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Figure 5: The first measurements of H1 (solid points) and ZEUS (open points) of the proton
structure function F2(x, Q2) based on the data taken in 1992 shown as a function of Bjorken x.
The HERA experiments were able to extend the kinematic range of the F2 data provided by
the fixed target electron (SLAC) and muon (BCDMS, NMC) proton experiments by two orders
of magnitude into the then-unknown domain of low x. For GRV91 see text.

luminosity close to the expectations by summer 2000 when phase I was terminated and a major
upgrade began, in particular of the interaction regions. The result of placing focussing magnets
close to the vertex was an increase of the specific luminosity by a factor of 4 which lead to a
large increase of the luminosity when HERA had overcome initial problems due to synchrotron
radiation initiated background.

At the 1994 meeting a further ‘first result’ was discussed. Besides a measurement of the
structure functions F2 and FD

2 there was an obvious interest in the measurement of the longi-
tudinal structure functions, FL and FD

L , because these would allow a non-trivial test of QCD
at higher orders and provide independent information on the gluon density at low x. Figure??
presents the expectation on the measurement of R and the recently released, still preliminary,
measurement of FL. The result is interesting: at Q2 lower than about 10GeV2, a region ac-
cessed with the upgraded backward apparatus of H1, the data tend to exceed the NLO QCD fit
prediction which essentially is derived from the ln Q2 derivative of F2. The definition of FL to
NLO and the exact treatment of the charm contribution near threshold are theoretical issues
under discussion. The data analysis is being finalised to accomplish publication of this first
observation [?], relying on the last data taken at HERA. Further interesting results on FL have
also been obtained by ZEUS [?] while H1 has also measured FD

L for the first time [?].

4 Precision Results

Since the first results on F2 in the DIS region of Q2 of O(10)GeV2, obtained with the initial data,
the accuracy of this measurement was constantly improved. The most accurate measurement
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The gluon splitting functions are singular Pgg dominates so the equation becomes 

Which gives, 

At low-x the evolution of F2 becomes gluon dominated 

So slope of low x gluon gets steeper as Q2 increases.  
→ Slope of F2 at low x gets steeper as Q2 increases. 

(Λ relates to αS) 

At low x, 

the rise of the gluon at low x from DGLAP

EG. arXiv:0305165
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Fig. 1. The first ZEUS F2 data from HERA, published 1993 [1].

are singular as z → 0. Thus the gluon distribution will become large as
x → 0, and its contribution to the evolution of the parton distribution
becomes dominant. In particular the gluon will ‘drive’ the quark singlet
distribution, and hence the structure function F2, to become large as well,
the rise increasing in steepness as Q2 increases. Quantitatively,

dg(x,Q2)

d ln Q2
≃
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may be solved subject to the nature of the boundary function xg(x,Q2
0).

Inputting a non-singular gluon at Q2
0, the solution is [4, 5]
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• at low x:  x/y = z → 0 (gluon splitting functions are singular)

• Pgg dominates so the equation becomes:

gives:

over x,Q2 range of HERA data, this solution mimics a power law behavior:

slope of low x gluon gets 
steeper as Q2 increases

Running coupling (cont.)
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Fig. 2. Calculations from AKMS [2] of the behaviour of F2 and FL at low x based
on the BFKL equation. The difference between the upper and lower continuous
curves is in the cut-off imposed to control diffusion in transverse momentum (k2

0 =
1 , 2 GeV2 for the upper, lower curves respectively. The dashed curves show the
effect of including shadowing effects with a proton radius of R = 5, 2 GeV−1. The
almost flat dash-dotted curves are the contributions excluding the BFKL effects.

Given a long enough evolution length from Q2
0 to Q2, this will generate a

steeply rising gluon distribution at small x, starting from a flattish behaviour
of xg(x,Q2) at Q2 = Q2

0.
Over the x,Q2 range of HERA data this solution mimics a power be-

haviour, xg(x,Q2) ∼ x−λg , with

λg =
(

12

β0

ln(t/t0)

ln(1/x)

)

1

2

(5)

where t = ln(Q2/Λ2), t0 = ln(Q2
0/Λ

2). This steep behaviour of the gluon
generates a similarly steep behaviour of F2 at small x, F2 ∼ x−λ, where
λ = λg − ϵ.

234 015 at low x 

9.2.1 Double asymptotic scaling 

The DGLAP limit at low x with a non-singular input is known as the double 
leading log approximation (DLLA) or double asymptotic scaling (DAS). 
The result was an early prediction of QCD (De Rujula et ai. 1974) , which 
was revived by the work of Ball and Forte (1994). A simplified account, at 
LO, following the approach of the latter authors is given here. 

The first step is to simplify the gluon evolution equation by dropping 
the singlet term2 to give 

t) O:s(t) t n
(l /X) 

t 27r Jo 

where a change of integration variable has been made and t = In(Q2/A2) 
introduced (the appearance of the constant A makes no difference to the 
derivative with respect to In Q2). Next approximate Pgg by its most singular 
term and substitute the LO expression O:s(Q2) = 1/( bot) to give 

o (t) 3 11n (1/X) t x
g
o x, - b t). 

t 7r 0 0 

This equation is now differentiated with respect to In(l /x) . First introduce 
the two variables 

(9.3) 

then differentiating with respect to v and using u in place of In t gives 

02G(U, v) _ 2G( ) 
ouov - 'Y u , v 

2 3 b = -b ), 
7r 0 

(9.4) 

where G(u, v) = xg(x, Q2). (Again the extra constants introduced, to and 
Xo, make no difference to the derivative.) Equation (9.4) is of the form 
of a wave equation. To find the solution for the double asymptotic limit, 
InQ2 ---> 00, In(l /x) ---> 00, it is convenient to make another change of 
variables 

P = (;
V) 1/ 2 , cr = (UV)1 /2. (9.5) 

The limit required corresponds to cr ---> 00 with p fixed (at a value 0(1)). 
Changing the variables and keeping only the leading terms for large cr, 
Eq. (9.4) becomes 

02G(cr, p) = 4 2G( ) 
ocr2 'Y cr, P . (9.6) 

This equation may now be solved immediately 

2The numerical studies of Section 4.3.2 a lso show that the gluon contribution is by 
far the most important at low x. 
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DGLAP at low x 235 

G(a, p) = A exp(2')'a) , (9.7) 

where A is a constant, or 

G(u,v) = A exp(2')'v'uV) , (9.8) 

or 

xg(x , Q2) = A exp { (9.9) 

which are different forms of the double asymptotic scaling (DAS) limit for 
the gluon density. This corresponds to a rise of the gluon at small x, which 
becomes steeper as Q2 increases. Note that , in addition to the asymptotic 
dependence on a, the gluon density, xg, is predicted to be independent of 
p. 

Having got an expression for xg at small x, the LO relationship between 
F2 and xg may be approximated to give 

Ae2 ')' 
F 2 (p , a) = - - exp(2')'a)[1 + O(I/a)] 9 p 

(9.10) 

for a -> 00 and p fixed (see Problem 1 at the end of the chapter). Thus the 
steep rise in the gluon distribution at low x translates into a steep rise of F2 
at low x , which also becomes steeper as Q2 increases (see Problem 2 at the 
end of the chapter). Ball and Forte found that with appropriate boundary 
conditions the asymptotic region could be reached for values of a and p 
well within the range of the HERA experiments. The constant A has to be 
determined from the data and the choice of Xo and Q6 will define the range 
of data points included. Figure 9.3 shows the results of a study by HI (1995) 
of the LO DAS prediction, using their 1993 F2 data3 with Xo = 0.1, Q6 = 
1 GeV2 and A = 185 MeV. The upper plot of the figure shows 
as a function of a, where ,...., (ph)4, resulting in a quantity that should 
rise linearly with a with slope 2')'. The lower plot shows In(RFF2) as a 
function of p, where RF = exp( This tests the second prediction 
of DAS that this quantity should be independent of p. It can be seen that 
'p-scaling' is reasonable for p > 1.2 or so. Applying this cut to the data 
and fitting the slope ofthe first plot gives 2.22 ± 0.04(stat.) ± O.lO(sys.), to 
be compared with 2.4, the LO prediction for 2')' with four flavours. 

9.2.2 Singular input distribution 
The DGLAP limit with singular input distributions has been explored in 
detail by Ynduniin and co-workers (Barreiro et al. 1996). F2 is split into 
its singlet (Fs) and non-singlet (FNS) components respectively. The Q2 
behaviours of both pieces are calculated at LO and NLO in terms of as 

3The data covered the range 4.5 < Q2 < 1600 GeV2 and 1.8 x 10- 4 < X < 0.13. 
4Up to some smaller sub-leading terms that have been ignored here 

1

• also, at low x, evolution of F2 becomes gluon dominated, 
and generates a similarly steep behaviour
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Fig. 2. Calculations from AKMS [2] of the behaviour of F2 and FL at low x based
on the BFKL equation. The difference between the upper and lower continuous
curves is in the cut-off imposed to control diffusion in transverse momentum (k2

0 =
1 , 2 GeV2 for the upper, lower curves respectively. The dashed curves show the
effect of including shadowing effects with a proton radius of R = 5, 2 GeV−1. The
almost flat dash-dotted curves are the contributions excluding the BFKL effects.

Given a long enough evolution length from Q2
0 to Q2, this will generate a

steeply rising gluon distribution at small x, starting from a flattish behaviour
of xg(x,Q2) at Q2 = Q2

0.
Over the x,Q2 range of HERA data this solution mimics a power be-

haviour, xg(x,Q2) ∼ x−λg , with
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ln(1/x)
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where t = ln(Q2/Λ2), t0 = ln(Q2
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2). This steep behaviour of the gluon
generates a similarly steep behaviour of F2 at small x, F2 ∼ x−λ, where
λ = λg − ϵ.
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• a flat gluon at low Q2 becomes very steep AFTER Q2 evolution AND F2 becomes 
gluon dominated
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on the BFKL equation. The difference between the upper and lower continuous
curves is in the cut-off imposed to control diffusion in transverse momentum (k2

0 =
1 , 2 GeV2 for the upper, lower curves respectively. The dashed curves show the
effect of including shadowing effects with a proton radius of R = 5, 2 GeV−1. The
almost flat dash-dotted curves are the contributions excluding the BFKL effects.

Given a long enough evolution length from Q2
0 to Q2, this will generate a

steeply rising gluon distribution at small x, starting from a flattish behaviour
of xg(x,Q2) at Q2 = Q2

0.
Over the x,Q2 range of HERA data this solution mimics a power be-

haviour, xg(x,Q2) ∼ x−λg , with

λg =
(

12

β0

ln(t/t0)

ln(1/x)

)

1

2

(5)

where t = ln(Q2/Λ2), t0 = ln(Q2
0/Λ

2). This steep behaviour of the gluon
generates a similarly steep behaviour of F2 at small x, F2 ∼ x−λ, where
λ = λg − ϵ.
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DGLAP at low x 235 

G(a, p) = A exp(2')'a) , (9.7) 

where A is a constant, or 

G(u,v) = A exp(2')'v'uV) , (9.8) 

or 

xg(x , Q2) = A exp { (9.9) 

which are different forms of the double asymptotic scaling (DAS) limit for 
the gluon density. This corresponds to a rise of the gluon at small x, which 
becomes steeper as Q2 increases. Note that , in addition to the asymptotic 
dependence on a, the gluon density, xg, is predicted to be independent of 
p. 

Having got an expression for xg at small x, the LO relationship between 
F2 and xg may be approximated to give 

Ae2 ')' 
F 2 (p , a) = - - exp(2')'a)[1 + O(I/a)] 9 p 

(9.10) 

for a -> 00 and p fixed (see Problem 1 at the end of the chapter). Thus the 
steep rise in the gluon distribution at low x translates into a steep rise of F2 
at low x , which also becomes steeper as Q2 increases (see Problem 2 at the 
end of the chapter). Ball and Forte found that with appropriate boundary 
conditions the asymptotic region could be reached for values of a and p 
well within the range of the HERA experiments. The constant A has to be 
determined from the data and the choice of Xo and Q6 will define the range 
of data points included. Figure 9.3 shows the results of a study by HI (1995) 
of the LO DAS prediction, using their 1993 F2 data3 with Xo = 0.1, Q6 = 
1 GeV2 and A = 185 MeV. The upper plot of the figure shows 
as a function of a, where ,...., (ph)4, resulting in a quantity that should 
rise linearly with a with slope 2')'. The lower plot shows In(RFF2) as a 
function of p, where RF = exp( This tests the second prediction 
of DAS that this quantity should be independent of p. It can be seen that 
'p-scaling' is reasonable for p > 1.2 or so. Applying this cut to the data 
and fitting the slope ofthe first plot gives 2.22 ± 0.04(stat.) ± O.lO(sys.), to 
be compared with 2.4, the LO prediction for 2')' with four flavours. 

9.2.2 Singular input distribution 
The DGLAP limit with singular input distributions has been explored in 
detail by Ynduniin and co-workers (Barreiro et al. 1996). F2 is split into 
its singlet (Fs) and non-singlet (FNS) components respectively. The Q2 
behaviours of both pieces are calculated at LO and NLO in terms of as 

3The data covered the range 4.5 < Q2 < 1600 GeV2 and 1.8 x 10- 4 < X < 0.13. 
4Up to some smaller sub-leading terms that have been ignored here 

,
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 So it was a surprise to see F2 steep at small x  - for low Q2, Q2 ~ 1 GeV2  

Should perturbative QCD work? αs is becoming large  - αs at Q2 ~ 1 GeV2 is ~ 0.4 
so it was a surprise to see F2 steep at small x for low Q2, down to Q2 ~ 1 GeV2

SHOULD perturbative QCD work? 𝛂s is becoming large – 𝛂s at Q2~1 GeV2 is ~ 0.4
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beyond DGLAP: low x partons and BFKL

• there is another reason why the application of conventional DGLAP at low x 
is questionable

• can be shown that DGLAP equations effectively 
sum terms in                   

• diagrammatically, such terms arise from an n-rung 
ladder diagram, and assumes parton emissions are 
strongly-ordered in transverse momenta
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• HO corrections to splitting (and coefficient) 
functions also contain terms in log(1/x)

• gives rise to contributions to PDFs of form

20 
 

Amanda Cooper-Sarkar – QCD 

There is another reason why the application of conventional DGLAP at low x is 
questionable: 

The splitting functions, 
have contributions, 

dominant at small x 
Their contribution to the PDF comes from, 

→ and thus give rise to contributions to the PDF of the form, 

conventionally in LO DGLAP: p = q ≥ r ≥ 0  LL(Q2)  
           NLO: p = q +1 ≥ r ≥ 0  NLL(Q2)  

Leading log(Q2): 

But if ln(1/x) is large, we should also consider, 
       p = r ≥ q ≥ 1  LL(1/x) 
        p = r+1 ≥ q ≥ 1  NLL(1/x) 

Leading log(1/x): 

This is what is meant by BFKL summation. 

conventionally, in DGLAP:  
LO: p = q ≥ r ≥ 0 LL(Q2)
NLO: p = q+1 ≥ r ≥  0 NLL(Q2)

BUT if log(1/x) large, should also consider:
p = r ≥ q ≥ 1 LL(1/x)
p = r+1 ≥ q ≥ 1 NLL(1/x)

BFKL 
summation
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Diagrammatically, • DGLAP:
• Leading Log Approximation (LLA) in log(Q2) → strong 

ordering in transverse momentum

• and at small x, also have strong ordering in x                     

Double Leading Log Approximation (DLLA) sums leading terms in 
log(1/x) provided they are coupled with leading log(Q2) terms
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• BFKL (Balitskii, Fadin, Kuraev, Lipatov)
• sums terms in                     independent 

of log(Q2)
• ordering in x but NOT in kT

• predicts x but not Q2 dependence
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⇤
(11)

d2�(⌫̄)

dxdy
=

G2
F sx

⇡

⇥
(u(x) + c(x)) + (1� y)2(d̄(x) + s̄(x))

⇤
(12)

d2�

dxdQ2
=

2⇡↵2Y+

Q4x
�r (13)

1



where                                       at                     

valid around Q2 ~ 4 GeV2

is the leading eigenvalue of the kernel K
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BFKL

• BFKL equation has structure:

• where G is the gluon density unintegrated over kT

• at small x, BFKL equation has the solution:

• steeply rising gluon behaviour even at moderate Q2

• is this the reason for the steep behavior of F2 at low x?

• NOTE that this has an analogous form to the Regge-pole exchange behavior 
of the amplitude (see Lecture 3)

• IS there a BFKL pomeron?
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an aside …

• BFKL were calculating gluon ladder diagrams to try to understand the 
flavourless Pomeron which dominates hadron-hadron cross sections

i.e. they were trying to understand the 
ordinary Regge Pomeron now called the SOFT
Pomeron

BUT their calculation yielded too large a value 
for 𝝰 (𝝰=1.5);  this is now called the HARD
Pomeron or BFKL Pomeron

• these calculations were rather naïve and 
NLO corrections suggest a smaller 𝝰

• however, DIS data at low x gave the first 
sign that maybe a HARD Pomeron does 
exist

923 
 

Amanda Cooper-Sarkar – QCD 

BFKL were calculating gluon ladder diagrams to try to understand the flavourless 
Pomeron which dominates hadron-hadron cross sections. 
 
  i.e. they were trying to understand the ordinary Regge Pomeron 
  now called the soft Pomeron 
 
   Sα-1,   x(1-α), α = 1.08 

But their calculation yielded too large a value for  α (α = 1.5), 
This is now called the hard Pomeron or BFKL Pomeron 
 
- These calculations were rather naive and NLO corrections 

suggest a smaller α. 
 

- However DIS data at low x gave the first sign that maybe a 
“hard” Pomeron does exist. 

s𝝰–1, x1–𝝰 , 𝝰=1.08
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Extending the conventional DGLAP 
equations across the x, Q2 plane 
Plenty of debate about the positions 
of these lines! 

Colour Glass Condensate, JIMWLK, BK 

Higher twist 

There are various reasons to worry that 
conventional LO and NLO ln(Q2) 
summations – as embodied in the 
DGLAP equations may be inadequate 

It was a surprise to see  F2 steep at small x  
- even for very very low Q2, Q2 ~ 1 
GeV2  

1. Should perturbative QCD work? αs is 
becoming large  - αs at Q2 ~ 1 GeV2 is ~ 
0.4 

2. There hasn’t been enough lever arm in 
Q2 for evolution, but even the starting 
distribution is steep- the HUGE rise at 
low-x makes us think 

3. there should be ln(1/x) resummation 
(BFKL) as well as the traditional ln(Q2) 
DGLAP resummation- BFKL predicted 
F2(x,Q2) ~ x –λs, with λs=0.5, even at low 
Q2 

4. and/or there should be non-linear high 
density corrections for x < 5 10 -3  
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Fig. 9. Approaches to physics at low-x. Courtesy of A D Martin

will saturate. These ideas have been formalized by Gribov, Levin & Ryskin
by the addition of a non-linear term to the equation for gluon evolution

d2xg(x,Q2)

dlnQ2dln(1/x)
=

3αs

π
xg(x,Q2)−

81α2
s

16Q2R2

[

xg(x,Q2)
]2

(10)

When xg(x,Q2) ∼ πQ2R2/αs(Q2) the non-linear term cancels the linear
term and evolution stops, this is saturation. Shadowing effects were included
in the calculations by AKMS shown in Fig. 2 and in the KMRS parton
densities.

The various evolution equations applicable across the x,Q2 plane are
summarised schematically in Fig. 9.4 Note the appearance of the ‘critical
line’ above which the gluon density is high enough for non-linear effects to
be important. In this region and for large enough Q2 one has the possi-
bility that αs will be small enough for weak-coupling but non-perturbative
methods to be applicable, of which the GLR equation could be a first ap-
proximation. Again no scales are given and another of many hotly argued
questions raised by the HERA data – for example in the context of the
Caldwell plot (Fig. 7) – is does HERA have the reach to see saturation
effects and have they been seen?

Dipole models have proved to be a very fruitful approach in exploring
this question and modelling the behaviour of F2 or σ(γ∗p) through the

4 An early version of this figure was shown by JK in his plenary talk on low x QCD at
the 1993 Durham Workshop [14].

there is plenty of debate about positions of these lines!

colour glass condensate, JIMWLK, BK

the non-linear term slows down the 
evolution of xg(x,Q2), which tames  
the rise at small x

the gluon density may even SATURATE
(respecting the Froissart bound, 𝜎tot < const.(lns)2 )

Furthermore, if the gluon density becomes 
large, there may be NON-LINEAR effects

gluon recombination  gg → g

may compete with gluon evolution g → gg

where ρ is the gluon density

EG. GLR (Gribov-Levin-Ryskin)
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inverse of 9 ----> gg splitting). Shadowing is a term taken from DIS on large 
nuclei in which it is known that 0"(/* A) = AG\'O"(/* N) , with a < 1 from 
this 'overlap' effect. However , it is saturation that is of particular interest 
here. 

To get a semi-quantitative feel for the problem work in the infinite mo-
mentum frame, where xg(x, Q2) gives the number of gluons per unit of 
rapidity (In(1/x) or dx/x). The gluon- gluon recombination or absorption 
cross-section is of order as (Q2) / Q2 at a transverse scale Q2 , thus one might 
expect saturation effects when the total effective gluon- gluon recombina-
tion cross-section in the proton approaches that of the size of the proton 
disk, 

a (Q2) 
Q2xg(x, Q2) 7r R2. (9.29) 

If R is taken to be 0.8 fm then at Q2 10 GeV2 the above relation gives 
xg 2000. Such densities are not likely to be reached within the low-
x range of HERA. However there is no compelling reason why the gluon 
density should be uniform across the nucleon, an upward fluctuation in a 
restricted region could lead to saturation occurring at much lower average 
densities. 

9.6.1 High density gluon dynamics 

Gribov, Levin and Ryskin (1983) and later Mueller and Qiu (1986) ex-
tended the low- x DLLA approximation to include the effect of saturation 
with the equation 

82xg(x, Q2 3as 2 81a; 2 2 
8InQ28 In(1 /x) = -;-xg(x,Q ) - 16Q2R2(xg(x,Q )) . (9.30) 

In this equation, the first term on the RHS gives essentially Eq. 9.4 of DLLA 
or DAS, while the second term is an estimate of gluon recombination. Note 
that this term will damp the growth of xg at low x, in fact giving zero 
growth when xg(x, Q2) = 487rQ2 R2 /(81a s), in agreement with the crude 
estimate above. 

Since this early work the subject has developed considerably. Although 
a detailed exposition is beyond the scope of this book, a brief account of 
the key ideas is given here showing how the evidence for gluon dominated 
dynamics at low x revealed by HERA data may be linked to the physics of 
the quark- gluon plasma. 

As demonstrated by the discussion above, an essential outcome of all 
models of saturation is the existence of an x-dependent saturation scale, 
Q;(x). For Q2 » Q;, saturation effects may be ignored and the linear 
BFKL or DGLAP equations are valid; for Q2 « Q; , the non-linear effects 
of saturation must be taken into account . At high enough energies as(Q;) 
may be small enough to allow weak coupling techniques to be used. The 
problem is not perturbative because of the very large gluon density, but 
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to summarise:

Extending the conventional DGLAP 
equations across the x, Q2 plane 
Plenty of debate about the positions 
of these lines! 

Colour Glass Condensate, JIMWLK, BK 

Higher twist 

There are various reasons to worry that 
conventional LO and NLO ln(Q2) 
summations – as embodied in the 
DGLAP equations may be inadequate 

It was a surprise to see  F2 steep at small x  
- even for very very low Q2, Q2 ~ 1 
GeV2  

1. Should perturbative QCD work? αs is 
becoming large  - αs at Q2 ~ 1 GeV2 is ~ 
0.4 

2. There hasn’t been enough lever arm in 
Q2 for evolution, but even the starting 
distribution is steep- the HUGE rise at 
low-x makes us think 

3. there should be ln(1/x) resummation 
(BFKL) as well as the traditional ln(Q2) 
DGLAP resummation- BFKL predicted 
F2(x,Q2) ~ x –λs, with λs=0.5, even at low 
Q2 

4. and/or there should be non-linear high 
density corrections for x < 5 10 -3  
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will saturate. These ideas have been formalized by Gribov, Levin & Ryskin
by the addition of a non-linear term to the equation for gluon evolution

d2xg(x,Q2)

dlnQ2dln(1/x)
=

3αs

π
xg(x,Q2)−

81α2
s

16Q2R2

[

xg(x,Q2)
]2

(10)

When xg(x,Q2) ∼ πQ2R2/αs(Q2) the non-linear term cancels the linear
term and evolution stops, this is saturation. Shadowing effects were included
in the calculations by AKMS shown in Fig. 2 and in the KMRS parton
densities.

The various evolution equations applicable across the x,Q2 plane are
summarised schematically in Fig. 9.4 Note the appearance of the ‘critical
line’ above which the gluon density is high enough for non-linear effects to
be important. In this region and for large enough Q2 one has the possi-
bility that αs will be small enough for weak-coupling but non-perturbative
methods to be applicable, of which the GLR equation could be a first ap-
proximation. Again no scales are given and another of many hotly argued
questions raised by the HERA data – for example in the context of the
Caldwell plot (Fig. 7) – is does HERA have the reach to see saturation
effects and have they been seen?

Dipole models have proved to be a very fruitful approach in exploring
this question and modelling the behaviour of F2 or σ(γ∗p) through the

4 An early version of this figure was shown by JK in his plenary talk on low x QCD at
the 1993 Durham Workshop [14].

various reasons to worry that conventional 
LO and NLO log(Q2) summations, as 
embodied in the DGLAP equations, may be 
inadequate

it was a surprise to see F2 steep at small x 
even for very, very low Q2, Q2 ~ 1 GeV2

1. should pQCD work? 𝛂s is becoming large, 
EG. 𝛂s at Q2~1 GeV2 is ~ 0.4

2. there has not been enough lever arm in Q2

for evolution, but even the starting 
distribution is steep – the HUGE rise at 
low x makes us think:

3. there should be log(1/x) resummation
(BFKL) as well as traditional DGLAP 
resummation – BFKL predicts F2 ~  x–λs

with λs=0.5 even at low Q2

4. and/or there should be non-linear/ high 
density corrections for x < 5×10-3
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what does the data say?
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change of the gluon over time

• in fact, when HERA low x data first published, gluon went from being flat to steep at low x
• BUT then when the HERA data proved to still be steep even at very low Q2, DGLAP fits 

started to produce gluons which turn over again at low x

gluon evolves FAST – in order to evolve so fast upwards it must also evolve fast downwards

arXiv:0409145

https://arxiv.org/abs/hep-ph/0409145


14

SLAC circa 1970

FL and the gluon

• negative gluon predicted 
at low x, low Q2 from 
NLO DGLAP remains at 
NNLO (worse)

• corresponding FL not 
negative (at NNLO!) but 
has peculiar shape

• including log(1/x) 
resummation in calculation 
of splitting functions (BFKL 
inspired) improves shape, 
plus X2 of global fit improves

no one found this VERY convincing until recently…. 
when log(1/x) BFKL resummation worked out in detail 
and applied to NNPDF fits, giving NNPDF3.1xs
arXiv:1710.05935

https://arxiv.org/abs/1710.05935
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SLAC circa 1970
• negative gluon predicted 

at low x, low Q2 from 
NLO DGLAP remains at 
NNLO (worse)

• corresponding FL not 
negative (at NNLO!) but 
has peculiar shape

• including log(1/x) 
resummation in calculation 
of splitting functions (BFKL 
inspired) improves shape, 
plus X2 of global fit improves

arXiv:1710.05935 – why not sooner?  a) it is a difficult 
calculation – program is called HELL (High Energy Leading 
Log resummation); and b) measurements not precise 
enough until final HERA combination, arXiv:1506.06042

FL and the gluon

https://arxiv.org/abs/1710.05935
https://arxiv.org/abs/1506.06042
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impact of log(1/x) resummation

1. X2 VASTLY improved – not just a bit  →

2. improvement comes at low x and low Q2

consequences of this on HERAPDF fit:

3. … and affects the high-y/low x turnover of the 
cross section, y=Q2/(s.x), which fits much 
better because FL predicted to be larger

4. FL gluon dominated and gluon now has more 
reasonable shape…

arXiv:1802.00064

arXiv:1710.05935

https://arxiv.org/abs/1802.00064
https://arxiv.org/abs/1710.05935
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impact of log(1/x) resummation

gluon

sea

in NLO DGLAP, FL given by:

and at low x this becomes gluon dominated

• measured FL much better described when NLLx = 
next-to-leading-log (1/x) resummation applied

• gluon shape, and its relationship to shape of 
sea, now much more reasonable

arXiv:1802.00064

https://arxiv.org/abs/1802.00064
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other methods to search beyond DGLAP?

 
DGLAP evolution strongly ordered in kT

kT,1 2 ≪ kT,2 2 ≪ … ≪ Q2

→ LOW probability for forward jets with ETjet

~ Q2

BUT this is not so for kT unordered BFKL 
evolution 

measurements have often served to instead 
highlight that conventional jet calculations 
were not very well developed E.G. are 
discrepancies due to missing HOs in DGLAP or 

BFKL effects?  – there has been much 
recent progress in this regard

EG. Forward jet measurements at HERA

36

Low x: Breakdown of DGLAP?Low x: Breakdown of DGLAP?

NLO calculation based on DGLAP strongly

ordered in kT:  kT,1
2 << kT,2

2 << …<< Q2

 LOW probability for forward jets with ET ~ Q

Forward Jets

Central Jet

NLOJET++D
G

L
A

P
: 

k
T
 i

n
cr

e
a

se
s 

 

Hints for kT unordered gluon emissions

 need for BFKL? or NNLO enough?

Three-Jets in DISDGLAP

ZEUS Coll.,hep-ex/0707.3093

H1prelim-06-034

Inclusive Jet DIS
         (up to η= 4.3)

ZEUS

(see also: ZEUS Coll., DESY-07-062 )

DISENT:
O(αs

2)

36

Low x: Breakdown of DGLAP?Low x: Breakdown of DGLAP?

NLO calculation based on DGLAP strongly

ordered in kT:  kT,1
2 << kT,2

2 << …<< Q2

 LOW probability for forward jets with ET ~ Q

Forward Jets

Central Jet

NLOJET++D
G

L
A

P
: 

k
T
 i

n
cr

e
a

se
s 

 

Hints for kT unordered gluon emissions

 need for BFKL? or NNLO enough?

Three-Jets in DISDGLAP

ZEUS Coll.,hep-ex/0707.3093

H1prelim-06-034

Inclusive Jet DIS
         (up to η= 4.3)

ZEUS

(see also: ZEUS Coll., DESY-07-062 )

DISENT:
O(αs

2)

measurements in dedicated final states where DGLAP might be insufficient to describe 
parton dynamics
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forward jets at HERA

r = pT2/Q2

arXiv:0508055
arXiv:0612261

https://arxiv.org/abs/hep-ex/0508055
https://arxiv.org/abs/hep-ph/0612261
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Mueller-Navelet jets at the LHC

same kind of process at the LHC

arXiv:1601.06713

NLL BFKL = analytical calculation at parton level
HEJ = LL BFKL inspired (ARIADNE for parton shower)
PYTHIA6, PYTHIA8, HERWIG++ = LO DGLAP         
2 → 2 + LL parton shower
SHERPA= LO DGLAP 2 → 2+Njets + LL parton
shower 

https://arxiv.org/abs/1601.06713


21

what about the very low Q2 region ?

ZEUS
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0

0.5

1

1.5

F 2

Q2 = 0.30 GeV2 Q2 = 0.40 GeV2 Q2 = 0.50 GeV2 Q2 = 0.65 GeV2

0

0.5

1

1.5

F 2
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Q2 = 3.50 GeV2
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x

Q2 = 4.50 GeV2

10
-4

x

Q2 = 6.50 GeV2
ZEUS BPT97
ZEUS SVTX95
ZEUS 96/97

E665
SLAC
NMC

ZEUS QCD01 (prel
ZEUS Regge97

LINEAR DGLAP evolution doesn’t work for Q2 < 1 GeV2

WHAT does? – REGGE ideas?
small x is high W2, x = Q2/2p.q ∼ Q2/W2

σ(γ*p) ~ (W2) 𝝰–1       ← Regge prediction for 
high energy cross sections

𝝰 is the intercept of the Regge trajectory 
𝝰=1.08 for the SOFT POMERON

such energy dependence is well established from 
the SLOW RISE of all hadron-hadron cross 
sections – including σ(γp) ~ (W2)0.08         – for real 
photon-proton scattering

for virtual photons, at small x

DIPOLE formulation of DIS

Using the same GB&W as for diffraction and VM.
Has the correct qualitative behavior.

to dependence arises from the dipole saturation
mechanism. (i.e. cross section goes flat falls like

). Recall

σ ~ (W2) 𝝰–1  → F2 ~ x 1–𝝰 = x –λ

so a SOFT POMERON would imply λ=0.08; 
gives only a very gentle rise of F2 at small x

for Q2 > 1 GeV2 we have observed a much 
stronger rise …
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(p+q)2 = MX2 = W2

Pushing QCD to low extreme

GVDM Regge
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ZEUS Regge fit
ZEUS DGLAP fit

Transition to non-perturbative regime:
pQCD Regge (GVDM) at GeV

SF at low from HERA CIPANP-2000 S. Levonian
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,

so is there a HARD POMERON corresponding 
to this steep rise?

QCD POMERON, 𝝰(Q2) – 1 = λ(Q2)
BFKL POMERON, 𝝰 – 1 = λ = 0.5

mixture of HARD and SOFT Pomeron to 
explain the transition Q2=0 to high Q2 ?

the slope of F2 at small x, 

is equivalent to a rise of  

which is only gentle for Q2 < 1 GeV2
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extracted and applied as a function of the T2 track multi-
plicity and affects only the 1h category. The systematic
uncertainty is estimated to be 0.45% which corresponds
to the maximal variation of the background that gives a
compatible fraction of 1h events (trigger and pileup cor-
rected) in the two samples.

Trigger efficiency: This correction is estimated from the
zero-bias triggered events. It is extracted and applied as a
function of the T2 track multiplicity, being significant
for events with only one track and rapidly decreasing to
zero for five or more tracks. The systematic uncertainty is
evaluated comparing the trigger performances with and
without the requirement of having a track pointing to the
vertex and comparing the overall rate correction in the two
samples.

Pileup: This correction factor is determined from the
zero-bias triggered events: the probability to have a bunch
crossing with tracks in T2 is 0.05–0.06 from which the
probability of having n ! 2 inelastic collisions with tracks
in T2 in the same bunch crossing is derived. The systematic
uncertainty is assessed from the variation, within the same
data set, of the probability to have a bunch crossing with
tracks in T2 and from the uncertainty due to the T2 event
reconstruction efficiency.

Reconstruction efficiency: This correction is estimated
using Monte Carlo generators (PYTHIA8 [13], QGSJET-
II-03 [14]) tuned with data to reproduce the measured
fraction of 1h events which is equal to 0:216" 0:007.
The systematic uncertainty is assumed to be half of the
correction: as it mainly depends on the fraction of events
with only neutral particles in T2, it accounts for variations
between the different Monte Carlo generators.

T1 only: This correction takes into account the amount
of events with no final state particles in T2 but one or
more tracks in T1. The uncertainty is the precision with
which this correction can be calculated from the zero-bias
sample plus the uncertainty of the T1 reconstruction
efficiency.

Internal gap covering T2: This correction takes into
account the events which could have a rapidity gap fully
covering the T2 ! range and no tracks in T1. It is estimated
from data, measuring the probability of having a gap in T1

and transferring it to the T2 region. The uncertainty takes
into account the different conditions (average charged
multiplicity, pT threshold, gap size, and surrounding
material) between the two detectors.
Central diffraction: This correction takes into account

events with all final state particles outside the T1 and T2
pseudorapidity acceptance and it is determined from simu-
lations based on the PHOJET and MBR event generators
[15,16]. Since the cross section is unknown and the uncer-
tainties are large, no correction is applied to the inelastic
rate but an upper limit of 0.25 mb is taken as an additional
source of systematic uncertainty.
Low mass diffraction: The T2 acceptance edge at j!j ¼

6:5 corresponds approximately to diffractive masses of
3.6 GeV (at 50% efficiency). The contribution of events
with all final state particles at j!j> 6:5 is estimated with
QGSJET-II-03 after tuning the Monte Carlo prediction with

TABLE IV. Summary of the measured cross sections with detailed uncertainty composition.
The " uncertainty follows from the COMPETE preferred-model " extrapolation error of
"0:007. The right-most column gives the full systematic uncertainty, combined in quadrature
and considering the correlations between the contributions.

Systematic uncertainty

Quantity Value el. t-dep el. norm inel " ) full

#tot (mb) 101.7 "1:8 "1:4 "1:9 "0:2 ) "2:9
#inel (mb) 74.7 "1:2 "0:6 "0:9 "0:1 ) "1:7
#el (mb) 27.1 "0:5 "0:7 "1:0 "0:1 ) "1:4
#el=#inel (%) 36.2 "0:2 "0:7 "0:9 ) "1:1
#el=#tot (%) 26.6 "0:1 "0:4 "0:5 ) "0:6

FIG. 1 (color). Compilation [8,20–24] of the total (#tot), in-
elastic (#inel) and elastic (#el) cross-section measurements: the
TOTEM measurements described in this Letter are highlighted.
The continuous black lines (lower for pp, upper for !pp) repre-
sent the best fits of the total cross-section data by the COMPETE
collaboration [19]. The dashed line results from a fit of the
elastic scattering data. The dash-dotted lines refer to the inelastic
cross section and are obtained as the difference between the
continuous and dashed fits.

PRL 111, 012001 (2013) P HY S I CA L R EV I EW LE T T E R S
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5 JULY 2013

012001-4

Do we understand the rise of hadron-hadron cross sections at all?

Could there always have been a HARD POMERON – is this why the effective Pomeron 
intercept is 1.08 rather than 1.00?

Does the HARD Pomeron mix in more strongly at higher energies? What about the LHC?
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FIG. 4: Predictions for the inelastic pp cross-section from model II-A (left) and Model II-O (right).

which can possibly be consistent with the total cross-section band in [27]. We show this

analysis in Fig. 4.

We combine the results of Fig. 4 in Fig. 5. In this figure, using both Model II-A and

Model II-O to constrain the low energy behaviour, we indicate all the parameter sets used

to produce the bands, as well as the numerical values of interest. We see that the low energy

behaviour is of course better described by Model II-O, which fits low-energy inelastic data,

including mini-jets in the overall fit. However, a good description is also obtained from the

same low energy eikonal entering the total cross-section (Model II-A), an indication that

the two-channel eikonal model works at low energy. In this figure, for simplicity, we show

the application of Model II-O only for GRV densities. Also, to compare our choice of high

energy parameters with those used for the total cross-section, we have plotted a curve (black

line) with same ptmin = 1.15 GeV and GRV densities as in Fig. 3, but with p = 0.5, a value

which we find to give a good description of the pre-LHC inelastic data.

VI. ELASTIC, INELASTIC AND DIFFRACTION PROCESSES IN EIKONAL

MODELS

In the previous section, we have seen that, up to TeVatron energies, the two channel

model cannot accomodate both inelastic (di↵raction included) and total cross-section data

22

pre-ATLAS prediction with uncertainty 
from assumptions on mixing in of HARD 
Pomeron

if anything TOTEM results look even 
steeper

what about the Froissart bound?
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DIPOLE MODELS provide another way 
to model the transition Q2=0 to high Q2

at low x, γ* → qqbar; the
long lived (qqbar) dipole
scatters from the proton

The model by Golec-Biernat and Wüsthoff (GB&W)

increases as at small . Color
transparency.

becomes constant (saturates) at large .
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density of the partons, i.e. .
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The (or ) dependence of is moderated by
saturation. lines in the ratio plot.

dipole-proton cross section depends on relative size of the 
dipole r ~ 1/Q c.f. separation of gluons in target R0

EG. GBW (Golec-Biernat & Wusthoff),
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l-z 
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Fig. 9.22 The qq dipole model for the elastic I' p amplitude and hence for deep 
inelastic scattering. 

where as = N c D s /1f and KBFKL is the kernel of the (linear) BFKL equation. 
This equation, which has close similarities to the GLR equation above, 
describes both the production and merging of soft gluons through the 9 -+ 

gg and gg -+ 9 interactions, respectively. Through the latter, the growth 
of the cross-section is curbed and unitarity respected. 

An important question, to be discussed below, is whether there is exper-
imental evidence for any such effect within the x range accessible at HERA. 
Another prediction of the CGC concerns the rapidity distribution of parti-
cles produced at central rapidities in nucleus-nucleus collisions. In the A- A 
CM frame at rapidities close to those of the projectiles, 17beam, the shape 
of the rapidity distribution should be roughly universal and independent 
of the energy - controlled by the 'fast partons'. As the energy increases, 
particle production should increase at central rapidities, far from '17beam, 

controlled by gluons with small x or large Y = 17 - 17beam . There is evi-
dence that this so-called limiting fragmentation is indeed seen in data from 
heavy-ion collisions at RHIC (the relativistic heavy ion collider operating 
at Brookhaven) . 

9.7 Dipole models - general formalism 
Colour dipole models provide a rather general framework for studying the 
constraints of unitarity and the approach to saturation at low x. They 
are closely related to an alternative approach to the BFKL equation and 
provide a natural link between inclusive DIS and diffraction. They have 
been studied and developed by many authors, useful references relevant to 
the discussion here and containing references to the original literature are 
Forshaw et ai. (1999) and Golec-Biernat (2002) . 

The dipole model can be given a very direct physical interpretation in 
the rest frame of the proton. Consider Fig. 9.22, the virtual photon, with 
4-momentum q, splits into a qq pair in which the q takes a fraction z of 
the initial momentum and the splitting occurs a ' long' time'" 1/(mx ) 
before the pair interacts with the proton (see Problem 3 at the end of 

is general (for small x)

σ(γp) finite for real γ (F2 → 0 as Q2 → 0)
At high Q2, σ(γ*p) ~ 1/Q2 ⇒ F2 ~ flat 
BJORKEN SCALING

DIPOLE formulation of DIS

Using the same GB&W as for diffraction and VM.
Has the correct qualitative behavior.

to dependence arises from the dipole saturation
mechanism. (i.e. cross section goes flat falls like

). Recall
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tot as a function of Q2

for di↵erent values of W .
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Figure 4: Experimental data on σγ∗p from the region x > 0.01 plotted versus the scaling
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geometric scaling for total 𝞂γ*p at low x

τ is a new scaling variable, applicable at small x

can be used to define a saturation scale:

such that saturation extends to higher Q2 as x decreases

some understanding of this scaling, of saturation and of dipole models is coming from work on non-
linear evolution equations applicable at high density – Colour Glass Condensate; JIMWLK; BK

can be significant consequences for high energy cross sections EG. neutrino cross sections – also predictions for heavy ions-
RHIC, diffractive interactions – Tevatron, HERA and the LHC – even some understanding of hadronic physics

low x, x < 0.01 
all Q2

Q2 > Qs2

Q2 < Qs2INDEED, for small x, x < 0.01, σ(γ*p) depends 
only on τ, not on x,Q2 separately →
(NOT true at high x)
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