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Heavy Quark treatment
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Amanda Cooper-Sarkar – QCD 

Heavy quark treatment – illustrate with charm 

Massive quarks introduce another scale into the process, the approximation 
mq

2~0 cannot be used 

Zero Mass Variable Flavour Number Schemes (ZMVFNs) traditional 

c=0 until Q2 ~4mc
2, then charm quark is generated by g→ c cbar splitting and 

treated as massless-- disadvantage incorrect to ignore mc near threshold 

Fixed Flavour Number Schemes (FFNs) 

If W2 > 4mc
2 then c cbar can be produced by boson-gluon fusion and this can be 

properly calculated  - disadvantage ln(Q2/mc
2) terms in the cross-section can 

become large- charm is never considered part of the proton however high the 
scale is. 

General Mass variable Flavour Schemes (GMVFNs) 

Combine correct threshold treatment with resummation of ln(Q2/mc
2) terms into 

the definition of a charm quark density at large Q2 

Arguments as to correct implementation but should look like FFN at low scale and 
like ZMVFN at high scale. 

Additional complications for W exchange s→c threshold. 
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Heavy Quarks

We must account properly for heavy quark production.: there are two extremes- 
Use only 3 massless parton flavours and calculate exact ME’s for heavy quark 
production (FFN method)- wrong at high scale since ln(Q2/mc

2) terms not resummed 
Consider all partons as massless except that charm and beauty turn on abruptly at 
their kinematic thresholds (ZMVFN) – WRONG at low scale near these thresholds 
A GMVFN (General-mass Variable Flavour Number Scheme) is supposed to give us 
the best of both worlds.. 
BUT there are different ways to do this...ACOT, Thorne, FO-NLL 

ZMVFN gives the largest c-cbar contribution to F2 and FFN the smallest 

Plot from J Rojo 
NNPDF 

plot from J Rojo
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Heavy Quarks

Eur. Phys. J. C (2013) 73:2311 Page 13 of 26

Fig. 2 Combined reduced cross
sections σ cc̄

red as a function of x

for fixed values of Q2. The
error bars represent the total
uncertainty including
uncorrelated, correlated and
procedural uncertainties added
in quadrature

Fig. 3 Combined reduced cross
sections σ cc̄

red (filled circles) as a
function of x for fixed values
of Q2. The error bars represent
the total uncertainty including
uncorrelated, correlated and
procedural uncertainties added
in quadrature. For comparison,
the input data are shown: the H1
measurement based on lifetime
information of inclusive track
production is represented by
closed squares; the H1
measurements based on
reconstruction of D∗ mesons in
HERA-I/HERA-II running
periods are denoted by filled up
(down) triangles; the ZEUS
measurement using
semileptonic decays into muons
is represented by open circles;
the ZEUS measurements based
on reconstruction of D∗ mesons
are depicted by open squares
(open triangles) for data
collected in 1998–2000
(1996–1997) years; the ZEUS
measurements based on
reconstruction of D0 (D+)
mesons are shown by open
diamonds (crosses). For
presentation purpose each
individual measurement is
shifted in x

• H1 and ZEUS have also 
combined charm data 
(arXiv:1211.1182)

• these data have sensitivity to 
the heavy quark mass 
scheme and heavy quark 
mass

https://arxiv.org/abs/1211.1182
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Fig. 7 Combined reduced cross sections σ cc̄
red (filled circles) as a function of x for fixed values of Q2. The error bars represent the total uncertainty including uncorrelated, correlated and procedural

uncertainties added in quadrature. The data are compared to predictions by the NNPDF group (left panel) and the CTEQ group (right panel). The predictions from NNPDF2.1 in FONNL-A, -B
and -C schemes are shown with their uncertainties (bands with different hatch styles). The CT10 NLO prediction with its uncertainties is shown by the shaded bands. The uncertainties on the CT10
NNLO (prel.) predictions are not yet available
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Heavy Quarks
Eur. Phys. J. C (2013) 73:2311 Page 17 of 26

Fig. 6 Combined reduced cross
sections σ cc̄

red (filled circles) as a
function of x for fixed values of
Q2. The error bars represent the
total uncertainty including
uncorrelated, correlated and
procedural uncertainties added
in quadrature. The data are
compared to the NLO
predictions based on
HERAPDF1.5 extracted in the
RT standard scheme. The line
represents the prediction using
Mc = 1.4 GeV. The uncertainty
band shows the full PDF
uncertainty which is dominated
by the variation of Mc

mal scheme also agree well with the data. The largest devi-
ations are observed for predictions based on O(αs) terms
only (NNPDF FONLL A and CT NLO). As investigated
in the next section, further differences can be partially ex-
plained by the different choices for the value of the respec-
tive charm quark mass parameter Mc .

6 QCD analysis

The combined H1 and ZEUS inclusive ep neutral current
and charged current DIS cross sections have been used pre-
viously to determine the HERAPDF1.0 parton density func-
tions. In the current paper a combined NLO QCD analy-
sis is performed using the reduced charm cross section to-
gether with the combined inclusive DIS cross sections [43].
Since the charm contribution to the inclusive DIS cross sec-
tion is sizeable and reaches up to ≈30 % at high Q2, this
combined analysis is expected to reduce the uncertainties re-
lated to charm production inherent in all PDF extractions. In
particular, the role of the charm quark mass mc(mc) or the
charm quark mass parameter Mc, depending on the heavy
flavour scheme, is investigated within all schemes discussed
in Sect. 2.

The analysis is performed with the HERAFITTER [79]
program, which is based on the NLO DGLAP evolution

scheme [80– 85] as implemented in QCDNUM [86]. The in-
variant mass of the hadronic system is restricted to W >

15 GeV, and the Bjorken scaling variable x is limited by
the data to x ≤ 0.65. In this kinematic range target mass
corrections and higher twist contributions are expected to
be small. In addition, the analysis is restricted to data with
Q2 > Q2

min = 3.5 GeV2 to assure the applicability of pQCD.
The consistency of the input data sets and the good control
of the systematic uncertainties enable the determination of
the experimental uncertainties on the PDFs using the χ2 tol-
erance of $χ2 = 1.

The following independent PDFs are chosen in the fit
procedure: xuv(x), xdv(x), xg(x) and xU(x), xD(x),
where xU(x) = xu(x), and xD(x) = xd(x) + xs(x). Com-
pared to the HERAPDF1.0 analysis, a more flexible param-
eterisation with 13 free parameters is used. At the starting
scale Q0 of the QCD evolution, the PDFs are parametrised
as follows:

xg(x) = Agx
Bg · (1 − x)Cg − A′

gx
B ′

g · (1 − x)C
′
g , (7)

xuv(x) = Auvx
Buv · (1 − x)Cuv ·

(
1 + Euvx

2), (8)

xdv(x) = Advx
Bdv · (1 − x)Cdv , (9)

xU(x) = AUxBU · (1 − x)CU , (10)

xD(x) = ADxBD · (1 − x)CD . (11)

• GM-VFNS: some show better 
agreement than others

• HERAPDF gives good description – within 
error band

• error band dominated by choice of charm mass, spanning 
mc=1.35 (high) to mc=1.65 (low) GeV

• measurement shows some preference for higher charm 
mass than standard choice mc=1.4 GeV

(FONLL details in: arXiv:1001.2312)

https://arxiv.org/abs/1001.2312
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sensitivity to charm mass

Page 20 of 26 Eur. Phys. J. C (2013) 73:2311

tion [88] has observed fs = 0.5. This value of fs is also
tested and found to have only a negligible effect on the
determination of M

opt
c .

• the b-quark mass is varied between 4.3 GeV and 5 GeV
with a default value of 4.75 GeV.

• the minimum Q2 value for data used in the fit, Q2
min,

is varied for the inclusive data from Q2
min = 3.5 GeV2 to

5.0 GeV2. For the charm data this variation is not applied
because it would significantly reduce the sensitivity of the
analysis on Mc . However, the full difference on the fitted
value M

opt
c obtained by using the cuts Q2

min = 3.5 GeV2

or Q2
min = 5 GeV2, is then taken as symmetric uncertainty

due to the variation of Q2
min.

• the parameterisation uncertainty is estimated similarly
to the HERAPDF1.0 procedure. To all quark density func-
tions an additional parameter is added one-by-one such
that the parameterisations are changed in Eq. (8) from
A ·xB ·(1−x)C ·(1+Ex2) to A ·xB ·(1−x)C ·(1+Dx+
Ex2) and in Eqs. (9)–(11) from A · xB · (1 − x)C to either
A ·xB · (1−x)C · (1+Dx) or A ·xB · (1−x)C · (1+Ex2).
Furthermore, the starting scale Q0 is varied to Q2

0 =
1.9 GeV2. The full difference on the fitted value M

opt
c ,

obtained by using Q2
0 = 1.9 GeV2 and Q2

0 = 1.4 GeV2 is
then taken as symmetric uncertainty due to the variation
of the starting scale Q0. The total parameterisation uncer-
tainty is obtained taking the largest difference in M

opt
c of

the above variations with respect to M
opt
c for the standard

parameterisation.

Fig. 9 The values of χ2(Mc) for the PDF fit to the combined HERA
DIS data in the RT standard scheme. The open symbols indicate the re-
sults of the fit to inclusive DIS data only. The results of the fit including
the combined charm data are shown by filled symbols

• the strong coupling constant αs(MZ) is varied by
±0.002.

For each scheme the assumptions in the fits are varied one
by one and the corresponding χ2 scan as a function of Mc is
performed. The difference between M

opt
c obtained for the

default assumptions and the result of each variation is taken
as the corresponding uncertainty. The dominant contribution
arises from the variation of Q2

min, while the remaining model
and parameterisation uncertainties are small compared to the
experimental error.

6.1 Extraction of M
opt
c in the VFNS

The following implementations of the GM-VFNS are con-
sidered: ACOT full [29, 30] as used for the CTEQHQ re-
leases of PDFs; S-ACOT-χ [32–34] as used for the latest
CTEQ releases of PDFs, and for the FONLL-A scheme [37]
used by NNPDF; the RT standard scheme [35, 36] as used
for the MRST and MSTW releases of PDFs, as well as
the RT optimised scheme providing a smoother behaviour
across thresholds [40]. The ZM-VFNS as implemented by
the CTEQ group [29, 30] is also used for comparison. In all
schemes, the onset of the heavy quark PDFs is controlled by
the parameter Mc in addition to the kinematic constraints.

In Fig. 10 the χ2-values as a function of Mc obtained
from PDF fits to the inclusive HERA-I data and the com-
bined charm data are shown for all schemes considered.
Similar minimal χ2-values are observed for the different

Fig. 10 The values of χ2(Mc) for the PDF fit to the combined HERA
inclusive DIS and charm measurements. Different heavy flavour
schemes are used in the fit and presented by lines with different styles.
The values of M

opt
c for each scheme are indicated by the stars
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BUT the HERAPDF uses the Thorne General 
Variable Flavour Number Scheme for heavy 
quarks as used by MSTW08
This is not the only GM-VFNS
CTEQ uses ACOT
NNPDF2.0 used ZM-VFN/2.1 and later use 
FONLL
These all have different preferred charm mass 
parameters, and all fit the data well when 
used with their own best fit charm mass



while we’ve got a long way in agreeing on reasonable model assumptions…

…there is still room for choice:

• values of heavy quark masses – and even the heavy quark scheme
• value of 𝝰s(MZ

2) – or determine it in the fit

• value of Q2
0

• value of Q2
min of the data – include low Q2, low W2 data or not

• the choice of datasets included
• form of the parameterisation

AND there is also the matter of how you treat the experimental uncertainties …

8
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PDF experimental uncertainties

27 
 

Amanda Cooper-Sarkar – QCD 

So we have a prediction F2 QCD for a particular x, Q2 
 
F2

lp made up for evolved singlet + non-singlet densities 
 
and we have a measurement F2

meas 
 
We perform χ2 fitting 
 
Traditionally, 

i are ~1500 x, Q2 points 

Good χ2 → theoretical picture is valid 
 → determines ~ 15 parameters (note αs may also be a parameter) 
 → errors on these parameters can also be propagated back to give errors on 
parton distributions + predictions of structure functions, cross sections etc. not yet 
measured. 
 
Not good enough!  
What about correlated systematic errors?  

i sums over x,Q2 points

So we have a QCD prediction for F2 for a particular x,Q2
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Amanda Cooper-Sarkar – QCD 

Correlated errors 
• Normalisations → all points move up or down together 
• More subtle. e.g. calorimeter energy scale moves events between x, Q2 bins 

→ correlations change the shape of the function 

i.e. the prediction is modified by each source of systematic uncertainty.  
sλ are fit parameters which have zero mean and unit variance if all systematics have 
been estimated correctly. 

Δiλ
sys is the correlated systematic error on point i due to source λ  

166 Extraction of parton densities 

FL LO , NLO and NNLO 

0.5 

0.4 

0.3 
NO' 

...J 
IJ.. 0.2 

0.1 

0.5 

0.4 

-- NLOfi t 
---- -- NN LO fit 
..... .. .... resum fi t 

- . - . LOfit 

10 .2 10 . 1 

0.3 -

>( 

'--:J 
IJ.. 0.2 

0.1 

o 
10 .5 10 .4 JO ' J

x 
10 .2 JO . I 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
JO ·5 

0.5 

0.4 

0.3 

0.2 

0.1 -

0 
JO ·5 

10 -4 10 
.J 

10 
·2 

10 
- I 

·4 10 ·J ·2 - I 
10 10 10 

X 

Fig. 6.10 Comparison of FL at various Q2 from MRSTOI DGLAP fits performed 
to LO, NLO and NNLO, to the result of a fit including In(l /x) resummation terms 
(Thorne 2002). 

where 
T T _ 5: 2 "\'" A SYS A SYS 
Vij - Uij(Ji + L...l. i ), L...l.j), 

), 

is the covariance matrix and the symbol represents the one standard 
deviation correlated systematic error on data point i due to correlated 
error source A. Treating correlated errors as uncorrelated is equivalent to 
constructing = 

correlation matrix
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5 
 

Amanda Cooper-Sarkar – QCD 

Or you can use the 
asymmetric version 
adding up +ve and –ve 
deviations from the central 
predictions  in quadrature 
separately – better when 
errors are non-Gaussian 

Now let’s talk about the 
experimental errors 

The PDF fit results in a set of parameters p with errors. 
 
Now let’s talk about the experimental errors. 
The PDF shapes are functions F of these parameters so the errors on the PDFs: 

The cross sections / structure functions are more complex functions of the PDFs 
and their errors can be similarly evaluated. 
Two points: 
• PDF groups diagonalise Vjk and refer to PDF eigenvectors – which are just 

suitable combinations of parameters, 
 
 
 

Or you can use the asymmetric version adding up +ve and –ve deviations from the 
central predictions  in quadrature separately – better when errors are non-Gaussian 
 

 
• For 68% CL error bands you would think that the tolerance ,T=1, and similarly for 

90%, T=2.73, but this is NOT so for MSTW2008 or CTEQ6.6 
 

MMHT or CT (and their precursors)

2

2

, T2=1,
T2=2.71

Introduction Tolerance Jets W and Z Strangeness Summary

Use of eigenvector PDF sets (pioneered by CTEQ)

• Convenient to diagonalise covariance matrix C ≡ H−1:
∑

j

Cijvjk = λkvik ,

where λk is the kth eigenvalue and vik is the ith component of
the kth orthonormal eigenvector (i , j , k = 1, . . . , Nparameters).

• Fitting groups produce eigenvector PDF sets S±

k with
parameters ai shifted from the global minimum:

ai (S
±

k ) = a0
i ± t

√

λkvik ,

with t adjusted to give the desired tolerance T =
√

∆χ2
global.

• Then users can calculate uncertainties on a quantity F with

∆F =
1

2

√

∑

k

[

F (S+
k ) − F (S−

k )
]2

,

or using a formula to account for asymmetric errors.
Graeme Watt Recent progress in global PDF analysis 5/26
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choice of tolerance I MSTW example

some data sets incompatible or only 
marginally compatible?

to illustrate: X2 for the MSTW global fit is 
plotted versus the variation of a particular 
parameter (𝝰s in this case)

individual X2 for each experiment also 
plotted versus this parameter in the 
neighbourhood of the global minimum → 
each experiment favours a different value of 𝝰s

PDF fitting is a compromise; 
can one evaluate acceptable ranges of the 
parameter values with respect to the 
individual experiments?
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choice of tolerance II MSTW example

HOW far away from the central fit can you 
go and still fit each data set within 90% 
(or 68%) CL?

E866/NuTeV data determine the limit 
on this one

HERA data determine the limit on this 
eigenvector

no further than thisTo
le

ra
nc

e
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choice of tolerance III MSTW example

summary of which 
eigenvectors are 
determined by which 
datasets

in MSTW example:
68% CL has T=4–5
90% CL has T=7–8
which means:
ΔX2 ≈ 20 (68% CL)

≈ 50 (90% CL)

CT typically use even 
larger tolerances

FEAR NOT: you can use the PDF sets in LHAPDF as a “black box” – it is all done for you
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PDF uncertainties

All YOU have to do is this:

The uncertainty on a quantity F ({ai}) is then obtained from linear error propagation:

∆F = T

√

√

√

√

n
∑

i,j=1

∂F

∂ai
Cij

∂F

∂aj
, (45)

where C ≡ H−1 is the covariance matrix, also known as the error matrix, and T = (∆χ2
global)

1/2

is the tolerance for the required confidence interval. This formula (45) has the disadvantage that
PDF uncertainties are not readily calculable for general observables, since the derivative of the
observable F with respect to each parameter ai is needed.

It is convenient to diagonalise the covariance (or Hessian) matrix [16, 134], and work in terms
of the eigenvectors and eigenvalues. Since the covariance matrix is symmetric it has a set of
orthonormal eigenvectors vk defined by

n
∑

j=1

Cijvjk = λkvik, (46)

where λk is the kth eigenvalue and vik is the ith component of the kth orthonormal eigenvector
(k = 1, . . . , n). The parameter displacements from the global minimum can be expanded in a
basis of rescaled eigenvectors eik ≡

√
λkvik, that is,

ai − a0
i =

n
∑

k=1

eikzk. (47)

Then it can be shown, using the orthonormality of vk, that (43) reduces to

χ2
global = χ2

min +
n
∑

k=1

z2
k , (48)

that is,
∑n

k=1 z2
k ≤ T 2 is the interior of a hypersphere of radius T . Pairs of eigenvector PDF

sets S±
k can then be produced to span this hypersphere, at a fixed value of αS, with parameters

given by
ai(S

±
k ) = a0

i ± t eik, (49)

with t adjusted to give the desired T = (∆χ2
global)

1/2. In the quadratic approximation, t = T .
For the larger eigenvalues λk, where there are significant deviations from the ideal quadratic
behaviour, t is adjusted iteratively to give the desired value of T . Then uncertainties on a
quantity F , which may be an individual PDF at particular values of x and Q2, or a derived
quantity such as a cross section, can be calculated with11

∆F =
1

2

√

√

√

√

n
∑

k=1

[

F (S+
k ) − F (S−

k )
]2

, (50)

11It can be shown that (45) reduces to (50) in the quadratic approximation (t = T ) [16, 134], but we treat
(50) as the fundamental definition in the departure of this ideal limit. In this paper, we will generally use (51)
and (52) to calculate asymmetric PDF uncertainties.

38

or asymmetric errors can be calculated with

(∆F )+ =

√

√

√

√

n
∑

k=1

{

max
[

F (S+
k ) − F (S0), F (S−

k ) − F (S0), 0
]}2

, (51)

(∆F )− =

√

√

√

√

n
∑

k=1

{

max
[

F (S0) − F (S+
k ), F (S0) − F (S−

k ), 0
]}2

, (52)

where S0 is the central PDF set. Correlations between two quantities can also be calculated;
see, for example, Ref. [87]. Defining a correlation cosine between two quantities F and G,

cos φFG =
1

4 ∆F ∆G

n
∑

k=1

[

F (S+
k ) − F (S−

k )
] [

G(S+
k ) − G(S−

k )
]

, (53)

where the uncertainties ∆F and ∆G are calculated using (50), then values of cosφFG ≈ 1 mean
that F and G are correlated, values of ≈ −1 mean that they are anticorrelated, while values of
≈ 0 mean that they are uncorrelated. A tolerance ellipse in the F–G plane can then be defined
by the two parametric equations:

F = F (S0) + ∆F cos θ, (54)

G = G(S0) + ∆G cos(θ + φFG), (55)

where θ ∈ [0, 2π]. We will show examples in Section 15. Note that using e.g. 90% C.L. PDFs
results in a probability less than 90% for the 2-D tolerance ellipse [87, 131, 132].

To determine the “best-fit” parameters we allow all the input PDF parameters of Eqs. (6)–
(12) to vary. However, when investigating in detail the small departures from the global minimum
we notice a certain amount of redundancy in parameters. A striking example is for the NLO
and NNLO parameterisations of the gluon distribution (10). Small changes in the values of
three of the parameters can be compensated almost exactly by changes in the remaining four.
This high degree of correlation between parameters means that very small changes in χ2 will
be obtained. However, at some point the compensation starts to fail significantly and the
χ2 increases dramatically. Hence, the redundancy leads to a severe breaking of the quadratic
behaviour in ∆χ2, and some very flat directions in the eigenvector space (that is, very large
eigenvalues of the covariance matrix) and cubic, quartic etc. terms dominate. During the process
of diagonalisation this bad behaviour feeds through into the whole set of eigenvectors to some
extent. Therefore, in order that the Hessian method works at all well we have to lessen the
redundancy in the input parameters. In order to do this we simply fix some of the parameters
at their best-fit values, so that the Hessian matrix only depends on a subset of parameters that
are sufficiently independent that the quadratic approximation is reasonable. We finish up with
20 reasonably well-behaved eigenvectors in total, i.e. those coming from the combinations of
the 20 parameters that are assigned errors in Table 4. However, we emphasise that the other
parameters are fixed at their best-fit values, rather than simply set to zero. The problem of a

39

symmetric case:

OR asymmetric case:

All public PDFs available at:
https://lhapdf.hepforge.org/

https://lhapdf.hepforge.org/
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Now let’s consider the measurement of αS(MZ
2) and the gluon PDF 

Ways to measure αS: 
  
• For non-singlet (valence) quark distributions, 

There is no contribution to evolution from the gluon. 

Thus the evolution of a non-singlet structure function, 
¾ Like xF3 in ν, ν N 
¾ or xF3 in e±p at high Q2 via Z0 exchange 

 
Can directly measure αS with the smallest number of assumptions. 
Unfortunately it also has the largest experimental difficulty  

in DIS@
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Amanda Cooper-Sarkar – QCD 

Now let’s consider the measurement of αS(MZ
2) and the gluon PDF 

Ways to measure αS: 
  
• For non-singlet (valence) quark distributions, 

There is no contribution to evolution from the gluon. 

Thus the evolution of a non-singlet structure function, 
¾ Like xF3 in ν, ν N 
¾ or xF3 in e±p at high Q2 via Z0 exchange 

 
Can directly measure αS with the smallest number of assumptions. 
Unfortunately it also has the largest experimental difficulty  

in DIS



17

10 
 

Amanda Cooper-Sarkar – QCD 

• Or use the GLS sum-rule 

Where a, b are QCD calculable, ΔHT is a higher-order correction 
(practical problem – how to do the integral to x → 0, when Q2 → 0 and HT is important  

• More usually the scaling violations of the singlet structure function have to be used 
so that the determination of αS is coupled to the gluon shape determination. 
 

Increasing αS increases the negative contribution from Pqq term, but this can be 
compensated by the positive contribution from Pqg term if the  gluon is made harder. 
 
αS increases → gluon harder 
 
So, αS = 0.115 and  
 
may give a similar χ2 to  
 
       αS = 0.118 and  

αS is determined in the same global fits which 
determine PDF parameters 
 
→ Fortunately there are now so many data 
points now that there are limits to this 
freedom. 
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• Or use the GLS sum-rule 

Where a, b are QCD calculable, ΔHT is a higher-order correction 
(practical problem – how to do the integral to x → 0, when Q2 → 0 and HT is important  

• More usually the scaling violations of the singlet structure function have to be used 
so that the determination of αS is coupled to the gluon shape determination. 
 

Increasing αS increases the negative contribution from Pqq term, but this can be 
compensated by the positive contribution from Pqg term if the  gluon is made harder. 
 
αS increases → gluon harder 
 
So, αS = 0.115 and  
 
may give a similar χ2 to  
 
       αS = 0.118 and  

αS is determined in the same global fits which 
determine PDF parameters 
 
→ Fortunately there are now so many data 
points now that there are limits to this 
freedom. 

measuring the gluon and 𝝰s
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PDF+𝝰s fits

• many PDFs use a fixed value of 𝝰s(MZ) 
by default, EG. CT(EQ), NNPDF, 
HERAPDF, …                                        

• and supply PDFs for various different fixed 𝝰s(MZ) 
values

• look what happens when you free 
𝝰s(MZ) and ONLY use inclusive (NC/CC) 
DIS data
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jet measurements and 𝝰s
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Amanda Cooper-Sarkar – QCD 

Ways to break the alphas/ 
gluon PDf correlation 

Use more information that 
depends directly on the 
gluon  -- jet cross-sections 

Jet studies in the Hadron Final state gives us more information 
 
• You can measure αS(Q2) and xg(x,Q2) from 2+1 jet events 

   σ2+1 ~ αS{A xg g(xg,Q2) + B xg
 q(xq,Q2)} 

 
 
This helps to break the αS(Q2) / gluon PDF correlation 
Use more information that depends directly on the gluon  -- jet cross-sections 

To get x g(x,Q2) 
• Assume αS is known 
• Choose kinematic region 

BGF > QCDC (i.e. low x, Q2) 

To get αS(Q2) 
• Choose kinematic region where 

PDFs xq(x), x g(x) are well known. 
(i.e. xg > 10-2, xq > 10-3 – 10-2 and 
σBGF ~ σQCDC

 

BGF 
xg 

+1 means proton remnant 

QCDC 
xq 

(glue)      +      (quark) 

In practice, we fit jets in all kinematic regions and hope to determine xg(x,Q2) and
𝝰s(Q2) simultaneously
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jet measurements and 𝝰s

• this is what happens when 𝝰s(MZ) is 
kept as a free parameter in the fit, but 
DIS jet measurements are added

this is also true when adding in jet measurements from ppbar/pp collisions (Tevatron, LHC)
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• and look at what happens to your ability to determine 𝝰s(MZ)

jet measurements and 𝝰s

4 HERAPDF2.0Jets NNLO – results

4.1 Simultaneous determination of ↵s(M2
Z
) and PDFs

In pQCD fits to inclusive DIS data alone, the gluon PDF is only determined via the DGLAP
equations, using the observed scaling violations. This results in a strong correlation between the
shape of the gluon distribution and the value of ↵s(M2

Z). Data on jet-production cross sections
provide an independent constraint on the gluon distribution and are also directly sensitive to
↵s(M2

Z). Thus, such data are essential for an accurate simultaneous determination of ↵s(M2
Z) and

the gluon distribution.

When determining ↵s(M2
Z), it is necessary to consider so-called “scale uncertainties”, which

serve as a proxy for the uncertainties due to the unknown higher-order contributions in the
perturbation expansion. These uncertainties were evaluated by varying the renormalisation and
factorisation scales by a factor of two, both separately and simultaneously7. The maximum
positive and negative deviations of the result were assigned as the scale uncertainties on ↵s(M2

Z).
These were observed for the variations (2.0µr, 1.0µf) and (0.5µr, 1.0µf), respectively.

The HERAPDF2.0Jets NNLO fit with free ↵s(M2
Z) resulted in

↵s(M2
Z) = 0.1156 ± 0.0011 (exp) +0.0001

�0.0002 (model + parameterisation) ± 0.0029 (scale) , (7)

where “exp” denotes the experimental uncertainty, which was taken as the fit uncertainty, includ-
ing the contribution from hadronisation uncertainties. The value of ↵s(M2

Z) and the size of the
experimental uncertainty were confirmed by a scan in ↵s(M2

Z), for which the resulting �2 values
are shown in Fig. 2. The clear minimum observed in �2 coincides with the value of ↵s(M2

Z) listed
in Eq. (7). The width of the minimum in �2 confirms the fit uncertainty. The combined model
and parameterisation uncertainty shown in Fig. 2 was determined by performing similar scans,
for which the values of the model parameters and the parameterisation were varied as described
in Section 3.1.

Figure 2 also shows the scale uncertainty, which dominates the total uncertainty. The scale
uncertainty as listed in Eq. (7) was evaluated under the assumption of 100 % correlated un-
certainties between bins and data sets. The previously published result at NLO [2] had scale
uncertainties calculated under the assumption of 50 % correlated and 50 % uncorrelated uncer-
tainties between bins and data sets, owing to the inclusion of heavy-quark and trijet data. A
strong motivation to determine ↵s(M2

Z) at NNLO was the expectation of a substantial reduction
in the scale uncertainty. Therefore, the analysis was repeated for these assumptions in order to
compare the NNLO to the NLO scale uncertainties. The re-evaluated NNLO scale uncertainty
of (±0.0022) is indeed significantly lower than the (+0.0037,�0.0030) previously observed in
the HERAPDF2.0Jets NLO analysis.

The HERAPDF2.0Jets NNLO fit with free ↵s(M2
Z) was based on 1363 data points and had

a �2/degree of freedom (d.o.f.) = 1614/1348 = 1.197. This can be compared to the �2/d.o.f. =
1363/1131 = 1.205 for HERAPDF2.0 NNLO based on inclusive data only [2]. The similarity
of the �2/d.o.f. values indicates that the data on jet production do not introduce any additional
tension into the fit and are fully consistent with the inclusive data.

7This procedure is often called the 9-point variation, where the nine variations are (0.5µr, 0.5µf ), (0.5µr, 1.0µf ),
(0.5µr, 2.0µf ), (1.0µr, 0.5µf ), (1.0µr, 1.0µf ), (1.0µr, 2.0µf ), (2.0µr, 0.5µf ), (2.0µr, 1.0µf ), (2.0µr, 2.0µf ).
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H1 and ZEUS

0

2

4

6

8

10

12

0.105 0.11 0.115 0.12 0.125 0.13

χ
2
- 

χ
m

in

2
  

  
 

NNLO
inclusive + jet data

Q
2

min
 = 3.5 GeV

2

Q
2

min
 = 10 GeV

2

 Q
2

min
 = 20 GeV

2

0

10

20

30

40

50

0.105 0.11 0.115 0.12 0.125 0.13

α
s
(M

Z
2)

χ
2
- 

χ
m

in

2
  

  
 

inclusive data only, Q
2

inclusive data only, Qmin =  3.5 GeV
2

inclusive data only, Q
2

inclusive data only, Qmin =  10 GeV
2

inclusive data only, Q
2

inclusive data only, Qmin =  20 GeV
2

a)

b)

Figure 3: Di↵erence between �2 and �2
min versus ↵s(M2

Z) for a) HERAPDF2.0Jets NNLO fits
with fixed ↵s(M2

Z) with the standard Q2
min for the inclusive data of 3.5 GeV2 and Q2

min set to
10 GeV2 and 20 GeV2. b) For comparison, the situation for fits to only inclusive data, HERA-
PDF2.0 NNLO, is shown, taken from [2].
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other 𝝰s determinations

← 𝝰s from QCD fits
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Older fixed ttarget data did 
not agree with predictions 
well- but  at higher pt-like at 
ATLAS there is hope 
 
Tevatron jet data have been 
used 
 
HERA jet data have been 
used 
 
 
 
So far tells us more about  
charm schemes than about 
the gluon 
 
HERA FL measurements 
are used 

Ways to measure the gluon dist’s 
 
• Scaling violations in DIS 

 
• Prompt γ data 

• Older fixed target data did not agree with predictions well- but  at higher pt- 
for example at ATLAS there is hope. 
• pN → γ x 
• g q → γ q 

 
• Inclusive jet production 

• Tevatron jet data have been used. 
• p p → jet + x 
• g g → g q, g q 

 
• 2 jets in DIS 

• HERA jet data have been used 
• γ* g → q g      (BGF) 

 

Future: 
• Open charm 

• So far tells us more about  charm 
schemes than about the gluon 

F2
cc, J/ψ, Ds,D* prodn from γ* g → c c 

• Measurement of FL
 (at small x) HERA 

FL measurements are used 
•   

particularly useful at low x 

ways to measure the gluon distribution

Tevatron and LHC jet data have been used



EG. HERA-II and Tevatron Run-II have improved our knowledge
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Ways to break the alphas/ 
gluon PDf correlation 

Use more information that 
depends directly on the 
gluon  -- jet cross-sections 

Jet studies in the Hadron Final state gives us more information 
 
• You can measure αS(Q2) and xg(x,Q2) from 2+1 jet events 

   σ2+1 ~ αS{A xg g(xg,Q2) + B xg
 q(xq,Q2)} 

 
 
This helps to break the αS(Q2) / gluon PDF correlation 
Use more information that depends directly on the gluon  -- jet cross-sections 

To get x g(x,Q2) 
• Assume αS is known 
• Choose kinematic region 

BGF > QCDC (i.e. low x, Q2) 

To get αS(Q2) 
• Choose kinematic region where 

PDFs xq(x), x g(x) are well known. 
(i.e. xg > 10-2, xq > 10-3 – 10-2 and 
σBGF ~ σQCDC

 

BGF 
xg 

+1 means proton remnant 

QCDC 
xq 

(glue)      +      (quark) 
• example: decrease in gluon PDF 

uncertainty from using ZEUS jet data 
(“ZEUS-Jets” PDF fit)

• DIRECT measurement of the gluon 
distribution

• ZEUS jet measurements much more 
precise than Tevatron jets – small energy 
scale uncertainties (we will see examples of 

impact of LHC jet data later…)
hep-ph/0503274

https://arxiv.org/abs/hep-ph/0503274
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