient functions, which are expanded as 
power series in CY s (Q2) , 
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82 QeD improved parton model 

6(1-z)+ aSC1(z)+ ... 
271" q 

as 1 - C (z) + .... 271" 9 

At LO, and to all orders in the DIS scheme, Cq(z, as) = 6(1 - z) and 
Cg(z,as) = 0, thus giving F2 = Note that 

i 
this 'QPM style' relation is only true for F2, XF3 and FL will require con-
volutions with coefficient functions. In the MS scheme 

- - (1 + z) In (1 - z) - -- In z 4[4In(1- Z)-3 1+ z2 
3 2(1 -zh 1-z 

(4.41) 

-8Z2+8Z-1]. (4.42) 

In the expressions for the structure functions, the terminology LO, NLO, 
etc, refers to the behaviour with respect to In Q2. One must be careful to 
account for the In Q2 behaviour implicit in as. At LO, this gives only the 
In Q2 from the O( as) 'one loop' contribute to the splitting functions. 5 At 
NLO, the one and two loop contributions to the splitting functions are 
included and the coefficient function from the one loop level. At NNLO, 
one then needs splitting functions at three loops and coefficient functions 
at two loops, etc. 

It must also be emphasized that the parton densities, the splitting func-
tions and the coefficient functions are all renormalization and factorization 
scheme dependent. Since physical quantities should be scheme indepen-
dent conversion formulae exist to move between schemes, but care must be 
exercised to ensure consistency in any given calculation. 

In the QPM, transverse momentum of the partons is assumed to be zero 
and one of the consequences of this for spin-1 quarks is that the longitudinal 
structure function (FL = F2-2xF1) is zero. The QCDC and BGF processes 
(and higher order diagrams) that give rise to the In Q2 scaling violations 
also give rise to partons with non-negligible Pt. In turn, this means that 
the Callan-Gross relation is no longer satisfied and FL =f. O. The QCD 
improved parton model gives an expression for FL , with O(as ) leading 
terms. A similar physical approach to that followed in the previous section 
but projecting out the longitudinal component of the parton level cross-
sections Ih gives the coefficient functions for FL (Altarelli and Martinelli 
1978). They are factorization scheme independent at O(a s ) giving 

5The 'loops ' referred to here come from the forms that the corresponding Feynman 
diagrams take. 
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or the first term involving the quark densities may be replaced by F2(x, Q2) 
to give 

;; 11 2 Q2) + 

4.2.2 A useful approximation 

( 4.44) 

Already by Q2 = 100 GeV2, o. s (Q2)/(27r) 0.03 which is small enough to 
indicate that some useful approximations may be possible in the relations 
between the parton densities and structure functions. Looking at Eq. (4.40) 
for F2 and the expresssions for the coefficient functions one sees that 

nj 

F2(x,Q2) (qi(X,Q2) + iii{x,Q2)). ( 4.45) 

In the DIS factorization scheme this relation is exact. 
A modified from of Eq. (4.36) at leading order may be derived for the 

coupled evolution of F2 and xg 

[)F2(x, Q2) o.s (Q2) { -2 } 
[) In Q2 = 27r Pqq ® F2 + 2e Pqg ® xg , 

where e2 = eT. Prytz (1993) realised that for x < 0.01 the contribution 
of the Pqq term from quark splitting was negligible in comparison to the 
gluon term. Dropping the first term in the above equation and with an 
obvious change of integration variable, 

[)F2(x, Q2) _2o.s (Q2) l 1
-

x G(_x_)P ( )d 
!::> I Q2 e 1 qg Z z , un 7r 0 -z 

where G(x) = xg(x) . The splitting function Pqg(z) = + (1 - z)2) is 
symmetrical and slowly varying over the range (0,1) so the above convolu-
tion may be approximated by expanding G(x/(1 - z )) about z = 1/2, 

G(x/(1 - z)) = G(2x) + (z - 1/2)G'(2x) + ... 
Because Pqg(z) is symmetric about z = 1/2 the second term in the expan-
sion will integrate to zero and a good approximation is obtained by keeping 
only the first term (with 1 - x ----> 1 as the upper limit of integration) 

a. 11 Pqg( z)dz 
7r 0 
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of qi and qj (where qj is any quark or antiquark density other than qi). 
There are two combinations that are particularly useful 

qi(X, Q2) 

qt(x, Q2) 

qi(X, Q2) - iji(X, Q2), 
2 - 2 1 2 qi(X , Q ) + qi(X, Q ) - Q ), 

nf 
( 4.38) 

where qi is the valence quark distribution for flavour i. The evolution of 
non-singlet distributions does not involve the gluon density, so 

( 4.39) 

where the splitting functions P±  are again constructed from Pqq and Pqij , 

reducing to Pqq at LO. 
The DGLAP equations give a formalism for calculating the changes to 

the parton densities as Q2 changes, however they do not allow a calcu-
lation of the distributions at the starting scale Q6. This information has 
to come either from non-perturbative methods or by parameterizing the x 
dependence of the parton density at Q6 and determining the parameters 
by fitting to data. A function of the form 

xf(x, Q6) = Ax"'(l - x){j 

where A and {3 are postive constants might seem a reasonable first guess. 
The valence quark density is expected to peak at x values a bit below 0.3 
and to vanish as x -> 0, 1. The above expression has the virtue of simplicity 
and being easy to manipulate analytically. When modified by a low order 
polynomial in x or .jX it is the form used in QCD fits . 

Can one say more about the exponents cy and {3? For cy this is the 
domain of low x physics and is discussed at length in Chapter 9. It will 
turn out that for valence functions CY is expected to be around 0.5 but for 
the sea and gluon distributions CY can be either negative or positive. A more 
detailed discussion of functional forms for fi(x, Q6) is given in Section 6.3. 

4.2.1 F2 and F L 

To connect the parton densities to structure functions, one needs the 'coef-
ficient functions ' appropriate to the chosen factorization scheme (the C (z) 
of Eq. (4.11)), in general for F2 

x 

( 4.40) 

where e2 = L:i e; and the sums run over all active quark and antiquark 
flavours. Cq and Cg are the coefficient functions, which are expanded as 
power series in CY s (Q2) , 

The DGLAP equations 81 

of qi and qj (where qj is any quark or antiquark density other than qi). 
There are two combinations that are particularly useful 

qi(X, Q2) 

qt(x, Q2) 

qi(X, Q2) - iji(X, Q2), 
2 - 2 1 2 qi(X , Q ) + qi(X, Q ) - Q ), 

nf 
( 4.38) 

where qi is the valence quark distribution for flavour i. The evolution of 
non-singlet distributions does not involve the gluon density, so 

( 4.39) 

where the splitting functions P±  are again constructed from Pqq and Pqij , 

reducing to Pqq at LO. 
The DGLAP equations give a formalism for calculating the changes to 

the parton densities as Q2 changes, however they do not allow a calcu-
lation of the distributions at the starting scale Q6. This information has 
to come either from non-perturbative methods or by parameterizing the x 
dependence of the parton density at Q6 and determining the parameters 
by fitting to data. A function of the form 

xf(x, Q6) = Ax"'(l - x){j 

where A and {3 are postive constants might seem a reasonable first guess. 
The valence quark density is expected to peak at x values a bit below 0.3 
and to vanish as x -> 0, 1. The above expression has the virtue of simplicity 
and being easy to manipulate analytically. When modified by a low order 
polynomial in x or .jX it is the form used in QCD fits . 

Can one say more about the exponents cy and {3? For cy this is the 
domain of low x physics and is discussed at length in Chapter 9. It will 
turn out that for valence functions CY is expected to be around 0.5 but for 
the sea and gluon distributions CY can be either negative or positive. A more 
detailed discussion of functional forms for fi(x, Q6) is given in Section 6.3. 

4.2.1 F2 and F L 

To connect the parton densities to structure functions, one needs the 'coef-
ficient functions ' appropriate to the chosen factorization scheme (the C (z) 
of Eq. (4.11)), in general for F2 

x 

( 4.40) 

where e2 = L:i e; and the sums run over all active quark and antiquark 
flavours. Cq and Cg are the coefficient functions, which are expanded as 
power series in CY s (Q2) , 

11

calculations at higher orders

The DGLAP equations 81 

of qi and qj (where qj is any quark or antiquark density other than qi). 
There are two combinations that are particularly useful 

qi(X, Q2) 

qt(x, Q2) 

qi(X, Q2) - iji(X, Q2), 
2 - 2 1 2 qi(X , Q ) + qi(X, Q ) - Q ), 

nf 
( 4.38) 

where qi is the valence quark distribution for flavour i. The evolution of 
non-singlet distributions does not involve the gluon density, so 

( 4.39) 

where the splitting functions P±  are again constructed from Pqq and Pqij , 

reducing to Pqq at LO. 
The DGLAP equations give a formalism for calculating the changes to 

the parton densities as Q2 changes, however they do not allow a calcu-
lation of the distributions at the starting scale Q6. This information has 
to come either from non-perturbative methods or by parameterizing the x 
dependence of the parton density at Q6 and determining the parameters 
by fitting to data. A function of the form 

xf(x, Q6) = Ax"'(l - x){j 

where A and {3 are postive constants might seem a reasonable first guess. 
The valence quark density is expected to peak at x values a bit below 0.3 
and to vanish as x -> 0, 1. The above expression has the virtue of simplicity 
and being easy to manipulate analytically. When modified by a low order 
polynomial in x or .jX it is the form used in QCD fits . 

Can one say more about the exponents cy and {3? For cy this is the 
domain of low x physics and is discussed at length in Chapter 9. It will 
turn out that for valence functions CY is expected to be around 0.5 but for 
the sea and gluon distributions CY can be either negative or positive. A more 
detailed discussion of functional forms for fi(x, Q6) is given in Section 6.3. 

4.2.1 F2 and F L 

To connect the parton densities to structure functions, one needs the 'coef-
ficient functions ' appropriate to the chosen factorization scheme (the C (z) 
of Eq. (4.11)), in general for F2 
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( 4.40) 

where e2 = L:i e; and the sums run over all active quark and antiquark 
flavours. Cq and Cg are the coefficient functions, which are expanded as 
power series in CY s (Q2) , 
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82 QeD improved parton model 

6(1-z)+ aSC1(z)+ ... 
271" q 

as 1 - C (z) + .... 271" 9 

At LO, and to all orders in the DIS scheme, Cq(z, as) = 6(1 - z) and 
Cg(z,as) = 0, thus giving F2 = Note that 

i 
this 'QPM style' relation is only true for F2, XF3 and FL will require con-
volutions with coefficient functions. In the MS scheme 

- - (1 + z) In (1 - z) - -- In z 4[4In(1- Z)-3 1+ z2 
3 2(1 -zh 1-z 

(4.41) 

-8Z2+8Z-1]. (4.42) 

In the expressions for the structure functions, the terminology LO, NLO, 
etc, refers to the behaviour with respect to In Q2. One must be careful to 
account for the In Q2 behaviour implicit in as. At LO, this gives only the 
In Q2 from the O( as) 'one loop' contribute to the splitting functions. 5 At 
NLO, the one and two loop contributions to the splitting functions are 
included and the coefficient function from the one loop level. At NNLO, 
one then needs splitting functions at three loops and coefficient functions 
at two loops, etc. 

It must also be emphasized that the parton densities, the splitting func-
tions and the coefficient functions are all renormalization and factorization 
scheme dependent. Since physical quantities should be scheme indepen-
dent conversion formulae exist to move between schemes, but care must be 
exercised to ensure consistency in any given calculation. 

In the QPM, transverse momentum of the partons is assumed to be zero 
and one of the consequences of this for spin-1 quarks is that the longitudinal 
structure function (FL = F2-2xF1) is zero. The QCDC and BGF processes 
(and higher order diagrams) that give rise to the In Q2 scaling violations 
also give rise to partons with non-negligible Pt. In turn, this means that 
the Callan-Gross relation is no longer satisfied and FL =f. O. The QCD 
improved parton model gives an expression for FL , with O(as ) leading 
terms. A similar physical approach to that followed in the previous section 
but projecting out the longitudinal component of the parton level cross-
sections Ih gives the coefficient functions for FL (Altarelli and Martinelli 
1978). They are factorization scheme independent at O(a s ) giving 

5The 'loops ' referred to here come from the forms that the corresponding Feynman 
diagrams take. 
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x 

( 4.43) 

or the first term involving the quark densities may be replaced by F2(x, Q2) 
to give 

;; 11 2 Q2) + 

4.2.2 A useful approximation 

( 4.44) 

Already by Q2 = 100 GeV2, o. s (Q2)/(27r) 0.03 which is small enough to 
indicate that some useful approximations may be possible in the relations 
between the parton densities and structure functions. Looking at Eq. (4.40) 
for F2 and the expresssions for the coefficient functions one sees that 

nj 

F2(x,Q2) (qi(X,Q2) + iii{x,Q2)). ( 4.45) 

In the DIS factorization scheme this relation is exact. 
A modified from of Eq. (4.36) at leading order may be derived for the 

coupled evolution of F2 and xg 

[)F2(x, Q2) o.s (Q2) { -2 } 
[) In Q2 = 27r Pqq ® F2 + 2e Pqg ® xg , 

where e2 = eT. Prytz (1993) realised that for x < 0.01 the contribution 
of the Pqq term from quark splitting was negligible in comparison to the 
gluon term. Dropping the first term in the above equation and with an 
obvious change of integration variable, 

[)F2(x, Q2) _2o.s (Q2) l 1
-

x G(_x_)P ( )d 
!::> I Q2 e 1 qg Z z , un 7r 0 -z 

where G(x) = xg(x) . The splitting function Pqg(z) = + (1 - z)2) is 
symmetrical and slowly varying over the range (0,1) so the above convolu-
tion may be approximated by expanding G(x/(1 - z )) about z = 1/2, 

G(x/(1 - z)) = G(2x) + (z - 1/2)G'(2x) + ... 
Because Pqg(z) is symmetric about z = 1/2 the second term in the expan-
sion will integrate to zero and a good approximation is obtained by keeping 
only the first term (with 1 - x ----> 1 as the upper limit of integration) 

a. 11 Pqg( z)dz 
7r 0 
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of qi and qj (where qj is any quark or antiquark density other than qi). 
There are two combinations that are particularly useful 

qi(X, Q2) 

qt(x, Q2) 

qi(X, Q2) - iji(X, Q2), 
2 - 2 1 2 qi(X , Q ) + qi(X, Q ) - Q ), 

nf 
( 4.38) 

where qi is the valence quark distribution for flavour i. The evolution of 
non-singlet distributions does not involve the gluon density, so 

( 4.39) 

where the splitting functions P±  are again constructed from Pqq and Pqij , 

reducing to Pqq at LO. 
The DGLAP equations give a formalism for calculating the changes to 

the parton densities as Q2 changes, however they do not allow a calcu-
lation of the distributions at the starting scale Q6. This information has 
to come either from non-perturbative methods or by parameterizing the x 
dependence of the parton density at Q6 and determining the parameters 
by fitting to data. A function of the form 

xf(x, Q6) = Ax"'(l - x){j 

where A and {3 are postive constants might seem a reasonable first guess. 
The valence quark density is expected to peak at x values a bit below 0.3 
and to vanish as x -> 0, 1. The above expression has the virtue of simplicity 
and being easy to manipulate analytically. When modified by a low order 
polynomial in x or .jX it is the form used in QCD fits . 

Can one say more about the exponents cy and {3? For cy this is the 
domain of low x physics and is discussed at length in Chapter 9. It will 
turn out that for valence functions CY is expected to be around 0.5 but for 
the sea and gluon distributions CY can be either negative or positive. A more 
detailed discussion of functional forms for fi(x, Q6) is given in Section 6.3. 

4.2.1 F2 and F L 

To connect the parton densities to structure functions, one needs the 'coef-
ficient functions ' appropriate to the chosen factorization scheme (the C (z) 
of Eq. (4.11)), in general for F2 

x 

( 4.40) 

where e2 = L:i e; and the sums run over all active quark and antiquark 
flavours. Cq and Cg are the coefficient functions, which are expanded as 
power series in CY s (Q2) , 
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where e2 = L:i e; and the sums run over all active quark and antiquark 
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going beyond LO:
splitting functions are given in QCD by 
perturbative expansion in 𝛂s
(given a specific factorisation and renormalisation scheme)

Higher orders ...
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• The LO splitting functions presented on page 9–11 can be seen as
the first term of a power series in ↵s

Pij = P (0)
ij + (↵s/2⇡)P

(1)
ij + (↵s/2⇡)

2P (2)
ij + · · ·

Presently the splitting functions are known up to next-to-next-
to-leading order (NNLO), that is, up to P (2)

ij . Such a calculation
(done at Nikhef) in no sinecure as the expression above shows. It
goes on for many more pages...62

62A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004), hep-ph/0404111.
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Divergences for x 1 are understood in the sense of -distributions.

The third-order pure-singlet contribution to the quark-quark splitting function (2.4), corre-

sponding to the anomalous dimension (3.10), is given by
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Due to Eqs. (3.11) and (3.12) the three-loop gluon-quark and quark-gluon splitting functions read
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Finally the Mellin inversion of Eq. (3.13) yields the NNLO gluon-gluon splitting function
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constraints on splitting functions

• the renormalised parton densities obey sum rules to conserve fermion number and flavour

• and overall momentum conservation requires

• this imposes the following constraints on the splitting functions:

76 QeD improved parton model 
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Fig. 4.4 The DGLAP splitting functions. 

The splitting functions are summarised graphically in Fig. 4.4. The lead-
ing order expressions for Pqq and Pqg are given in Eqs (4.7) and (4.16) 
respectively. From the figure it is clear that Pgq(z) = Pqq (l - z), which 
gives 

(4.19) 

Pgg requires a bit more calculation but follows ultimately from the form of 
the 3-g1uon vertex and is 

[
l- Z Z ] Pgg(z) = 6 -z- + 1 _ Z + z (1 - z) . ( 4.20) 

Since the QeD Lagrangian conserves fermion number and flavour , the fol-
lowing sum rules must be obeyed by the renormalized parton densities at 
least to 0(05 ): 

(4.21 ) 

where Vi = 2, 1, 0, . .. for the u , d , s, ... flavours in the proton. Overall 
momentum conservation gives 

(4.22) 

where = I:i (qi + iii) and the sum runs over all active flavours . Because 
these equations are independent of Q2 , the following constraints apply to 
the splitting functions 

fa1 dz Pqq( z ) 

fa1 dz z [Pqq( z ) + Pgq(z) ] 

0, 

0, 

( 4.23) 

( 4.24) 
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0, (4.25) 

where the last two integrals correspond to the conservation of momentum 
and flavour in quark and gluon splittings, respectively. 

There is a technical problem with Pqq that must be addressed and that is 
how to cope with the apparent singularity as z ---> 1. This limit is associated 
with the emission of soft gluons. As gluon bremsstrahlung is essentially 
the same as photon bremsstrahlung in QED, the QCDC cross-section is 
an infra-red safe quantity and thus the singularity will be cancelled by 
O(ClCls) interference terms between the l'*parton diagram and the virtual 
loop corrections to it (see Section 3.3). The required correction terms in 
Pqq are concentrated at z = 1 and give a term proportional to 0(1 - z). 
As Pqq is in a mathematical sense a distribution (i.e. it always appears 
integrated with a function in any physical quantity) the l /( l -z) singularity 
is regularized by the so-called '+ prescription' 

_1_ ---> 1 where r1 
dz J( z) = t dzJ(z) - J(l) 

1- z (l- z )+ 10 (l- z )+ 10 1- z 

and 1/(1 - z )+ = 1/(1 - z ) for z < 1. Rather than calculate the additional 
delta function term directly, it can be found by using Eq. (4.23) and the 
'+ prescription ' to fix the coefficient of the 0(1 - z) term. The resulting 
regularized splitting function is 

4 [ 1 + z2 3 ] Pqq ( z) = - ( ) + - 0 (1 - z) . 3 1 -z+ 2 
( 4.26) 

Similarly the 1j(1-z) singularity in Pgg is regularized by applying Eq. (4.25) 
to give 

[
1 - z z ] 33 - 2n f Pgg(z) = 6 -- + ( ) + z( l - z) + 0(1 - z). z 1- z+ 6 

( 4.27) 

4.1.2 Running coupling and the OPE 
There is one further important point to be considered before the DGLAP 
formalism is complete and that is the validity of the 0(0'5) results for 
large Q2. The leading order QCD corrections to the parton densities are 
all weighted by as In( Q2 / J.L2) (e.g. refer back to Eq. (4.11)) and higher or-
der terms will involve powers of this combination. As it stands it looks as 
though the QCD corrections will diverge for Q2 » J.L 2. The O'sln(Q2/J.L2) 
need to be summed and this is achieved by the simple expedient of the 
substitution 0'5 ---> 0'5(Q2) (i.e. replacing the fixed as by the running cou-
pling) . To see that this is plausible, refer to the discussion at the end of 
Section 3.6. More formally this step may be checked against the corre-
sponding result from the renormalization group and operator production 
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momentum conservation gives 

(4.22) 

where = I:i (qi + iii) and the sum runs over all active flavours . Because 
these equations are independent of Q2 , the following constraints apply to 
the splitting functions 

fa1 dz Pqq( z ) 

fa1 dz z [Pqq( z ) + Pgq(z) ] 

0, 

0, 

( 4.23) 

( 4.24) 

where Σ is a sum over all quark flavours
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singlet and non-singlet combinations

• it can be shown that:

80 QeD improved parton model 

where the qi , qj are taken to include both quarks and antiquark distribu-
tions. The splitting functions are expanded as power series in as (Q2) 

fJ . p(D) (z) + as p(1) (z) + .. . 
'J qq 211" q, qj 

p(D) (z) + as p(1) (z) + ... qg 211" qg 

p (D) (z) + as p(1) (z) + ... gq 211" gq 

p(D) (z) + as p(l) (z) + ... gg 211" gg 

The fJij in front of the leading order term in expansion of Pqq follows im-
mediately from the fact that flavour is conserved at a single quark gluon 
vertex, one must go to higher orders for a change in flavour. Because of 
charge conjugation and the flavour independence of the QeD Lagrangian, 
Pqg and Pgq are independent of quark flavour and the same for q and q. 
The Pq,qj satisfy Pq,qj = Pijiijj and Pqiijj = Pijiqj and the leading order term 
vanishes unless qi = Qj . The leading order splitting functions calculated in 
the previous sections correspond to p(D) in the above expansion. The inte-
gral constraints of Eqs (4.23- 4.25) apply to the p(D). Beyond leading order 
it is necessary to take account of flavour dependence in Pq,qj and Pqiijj . 
This is best done by writing the quark densities and splitting functions in 
terms of flavour 'singlet' and 'non-singlet' combinations. This is also con-
venient because the gluon terms in the DGLAP equations do not carry 
flavour indices. The singlet quark density has already been introduced in 
the context of the momentum sum rule and is 

(4.34) 

where the sum runs over all active flavours . 
It is useful to have a shorthand notation for the convolutions that occur 

in the DGLAP equations, so 

[q 0 P](X ,Q2) == 11 = 11 q P(O. 
(4.35 ) 

Often the arguments are dropped as well unless they are not obvious from 
the context. The evolution of is coupled to that of the gluon density 

(4.36) 

a s (Q2) 
2:;- 0 Pgq ] + [g 0 PggJ), (4.37) 

where is the same as Pqq at leading order and at higher orders is 
constructed from Pqq and Pqij . A non-singlet combination is the difference 

• useful to define singlet distribution, Σ

• and non-singlet (or flavourful) distributions, 
qNS, of which the most obvious are the 
valence combinations 
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of qi and qj (where qj is any quark or antiquark density other than qi). 
There are two combinations that are particularly useful 

qi(X, Q2) 

qt(x, Q2) 

qi(X, Q2) - iji(X, Q2), 
2 - 2 1 2 qi(X , Q ) + qi(X, Q ) - Q ), 

nf 
( 4.38) 

where qi is the valence quark distribution for flavour i. The evolution of 
non-singlet distributions does not involve the gluon density, so 

( 4.39) 

where the splitting functions P±  are again constructed from Pqq and Pqij , 

reducing to Pqq at LO. 
The DGLAP equations give a formalism for calculating the changes to 

the parton densities as Q2 changes, however they do not allow a calcu-
lation of the distributions at the starting scale Q6. This information has 
to come either from non-perturbative methods or by parameterizing the x 
dependence of the parton density at Q6 and determining the parameters 
by fitting to data. A function of the form 

xf(x, Q6) = Ax"'(l - x){j 

where A and {3 are postive constants might seem a reasonable first guess. 
The valence quark density is expected to peak at x values a bit below 0.3 
and to vanish as x -> 0, 1. The above expression has the virtue of simplicity 
and being easy to manipulate analytically. When modified by a low order 
polynomial in x or .jX it is the form used in QCD fits . 

Can one say more about the exponents cy and {3? For cy this is the 
domain of low x physics and is discussed at length in Chapter 9. It will 
turn out that for valence functions CY is expected to be around 0.5 but for 
the sea and gluon distributions CY can be either negative or positive. A more 
detailed discussion of functional forms for fi(x, Q6) is given in Section 6.3. 

4.2.1 F2 and F L 

To connect the parton densities to structure functions, one needs the 'coef-
ficient functions ' appropriate to the chosen factorization scheme (the C (z) 
of Eq. (4.11)), in general for F2 

x 

( 4.40) 

where e2 = L:i e; and the sums run over all active quark and antiquark 
flavours. Cq and Cg are the coefficient functions, which are expanded as 
power series in CY s (Q2) , 
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singlet and gluon coupled

non-singlet evolves independently of gluon 
g → qqbar does not feed back to flavour
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evolution of parton distributions

SLAC circa 1970

• evolution of non-singlet combination 
does not involve gluon and hence 
valence distributions evolve slowly…

xΣ xg
• whereas evolution of singlet

combination and gluon are coupled sea = xΣ valence-like 
and gluon zero at Q2=1

sea = xΣ zero and gluon 
valence-like at Q2=1



theoretical guidance for the PDF shapes?

• quantum statistics
• bag models
• lattice gauge theory
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counting rules and high x
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GeV2
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Regge theory and low x
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total cross section measurements
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Regge and Pomeron trajectories
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measurements

Chew-Frautschi plot
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relation to low x PDFs

Prof. Amanda Cooper-Sarkar – QCD 2 
 

Amanda Cooper-Sarkar – QCD 

What has this to do with low x? 

What are the appropriate exchanges? 

For the parts of the cross section related to xF3 it is the ρ/A2 trajectory of intercept 
α=1/2 this has                    quark flavour and goes together with ρ±, A2

 ± , so it is ‘non 
singlet’ and hence associated to the valence part of the cross section. 

as observed at moderate Q2: 

For the parts of the cross section related to F2 the Pomeron trajectory is more 
important than the ω/f because αP > αω,f 
These trajectories have no flavour “singlet” 

Flattish as observed at moderate Q2 

� low x behaviour of {                   predicted as: 
gluons 
Singlet quarks 

gluons
singlet quarks
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gluons 
Singlet quarks 

17

Regge theory and low x

17

Regge theory and low x

→ “singlet”
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Prof. Amanda Cooper-Sarkar – QCD 3 

 
Amanda Cooper-Sarkar – QCD 

So we have some idea how to start 
parametrizing PDFs 
xq(x) ~ x α (1-x) β 

And we know the powers will 
change with Q2 but the change is 
perturbatively calculable – NLO 
QCD 
SO parametrise at Q2

0 and use 
DGLAP equations to evolve to 
other Q2 and THEN fit to data. 
Be sure Q2

0 is large enough that 
perturbation theory is valid 

So we have some idea how to start parameterising PDFs 

And we know the powers will change with Q2 but the change is 
perturbatively calculable – QCD 
 
So, parameterise at Q0

2 and use DGLAP equations to evolve to other 
Q2 and then fit to data. 
 
Be sure Q0

2 is large enough that perturbation theory is valid.  
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