

QCD – Lecture 6

QCD at low x and low Q^2

Claire Gwenlan, Oxford, HT

the rise of the gluon at low x

Before the HERA measurements, most of the predictions for low x behavior of the structure functions and the gluon PDF were wrong

NOW it seems that the conventional NLO DGLAP formalism works TOO WELL! (there **should be** ln(1/x) corrections and/or non-linear high density corrections for x < 5×10⁻³)

the rise of the gluon at low x from DGLAP

$$\frac{d g(x, Q^2)}{d \ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d y}{y} \Big[P_{gq}\left(\frac{x}{y}\right) q(y, Q^2) + P_{gg}\left(\frac{x}{y}\right) g(y, Q^2) \Big]$$

• at low x: $x/y = z \rightarrow 0$ $P_{gq} \rightarrow \frac{2C_F}{z} = \frac{8}{3z}$, $P_{gg} \rightarrow \frac{2C_A}{z} = \frac{6}{z}$ (gluon splitting functions are singular)

Pgg dominates so the equation becomes: $\frac{dg(x,Q^2)}{d\ln Q^2} \simeq \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{dy}{y} \frac{6}{z} g(y,Q^2)$ • changing variables using: $t = \ln(Q^2/\Lambda^2)$ and with $\alpha_s(Q^2) = 1/(b_0 t) = \frac{1}{b_0 \ln \frac{Q^2}{t^2}}$ gives: $xg(x,Q^2) \simeq \exp\left\{\sqrt{\frac{12}{\pi b_0}\ln(\frac{t}{t_0})\ln(\frac{1}{x})}\right\}$ p234 – Devenish & Cooper-Sarkar over x,Q² range of HERA data, this solution mimics $\Re(Q)$ Sept. 2013 • τ decays (N³LO) ■ Lattice QCD (NNLO) △ DIS jets (NLO) $xg(x,Q^2) \sim x^{-\lambda_g}$ with $\lambda_g = \left(\frac{12}{\pi b_0} \frac{\ln(t/t_0)}{\ln(1/x)}\right)^{\frac{1}{2}}$ □ Heavy Ouarkonia (NLO) 0.3 • e⁺e⁻ jets & shapes (res. NNLO) S • Z pole fit (N³LO) ∇ $p(\bar{p}) \rightarrow iets$ (NLO) S 0.2 also, at low x, evolution of F2 becomes gluon dominated ٠ \equiv QCD $\alpha_{s}(M_{z}) = 0.1185 \pm 0.0006$ and generates a similarly steep behaviour ¹⁰ Q [GeV] 100 1 1000 $F_2 \sim x^{-\lambda}$, where $\lambda = \lambda_q - \epsilon$. EG. arXiv:0305165

gluon at low x

$$xg(x,Q^2) \sim x^{-\lambda_g}$$
 with $\lambda_g = \left(\frac{12}{\pi b_0} \frac{\ln(t/t_0)}{\ln(1/x)}\right)^{\frac{1}{2}}$, $t = \ln(Q^2/\Lambda^2)$

so it was a surprise to see F2 steep at small x for low Q², down to Q² ~ 1 GeV² SHOULD perturbative QCD work? α_s is becoming large – α_s at Q²~1 GeV² is ~ 0.4

beyond DGLAP: low x partons and BFKL

- there is another reason why the application of conventional DGLAP at low x is questionable
- can be shown that DGLAP equations effectively sum terms in $(\alpha_s \log Q^2)^n$
- diagrammatically, such terms arise from an n-rung ladder diagram, and assumes parton emissions are strongly-ordered in transverse momenta

 $Q^2 \gg k_{nT}^2 \gg \ldots \gg k_{1T}^2 \gg Q_0^2$

- HO corrections to splitting (and coefficient) functions also contain terms in log(1/x)
- gives rise to contributions to PDFs of form

$$\alpha_s^P(Q^2) (\ln Q^2)^q \left(\ln \frac{1}{x}\right)^r$$

conventionally, in DGLAP:LO: $p = q \ge r \ge 0$ LL(Q2)NLO: $p = q+1 \ge r \ge 0$ NLL(Q2)

Diagrammatically, Q^2 x_n, k_n x_{n-1}, k_{n-1} x_{n-2}, k_{n-2} x_{n-3}, k_{n-3} x_0, k_0

• DGLAP:

- Leading Log Approximation (LLA) in log(Q²) → strong ordering in transverse momentum
 Q² ≫ k²_{nT} ≫ ... ≫ k²_{1T} ≫ Q²₀
- and at small x, also have strong ordering in x

 $x \ll x_n \ll \ldots \ll x_1 \ll 1$

Double Leading Log Approximation (DLLA) sums leading terms in log(1/x) provided they are coupled with leading $log(Q^2)$ terms

- sums terms in $(\alpha_s \log 1/x)^n$ independent of $\log(Q^2)$
- ordering in x but NOT in k⊤
- predicts x but not Q² dependence

BFKL

- **BFKL equation has structure:** $\frac{d\mathcal{G}(x,k_T^2)}{d\log(1/x)} = \int dk_T^{'2} K(k_T^2,k_T^{'2}) \mathcal{G}(x,k_T^{'2}) = \lambda \mathcal{G}$
- where G is the gluon density unintegrated over kT

$$xg(x,Q^2) = \int^{Q^2} \frac{dk_T^2}{k_T^2} \, \mathcal{G}(x,k_T^2)$$

• at small x, BFKL equation has the solution:

$$xg(x,Q^2) \sim e^{\lambda \log(1/x)} \sim x^{-\lambda} \sim \left(\frac{s}{s_0}\right)^{\lambda}$$

where $\lambda = \frac{3\alpha_s}{\pi} 4 \log 2 \sim 0.5$ at $\alpha_s \approx 0.25$ valid around Q² ~ 4 GeV² is the leading eigenvalue of the kernel K

- steeply rising gluon behaviour even at moderate Q²
- is this the reason for the steep behavior of F2 at low x?
- NOTE that this has an analogous form to the Regge-pole exchange behavior of the amplitude (see Lecture 3)
- IS there a BFKL pomeron?

an aside ...

• BFKL were calculating gluon ladder diagrams to try to understand the flavourless Pomeron which dominates hadron-hadron cross sections

i.e. they were trying to understand the ordinary Regge Pomeron now called the **SOFT** Pomeron $s^{\alpha-1}, x^{1-\alpha}, \alpha=1.08$

BUT their calculation yielded too large a value for α (α =1.5); this is now called the **HARD** Pomeron or **BFKL** Pomeron

- these calculations were rather naïve and NLO corrections suggest a smaller α
- however, DIS data at low x gave the first sign that <u>maybe</u> a HARD Pomeron does exist

non-linear effects and saturation

there is plenty of debate about positions of these lines!

to summarise:

various reasons to worry that conventional LO and NLO log(Q²) summations, as embodied in the DGLAP equations, may be inadequate

it was a surprise to see F2 steep at small x even for very, very low Q^2 , $Q^2 \sim 1 \text{ GeV}^2$

- 1. should pQCD work? α s is becoming large, EG. α s at Q²~1 GeV² is ~ 0.4
- there has not been enough lever arm in Q² for evolution, but even the starting distribution is steep the HUGE rise at low x makes us think:
- 3. there **should** be log(1/x) resummation (BFKL) as well as traditional DGLAP resummation – BFKL predicts F2 ~ $x^{-\lambda s}$ with $\lambda s=0.5$ even at low Q²
- 4. and/or there should be non-linear/ high density corrections for $x < 5 \times 10^{-3}$

what does the data say?

etc.

Does the data need unconventional explanations?

- In(¹/_x) terms in the splitting factors
- CCFM

low x: F_L , $F_{c\overline{c}}^2$

modified BFKL

Afficionados claim χ^2 improvements over conventional NLLA DGLAP.. **But**, one seems to be able to use DGLAP by absorbing unconventional behaviour in the boundary conditions i.e. the unknown shapes of the non-perturbative parton distributions at Q₀²

We measure,
$$F_2 \sim x q$$

 $\frac{d F_2}{d \ln Q^2} \sim P_{qg} \cdot x g$
we can explain unusually steep $\frac{d F_2}{d \ln Q^2}$ by:
unusual $P_{qg} \rightarrow \text{eg } \ln(1/x)$, BFKL
OR unusual $x g(x, Q_0^2) \rightarrow \text{``valence-like'' gluon}$
 \rightarrow measure other gluon sensitive quantities a

Global Fit (ZEUS + fixed target)

change of the gluon over time

- in fact, when HERA low x data first published, gluon went from being flat to steep at low x
- BUT then when the HERA data proved to still be steep even at very low Q², DGLAP fits started to produce gluons which turn over again at low x

gluon evolves FAST - in order to evolve so fast upwards it must also evolve fast downwards

FL and the gluon

- negative gluon predicted at low x, low Q² from NLO DGLAP remains at NNLO (worse)
- $\begin{array}{c} Q^{2}=2 \text{ GeV}^{2} \\ 0.4 \\ \hline \\ 0.4 \\ \hline \\ 0.1 \\ 0 \\ 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 \end{array}$

0.5

 corresponding FL not negative (at NNLO!) but has peculiar shape

no one found this VERY convincing until recently.... when log(1/x) BFKL resummation worked out in detail and applied to NNPDF fits, giving NNPDF3.1xs arXiv:<u>1710.05935</u>

including **log(1/x) resummation in calculation** of splitting functions (BFKL inspired) improves shape, plus X² of global fit improves

FL and the gluon

- negative gluon predicted at low x, low Q² from NLO DGLAP remains at NNLO (worse)
- $\begin{array}{c|c} Q^2 = 2 \text{ GeV}^2 \\ 0.4 \\ \hline \\ NLO \text{ fit} \\ \hline \\ NNLO \text{ fit} \\ \hline \\ 0.2 \\ 0.1 \\ 0 \\ 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 \end{array}$

0.5

 corresponding FL not negative (at NNLO!) but has peculiar shape

arXiv:<u>1710.05935</u> – why not sooner? a) it is a difficult calculation – program is called HELL (High Energy Leading Log resummation); and b) measurements not precise enough until final HERA combination, arXiv:<u>1506.06042</u>

including **log(1/x) resummation in calculation** of splitting functions (BFKL inspired) improves shape, plus X² of global fit improves

impact of log(1/x) resummation

consequences of this on HERAPDF fit:

- 1. X² VASTLY improved not just a bit \rightarrow
- 2. improvement comes at low x and low Q^2

	NNLO fit with new settings	NNLO +NLLx fit with new settings
Total χ^2 /d.o.f	1446/1178	1373/1178
subset NC 920 $\chi^2/n.d.p$	446/377	413/377
subset NC 820 χ^2 /n.d.p	70/70	65/70
subset charm χ^2 /n.d.p	48/47	49/47
correlated shifts inclusive	102	77
correlated shifts charm	15	11
log term inclusive	20	-3
log term charm	-2	-1

 ... and affects the high-y/low x turnover of the cross section, y=Q2/(s.x), which fits much better because FL predicted to be larger

$$\sigma_{\rm red} = F_2 - \frac{y^2}{Y_+} F_L$$

4. FL gluon dominated and gluon now has more reasonable shape...

16

arXiv:1802.00064

impact of log(1/x) resummation

- measured FL much better described when NLLx = . next-to-leading-log (1/x) resummation applied
- gluon shape, and its relationship to shape of • sea, now much more reasonable 17

measurements in dedicated final states where DGLAP might be insufficient to describe parton dynamics

forward jets at HERA

arXiv:<u>0508055</u> arXiv:<u>0612261</u>

Mueller-Navelet jets at the LHC

same kind of process at the LHC

NLL BFKL = analytical calculation at parton level HEJ = LL BFKL inspired (ARIADNE for parton shower) PYTHIA6, PYTHIA8, HERWIG++ = LO DGLAP $2 \rightarrow 2$ + LL parton shower SHERPA= LO DGLAP $2 \rightarrow 2$ +Njets + LL parton shower

arXiv:1601.06713

what about the very low Q² region ?

LINEAR **DGLAP** evolution doesn't work for $Q^2 < 1 \text{ GeV}^2$ WHAT does? – REGGE ideas?

small x is high W², $x = Q^2/(2p \cdot q) \sim Q^2/W^2$

 $\sigma(\gamma^*p) \sim (W^2)^{\alpha-1} \leftarrow \text{Regge prediction for}$ high energy cross sections

 α is the intercept of the Regge trajectory α =1.08 for the SOFT POMERON

such energy dependence is well established from the SLOW RISE of all hadron-hadron cross sections – including $\sigma(\gamma p) \sim (W^2)^{0.08}$ – for real photon-proton scattering

for virtual photons, at small x $\sigma_{tot}^{\gamma^* p} = \frac{4\pi^2 \alpha}{Q^2} F_2$ $\sigma \sim (W^2)^{\alpha - 1} \to F_2 \sim x^{1 - \alpha} = x^{-\lambda}$

so a SOFT POMERON would imply λ =0.08; gives only a very gentle rise of F2 at small x for Q² > 1 GeV² we have observed a much stronger rise ...

the slope of F2 at small x, $F_2 \sim x^{-\lambda}$ is equivalent to a rise of $\sigma(\gamma^* p) \sim (W^2)^{\lambda}$ which is only gentle for Q² < 1 GeV²

so is there a **HARD POMERON** corresponding to this steep rise?

QCD POMERON, $\alpha(Q^2) - 1 = \lambda(Q^2)$ BFKL POMERON, $\alpha - 1 = \lambda = 0.5$

mixture of HARD and SOFT Pomeron to explain the transition $Q^2=0$ to high Q^2 ?

Do we understand the rise of hadron-hadron cross sections at all?

Could there always have been a HARD POMERON – is this why the effective Pomeron intercept is 1.08 rather than 1.00?

Does the HARD Pomeron mix in more strongly at higher energies? What about the LHC?

pre-ATLAS prediction with uncertainty from assumptions on mixing in of HARD Pomeron

if anything TOTEM results look even steeper

what about the Froissart bound?

colour dipole models

D

DIPOLE MODELS provide another way

r

to model the transition $Q^2=0$ to high Q^2

p

$$\sigma = \sigma_0 \left(1 - \exp\left(\frac{-r^2}{4R_0^2(x)}\right) \right), \ R_0^2(x) = \frac{1}{Q_0^2} \left(\frac{x}{x_0}\right)^{\lambda} \sim \frac{1}{xg(x)}$$

 r/R_0 SMALL r/R_0 LARGE \rightarrow large Q^2, x \rightarrow small Q^2, x $\sigma \sim r^2 \sim 1/Q^2$ $\sigma \sim \sigma_0 - \text{SATURATION}$

$$\sigma_{tot}^{\gamma^* p} = \frac{4\pi^2 \alpha}{Q^2} F_2$$
 is general (for **small x**)

σ(γp) finite for real γ (F2 → 0 as Q² → 0) At high Q², $σ(γ*p) ~ 1/Q^2 \Rightarrow F2 ~ flat$ BJORKEN SCALING

extras

geometric scaling for **total** σ_{γ} *p at **low x**

GBW – write:
$$\sigma = \sigma_0 \left(1 - \exp(-1/\tau)\right)$$

which involves only

 $\tau \sim Q^2 R_0^2(x) \sim \frac{Q^2}{Q_0^2} \left(\frac{x}{x_0}\right)^{\lambda}$

INDEED, for small x, x < 0.01, $\sigma(\gamma^*p)$ depends only on τ , not on x,Q² separately \rightarrow (NOT true at high x)

τ is a new scaling variable, applicable at small xcan be used to define a saturation scale:

$$Q_s^2 \sim 1/R_0^2(x) \sim x^{-\lambda} \sim xg(x)$$

such that saturation extends to higher Q² as x decreases

EG. arXiv:0007192, arXiv:0109010

some understanding of this scaling, of saturation and of dipole models is coming from work on nonlinear evolution equations applicable at high density – Colour Glass Condensate; JIMWLK; BK can be significant consequences for high energy cross sections EG. neutrino cross sections – also predictions for heavy ions-RHIC, diffractive interactions – Tevatron, HERA and the LHC – even some understanding of hadronic physics