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Chapter 1

Introduction

This lecture is based on a series of lectures on QCD and Collider physics and QCD and MC given in
the years 2005 – 2014 at University Hamburg/DESY and at University of Antwerp.

The aim is to introduce the basic concepts of QCD and how this can be used for comparison
with measurements at the past and present high energy particle colliders, HERA and the LHC.
Since events produced at high energy collisions contain many particles, most of the calculations
cannot be performed analytically. Even for the calculation of integrals, numerical methods have
to be applied and for complicated multidimensional integrals the Monte Carlo method is best
suited. The basics of the MC method will be discussed in chapter 2. The basics of QCD and
the naive quark parton model will be discussed in Chapter 2, with its extension to include QCD
effects, where the parton evolution equations will be discussed.

While the basic concepts and methods did not change in the last few years, the experimental
results and the interest to understand the measurements has changed: LHC has started and the
experiments have published already within one year a large number of measurements, many of
them confirming the predictions coming from QCD or more generally from the Standard Model
of Particle Physics, but also some which came as a big surprise. During the lecture, some of those
results in the area of QCD, which were not expected, will be discussed, of course without aiming
to give here a complete interpretation, since those results are still subject to hot discussions and
further investigations.

A warning is needed here: although the lecture will cover Monte Carlo methods, it will not
be a description how to run a given Monte Carlo event generator, nor it will describe the detailed
implementation of QCD processes in Monte Carlo generators. The lectures will provide the basics
to understand the principles of Monte Carlo event simulation and basic QCD calculations.
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Chapter 2

Monte Carlo methods

The general case of a process A + B → anything to be calculated is given in fig. 2.1. A more
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Figure 2.1: General case of scattering A+B → anything

detailed figure of the process to be studied is shown in fig 2.2, where on the left side is shown
the lowest order process for jet production in hadron hadron collisions and on the right side the
process is shown including multiparton radiation, which is the subject of this lecture. It becomes
clear, that with many partons1 involved in the calculation this cannot be done analytically, and
numerical methods are needed, one of them is the Monte Carlo method.

2.1 Random Numbers
Monte Carlo method refers to any procedure, which makes use of random numbers and uses
probability statistics to solve the problem2. The Monte Carlo method was invented and developed
in the 1930’s for the calculation of nuclear decays, but nowadays is widely used in any calculation
of complicated processes for the simulation of natural phenomena, simulation of the experimental
apparatus, simulation of the underlying physics process but also in economy for risk analysis etc.

1Partons are used as a generic name for quarks and gluons
2The name comes from a saga, that the first true random numbers were obtained by recording the results of the

roulette game in the casino of Monte Carlo.
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Figure 2.2: Left: lowest order process for jet production in hadron hadron collisions. Right: Process
for jet production including multiparton radiation and hadronization

Monte Carlo methods make use of random numbers. An example of a random number is 3
or 4. There is nothing like a random number. Any number can appear to be random. Only if we
have a sequence of numbers, where each number has nothing to do with the other numbers in the
series, we can say the numbers appear to be random.

In the following we consider random numbers always only in the interval [0, 1]. In a uniform
distribution of random numbers in this interval [0, 1] all numbers have the same chance to appear,
note that 0.00000034 has the same chance to appear as 0.5.

Random numbers can be obtained by several methods:

• using a truly chaotic system like roulette, lotto or 6-49

• using a process which is inherently random

• generating ”random numbers” on a computer

Examples for random numbers obtained from chaotic processes are using atmospheric noise [1]
or using quantum physics which is intrinsically random [2].

Random numbers generated on a computer are never really random, since they always are
determined according to some algorithm [3]. They may appear random to someone, who does
not know the algorithm. The randomness of random numbers can be checked by several test,
which will be discussed later. Random numbers, which are generated on a computer are called
pseudo-random numbers. Sometime quasi-random numbers are discussed. Such random numbers are
by intention not random but are designed to be as uniform as possible in order to minimize the
uncertainties in integration procedures.

A simple random number generator (so called multiplicative congruential linear random number
generator) can be build as follows [4][p 40ff] and [5][Vol II,p 9]. From an initial number I0 we
generate a series of random numbers Rj according to:

Ij = mod(aIj−1 + c,m)

Rj =
Ij
m

(2.1)
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with a being an multiplicative and c a additive constant and m the modulus3. With this procedure
one obtains a series of number Rj in the interval (0, 1) (note that the values 0 and 1 are excluded).
This random number generator will be tested in the exercise. In fig 2.3 the correlation of 2 ran-
dom numbers is shown on the left side. The right side shows the same correlation for another
random number generator RANLUX [6–8], which will be used later in the calculations. It is obvi-
ous, that the multiplicative congruential linear random number generator produces random numbers,
which show correlations and does therefore not satisfy quality criteria for a good random number
generator; the RANLUX generator seems to be better.
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Figure 2.3: Left: correlation of two successive random numbers obtained according to 2.1. Right:
correlation of two random numbers obtained with RANLUX [8]

Several criteria on the randomness of a series of pseudo random numbers can be applied to test
the quality of the random number generator [5][Vol II,p 59]:

• statistical test (test uniformity of distribution, frequency test, equi-distribution test)
Divide the interval (0, 1) into k-subintervals with length 1/k. Count how many random
numbers fall into the k’s interval [9]. Calculate:

χ2 =
k∑
i=1

(Ni −N/k)2

N/k
(2.2)

with N random numbers Ri. If the random numbers are uniformly distributed, then Eq. 2.2
is a χ2 distribution with k − 1 degrees of freedom and should give χ2/(ndf) ∼ 1, with ndf
being the number of degrees of freedom.

• serial test (pairs of successive random numbers should be distributed in an independent
way (see fig. 2.3)). The sun comes up just about as often as it goes down, in the long run, but this
does not make its motion random [5][Vol II,p 60].
Count pairs of random numbers (Y2j , Y2j+1) = (q, r) for any 0 ≤ j ≤ n and apply a χ2 test
as above.

3the modulus function is defined as mod(i1, i2) = i1 − INT (i1/i2) · i2



10 CHAPTER 2. MONTE CARLO METHODS

• sequence up-down test
Count the number of runs, where the random numbers are increasing Yj+1 > Yj . Ex-
ample: take the sequence 1298536704 and insert vertical lines for Yj+1 > Yj , resulting in
|129|8|5|367|0|4|. Count the number of runs-up with length k. The number of runs-up and
the number of runs-down should be similar, but they should not be adjacent: often a long
run will be followed by a short one.

• gap test
Choose two numbers α, β with 0 ≤ α < β ≤ 1. Generate r + 1 random numbers. The
probability that the first r random numbers are outside (α, β) is Pr = p(1−p)r with p = β−α
being the probability for the r + 1 event to be inside (α, β).

• Random walk test
Choose 0 ≤ α ≤ 1 and generate a large number of random variables. Count how often
Yi < α and call it r. We expect a binominal distribution for r with p = α. The same test can
be performed for Yi > (1− α).

Practical criteria for random numbers can be formulated as follows [3]:

• Long period

• Repeatability
for testing and development one needs to repeat calculations. Repeatability also allows to
repeat only part of the job, without re-doing the whole.

• Long disjoint sequences
for long procedures one needs to be able to perform independent sub-calculations which can
be added later.

• Portability
not only the code should be portable but also the results should be the same, independent
on which platform the calculations are done.

• Efficiency
generation of random numbers should be fast.

To test a random number generator, a series of tests have to be performed. Even if a Random
Number generator passes all n -tests, one cannot assume that it also passes the n+ 1-test.

2.2 Statistics and Probabilities
A very good overview on statistics and probabilities is given in [4, 10], which was used for the
discussion in this chapter. In an experiment where the outcome depends on a single variable x
one can ask what is the probability to find values of x in the interval [x, x + dx]. This is given
by f(x)dx with f(x) being the probability density function p.d.f (not to be confused with the pdf
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which is used for the parton density function to be discussed later). Since we assume, there is an
experiment with some outcome, the probability to find x anywhere must be unity, that is:∫ ∞

−∞
f(x)dx = 1 (2.3)

The p.d.f has to satisfy in addition:
f(∞) = f(−∞) = 0 (2.4)

The expectation value (mean values or average value) of a function h(x) is defined as:

E[h] =

∫ +∞

−∞
h(x)f(x)dx =

∫
h(x)dG(x) =

1

b− a

∫
h(x)dx (2.5)

with f(x) being the probability density function. In the right part of the equation we used the
special case dG(x) = dx/(b − a) for a uniform distribution. In case of discrete distributions we
have:

E[h] =

∞∑
i

h(xi)f(xi) (2.6)

A special case is the expectation value of x (or the mean on the distribution)

E[x] =

∫ +∞

−∞
f(x)xdx

def
= 〈x〉 (2.7)

From the definition of the expectation value we see that E[h] is a linear operator:

E[cg(x) + h(x)] =

∫
(cg(x) + h(x)) f(x)dx

= c

∫
g(x)dx+

∫
h(x)f(x)dx

= cE[g] + E[h] (2.8)

with c being a constant. Similarly we can see that the expectation value of the expectation value
E[E[g]] is simply E[g]:

E [E[g(x)]] =

∫ (∫
g(x)f(x)dx

)
f(x′)dx′

= E[g(x)]

∫
f(x′)dx′

= E[g(x)] (2.9)

because
∫
f(x′)dx′ = 1 by definition of the p.d.f
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The variance σ2 measures the spread of a distribution and can be defined as the mean quadratic
deviation from the mean value. The square-root of σ2 is also called the standard deviation. The
variance V [h] is defined as:

V [h] = σ2 = E
[
(h(x)− E[h(x)])2

]
=

∫
(h(x)− E[h(x)])2 f(x)dx (2.10)

From the definition, the variance V [cg(x) + h(x)] can be calculated:

V [cg(x) + h(x)] =

∫
(cg(x) + h(x)− E[cg(x) + h(x)])2 f(x)dx

=

∫
(cg(x) + h(x)− cE[g(x)]− E[h(x)])2 f(x)dx

=

∫
((c(g − E[g]) + (h− E[h]))2 f(x)dx

=

∫ (
c2(g − E[g])2 + 2c(g − E[g])(h− E[h]) + (h− E[h])2)

)
f(x)dx

= c2V [g] + 2cE[(g − E[g])(h− E[h])] + V [h]

= c2V [g] + V [h] + 2cE[g · h− gE[h]− hE[g] + E[g]E[h]]

= c2V [g] + V [h] + 2c (E[g · h]− E[g]E[h]− E[h]E[g] + E[g]E[h])

V [cg(x) + h(x)] = c2V [g] + V [h] + 2c (E[g · h]− E[g]E[h]) (2.11)

In the case that g(x) and h(x) are uncorrelated, we have E[g · h] = E[g]E[h] and the expression
simplifies to:

V [cg(x) + h(x)] = c2V [g] + V [h] (2.12)

A special case is the variance of x:

V [x] = E
(
(x− 〈x〉)2

)
=

∫
(x− E[x])2 f(x)dx

= E
[
x2 − 2x〈x〉+ 〈x〉2

]
= E[x2]− 2E[x]〈x〉+ 〈x〉2

V [x] = E[x2]− 〈x〉2

V [x] = E[x2]− E[x]2 (2.13)

where the relation E[x] = 〈x〉 has been applied.
Consider independent random numbers x1 and x2 with variances V [x1] = σ2

1 and V [x2] = σ2
2

and mean values µ1 and µ2. The expectation value of the sum of x1 and x2 is:

E[x1 + x2] = E[x1] + E[x2]

= µ1 + µ2 (2.14)
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The variance of the sum is (using x = x1 + x2):

σ2 = 〈x− 〈x〉〉
= E[(x− 〈x〉)2]

= E[(x− µ1 − µ2)2]

= E[(x− µ1 + x2 − µ2)2]

= E[(x1 − µ1)2︸ ︷︷ ︸
σ2
1

+2 (x1 − µ1)(x2 − µ2)︸ ︷︷ ︸
0

+ (x2 − µ2)2︸ ︷︷ ︸
σ2
2

]

σ2 = σ2
1 + σ2

2 (2.15)

because E[x1] = µ1, since x1 and x2 are independent. The general form is then:

σ2 =

N∑
i=1

σ2
i (2.16)

Consider now a sample of xi where all xi follow the same probability density function f(x),
having the same variance σ2 and the same µ. The mean of the sample is defined as:

x̄ =
1

N

N∑
i=1

xi (2.17)

The expectation value E[x̄] is given by:

E[x̄] = E

[
1

N

N∑
i=1

xi

]

=
1

N
E

[
N∑
i=1

xi

]

=
1

N
NE[xi]

E[x̄] = E[x] = 〈x〉 (2.18)

resulting in the expectation value of the mean being the mean itself. To obtain above, the features
of the linearity of the operator are applied.

The variance of the mean is:

V [x̄] = V

[
1

N

N∑
i=1

xi

]

=
1

N2
V
[∑

xi

]
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=
1

N2

∑
σ2
i

=
1

N2
Nσ2

V [x̄] =
1

N
σ2 (2.19)

or in the familiar form as the standard deviation of the mean:

σN =
σ√
N

(2.20)

2.3 Random Numbers from arbitrary distributions
Given a sequence of random numbers uniformly distributed in [0, 1] the next step is to determine
a sequence of random numbers x1, x2 . . . distributed according to a probability density function
p.d.f.

The task is to find a suitable function x(r) which gives the same sequence of random numbers
when evaluated with uniformly distributed values r. The probability to obtain a value r in the
interval [r, r+dr] is u(r)dr and this should be equal to the probability to find x in [x, x+dx] which
is f(x)dx (see fig 2.4):

u(r′)dr′ = f(x′)dx′∫ r

−∞
u(r′)dr′ =

∫ x

−∞
f(x′)dx′

(2.21)

Using a random number R uniform in [0, 1] with R =
∫ r
−∞ u(r′)dr′ we obtain:

R =

∫ x

−∞
f(x′)dx′ = F (x)

with f(x) = dF (x)
dx being the probability density function p.d.f (as defined before) with:∫ ∞

−∞
f(x)dx = 1

f(∞) = f(−∞) = 0

Examples (assuming we have random numbers Rj uniformly distributed in [0, 1]):

• linear p.d.f: f(x) = 2x.
The primitive function F (x) is:

F (x) =

∫ x

0
f(t)dt =

∫ x

0
2tdt = x2

R = F (x) = x2

xj =
√
Rj
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Figure 2.4: Illustration of a(r)dr = f(x)dx. Picture from [4] [p14]

For any uniformly distributed random numbers Rj , the xj values are distributed according
to the function f(x) = 2x, when calculated as xj =

√
Rj

• exponential p.d.f: f(x, λ) = λ exp(−λx).
The primitive function F (x) is:

F (x) =

∫ x

0
f(t)dt =

∫ x

0
λe(−λt)dt = λ

−1

λ
e(−λt)

∣∣∣∣x
0

= 1− e−λx

−R+ 1 = e−λx

log(1−R) = −λx

xj =
−1

λ
log(Rj)

The values xj can be generated from a uniform distribution of random numbersRj with xj =
−1
λ log(1−Rj) = −1

λ log(Rj) since for a uniform distribution the probability of occurrence of
1−Rj is the same as for Rj

• p.d.f: f ′(x) = 1/x in the range [xmin, xmax]
The normalization integral is: ∫ xmax

xmin

1

t
dt = log

xmax
xmin

(2.22)
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Since this function f ′(x) is not normalized to unity, the normalization factor has to be in-
cluded:

f(x) =
f ′(x)

log xmax
xmin

=
1

x

1

log xmax
xmin

(2.23)

The primitive function F (x) is then:

F (x) =

∫ x

xmin

f(t)dt

=
1

log xmax
xmin

∫ x

xmin

1

t
dt =

1

log xmax
xmin

log
x

xmin

R =
log x

xmin

log xmax
xmin

log

(
xmax
xmin

)R
= log

(
x

xmin

)
(2.24)

The values xj can be generated from a uniform distribution of random numbers Rj with

xj = xmin

(
xmax
xmin

)Rj
.

• brute force or hit and miss method:
If there is no easy way to find an analytically integrable function, which can be inverted one
can use the hit-and-miss method. Assume we want to generate random numbers according
to a function f(x) in the interval [a, b]. The procedure is then the following: determine the
maximum value, the function f(x) can reach in [a, b], which is fmax. Then select xi uniformly
in the range [a, b] with xi = a+ (b− a)Ri with Ri in (0, 1). Use another random variable Rj
also in (0, 1). Decide according to the following, if the pair Ri, Rj of random numbers is
accepted or rejected.

if f(xi) < Rj · fmax  reject
if f(xi) > Rj · fmax  accept

The accepted random numbers xi follow then exactly the distribution of the function f(x).
The only disadvantage of this method is, that depending on the function f(x), it can be
rather inefficient.

• improvements of the hit and miss method.
Find a function g(x) which is similar to f(x) but which is integrable and invertible, i.e.
G(x) =

∫
g(x)dx and G−1(x) must exist. Then choose a constant such that always c · g(x) >

f(x) for all x. Generate x according to the function g(x) with the methods described above.
Generate another random variable Rj and apply the hit and miss method as above:

if f(xi) < Rj · c · g(x)  reject
if f(xi) > Rj · c · g(x)  accept

The accepted distribution of variables xi will follow the original function f(x).
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2.4 Law of Large Numbers and Central Limit Theorem
The law of large numbers is fundamental for all the considerations above [4,10,11]. The law says,
that for uniformly distributed random values ui in the interval [a, b] the sum of the probability
density functions converges to the true estimate of the mean of the function f(x):

1

N

N∑
i=1

f(ui) 
1

b− a

∫ b

a
f(u)du (2.25)

The law of large numbers has been applied in the sections before implicitly. The function f(x)
must satisfy certain conditions: it must be integrable, and it must be finite in the whole range of
[a, b]. The left hand side of eq.(2.25) is just a Monte Carlo estimate of the integral on the right hand
side and the law of large numbers says that the Monte Carlo estimate of the integral is a consistent
estimate of the true integral as the size of the random sample becomes large. At this stage, nothing
is said, how large ”large” has to be.

The law of large numbers tells that for infinitely large numbers the Monte Carlo estimate of the
integral converges to the true estimate of the integral. The Central Limit Theorem tells us how the
convergence goes for finite number of N . The Central Limit Theorem says that the sum of a large
number of random variables follows a normal distribution (that is the sum of random variables
is Gauss distributed) no matter according to which p.d.f the individual random variables were
generated, only the number N must be large enough and the random variables must have finite
expectation values and variances. An example of the application of the Central Limit Theorem
is the construction of a Random Number generator for Gaussian distributed random numbers,
which will be done in the exercises:

• take a sum of uniformly distributed random numbers Ri:

Rn =

n∑
i=1

Ri

The expectation value and the variance are calculated according to the rules in eq.(2.8,2.11):

E[R1] =

∫
udu =

1

2

V [R1] =

∫ (
u− 1

2

)2

du =
1

12

E[Rn] =
n

2

V [Rn] =
n

12

According to the Central Limit Theorem the sum of random values is Gauss distributed. To
obtain a distribution centered around 0 with σ = 1 we take:∑

i xi −
∑

i µi√∑
i σ

2
i

→ N (0, 1)
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For example we sum n = 12 random numbers (many times N → ∞) and we obtain a
”normal” (Gauss) distribution N [11]:

N (0, 1)→ Rn − n/2√
n/12

= R12 − 6

2.5 Monte Carlo Integration
Already in the previous sections we had to deal with the problem to obtain a reliable estimate of
the true value of an integral [9]:

I =

∫ b

a
f(x)dx

The integral I is directly connected to the expectation value of the function f(x) with the x values
distributed according to a probability density function g(x).

E[f ] =

∫ ∞
−∞

f(x)g(x)dx

where the p.d.f. g(x) must be defined such, that it vanishes outside the range of (a, b). In the case
of uniformly distributed x this reduces to g(x) = 1/(b− a) for a < x < b (and g(x) = 0 otherwise)
which gives:

E[f ] =

∫ ∞
−∞

f(x)g(x)dx =
1

b− a

∫ b

a
f(x)dx

The Monte Carlo estimate of the integral is then:

I ≈ IMC = (b− a)
1

N

N∑
i=1

f(xi) (2.26)

and the variance is:

V [IMC ] = σ2
I = V

[
(b− a)

1

N

N∑
i=1

f(xi)

]
(2.27)

=
(b− a)2

N2
V

[
N∑
i=1

f(xi)

]
(2.28)

=
(b− a)2

N
V [f ] (2.29)

The variance depends on the number of times the integrand is evaluated, but also on the variance
of f : V [f ].
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Applying the definition of the variance eq.(2.11), the variance V [f ] becomes (with f̄ =
∫
fdx =

1/N
∑
fi and assuming g(x) being uniform):

V [f ] =

∫
(f − f̄)2gdx =

∫
(f2 − 2ff̄ + f̄2)gdx (2.30)

=

∫
f2gdx− f̄2 (2.31)

=
∑ f2

i

N
−
(∑

fi
N

)2

(2.32)

(2.33)

Then the V [I] becomes:

V [I] =
1

N
(b− a)2

(
1

N

∑
f2
i −

(∑
fi

N

)2
)

With this we can estimate the uncertainty of a Monte Carlo integration (use this in the exercises).
The Monte Carlo integration gives a probabilistic uncertainty band: we can only give a proba-

bility that the MC estimate lies within a certain range of the true values [3].
To further improve the accuracy of the Monte Carlo integration, several approaches exist:

• importance sampling
If an approximate function g(x) exists then the integral I can be estimated to:

I =

∫ b

a
f(x)dx =

∫ b

a

f(x)

g(x)
g(x)dx

=

∫
h(x)g(x)dx

= E

[
f(x)

g(x)

]
provided g(x) is normalized and integrable in [a, b]. Thus the integration reduces to calcu-
lating the expectation value of E[f/g], if the values of x are distributed according the p.d.f
g(x). The values of x can be generated according to the methods discussed in the previous
sections and we obtain:

I =
1

N

∑ f(xi)

g(xi)
(2.34)

We assume that g(x) is a p.d.f normalized to 1 in the integration range. For example using
g(x) = (1/x)1/ log

(
xmax
xmin

)
(see eq.(2.23)) gives then:

I =
log
(
xmax
xmin

)
N

∑ f(xi)
1
xi

. (2.35)
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The variance is then given by:

V

[
f(x)

g(x)

]
= E

[(
f(x)

g(x)
− E

[
f(x)

g(x)

])2
]

(2.36)

A danger in this method is when g(x) becomes zero or approaches zero quickly [3].

• subtraction method (control variates) [3]
Find a function g(x) which is close to the true function f(x):∫ b

a
f(x)dx =

∫ b

a
g(x)dx+

∫ b

a
(f(x)− g(x)) dx

This method also reduces the variances and is especially successful if the function f(x) has
a divergent part. This method is often used in NLO QCD calculations.

• stratified sampling
divide the integration region into subintervals:∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx (2.37)

Then the integral is:

I =
c− a
n/2

∑
1

fi +
b− c
n/2

∑
2

fi (2.38)

with the variance (if we take c− a = b− c = (a− b)/2):

V [I] = V [I1] + V [I2]

=
(b− a)2

N

(∑
1 f

2
i

N
+

∑
2 fi
N

− 2

[(∑
1 fi
N

)2

+

(∑
2 fi
N

)2
])

We obtain a smaller variance, since the fluctuations in each interval are smaller.

• brute force method
The accept-reject method also works for MC integration. Defining I0 as the area in [a, b] and
fmax as the maximum of the function f(x) in this range. With a random number Ri we
generate xi and another random number Rj is used to accept or reject the pair of random
numbers i, j according to:

if f(xi) < Rj · fmax  reject
if f(xi) > Rj · fmax  accept
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We count the number of trails with N0 and the number of accepted events with N . Then we
obtain:

I =

∫ b

a
f(x)dx

= I0
N

N0

The variance V [r] = (δ(N))2 = σ2 is (using binomial statistics with E[r] = N0P and V [r] =
N0P (1− P ) with P = N/N0):

V [r] = N(1− P )

With this we can calculate the uncertainty of the integral estimate δ(I) as:

δI

I
=

I0σ/N0

I0N/N0
=

√
N(1− P )

N2
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Chapter 3

Probing the Structure of Matter

The force that keeps matter together is the strong force which is described by the theory of Quan-
tum Chromo Dynamics (QCD). Basically everything is included in the QCD Lagrangian, which
describes the non-abelian nature of QCD.

Probing the structure of matter is in analogy to optics: to resolve objects the wavelength λ of
the probe has to be smaller than the size d of the target: λ < d. In all calculations below we assume
natural units: ~ = c = 1.

For an introduction to the standard model see [12]. Calculations of QCD processes (including
all the details for the calculation) are described nicely in [13]. A theoretical description and a
discussion on parton showers and Monte Carlo generators is in the Pink Book [14]. A detailed
discussion on parton evolution is given in [15].

3.1 Kinematics and Cross Section definition
3.1.1 Four-Vector Kinematics

Four-vectors are used to characterize fully the state and the motion of a particle.

(E,p)
def
= (p0, p1, p2, p3) = pµ

def
= p (3.1)

A four-vector is defined in a specific frame. Boost (or Lorentz-) invariant quantities can be defined
from four-vectors. The simplest example is the invariant mass of a particle defined as:

E2 − p2 = m2 (3.2)

Products of four-vectors are Lorentz invariant. The four-vector product is defined as:

A.B
def
= A0B0 −AB (3.3)

In the collision of two particles, p1 and p2 the invariant mass of the system is given by:

s = (P1 + P2)2 = P 2
1 + P 2

2 + 2P1.P2

= M2
1 +M2

2 + 2(E1E2 − ~P1
~P2) (3.4)

23
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In the center-of-mass of the two colliding particles we have |~P1| = |~P2|. Assuming M1 = M2 we
get:

s = (P1 + P2)2 = 2M2 + 2(E2 + P 2) (3.5)

with M = M1 = M2, E = E1 = E2 and P = |~p1| = |~p2|. In the case of E �M we obtain:

s = (P1 + P2)2 = 4E2
b = E2

cm (3.6)

with Eb being the beam energy and Ecm being the center-of-mass energy.
At LHC the energy of the colliding protons was at start up Eb = 450 GeV giving a center-of-

mass energy of
√
s = 900 GeV, at present the energy of each proton beam is Eb = 3500 GeV giving

a center-of-mas energy of
√
s = 7 TeV, the highest energy achieved in a collider.

If one of the colliding particles is at rest (P2 = (M,~0), in a so-called fixed-target experiment, the
energy available in the collision is (assuming the mass of the other particle to be small M1 = 0):

s = (P1 + P2)2 = M2 + 2E ·M (3.7)

In a fixed-target experiment with a muon beam of E = 280 GeV colliding with protons at rest, the
available center-of-mass energy squared was s = (P1+P2)2 ≈ 560 GeV2 which gives

√
s = 24 GeV.

At HERA, a electron-proton collider at DESY, electrons with an energy of Ee = 27 GeV were
collided with protons of energy of Ep = 920 GeV yielding

√
s ≈ 315 GeV.

3.1.2 Light Cone Variables

Some calculations become easier and the results are easier understood when using so-called light-
cone variables instead of the Cartesian variables (see for a description and discussion [16]). Any
four-vector defined as:

V = (V 0, V 1, V 2, V 3) = (V 0, V⊥, V
3)

with V⊥ being a two-component vector, can be changed to its lightcone representation:

V + =
1√
2

(
V 0 + V 3

)
(3.8)

V − =
1√
2

(
V 0 − V 3

)
(3.9)

V⊥ = (V 1, V 2) (3.10)

We also have:

V 0 =
1√
2

(
V + + V −

)
(3.11)

V 3 =
1√
2

(
V + − V −

)
(3.12)

(3.13)
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From the definition of a four-vector product in eq.(3.3) we obtain for two four-vectors V and W :

V.W = V +W− + V −W+ − V⊥W⊥ (3.14)
V.V = 2V +V − − V 2

⊥ (3.15)

The light-cone components transform simpler under boosts along the z-axis: only the V ± compo-
nents are affected under the boost. When a vector is highly boosted, the light-cone variables show
easily the large and small components.

Sometimes, the light-cone variables are used to define the Sudakov decomposition: p = p+ +
p− + kt where here p± and kt have four components. Let us consider the following example to
calculate the invariant mass of two colliding particles with momenta p1 = p+

1 + p−1 + kt1 and
p2 = p+

2 + p−2 + kt2 with

p+
1 = (p+

1 , 0
−,~0)

p−1 = (0+, p−1 ,
~0)

kt1 = (0+, 0−,~kt1)

and analogously for p2. The invariant mass s = (p1 + p2)2 is then :

s = (p+
1 + p+

2 + p−1 + p−2 + kt1 + kt2)2

= 2(p+
1 + p+

2 )(p−1 + p−2 ) + (kt1 + kt2)2

= 2p+
1 p
−
2

where the last line was obtained since p−1 = p+
2 = 0 and ~kt1 = −~kt2.

Lorentz boost appear very simple in terms of lightcone variables. The boosted vector V
′0 and

V
′3 are defined as (with a boost along the z axis with velocity v) :

V
′0 =

V 0 + vV 3

√
1− v2

(3.16)

V
′3 =

vV 0 + V 3

√
1− v2

(3.17)

V
′1 = V 1 (3.18)

V
′2 = V 2 (3.19)

Then we can calculate the boosted lightcone components:

V
′+ =

1√
2

V 0 + vV 3 + vV 0 + V 3

√
1− v2

(3.20)

=
1√
2

(V 0 + V 3)(1 + v)√
1− v2

(3.21)

=
1√
2

√
(1 + v)(1 + v)

(1− v)(1 + v)

(
V 0 + V 3

)
(3.22)

=
1√
2

√
(1 + v)

(1− v)

(
V 0 + V 3

)
(3.23)
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and similarly for V
′− with

V
′− =

1√
2

√
(1− v)

(1 + v)

(
V 0 − V 3

)
(3.24)

Defining

ψ =
1

2
log

1 + v

1− v
one obtains

eψ = e
1
2

log 1+v
1−v =

√
1 + v

1− v
and thus

V
′+ = V +eψ (3.25)

V
′− = V −e−ψ (3.26)

Consider a particle at rest with
prest = (

m√
2
,
m√

2
, 0)

which is obtained from p = (m, 0, 0) in Cartesian coordinates. In a moving frame the momentum
becomes:

p′ = (p
′+, p

′−, 0) =

(
m√

2
eψ,

m√
2
e−ψ, 0

)
with

p
′+

p′−
= e2ψ

 log
p
′+

p′−
= 2ψ

we obtain the expression for rapidity:

ψ = y =
1

2
log

p
′+

p′−
(3.27)

3.1.3 Cross Section definition

In general the cross section of the scattering of two particles p1 and p2 with massesm1 andm2 into
any number of final state particles pi is defined as:

dσ =
1

flux
· dLips · |M |2
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where |M |2 is the squared matrix element, which contains the physics, flux is the flux of the
incoming particles defined as:

flux = 4
√

(p1p2)2 −m2
1m

2
2 (3.28)

and dLips is the Lorentz-invariant-phase-space defined as

dLips = (2π)4δ4

(
−p1 − p2 +

∑
i

pi

)∏
i>2

d4pi
(2π)3

δ
(
p2
i −m2

i

)
(3.29)

= (2π)4δ4

(
−p1 − p2 +

∑
i

pi

)∏
i>2

d3pi
(2π)32Ei

(3.30)

= (2π)4δ4

(
−p1 − p2 +

∑
i

pi

)∏
i>2

1

(2π)3

dp+
i

p+
i

d2pt i (3.31)

The cross section for a 2 → 2 process of p1 + p2 → p3 + p4 can be then written as (for massless
incoming particles) :

dσ

dt
=

1

16π

1

s2
|M |2 (3.32)

If one particle has mass, like the virtual photon with virtual massQ2, then the formula is modified
to (for p2

1 = −Q2) :

dσ

dt
=

1

16π

1

s+Q2

1

s
|M |2 (3.33)

with s, t being the Mandelstam variables:

s = (p1 + p2)2 = (p3 + p4)2 (3.34)
t = (p1 − p3)2 = (p2 − p4)2 (3.35)
u = (p1 − p4)2 = (p2 − p3)2 (3.36)

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 (3.37)

3.2 The Quark Parton Model
In analogy to optics, photons can be used to probe the structure of matter. In Quantum Theory
every particle has a particular wave-length, so any particle with a small enough wave-length can
be used as a probe to measure the structure of a target: photons from electron or muons, W/Z
bosons and also jets produced in high energy collisions can be used to extract information on the
colliding hadrons.

In the following the structure of the proton as tested in Deep Inelastic Scattering (DIS) of elec-
trons (or muons) on a proton target (fig. 3.1) will be discussed. The following invariant quantities
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γ

p

q

e
e’

Figure 3.1: General diagram for DIS scattering e+ p→ e′ +X

can be defined (here the electron four-vector is denoted with e, the scattered electron with e′ and
the proton four vector with p):

s = (e+ p)2 (3.38)

q2 = (e− e′)2 def
= −Q2 (3.39)

y =
p.q

p.e
(3.40)

xBj =
Q2

2p.q
(3.41)

If we neglect the electron and proton masses, then we obtain:

Q2 = x · y · s (3.42)
W 2 = (q + p)2 = −Q2 + 2q.p

= −Q2 + y s = −Q2 +
Q2

x
(3.43)

where the photon-(γ) four-vector is q. The ”invariant mass” (or vrituality) of the photon is given
by Q2 = −q2, the ”energy” of the photon is given by y which reduces to y = 1 − E′/E in the
proton rest frame with E (E′) being the energy of the electron (scattered electron) in the proton
rest frame. The quantity xBj is called x-Bjorken after its inventor James Bjorken in 1969 [17]. Please
note, that in the quark parton model (QPM) xBj can be associated with the momentum fraction
the quark takes of the proton momentum (as we will discuss later). This interpretation is only true
in the QPM in DIS, not if higher orders are included nor in hadron-hadron scattering.

Deep inelastic scattering is defined by:

Q2 � m2
p deep

W 2 � m2
p inelastic

where mp is the proton mass.
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The general form of the cross section in DIS is given by (see [12, 14]):

dσ ∼ LeµνWµν (3.44)

with the leptonic Lµνe and hadronic Wµν tensors given by:

Lµνe =
1

2
Tr((/e′ +m)γµ(/e+m)γν) (3.45)

Wµν = −W1g
µν +

W2

M2
pµpν +

W4

M2
qµqν +

W5

M2
(pµqν + qµpν) (3.46)

where the structure functions Wi are introduced to parametrize the ignorance about the details of
the structure of the proton. On very general grounds, assuming current conservation and symme-
tries only two out of the five structure functions W are independent (for unpolarized scattering).
After a bit of algebra and rewriting using W1 = F1 and νW2 = F2 with ν = Q2+W 2−M2

2M , we obtain
the master formula for DIS scattering [14][p 89] :

dσ

dxdQ2
=

4πα2

Q4

[(
1 + (1− y)2

)
F1 +

(1− y)

x
(F2 − 2xF1)

]
=

2πα2

xQ4

[(
1 + (1− y)2

)
F2 −

y2

2
FL

]
(3.47)

where in the second line the longitudinal structure function FL = F2− 2xF1 is introduced. In case
of purely transverse polarized photon interactions the Callan-Cross relation gives F2 = 2xF1. The
structure functions F1, F2 and FL are what can be measured in experiment and what will be the
subject in the following sections.

The early measurements of Deep Inelastic Scattering lead to the interpretation of the structure
function F2 in terms of the quark-parton model (QPM) where the proton is seen as composed of
objects, the quarks and gluons (generically called partons). Inelastic scattering is interpreted as
a incoherent superposition of scatterings on the individual partons. These partons (quarks) are
supposed to be quasi-free such that any interaction between them can be neglected. A very nice
and understandable discussion of this is in the original article by J. Bjorken and E. Paschos [17].

Whether the partons can be regarded as free during the interaction can be estimated by calcu-
lating the interaction and fluctuation time in DIS scattering (as done in the original paper [17]). If
the interaction time τi is small compared to the fluctuation time τf in which a particle can fluctuate
into partons, then the partons can be considered as free.

Assume scattering at large energies in the center-of-mass frame of the electron-proton system,
where the electron mass can be neglected (see fig 3.2).

The proton splits into two partons q1 and q2 with momentum fractions x of the proton momen-
tum P = (Ep, ~p):

q1 = xP

q2 = (1− x)P
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q

q

γ

Figure 3.2: The proton in the high energy center-of-mass frame (or in the infinite momentum
frame) looks like a pancake. The interaction time is small compared to the time where a parton
can fluctuate into others (qq).

The electron has four-momentum e = (Ep, ~p) and the photon has momentum q = e − e′ with
e′ being the four momentum of the scattered electron. We now calculate the interaction time
τi = 1/∆Eelectron = 1/Ephoton. From energy momentum conservation we get e′ = e− q and

e′2 = (e− q)2 = e2 − 2e.q + q2

Since e2 = e′2 = m2
e → 0 we obtain with Q2 = −q2

0 = −2e.q −Q2

and

Q2 = −2e.q = −2 (EγEp + ~pp~q) (3.48)

where we have used the relations Ee = Ep (for mp = m0 = 0) and ~pp = −~pe valid in the center-of-
mass frame. Using x = Q2/(2p.q) we obtain:

p.q = EγEp − ~pp~q
Q2

2x
= EγEp − ~pp~q

~pp~q = −Q
2

2x
+ EγEp

Inserting this into eq.(3.48) we obtain:

Q2 = −2EγEp +
2Q2

2x
− 2EγEp (3.49)

 Q2

(
1− 1

x

)
= −4EγEp (3.50)

 Eγ = −
Q2
(
1− 1

x

)
4Ep

(3.51)
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The next step is to calculate the fluctuation time ∆Eqq which is the energy of the qq pair.

∆Eqq = E1 + E2 − Ep

With q1 = (E1,~kt, xP ) and q2 = (E2,−~kt, (1− x)P ) using
√

1 + x ≈ 1 + (1/2)x+ · · ·we obtain:

E1 =
√

(xP )2 + k2
t = xP

√
1 +

k2
t

(xP )2

≈ xP

(
1 +

1

2

k2
t

(xP )2
+ · · ·

)
E2 =

√
((1− x)P )2 + k2

t = (1− x)P

√
1 +

k2
t

((1− x)P )2

≈ (1− x)P

(
1 +

1

2

k2
t

((1− x)P )2
+ · · ·

)

Inserting the above into the expression for ∆Eqq

∆Eqq = E1 + E2 − Ep

= xP +
1

2

k2
t

xP
+ (1− x)P +

1

2

k2
t

(1− x)P
− P

=
1

2

(1− x)k2
t + xk2

t

x(1− x)P

=
1

2

k2
t

x(1− x)P

With

τf =
1

∆Eqq
=

2x(1− x)P

k2
t

≈ 2xP

k2
t

(3.52)

τi =
1

∆Eee′
=

4P

Q2
(

1−x
x

) ≈ 4xP

Q2
(3.53)

where the last approximation is done for x� 1. We now have:

τinteraction
τfluctuation

≈ 4xP

Q2

k2
t

2xP
=

2k2
t

Q2
(3.54)

Thus for small kt with k2
t � Q2 the interaction time is much smaller than the fluctuation time, and

the partons can be considered as frozen and therefore behave as free partons.
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3.3 Cross Section in DIS
In the previous section we have seen that the partons inside the proton can be considered free as
long as transverse momentum squared k2

t is small compared to Q2.
In the following we calculate the cross section for eP → e′X from the partonic cross section

epq → e′p′q with pq being the four-momentum of any type of quark with momentum fraction ξ
such that pq = ξP . The Mandelstam variables are then:

ŝ = (e+ pq)
2 = 2e.pq (3.55)

û = (pq − e′)2 = −2pqe
′ (3.56)

t̂ = (e− e′)2 = −Q2 (3.57)
(3.58)

The matrix element squared for epq → e′p′q is [12][p 124]:

|M |2 = 2e2
q(4πα)2 ŝ

2 + û2

t̂2
(3.59)

with eq being the electric charge of the parton. Using the DIS variables (see eq.(3.38)) with q = e−e′
gives:

y =
q.P

e.P
=
q.pq
e.pq

= 1− e′.pq
e.pq

= 1 +
û

ŝ
(3.60)

The matrix element can then be expressed as:

|M |2 = 2e2
q(4πα)2 1

Q4

(
ŝ2 + ŝ2(y − 1)2

)
(3.61)

= 2e2
q(4πα)2 ŝ

2

Q4

(
1 + (1− y)2

)
(3.62)

With this we obtain the cross section:
dσ

dt̂
=

dσ

dQ2
=

1

16πŝ2
|M |2 (3.63)

=
2e2
q(4πα)2ŝ2

16πŝ2

1

Q4

(
1 + (1− y)2

)
(3.64)

=
(
2πα2e2

q

) 1

Q4

(
1 + (1− y)2

)
(3.65)

Before we compare this expression to the cross section for DIS in eq.(3.47) we investigate the
meaning of ξ. Using the mass-shell condition (the quarks are assumed to be massless) we obtain:

p
′2
q = (pq + q)2 = q2 + 2pq.q + p2

q (3.66)

= −Q2 + 2pq.q = −Q2 + 2ξP.q (3.67)
= −2P.q · x+ 2ξP.q (3.68)
= −2P.q(x− ξ) (3.69)
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thus we obtain for massless partons p2
q = p

′2
q = 0 that x = ξ. Using∫
dxδ(x− ξ) = 1

we can rewrite eq.(3.65) as:

dσ2

dxdQ2
=

(
4πα2

) 1

Q4

(
1 + (1− y)2

)
e2
q

1

2
δ(x− ξ) (3.70)

Now we can compare eq.(3.70) with eq.(3.47) and find:

F̂1 =
1

2
e2
qδ(x− ξ) (3.71)

F̂2 = 2xF̂1 = xe2
qδ(x− ξ) (3.72)

Thus the structure function F̂2 gives the probability to find a quark with momentum fraction
x = ξ.

However, measurements have shown that the structure function F2 is not a delta function
but rather a distribution, telling that the partons inside the proton carry a range of momentum
fractions. Thus we are forced to introduce a distribution q(ξ)dξ which represents the probability
to find a quark that carried a momentum fraction ξ in the range ξ and ξ + dξ within 0 ≤ ξ ≤ 1.

The proton structure functions Fi are obtained by weighting the quark structure functions F̂i
with the probability density functions q(ξ):

F2(x) = 2xF1(x) =
∑
q,barq

∫
dξq(ξ)x · e2

qδ(x− ξ) (3.73)

=
∑
q,q̄

e2
qxq(x) (3.74)

Since there are different quark species in the proton, the electromagnetic structure function as
obtained by scattering a charged lepton on a proton is:

F em2 (x) = x

[
4

9
(u+ ū+ c+ c̄) +

1

9
(d+ d̄+ s+ s̄+ b+ b̄)

]
(3.75)

with u, ū, ... being the quark (antiquark) density functions.
Since the proton is build from two uv-type and one dv-type valence quarks, one can define the

following sum rules: ∫ 1

0
dx uv(x) = 2 (3.76)∫ 1

0
dx dv(x) = 1 (3.77)
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However it was found from experiment that the momentum sum over all quarks gives only about
50 % of the proton momentum:

∫ 1
0 dx x

∑
i qi(x) ∼ 0.5 (note the relation to expectation values as

discussed in the first chapter). If the QPM picture is correct, the remaining 50 % of the proton
momentum is carried by partons other than the quarks, namely the gluons, such that∫ 1

0
dx x [all pdfs] = 1 (3.78)

The momentum sum rules are subject of the exercises.
In fig. 4.1 the measurement of F2(x,Q2) as a function of Q2 obtained at HERA [18] is shown.

In fig. 4.2 F2(x,Q2) as a function of x is shown. In fig. 3.5 the parton density functions for quarks
and gluons as obtained from the measurement of F2(x,Q2) is shown.

The measurements show, that the structure function F2 depends also on Q2, which is not pre-
dicted in the simple QPM. These scaling violations are subject of the next sections.

3.4 The photon-proton cross section
The cross section for e+ pq → e′+ p′q can be separated into two parts: the part at the lepton vertex
and the part at the quark vertex. In the following we calculate the cross section for γ∗pq → p′q. The
matrix element for γ∗pq → p′q can be found in [12][section 10.2]:

|M |2 = 2e2
qe

2pq.q

= 8παe2
qpq.q

with α = e2/(4π). We introduce

z =
Q2

2q.pq
(3.79)

The cross section is then:

σ =

∫
1

flux
dLips |M |2 (3.80)

= 2παe2
q · 2πδ((pq + q)2) (3.81)

= 2παe2
q · 2πδ(2pq.q(1− z)) (3.82)

=
4π2α

2pq.q
e2
qδ(1− z) (3.83)

where we have used z = Q2/(2q.pq) and for the flux:

flux = 4
√

(pq.q)2 −m2
1m

2
2 (3.84)

= 4pq.q (3.85)
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and for dLips using (q + pq)
2 = −Q2 +Q2/z:∫

dLips = (2π)4

∫
δ4(−pq − q + p′q)

d4p′q
(2π)3

δ(p
′2
q −m2

q′) (3.86)

= 2πδ(p
′2
q ) (3.87)

= 2πδ((pq + q)2) (3.88)

We now compare full expression for e+pq → e′+p′q as given in eq.(3.70) with the cross section
for γ∗pq → p′q of eq.(3.83):

dσ2

dxdQ2
=

(
4πα2

) 1

Q4

(
1 + (1− y)2

)
e2
q

1

2
δ(x− ξ) (3.89)

=
α

2πQ2

(
1 + (1− y)2

) 4π2α

Q2
e2
q

1

ξ
δ

(
x

ξ
− 1

)
(3.90)

=
α

2πQ2

(
1 + (1− y)2

) 4π2α

Q2
e2
q

z

x
δ (z − 1) (3.91)

=
α

2πQ2x

(
1 + (1− y)2

) 4π2α

2pq.q
e2
qδ (1− z) (3.92)

=
α

2πQ2x

(
1 + (1− y)2

)
σ0(z)e2

qδ (1− z) (3.93)

where we have used zξ = x with x = Q2/(ys). With the Jacobean δx
δy = x

y we obtain:

dσ2

dydQ2
=

dσ2

dx dQ2

δx

δy
=

α

2πQ2y

(
1 + (1− y)2

)
σ0(z)e2

qδ (1− z) (3.94)

We have now separated the photon flux Fγ(y,Q2) from the hadronic interaction. This is also called
the equivalent photon approximation:

dσ2

dydQ2
= Fγ(y,Q2)

4π2α

Q2
e2
qF2

Fγ(y,Q2) =
α

2πQ2y

(
1 + (1− y)2

)
3.5 O(αs) contribution to DIS
We can apply now this method to calculate the O(αs) contributions to the total DIS cross section,
which is the QCD Compton (QCDC) e+ q → e′+ q′+ g and the boson-gluon fusion (BGF) e+ g →
e′ + q + q̄ processes. By separating the lepton vertex from the hadron vertex, the calculations can
be significantly simplified, since instead of a 2 → 3 process we just need to calculate the 2 → 2
subprocess (Fig. 3.6).

The matrix elements for both QCDC and BGF are singular in t̂. Since we are interested in the
dominant contribution to the cross section, we can take the limit of t̂ → 0. We express t̂ with the
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Figure 3.6: The O(αs) contributions to e+ p→ e′X .

transverse momentum kt. After some algebra we obtain (the explicit calculation is shown in the
appendix 8.1):

k2
t =

t̂ûŝ

(ŝ+Q2)2
(3.95)

using z = Q2/(2q.p2) where q (p2) are the photon (parton) four-momenta, we obtain in the limit of
small t̂ (with û = −Q2 − ŝ):

k2
t = −t̂(1− z) (3.96)

The cross section is then obtained by:

dσ

dk2
t

=
1

16π

1

ŝ+Q2

1

ŝ

1

1− z
|M |2 (3.97)

3.5.1 QCDC process

The matrix element for the QCD Compton process is given in [12][section 10.4]. Here we concen-
trate to isolate the dominant part of the matrix element (small t approximation):

|M |2 = 32π2
(
e2
qααs

) 4

3

[
−t̂
ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂

]
(3.98)

= 32π2
(
e2
qααs

) 4

3

−1

t̂

[
ŝ− 2Q2(−Q2 − ŝ)

ŝ
− 2Q2(−t̂)

ŝ
+
t̂2

ŝ

]
(3.99)

 small t̂ approximation (3.100)

≈ 32π2
(
e2
qααs

) 4

3

−1

t̂

[
ŝ+

2Q2(Q2 + ŝ)

ŝ
+ · · ·

]
(3.101)

= 32π2
(
e2
qααs

) 4

3

−1

t̂

[
ŝ+

2Q2

1− z
+ · · ·

]
(3.102)

= 32π2
(
e2
qααs

) 4

3

−1

t

[
Q2(1 + z2)

z(1− z)
+ · · ·

]
(3.103)

= 32π2
(
e2
qααs

) (1− z)
k2
t

Q2

z
Pqq(z) (3.104)
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where we have introduced the splitting function Pqq(z) with z = Q2

2q.pq
:

Pqq =
4

3

1 + z2

1− z
(3.105)

Inserting eq.(3.104) into eq.(3.97) we obtain:

dσ

dk2
t

=
1

16π

1

ŝ+Q2

1

ŝ

1

1− z
|M |2 (3.106)

=
1

16π

1

ŝ+Q2

1

ŝ

1

1− z
32π2

(
e2
qααs

) (1− z)
k2
t

Q2

z
Pqq(z) (3.107)

=
4π2α

ŝ
e2
q

αs
2π

1

k2
t

Pqq(z) (3.108)

= σ0e
2
q

αs
2π

1

k2
t

Pqq(z) (3.109)

In order to obtain the contribution to the total cross section, we must integrate over kt:

σQCDC =

∫ ktmax

ktmin

dk2
t

dσ

dk2
t

(3.110)

= σ0 e
2
q

αs
2π
Pqq(z) log

k2
tmax

k2
tmin

(3.111)

where ktmax is the maximal pt that can be reached:

k2
tmax =

ŝ

4
=
Q2(1− z)

4z
(3.112)

The integral in Eq.(3.111) is divergent for ktmin → 0, therefore we need to introduce a lower
(artificial) cut, ktmin = κ. We then obtain:

σQCDC = σ0 e
2
q

αs
2π
Pqq(z) log

Q2(1− z)
4zκ2

+ · · ·

= σ0 e
2
q

αs
2π
Pqq(z)

[
log

Q2

κ2
+ log

1− z
4z

+ · · ·
]

In order to obtain a measurable cross section, we must include the parton density functions.
We recall also the QPM result:

σQPM = σ0e
2
q

∫
δ(1− z) fq(ξ)δ(x− zξ)dz dξ (3.113)

σQPM = σ0e
2
q

∫
dξ

ξ
fq(ξ)δ

(
x

ξ
− 1

)
(3.114)

(3.115)
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and for QCDC:

σQCDC = σ0e
2
q

αs
2π

∫
fq(ξ)δ(x− zξ)dz dξPqq(z)

(
log

Q2

κ2
+ log

1− z
4z

+ · · ·
)

(3.116)

σQCDC = σ0e
2
q

αs
2π

∫
dξ

ξ
fq(ξ)Pqq

(
x

ξ

)(
log

Q2

κ2
+ log

1− z
4z

+ · · ·
)

(3.117)

We can connect this with the expression for the structure function F2(x,Q2) (see eq.(3.47):

σγp =
4πα

Q2
F2(x,Q2) =

F2(x,Q2)

x
σ0 (3.118)

F2

x
=
σγp

σ0
=

∑
e2
q

∫
dξ

ξ
fq(ξ)

[
δ

(
1− x

ξ

)
+ (3.119)

αs
2π
Pqq

(
x

ξ

)[
log

(
Q2

κ2

)
+ log

(
1− z

4z

)
+ ...

]
+ Cq(z, ..)

]
(3.120)

3.5.2 BGF process

The matrix element for the boson gluon fusion process γ∗g → qq̄ is given in :

|M |2 = 32π2
(
e2
qααs

) 1

2

[
û

t̂
+
t̂

û
− 2ŝQ2

t̂û

]
(3.121)

 small t̂ approximation (3.122)

= 32π2
(
e2
qααs

) 1

2

1

t̂

[
û− 2ŝQ2

û

]
(3.123)

= 32π2
(
e2
qααs

) 1

2

1

t̂

[
−(Q2 + ŝ) +

2ŝQ2

Q2 + ŝ

]
(3.124)

= 32π2
(
e2
qααs

) 1

2

−1

t̂

[
(Q2 + ŝ)2 − 2ŝQ2

Q2 + ŝ

]
(3.125)

= 32π2
(
e2
qααs

) 1

2

−1

t̂

[
Q4 + ŝ2

Q2 + ŝ

]
(3.126)

= 32π2
(
e2
qααs

) 1

2

−1

t̂

Q2

z

[
z2 + (1− z)2

]
(3.127)

Inserting eq.(3.127) into eq.(3.97) we obtain:

dσ

dk2
t

=
1

16π

1

ŝ+Q2

1

ŝ

1

1− z
|M |2 (3.128)

=
1

16π

1

ŝ+Q2

1

ŝ
32π2

(
e2
qααs

) 1

2

Q2

z

1

k2
t

[
z2 + (1− z)2

]
(3.129)
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= πααse
2
q

1

ŝ

1

k2
t

[
z2 + (1− z)2

]
(3.130)

= σ0e
2
q

αs
2π

1

k2
t

[
1

2

(
z2 + (1− z)2

)]
(3.131)

= σ̂0e
2
q

αs
2π

1

k2
⊥

[Pqg(z)] (3.132)

where we have introduced the splitting function Pqg:

Pqg =
1

2

(
z2 + (1− z)2

)
(3.133)

Integrating the cross section eq(3.132) over kt we obtain (in analogy to the QCDC process):

σBGF = σ0 e
2
q

αs
2π
Pqg(z) log

Q2(1− z)
4zκ2

(3.134)

= σ0 e
2
q

αs
2π
Pqg(z) log

Q2

κ2
+ · · · (3.135)

In the BGF case the parton density is the gluon density (in contrast to the QCDC process). We
rewrite the cross section in terms of F2(x,Q2) and obtain:

σBGF = σ0e
2
q

αs
2π

∫
g(ξ)δ(x− zξ)dz dξPqg(z) log

Q2

κ2
(3.136)

σBGF = σ0e
2
q

αs
2π

∫
dξ

ξ
g(ξ)Pqg

(
x

ξ

)
log

Q2

κ2
(3.137)

Putting everything together we obtain for F2/x:

F2

x
=
σγp

σ0
=

∑
e2
q

∫
dξ

ξ

(
fq(ξ)

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

κ2

)]
(3.138)

+g(ξ)

[
αs
2π
Pqg

(
x

ξ

)
log

(
Q2

κ2

)])
(3.139)

We are still left with the arbitrary cutoff κ. Now we use a trick to remove it: we define scale
dependent parton densities:

qi(x, µ
2) = q0

i (x) +
αs
2π

∫ 1

x

dξ

ξ

[
q0
i (ξ)Pqq

(
x

ξ

)
log

(
µ2

κ2

)
+ Cq

(
x

ξ

)]
+ ...

g(x, µ2) = g0(x) +
αs
2π

∫ 1

x

dξ

ξ

[
g0(ξ)Pqg

(
x

ξ

)
log

(
µ2

κ2

)
+ Cg

(
x

ξ

)]
+ ... (3.140)

where we have now put the divergent part (κ → 0) into a redefinition of the parton density with
the price that the parton density is now scale dependent with scale µ2. Inserting this into the
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equation eq.(3.139), we obtain:

F2

x
=

∑
e2
q

∫
dξ

ξ

(
q(ξ, µ2)

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

µ2

)]
+g(ξ, µ2)

[
αs
2π
Pqg

(
x

ξ

)
log

(
Q2

µ2

)])
(3.141)
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Chapter 4

Parton evolution equation

Here we will derive the evolution equation for the parton densities in the collinear (small t) limit,
the so called DGLAP evolution equations (named after the authors Dokshitzer, Gribov, Lipatov,
Altarelli, Parisi [19–22]). The expression for the deep inelastic scattering cross section (or the
structure function F2) including O(αs) corrections is given by:

σγ
∗p

σ0
=
F2

x
=

∑
e2
q

∫
dξ

ξ

(
q(ξ, µ2)

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

µ2

)]
+g(ξ, µ2)

[
αs
2π
Pqg

(
x

ξ

)
log

(
Q2

µ2

)])
(4.1)

The cross section for small transverse momenta (or at small t) is divergent, and therefore gives
a dominant contribution to the total cross section. For the price of a scale dependent parton density
we have moved the divergent behavior into the bare (and not observable) parton densities, with
the result that then the expression were finite (a procedure called renormalization). Since the γp
cross section σγ

∗p (or equivalently the structure function F2) as an observable cannot depend on
the arbitrary scale µ2, we tmust require, that it is µ2-scale independent. This is satisfied by the
requirement

∂F2

∂µ2
= 0

Using eq.(4.1) (for simplicity we treat here only the quark part, the gluon part is treated similarly)
we obtain:

δF2

δµ2
=

∫
dξ

ξ

(
∂q(ξ, µ2)

∂µ2

[
δ

(
1− x

ξ

)
+
αs
2π
Pqq

(
x

ξ

)
log

(
Q2

µ2

)]
(4.2)

+q(ξ, µ2)
αs
2π
Pqq

(
x

ξ

)
∂

∂µ2

[
logQ2 − logµ2

])
=

∂q(x, µ2)

∂µ2
+

∫
dξ

ξ

αs
2π
Pqq

(
x

ξ

)
log

Q2

µ2

∂q(ξ, µ2)

∂µ2
(4.3)

+

∫
dξ

ξ
q(ξ, µ2)

αs
2π
Pqq

(
x

ξ

)(
− 1

µ2

)

45
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Figure 4.1: The structure function F2(x,Q2) as a function of Q2 as measured in DIS scattering
e+ p→ e′ +X at HERA [18].
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Now we collect all terms ofO(αs) (note the second term in eq.(4.3 ) is ofO(α2
s) and therefore does

not contribute) and obtain:

dqi(x, µ
2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
qi(ξ, µ

2)Pqq

(
x

ξ

)]
(4.4)

Including also the gluon part we obtain:

dqi(x, µ
2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
qi(ξ, µ

2)Pqq

(
x

ξ

)
+ g(ξ, µ2)Pqg

(
x

ξ

)]
(4.5)

and similarly for the gluons

dg(x, µ2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[∑
i

qi(ξ, µ
2)Pgq

(
x

ξ

)
+ g(ξ, µ2)Pgg

(
x

ξ

)]
(4.6)

The splitting functions are given by:

Pqq =
4

3

(
1 + z2

1− z

)
(4.7)

Pgq =
4

3

(
1 + (1− z)2

z

)
(4.8)

Pqg =
1

2

(
z2 + (1− z)2

)
(4.9)

Pgg = 6

(
1− z
z

+
z

1− z
+ z(1− z)

)
(4.10)

Eq.4.5 and 4.6 are the DGLAP evolution equations in leading order of αs. They describe the
evolution of the parton density with the scale µ2. By knowing the parton density at any scale µ2,
these equations predict the parton density at any other scale. Although we cannot calculate the
parton densities from first principles, these equations allow us to predict the parton densities at
any scale, once they are determined at another scale. In Fig. 4.1-4.2 is shown the comparison of
the measurement of the structure function F2(x,Q2) with the prediction from a DGLAP evolution.
The prediction agrees with the measurement remarkably well over several orders of magnitude
in x and Q2. This is a real triumph of the theory.

4.1 Conservation and Sum Rules
In the following we investigate further the evolution equations.

4.1.1 Flavor Conservation

The scale dependent quark density as a function of the bare parton density q0 and the scale de-
pendent divergent part (κ→ 0) can be written as:

q(x, µ2) =

∫ 1

x

dξ

ξ
q0(ξ)

[
δ(1− x

ξ
) +

αs

2π
Pqq

(
x

ξ

)
log

µ2

κ2
+ . . .

]
(4.11)
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=

∫ 1

x

dξ

ξ
q0(ξ)q̂(z, µ2) + . . . (4.12)

=

∫ 1

x
dξ

∫ 1

0
dzδ(x− zξ)q0(ξ)q̂(z, µ2) + . . . (4.13)

with

q̂(z, µ2) = δ(1− z) +
αs

2π
Pqq (z) log

µ2

κ2
(4.14)

where we have used z = x
ξ and δ(1− z)dz = δ(1− x

ξ )dz = ξδ(ξ − x)dz.
However, this is not the full expression in O(αs), since we have not yet included virtual gluon
radiation, self-energy insertions on the quark leg and vertex corrections. One can calculate the
virtual corrections explicitly, but here we use the argument of conservation of quark (and baryon)
number: the integral over z of the quark distribution cannot vary with µ2:∫ 1

0
dz q̂(z, µ2) = 1 (4.15)

For this we redefine the splitting function as:

Pqq(z) = P̂qq(z) + k · δ(1− z) (4.16)

With this we get: ∫
dz

[
δ(1− z) +

αs

2π

(
P̂qq(z) + k · δ(1− z)

)
log

µ2

κ2

]
= 1

With log µ2

κ2
6= 0 we obtain ∫ 1

0
dz
αs

2π

(
P̂ (z) + k · δ(1− z)

)
= 0

Some of the splitting functions are divergent for z → 1 and we cannot perform the integral
easily. However we note, that z → 1 reduces to no-emission and this has a final state similar to a
virtual contribution to the no-emission diagram. To treat this singularity formally we introduce a
” + ” distribution (similar to the δ function which is only defined inside an integral):∫ 1

0
dx

f(x)

(1− x)+
=

∫ 1

0
dx
f(x)− f(1)

(1− x)
(4.17)

or in general [23]: ∫ 1

0
dxf(x) [F (x)]+ =

∫ 1

0
dx (f(x)− f(1))F (x)

with
∫ 1

0
dx [F (x)]+ = 0
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We now use the expression for the quark splitting P̂qq(z) = 1+z2

(1−z)+ :∫ 1

0
dzPqq(z) =

∫ 1

0
dz

[
1 + z2

(1− z)+
+ k · δ(1− z)

]
(4.18)

=

∫ 1

0
dz

1 + z2 − 2

1− z
+ k (4.19)

= k +

∫ 1

0
dz
−(1− z2)

1− z
(4.20)

= k −
∫ 1

0
dz

(1 + z)(1− z)
1− z

(4.21)

= k −
∫ 1

0
dz(1 + z) = k − 3

2
(4.22)

where in eq.(4.19) the expression f(z)− f(1) = (1− z)2 − 2 has been used. Thus we obtain:

Pqq(z) =
1 + z2

(1− z)+
+

3

2
δ(1− z) (4.23)

With this expression for Pqq we ensure that soft singularities are properly cancelled. This expres-
sion is essential to ensure that the sum rules are fulfilled (here for the proton case) independent of
µ2: ∫ 1

0
dxuv(x, µ

2) = 2∫ 1

0
dx dv(x, µ

2) = 1

In Fig. 4.3 the different diagrams which contribute to F2(x,Q2) at O(αs) are shown.

NLO

2F

αs
0

αs
1

αs
2

LO

2
2

not included

+ ...

Figure 4.3: The different diagrams which contribute to F2(x,Q2) at O(αs). Note that at O(αs)
only the interference diagram of O(α0

s ) and the virtual contribution together with the real O(αs)
diagram contribute, while the virtual diagram squared would give O(α2

s ).
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4.1.2 Conservation Rules of Splitting Functions

In this section we will check explicitly the conservation of momentum fractions using the momen-
tum sum rule: ∫ 1

0
dx x

(∑
i

qi(x,Q
2) + g(x,Q2)

)
= 1 (4.24)

to obtain constraints on the splitting functions.
We apply the momentum sum rule and make use of the DGLAP evolution equation for the

quark and gluons:

dqi(x, µ
2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
qi(ξ, µ

2)Pqq

(
x

ξ

)
+ g(ξ, µ2)Pqg

(
x

ξ

)]
dg(x, µ2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[∑
i

qi(ξ, µ
2)Pgq

(
x

ξ

)
+ g(ξ, µ2)Pgg

(
x

ξ

)]

Summing over all quark flavors and integrating these equations over logµ2 gives:∫ 1

0
dx x

(∑
i

qi(x,Q
2) + g(x,Q2)

)
=

∫
d logµ2

∫ 1

0
dx

[∑
i

xqi(x, µ
2
0)

+
αs

2π

∫
dξ

ξ

(∑
i

xqi(ξ, µ
2)Pqq + 2nfxg(ξ, µ2)Pqg

)

+xg(x, µ2
0) +

αs

2π

∫
dξ

ξ

(
xg(x, µ2)Pgg + xq(ξ, µ2)Pgq

)]
with nf being the number of flavors. With a change of integration variables in the second intregals
to z = x/ξ (and ξdz = dx) we obtain:∫ 1

0
dx x

(∑
i

qi(x,Q
2) + g(x,Q2)

)
=

∫ 1

0
dx
∑
i

xqi(x, µ
2
0) + xg(x, µ2

0)

+
αs

2π

∫
d logµ2

∫ 1

0
dz

∫ 1

x
dξ

[∑
i

z ξqi(ξ, µ
2)Pqq

+2nfz ξg(ξ, µ2)Pqg + z ξg(ξ, µ2)Pgg + z ξq(ξ, µ2)Pgq
]

=

∫ 1

0
dx
∑
i

xqi(x, µ
2
0) + xg(x, µ2

0)

+
αs

2π

∫
d logµ2

∫ 1

0
dz

∫ 1

x
dξ

[∑
i

ξqi(ξ, µ
2) (z (Pqq + Pgq))

+ξg(ξ, µ2) (z (Pgg + 2nf Pqg))
]
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Since the momentum sum rule is to be satisfied for all µ2, we obtain:∫ 1

0
dz z (Pqq + Pgq) = 0∫ 1

0
dz z (Pgg + 2nf Pqg) = 0

4.2 Collinear factorization
A detailed discussion on factorization can be found in [24, 25]. Collinear factorization means that
the collinear singularities are factorized into process independent parton distributions leaving per-
turbatively calculable process dependent hard scattering cross sections (or coefficient functions)
for a scattering process of vector boson V on a hadron h:

σ(V + h) = fh(µf )⊗ CVa (µf , µr) (4.25)

Here f is the parton distribution function and CVa is the hard scattering cross section which is
infrared safe and calculable in pQCD. The index a indicates, that this cross section depends on
the type of the incoming partons. In addition CVa depends on the factorization (µf ) and renormal-
ization (µr) scales, but is independent from long distance effects, especially independent on the
hadron h. For example, in deep inelastic scattering the CVa are the same for scattering on a pion,
proton, neutron etc. The parton distribution function f contains all the infrared sensitivity and is
specific for the hadron h and also depends on the factorization scale µf . The parton distribution
function f are universal and independent on the hard scattering.

Please note, that the factorization theorems are only proven for a few processes [25]:

• deep inelastic scattering (DIS)

• diffractive deep inelastic scattering

• Drell Yan (DY) production in hadron hadron collisions

• single particle inclusive spectra (fragmentation functions)

For all other processes, factorization is assumed (and it is shown by comparing predictions with
measurements, that this assumption is rather successful).

4.2.1 Factorization Schemes

Different schemes for separating the long from short distance parts are available (factorization
schemes). The difference between them is, which pieces of the cross section are factorized into the
parton density functions. Common schemes are:

• DIS scheme

F2(x,Q2) = x
∑
i

e2
i qi(x,Q

2)



4.3. SOLUTION OF DGLAP EQUATIONS 53

where the index i runs over all parton flavors and q(x,Q2) is the quark (or antiquark) density.
Gluons enter only via the evolution of the quark densities. This formula is required to hold
at all orders in αs. The DIS scheme is obtained from µ2 = Q2.

• MS scheme (modified minimal subtraction)
Only the divergent pieces are absorbed into the quark and gluon densities. The structure
function F2(x,Q2) is then:

FMS
2 (x,Q2) = x

∑
e2
q

∫
dx2

x2

[
qMS(x2, Q

2)

[
δ

(
1− x

x2

)
+
αs
2π
CMS
q

(
x

x2

)]
+gMS(x2, Q

2)
αs
2π
CMS
g

(
x

x2

)]
Once a specific scheme is chosen, it has to be used for both the parton density and the partonic
cross section, otherwise inconsistent results are obtained.

Figure 4.4: The up-quark (left) and gluon (right) densities as a function of x at µ2 = 10 GeV2 ob-
tained in [26] in LO (CTEQ6L) and in NLO in the DIS (CTEQ6D) and MS (CTEQ6M) scheme [27].

4.3 Solution of DGLAP equations
Several methods exist to solve the DGLAP equations, here we only consider a numerical solution
of the integro-differential equations. We first consider a solution of the evolution equation at small
x and then discuss the more general case.
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4.3.1 Double Leading Log approximation for small x

In this section we consider only the limit of small x. In this limit, only the gluon density contributes
with the splitting function Pgg(x) → 6/x. All other contributions are small and can be neglected.
With this the evolution equation eq.(4.6) becomes:

dg(x, µ2)

d logµ2
=

αs
2π

∫ 1

x

dξ

ξ

[
g(ξ, µ2)Pgg

(
x

ξ

)]
(4.26)

This equation can be integrated to give:

xg(x, µ2) = xg(x, µ2
0) +

αs

2π

∫ µ2

µ20

dµ
′2

µ′2

∫ 1

x

dξ

ξ
xg(ξ, µ2′)P (

x

ξ
) (4.27)

= xg(x, µ2
0) +

3αs

π

∫ µ2

µ20

dµ
′2

µ′2

∫ 1

x

dξ

ξ
ξg(ξ, µ2′) (4.28)

This equation is an integral equation of Fredholm type

φ(x) = f(x) + λ

∫ b

a
K(x, y)φ(y)dy

and can be solved by iteration (Neumann series):

φ0(x) = f(x)

φ1(x) = f(x) + λ

∫ b

a
K(x, y)f(y)dy

φ2(x) = f(x) + λ

∫ b

a
K(x, y1)f(y1)dy1 + λ2

∫ b

a

∫ b

a
K(x, y1)K(y1, y2)f(y2)dy2dy1

This can be written in a compact form:

φn(x) =
n∑
i=0

λiui(x) (4.29)

with

u0(x) = f(x)

u1(x) =

∫ b

a
K(x, y)f(y)dy

un(x) =

∫ b

a
· · ·
∫ b

a
K(x, y1)K(y1, y2) · · ·K(yn−1, yn)f(yn)dy1 · · · dyn

with the solution:

φ(x) = lim
n→∞

qn(x) = lim
n→∞

n∑
i=0

λiui(x) (4.30)
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Applying this method to solve the evolution equation for the gluon density at small x eq.(4.28)
with xg(x, µ2

0) = xg0(x) = C, we obtain:

xg1(x, t) =
3αs
π
C

∫ t

t0

d log t′
∫ 1

x
d log ξ =

3αs
π

log
t

t0
log

1

x
C (4.31)

xg2(x, t) =
1

2

1

2

(
3αs
π

log
t

t0
log

1

x

)2

C (4.32)

...

xgn(x, t) =
1

n!

1

n!

(
3αs
π

log
t

t0
log

1

x

)n
C (4.33)

xg(x, t) = lim
n→∞

∑
n

1

n!

1

n!

(
3αs
π

log
t

t0
log

1

x

)n
C (4.34)

Using the modified Bessel function:

I0(z) =
∞∑
k=0

(1
4z

2)k

(k!)2
=

ez√
2πz

(4.35)

We identify

z = 2

√
3αs

π
log

t

t0
log

1

x

to obtain:

xg(x, t) ∼ C exp

(
2

√
3αs
π

log
t

t0
log

1

x

)
(4.36)

This result has been obtained by taking the limit of large double leading logarithms:

• small x limit in the splitting function which leads to log 1/x

• small t limit to obtain evolution equation, which leads to log 1/t.

The DLL solution of the evolution equations results in a rapid rise of the gluon density at
small x, however only so-called contributions from strongly ordered (decreasing) values of x and
strongly ordered (increasing) values of t are considered. Note, that the unlimited rise at small
x is of course unphysical, and for a realistic description a sort of taming (or saturation) of the
distribution is required.

4.3.2 From evolution equation to parton branching

In the previous section we have seen how to solve the evolution equation iteratively. By perform-
ing the small x limit, we avoided the difficulties with the soft divergencies at large x; we did not
need to use the plus-prescription of the splitting function. Here we now discuss a different way
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Figure 4.5: The gluon density from xG(x) = 3(1−x)5 and the DLL result with αs = 0.2 and t = 10
GeV2.
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to treat the soft limit. The divergency of a soft real emission is cancelled by virtual contributions,
that is, we can define a ”resolvable” branching, which is a splitting of one into two partons, where
at least in principle we can resolve the splitting. The ”non-resolvable” branching consist of a con-
tribution without branching and the virtual contributions. A detailed discussion of the parton
evolution can be found in [14].

We define a ”Sudakov” form factor ∆s:

∆s(t) = exp

(
−
∫ zmax

x
dz

∫ t

t0

αs
2π

dt′

t′
P̃ (z)

)
(4.37)

and use the evolution equation with the ”+” prescription (using t = µ2):

t
∂

∂t
f(x, t) =

∫
dz

z

αs
2π
P+(z) f

(x
z
, t
)

Inserting the explicit expression for P+ we obtain:

t
∂

∂t
f(x, t) =

∫ 1

0

dz

z

αs
2π
P (z) f

(x
z
, t
)
− αs

2π
f(x, t)

∫ 1

0
dzP (z) (4.38)

where we have used the definition in eq.(4.17):∫ 1

0
dz
f(z)

z
P+(z) =

∫ 1

0
dz

(
f(xz )

z
− f(x)

)
P (z)

=

∫ 1

0
dz
f(xz )

z
P (z)− f(x)

∫ 1

0
dzP (z)

Using

∂e−a(x)

∂x
= −e−a(x)∂a(x)

∂x

we obtain:
∂∆s

∂t
= −∆s

[
1

t

∫
dz
αs

2π
P (z)

]
(4.39)

 
t

∆s

∂∆s

∂t
= −

∫
dz
αs

2π
P (z) (4.40)

Inserting this into eq.(4.38) we obtain:

t
∂

∂t
f(x, t) =

∫
dz

z

αs
2π
P (z) f

(x
z
, t
)

+ f(x, t)
t

∆s

∂∆s

∂t
(4.41)

Multiplying eq.(4.41) with 1/∆s and using ∂
∂t

f
∆s

= 1
∆s

∂f
∂t −

f
∆2
s

∂∆s
∂t we obtain:

t

∆s

∂f(x, t)

∂t
− t

∆2
s

f(x, t)
∂∆s

∂t
=

∫
dz

z

1

∆s

αs
2π
P (z) f

(x
z
, t
)

(4.42)

t
∂

∂t

f(x, t)

∆s
=

∫
dz

z

1

∆s

αs
2π
P (z) f

(x
z
, t
)

(4.43)
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which is the DGLAP evolution equation in a form using the Sudakov form factor ∆s as defined in
eq.(4.37).

We can now integrate eq.(4.43) to obtain:

f(x, t) = f(x, t0)∆(t) +

∫
dt′

t′
∆(t)

∆(t′)

αs(t
′)

2π

∫
dz

z
P (z)f(

x

z
, t′) (4.44)

where we have used ∫ t

t0

∂

∂t′
f(x, t′)

∆s
dt′ =

∫
dt′

t′
1

∆s

αs

2π

∫
dz

z
P (z)f(

x

z
, t′) (4.45)

From eq.(4.44) we can now interpret the Sudakov form factor as being the probability for evolution
without any resolvable branching from t0 to t.

What did we gain ? We needed to treat the singularity at z → 1. For this, we now intro-
duce a upper cut-off zcut = 1 − ε(µ). Branchings with z > zcut are now classified as unresolved:
they involve the emission of undetectable partons [14]. The Sudakov form factor sums virtual
and real corrections to all orders; the virtual corrections affect the non-branching probability are
included via unitarity: the resolvable branching probability gives via unitarity the sum of virtual
and unresolvable contributions.

Eq.(4.44) can now be solved by iteration, in the same way as before. The starting function f0 is
just the first term in eq.(4.44). The first iteration f1 involves one branching:

f0(x, t) = f(x, t0)∆(t)

f1(x, t) = f(x, t0)∆(t) +
αs

2π

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫ 1

x

dz

z
P̃ (z)f(x/z, t0)∆(t′) (4.46)

The iteration is illustrated in fig.4.6 The term f0 in eq.(4.46) is illustrated in the left part of Fig. 4.6:

x,t

0

0    0x   ,t
0    0x   ,t

x,t

P(z)t’

z=x/x

Figure 4.6: Schematic representation of the first branchings in an iterative procedure to solve the
evolution equation

the evolution from t0 to t without any resolvable branching. The term f1 in eq.(4.46) is shown in
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the right part of Fig. 4.6: there is evolution from t0 to t′ without any resolvable branching, then
at t′ the branching happens, where the splitting is given by the splitting function P (z); then the
evolution continues without any resolvable branching from t′ to t.

The full solution of the integral equation by iteration is then:

f0(x, t) = f(x, t0)∆(t)

f1(x, t) = f(x, t0)∆(t) +
αs

2π

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫
dz

z
P̃ (z)f(x/z, t0)∆(t′)

= f(x, t0)∆(t) + log
t

t0
A⊗∆(t)f(x/z, t0)

f2(x, t) = f(x, t0)∆(t) + log
t

t0
A⊗∆(t)f(x/z, t0) +

1

2
log2 t

t0
A⊗A⊗∆(t)f(x/z, t0)

f(x, t) = lim
n→∞

fn(x, t) = lim
n→∞

∑
n

1

n!
logn

(
t

t0

)
An ⊗∆(t)f(x/z, t0) (4.47)

where A =
∫
dz
z P̃ (z) is a symbolic representation of the integral over z and ⊗ indicates that a con-

volution has to be performed. The eq.(4.47) shows the solution of the DGLAP evolution equation
is a resummation to all orders in αs log t.1

The Sudakov form factor can be interpreted in terms of a probability: it is a poisson distribution
with zero mean P (0, p) = e−p. If the poisson distribution gives the probability to observe n emis-
sions, then P (0, p) gives the probability for no emission and is the so-called ”non-branching prob-
ability”. The one-branching probability is given in terms of Poisson statistics by: P (1, p) = pe−p,
which is exactly the first iteration of the evolution equation:

f(x, t) = f(x, t0)∆s(t) +

∫
dz

∫
dx′
∫
dt′

t′
· ∆s(t)

∆s(t′)

αs
2π
P̃ (z)×

×f
(
x′, t0

)
∆s(t

′)δ(x− zx′) (4.48)

where delta function has been introduced to make the different integration steps visible.
We have introduced a cut to avoid the divergency when z → 1 via zcut = 1− ε(µ), but we have

not yet specified how this can be calculated. To some extend the value of zcut is a matter of choice,
here we give an argument based on the virtualities of the partons involved. We work in a frame,
were all energies are much larger than the starting scale of the evolution Q0. We use light-cone
variables for the partons: p+ = 1/

√
2(E + pz) and we define

z =
p+
b

p+
a

1It is interesting to note, that only the 1/(1− z) part of the splitting functions is needed in the Sudakov form factor.
This simplifies the solution process.
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Figure 4.7: Sudakov form factor as a function of the lower scale pt for gluon and quark splitting
functions using αs = 0.2. The upper scale is set to tmax = 100(200) GeV.

being the splitting variable for a process a→ b+c. The light-cone vector satisfies: p2
a = 2p+

a p
−
a −k2

ta.
We work in a frame, where kta = 0 and ktb = −ktc = kt. Using conservation of the ”+” and ”-”
components of the light-cone vectors we obtain:

p−a = p−b + p−c

p2
a

2p+
a

=
p2
b + k2

tb

2p+
b

+
p2
c + k2

tc

2p+
c

 p2
a =

p2
b + k2

t

z
+
p2
c + k2

t

1− z

where for the last expression we have used p+
b = zp+

a and p+
c = (1 − z)p+

a . This equation can be
rewritten to give:

k2
t = z(1− z)p2

a − (1− z)p2
b − zp2

c

 0 < (1− z)Q2
b − zQ2

c (4.49)

where we have defined Q2
a = −p2

a and Q2
b = −p2

b and Q2
c = p2

c and Q2
c > Q2

0, thus that parton
a and b are spacelike partons while parton c is timelike. Note that k2

t > 0 and z(1 − z)p2
a < 0 is



4.4. SOLUTION OF EVOLUTION EQUATION WITH MONTE CARLO METHOD 61

neglected. Using (1 + x)−m = 1−mx+ · · · we obtain from Eq.(4.49):

z < 1− Q2
0

Q2
b

+ · · · (4.50)

where we have used Q2
c > Q2

0.
In Fig. 4.7 the sudakov form factor is shown for quark and gluon splittings for different scales

tmax as a function of the lower scale pt. The probability for quarks not to undergo any branching
(the sudakov form factor gives the no-branching probability) is much higher than the correspond-
ing one for gluons.

4.4 Solution of evolution equation with Monte Carlo method
AS described above, the evolution equations Eqs.(4.44) are integral equations of the Fredholm
type

f(x) = f0(x) + λ

∫ b

a
K(x, y)f(y)dy

and can be solved by iteration as a Neumann series

f1(x) = f0(x) + λ

∫ b

a
K(x, y)f0(y)dy

f2(x) = f0(x) + λ

∫ b

a
K(x, y1)f0(y1)dy1 + λ2

∫ b

a

∫ b

a
K(x, y1)K(y1, y2)f0(y2)dy2dy1

· · · (4.51)

using the kernel K(x, y), with the solution

f(x) = lim
n→∞

n∑
i=0

fi(x). (4.52)

In a Monte Carlo (MC) solution [28–30] we evolve from t0 to a value t′ obtained from the
Sudakov factor ∆s(t

′) (for a schematic visualisation of the evolution see fig. 4.8). Note that the
Sudakov factor ∆s(t

′) gives the probability for evolving from t0 to t′ without resolvable branching.
The value t′ is obtained from solving for t′:

R = ∆s(t
′), (4.53)

for a random number R in [0, 1].
If t′ > t then the scale t is reached and the evolution is stopped, and we are left with just the

first term without any resolvable branching. If t′ < t then we generate a branching at t′ according
to the splitting function P̃ (z′), as described below, and continue the evolution using the Sudakov
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Figure 4.8: Evolution by iteration

factor ∆s(t
′′, t′). If t′′ > t the evolution is stopped and we are left with just one resolvable branch-

ing at t′. If t′′ < t we continue the evolution as described above. This procedure is repeated until
we generate t’s which are larger than t. By this procedure we sum all kinematically allowed con-
tributions in the series

∑
fi(x, p) and obtain an MC estimate of the parton distribution function.

With the Sudakov factor ∆s and using

∂

∂t′
∆s(t, t

′) =
∂

∂t′
∆s(t)

∆s(t′)
=

∆s(t)

∆s(t′)

[
1

t′

] ∫ zmax

dzP̃ (z),

we can write the first iteration of the evolution equation as

f1(x, t) = f0(x, t)

+

∫ 1

x

dz′

z′

∫ t

t0

d∆s(t, t
′)P̃ (z′)f0(x/z′, t′)

[∫ zmax

dzP̃ (z)

]−1

. (4.54)

The integrals can be solved by a Monte Carlo method [11]: z is generated from

∫ z

zmin

dz′P̃ (z′) = R1

∫ zmax

zmin

dz′P̃ (z′), (4.55)

with R1 being a random number in [0, 1], and t′ is generated from

R2 =

∫ x

−∞
f(x′)dx′ = F (x)

=

∫ t

t′

∂

∂t′′

(
∆s(t)

∆s(t′′)

)
dt′′

= ∆s(t, t
′) (4.56)
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solving for t′, using z from above and another random number R2 in [0,1].
This completes the calculation on the first splitting. This procedure is repeated until t′ > t and

the evolution is stopped.
With z′ and t′ selected according to the above the first iteration of the evolution equation yields

xf1(x, t) = xf0(x)∆s(t)

+
∑
i

P̃ (z′i)x
′
if0(x′i, t

′
i)

[∫ zmax

dzP̃ (z)

]−1

, (4.57)

with x′i = x/zi.
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Chapter 5

BFKL and CCFM evolution equations

In this chapter the small x evolution equations BFKL [31–33] (after the names of the authors Bal-
itsky, Fadin, Kuraev and Lipatov) and the CCFM [34–37] (after Catani, Ciafaloni, Fiorani and
Marchesini) will be introduced. Instead of a formal introduction we start arguing why the trans-
verse momenta, even if they are small, play a role in the parton evolution. This leads us to in-
troduce an extension of the evolution equation including a transverse momentum dependence.
With this we then start to argue, which new effects could happen at small x, and in analogy to the
Sudakov form factor (introduced to treat virtual and soft contributions at large x) we introduce
a ”non-Sudakov” form factor to treat, in the same way, the virtual corrections at small x. With
this analogy we are able to derive the BFKL evolution equation in integral form. By extension to
include also the large z region we then arrive at the CCFM evolution equation and describe the
features of angular ordering.

5.1 Why are transverse momenta important for the evolution ?
Consider the process q + p1 → p2 with q2 = −Q2, p2

1 = −k2 and p2
2 = m2. This is the basic process

for DIS scattering, except that now we do not neglect masses and transverse momenta. We use the
definition of xBj = Q2

2q.P . Using energy momentum conservation we obtain:

(q + p1)2 = p2
2

−Q2 + 2q.p1 − k2 = m2

Using the longitudinal momentum fraction ξ with p1 = ξP , with P being the proton momentum,
we obtain:

ξ =
Q2 +m2 + k2

2q.P

ξ 6= xBj

Depending on the values of m2 and k2, ξ can be very different from xBj .

65
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Figure 5.1: The gluon density as obtained from a DGLAP fit using the PYTHIA MC generator
including parton showers.

Transverse momenta (or virtuality) in the initial state are coming from parton evolution: if a
parton splits into two partons, the daughters must have transverse momenta. Therefore evolving
a parton from a starting scale µ2

0 up to a larger scale µ2 involves automatically transverse mo-
menta, up to the scale µ2. Such effects are visualized by using parton shower Monte Carlo event
generators like PYTHIA [38, 39], HERWIG [40–42] , or RAPGAP [43, 44]. The effect of transverse
momenta to the parton evolution has been studied in [45]. A DGLAP fit to the structure function
F2(x,Q2) has been performed using the PYTHIA MC event generator. Without intrinsic transverse
momenta and without parton showers the fit to the structure function gave the same result as the
CTEQ6 (LO) PDFs [26]. However when parton showers were turned on, the parameters for the
PDFs were very different. An example of this is shown in Fig. 5.1

For the correct treatment of the kinematics in a process with multigluon radiation, not only the
transverse momentum is important, but also the mass mrem [46], as illustrated in Fig. 5.2.

In the following we calculate the relation between the transverse momentum kt and the vir-
tuality k2. Consider a photon with light-cone vector q = (0, q−, qt), a gluon with vector k =
(xP+, k−, kt) and the incoming proton with P = (P+, 0, 0). From this we obtain:

q2 = −q2
t
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 k  = 0t

mrem

 k  = 0t

mrem

}
a. b.

}
Figure 5.2: Illustration of the importance of the treatment of the mass mrem: in the left only the
proton remnants are included, in the right plot also the contribution of multiparton radiation is
considered.

k2 = 2xP+k− − k2
t (5.1)

The mass of the remnant mrem is (with P = k + r with r being the vector of the remnant system):

P = k + r  r = P − k
m2
rem = (P − k)2 = −2P+k− + k2 = −2P+k− + 2xP+k− − k2

t

= −2P+k−(1− x)− k2
t

 2P+k− = −k
2
t +m2

rem

1− x

 k2 = −x(k2
t +m2

rem) + k2
t (1− x)

1− x

= −k
2
t + xm2

rem

1− x

Thus we see clearly, that with increasing mrem the virtuality is no longer dominated by kt, and the
full history of multiparton radiation must be included in the calculation.

5.2 kt-dependent Evolution Equation: BFKL Equation
We start from the integral from of the evolution equation, as given in Eq.(4.44):

f(x, t) = f(x, t0)∆(t) +

∫
dt′

t′
∆(t)

∆(t′)

αs(t
′)

2π

∫
dz

z
P (z)f(

x

z
, t′)
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using ∆(t, t′) = ∆(t)
∆(t′) we formally rewrite it for an unintegrated PDF (uPDF) A(x, kt, t) as a func-

tion of the scale q:

xA(x, kt, q) = xA0(x, kt)∆s(q)

+
αs

2π

∫
dz

∫
d2q′

πq′2
·∆s(q, f(q′))P̃ (z, q′, kt)Θ(O)

x

z
A
(x
z
, k′t, q

′
)

(5.2)

with
dt

t
→ dq2

q2
→ d2q

πq2

We have allowed for a more general form of the integration over q′ by changing in the integration
limit q′ → f(q′). We have also introduced a theta function Θ(O) for the ”ordering” condition
in the evolution. Note that on the right side of the equation the argument in A is k′t, since it is
determined by energy momentum conservation. The usual evolution equation is obtained back
by:

xg(x, µ2) =

∫
d2kt
π

xA(x, kt, q)Θ(µ− kt)

As an example, the DLL approximation as discussed in a previous section is obtained by setting:
Pgg = 6/z, ∆s = 1 and Θ(O) = Θ(Q− q).

With this equation we have the formal tool to study now the 1
z singularity of the g → gg

splitting function. This splitting function becomes dominant at small z or at high energies.
We apply our knowledge from the 1

1−z singularity: the singular behavior of the real emission
was cancelled by the appropriate virtual correction, for the 1

1−z singularity it was cancelled by the
virtual vertex corrections why occurred for z → 1. We suspect, that the 1

z singularity is cancelled
in a similar manner by virtual corrections, which can be treated by the concept of a form-factor
(similar to the Sudakov form factor for the z → 1 case) which is called ”non-Sudakov” form
factor1 ∆ns or ”Regge” form factor. In Fig. 5.3 we show schematically the contributions which
are divergent and which are cancelled by virtual corrections. The ”non-DGLAP” limit would be
obtained for kt ∼ k′t and qt → 0 (the DGLAP limit is kt � k′t which comes from taking kt large).
In this ”non-DGLAP” limit we would have q+ large and q parallel to k′ and k. In the following
we show, how this can occur (for kt ∼ k′t  qt → 0) with x1 being the longitudinal momentum
fraction:

kt + qt = k′t

k + q = k′

k+ + q+ = k′+

 x1p
+ + q+ =

x1

z
p+

 x1p
+(1− 1

z
) = −q+

1”Non-Sudakov” form factor to distinguish from the Sudakov form factor.
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Figure 5.3: Schematic diagrams for the virtual corrections to cancel the divergent real emission.

 
q+

p+
=

x1

z
(1− z) ∼ x1

z
= x2

 q+ ∼ x2p
+ ∼ k′

where the limit z → 0 has been taken and k+ = x1p
+, k′+ = x2p

+ and x1 = zx2 has been used.
Thus we see in the small z limit, q takes nearly all the energy of k′.

In order to obtain the BFKL evolution equation, we must now only relax the ordering condition
from Θ(O) = Θ(k2

t − k′2t ) to Θ(O) = Θ(k2
t − q2

t )Θ(q2
t − µ2). Without the strong ordering in kt a

so-called random walk in kt space can be performed, which means that all kinematically allowed
values of kt can appear. As a consequence of this, there is a diffusion into the soft region (the
region where the scale µ2 is small).

In analogy to the sudakov form factor which includes the 1
1−z part of the splitting function to

cancel the 1
1−z singularity, we define the non-Sudakov form factor (including now only the 1

z part
of the splitting function as:

∆ns = exp

(
−3αs

π

∫
dq′2

q′2

∫ 1

z

dz′

z′
Θ(k2

t − q′2)Θ(q′2 − µ2
0)

)
(5.3)

= exp

(
−3αs

π
log

1

z
log

k2
t

µ2
0

)
(5.4)

As the Sudakov form factor, the non-Sudakov form factor results in an all-order resummation of
the virtual contributions. We can rewrite it as (using ᾱs = 3αs

π :

∆ns = exp

(
(log z)

ᾱs log
k2t
µ20

)

= zω with ω = ᾱs log
k2
t

µ2
0

and we obtain the (kt-dependent) BFKL splitting function as:

PBFKL =
6

z
∆ns = z−1+ω
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With this we can now write the BFKL evolution equation in integral form [47, 48]:

xA(x, kt, q) = xA0(x, kt, q) +
αs

2π

∫
dz

6

z
∆ns

∫
dq′2

q′2
x

z
A
(x
z
, k′t, q

′
)

= xA0(x, kt, q) + ᾱs

∫
dzzω

∫
dq′2

q′2
x

z
A
(x
z
, k′t, q

′
)

where we just neglect the Sudakov form factor since we are working in the small x region.

5.3 kt-dependent Evolution Equation: CCFM Equation
In the following we describe the CCFM evolution equation [34–37] (after Catani, Ciafaloni, Fio-
rani and Marchesini). This equation explicitly treats the emitted partons during the evolution by
applying angular ordering. The equation was derived to be applicable both in the small and large
x region. The angular ordering constraint ensures at large x an evolution similar to what is ob-
tained by DGLAP while at small x it is equivalent to BFKL. Because the evolution explicitly treats
the emitted partons, energy-momentum is conserved in each branching and therefore this equa-
tion is best suited for a simulation of the branching process with Monte Carlo event generators.

In the following we first describe angular ordering and then give the CCFM evolution equa-
tion.

5.3.1 Angular Ordering

The ordering condition of successive parton emission determines how many partons can be ra-
diated in a certain region of phase space. Subsequent emissions can be suppressed because of
destructive interference effects. The angular ordering condition takes these interference effect ap-
proximately into account.

We first describe the angular ordering condition [14, 15] for the case of photon radiation from
a e+e− pair, before we discuss the more complicated QCD case. We consider a process γ → e+e−γ
as shown in Fig. 5.4 and we calculate the lifetime of the e+e− pair: ∆t = 1

∆E . We use the following

−

+

p

p’

k

e

e

Figure 5.4: Schematic representation of the angular ordering constraint in e+e− scattering.

lightcone vectors (where we neglect the electron mass me):

p =
1√
2

(p+, p−, 0) =
1√
2

(p+, 0, 0)
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p′ =
1√
2

(
(1− z)p+, p−,−kt

)
=

1√
2

(
(1− z)p+,

k2
t

(1− z)p+
,−kt

)
k =

1√
2

(zp+, k−, kt) =
1√
2

(zp+,
k2
t

zp+
, kt)

where k is vector for the emitted photon, p′ is the outgoing electron and p is the vector for the
intermediate electron, before photon radiation. We calculate the energy imbalance ∆E with:

∆E = p′ + k − p

=
1

2

(
(p′ + k)+ + (p′ + k)−

)
− 1

2
(p+ + p−)

=
1

2

(
p+ +

k2
t

z(1− z)p+
− p+

)
=

1

2

k2
t

z(1− z)p+

 ∆E =
1

2

k2
t

zp+
for z → 0

using:

p′ + k =

(
(1− z)p+ + zp+,

k2
t

(1− z)p+
+

k2
t

zp+
, 0

)
=

(
p+,

zk2
t + (1− z)k2

t

z(1− z)p+
, 0

)
= (p+,

k2
t

z(1− z)p+
, 0)

For small angles we have kt ∼ zp+Θeγ

∆E ∼ 1

2

z2p+ 2Θ2
eγ

zp+
=

1

2
zp+Θ2

eγ =
1

2
kΘ2

eγ

Introducing the transverse wavelength λ−1
⊥ = kt = Θeγk we obtain for the lifetime ∆t:

∆t =
1

∆E
= 2

λ⊥
Θeγ

(5.5)

During the time ∆t, the e+e− pair travels a distance:

ρe
+e−
⊥ = ∆x∆t ∼ Θee∆t = θe+e−

λ⊥
Θeγ

For Θeγ � Θe+e− we obtain:
ρ⊥ < λ⊥

which means that the radiated photon cannot resolve any structure of the e+e− pair, it probes only
the total charge which is zero.
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The e− can emit photons if:

ρ⊥ > λ⊥

 Θeγ < θe+e−

which is the angular ordering condition for QED. Outside this region, the cross section for radi-
ation is suppressed. The concept of angular ordering is known already from cosmic rays as the
”Chudakov effect” (1955).

In QCD a similar picture emerges, but the radiation of soft gluons from a pair of quarks is
no longer zero (since the color charge is non-zero, and gluons can radiate from gluons), but the
radiation is, as if it were emitted from the parent gluon (see Fig. 5.5). In QCD gluon emission is

p’

k

q

q

+ =
p

Figure 5.5: Schematic representation of radiation from a pair of quarks whose color charge is non-
zero.

allowed:

off q̄ for Θkq̄ < Θqq̄

off q for Θkq < Θqq̄

off parent g for Θkg > Θqq̄

such that soft gluon emission at large angles is suppressed (an explicit calculation can be found
in [14].

In the following we describe how the angular ordering condition is applied to the parton evo-
lution. The vector of the radiated parton is denoted with q, and the energy component of this

E i

E i 1

i+1

i

x

z  x
i

i

i+1
q

q

Figure 5.6: Schematic representation of radiation in an angular ordered region of phase space.

vector is given by q0. The energy of the propagating parton is given by E. We define the trans-
verse momenta as pti = |q0

i | sin Θi (taking partons to be massless) where we define the splitting
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variable z = Ei
Ei−1

for the i and (i− 1) parton. Defining qi = pti
1−zi and the angles

Θi =
qi
Ei−1

Θi+1 =
qi+1

Ei

we obtain:

Θi > Θi−1

 
qi
Ei−1

>
qi−1

Ei−2

 qi >
Ei−1

Ei−2
qi−1 = zi−1qi−1 (5.6)

We finally obtain for the angular ordering:

qmax > znqn, qn > zn−1qn−1, ..., q1 > Q0 (5.7)

The angular ordering condition in Eq.(5.6) gives for z → 0 essentially no constraint on the values
of qi and therefore on pt, allowing for a random walk in pt space, as requested from the BFKL
equation. On the other hand, at large z the angular ordering condition reduces to a ordering in qi,
as requested from the DGLAP evolution equations.

5.3.2 CCFM Equation

The CCFM [34–37] evolution equation is given by a straight forward application of the angular
ordering constraint to the equation for unintegrated parton densities eq.(5.2) [37, 47, 49, 50]:

xA(x, kt, q) = xA0(x, kt)∆s(q) +

∫
dz

∫
d2q′

πq′2
Θ(q − zq′)

·∆s(q, zq
′)P̃ (z, q′, kt)

x

z
A
(x
z
, k′t, q

′
)

(5.8)

with ~k′t = |~kt + (1− z)~q| and q being the upper scale for any emission:

q > znqn, qn > zn−1qn−1, · · · , q1 > Q0 (5.9)

The Sudakov form factor ∆s is given by:

∆s(q,Q0) = exp

(
−
∫ q2

Q2
0

dq
′ 2

q′ 2

∫ 1−Q0/q′

0
dz
ᾱs (q′(1− z))

1− z

)
(5.10)

with ᾱs = 3αs
π . For inclusive quantities at leading-logarithmic order the Sudakov form factor

cancels against the 1/(1− z) collinear singularity of the splitting function.
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The splitting function Pgg for branching i is given by:

Pgg(zi, qi, kti) =
ᾱs(kti)

zi
∆ns(zi, qi, kti) +

ᾱs(pti)

1− zi
(5.11)

with pti = qi(1− zi) and the non-Sudakov form factor ∆ns defined as:

log ∆ns(zi, qi, kti) = −ᾱs

∫ 1

zi

dz′

z′

∫
dq2

q2
Θ(kti − q)Θ(q − z′qi) (5.12)

The upper limit of the z′ integral is constrained by the Θ functions in eq.(5.12) by: zi ≤ z′ ≤
min(1, kti/qi), which results in the following form of the non-Sudakov form factor [47]:

log ∆ns = −ᾱs(kti) log

(
z0

zi

)
log

(
k2
ti

z0ziq2
i

)
(5.13)

where

z0 =


1 if kti/qi > 1
kti/pti if zi < kti/qi ≤ 1
zi if kti/qi ≤ zi

The non-Sudakov form factor can be written as:

+ + +  ...  +

ᾱs
1
z [ 1 + ᾱs log

(
z0
zi

)
log
(

k2ti
z0ziq2i

)
+
(

1
2! ᾱs log

(
z0
zi

)
log
(

k2ti
z0ziq2i

))2
... ]

where the similarity with the Sudakov form factor becomes obvious. Note however, that the
Sudakov form factor ∆s resums the large z contributions, whereas the non-Sudakov form factor
∆ns resums the small z ones.

5.4 High energy or kt-factorization
At large energies (small x) the evolution of parton densities proceeds over a large region in rapid-
ity ∆y ∼ log(1/x) and effects of finite transverse momenta of the partons may become increasingly
important. Cross sections can then be kt - factorized [51–54] into an off-mass shell (kt dependent)
partonic cross section σ̂(xz , kt) and an kt - unintegrated parton density function F(z, kt):

σ =

∫
dz

z
d2ktσ̂(

x

z
, kt)F(z, kt) (5.14)
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Carrying out the kt integration in eq.(5.14) explicitly, a form fully consistent with collinear fac-
torization can be obtained [55,56]: the coefficient functions and also the DGLAP splitting functions
leading to fa(z, µ2

f ) are no longer evaluated in fixed order perturbation theory but supplemented
with the all-order resummation of the αs log 1/x contribution at small x.

It is also interesting to consider the limit kt → 0 of the matrix elements [57]. To do that we
define a reduced cross section σ̃:

σ̃(kt) =

∫
dLips |M |2 (5.15)

where we integrate over the Lorentz-invariant-phase-space (Lips) of the final state quarks. The
matrix element |M |2 is taken from [53, 54], where we have set 16π2αemαse

2
q ≡ 1. In Fig. 5.7 we
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Figure 5.7: The reduced cross section σ̃(kt) as a function of the transverse momentum kt of the incoming
gluon for different values of the transverse momentum of the incoming photon kt γ (m = 1.5 GeV in (a),
m = 5 GeV in (b),

√
s = 30000 GeV and a fixed xγ = xg = 0.01). Figure from [57].

show σ̃(kt) as a function of the transverse momentum of the incoming gluon kt for quark masses
of m = 1.5 GeV in Fig. 5.7a and for m = 5 GeV in Fig. 5.7b using

√
s = 30000 GeV and a fixed

xγ = xg = 0.01. In both cases a smooth behavior for kt → 0 is observed. It is also interesting to
note that in all cases the cross section starts to decrease at k2

t ∼> 4m2. The region k2
t > 4m2 is still

contributing to the total cross section significantly, indicating a difference to the usual collinear
approximation, where this region is completely ignored.
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Figure 5.8: The cross section for forward-jet production obtained from the Monte Carlo CASCADE at
hadron level (solid line); (a− c) The cross section for forward-jet production as a function of x, for different
cuts in pt compared to H1 data [58] (a− b) and compared to ZEUS data [59] (c); (d) The cross section for
forward-jet production as a function of E2

T /Q
2 compared to [60].

5.5 Comparison with measurements in ep

In the following a few measurements performed at the ep collider HERA are compared with pre-
dictions obtained from a CCFM evolution convoluted with off-shell matrix elements as imple-
mented in the Monte Carlo generator CASCADE [49, 61].

In [49] the production of ”forward jets” is compared with measurements from [58–60] In
Fig. 5.8 the cross section predicted for forward-jet production is shown and compared to mea-
surements done at HERA. We observe a reasonable description of the data.

In [62] angular correlations for final states with two jets and three jets are calculated (see
Fig. 5.9). The azimuthal distribution of di-jet and three-jet cross sections in the separation ∆φ



5.5. COMPARISON WITH MEASUREMENTS IN EP 77

between the leading jets is investigated. In Fig. 5.9 (from [62]) the distributions obtained by CAS-
CADE and by HERWIG, compared with the measurement [63] are shown. Observe that the shape
of the distribution is different for the two Monte Carlos.
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Figure 5.9: Angular jet correlations obtained by CASCADE and by HERWIG, compared with ep
data [63]: (top) di-jet cross section; (bottom) three-jet cross section. The HERWIG results are multi-
plied by a factor of 2.
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Chapter 6

Hadron-Hadron scattering

It is one of the striking features in particle physics that Feynman diagrams calculated for one
process can be easily extended to other processes, where the incoming and final state particles
are exchanged. This we can apply to use our knowledge obtained in ep scattering to the case of
hadron hadron or pp or pp̄ scattering, as illustrated in Fig. 6.1

_
µ

+
µ

+
µ

−µ

+

e−
−

e

e’

q

q’

e
q

q

Figure 6.1: Schematic illustration of ep→ e′X , e+e− → µ+µ− and pp→ µ+µ−X diagrams

6.1 Drell-Yan production in pp

From the matrix element epq → e′pq′ in eq.(3.59) we obtain the matrix element for e+e− → µ+µ−:

|M |2 (e+e− → µ+µ−) = 2(4πα)2 t̂
2 + û2

ŝ2
(6.1)

with

ŝ = 4E2
b

t̂ = −2E2
b (1− cos θ)

û = −2E2
b (1 + cos θ)

79
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with θ being the polar angle of the scattered µ with respect to the incoming e+ and Eb being the
energy of the incoming e+ in the center of mass frame of the e+e− pair.

The cross section is given by

dσ

dΩ
=

1

64π2ŝ
|M |2

=
1

64π2ŝ

(
2α2(4π)2

) 4E4
b (1− cos θ)2 + 4E4

b (1 + cos θ)2

16E4
b

=
α2

4ŝ

(
1 + cos2 θ

)
This gives then the total cross section:

σ(e+e− → µ+µ−) =

∫ 2π

0
dφ

∫ +1

−1
d cos θ

α2

4ŝ

(
1 + cos2 θ

)
=

4πα2

3ŝ

If we calculate the cross section for the crossed diagram qq̄ → e+e− we must take into account
the fractional charge of the quarks e2

q , giving:

σ(q + q̄ → µ+µ−) =
4πα2

3ŝ
e2
q

and since quarks are not free but confined in hadrons we obtain:

dσ

dM2
=

1

3

1

3
3
∑
q

∫
dx1dx2fq(x1)fq̄(x2)

dσ̂

dM2
(6.2)

with f(x1), f(x2) being the parton distribution functions and x1(x2) being the fractional momenta
of the protons carried by the partons and

dσ̂

dM2
=

4πα2

3ŝ
e2
qδ(ŝ−M2) (6.3)

with ŝ = x1x2s (neglecting masses of the incoming particles and partons), M being the mass of
the qq̄ system and s being the proton-proton center-of-mass energy. the factors 1

3 in eq.(6.2) come
from averaging over the initial 3 color states of q and q̄ while the factor 3 comes from the sum over
the final state color singlet combinations. The process pp→ µ+µ− +X is called Drell-Yan process
(DY), after the authors who calculated first the cross section [64].

The rapidity y is related to the ratio of the momentum fractions x1
x2

as shown in the following.
Consider the process pp→ µ+µ− +X with the momenta of incoming partons

p1 =

√
s

2
(x1, 0, 0, x1)

p2 =

√
s

2
(x2, 0, 0,−x2)
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Figure 6.2: Kinematic relation of y with the momentum fraction x and the massM for two different√
s energies (taken from [65]).

then the rapidity y = 1
2 log E+pz

E−pz of the µ+µ− is equal to the rapidity of the p1p2 pair with

E = E1 + E2 =

√
s

2
(x1 + x2)

pz = pz1 + pz2 =

√
s

2
(x1 − x2)

The rapidity y of the incoming parton pair is then:

y =
1

2
log

E + pz
E − pz

=
1

2
log

x1

x2

Defining τ = M2

s = x1x2 we obtain:

x1 =
√
τ exp(y)

x2 =
√
τ exp(−y)
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In fig.6.2 from [65] the relation between rapidity and the momentum fraction x is shown for dif-
ferent M2.

The lowest order Drell Yan cross section is then:

dσ

dM2
=

4πα2

9M2

∑
q

∫
dx1dx2fq(x1)fq̄(x2)e2

qδ(ŝ−M2) (6.4)

=
4πα2

9M2

1

s

∑
q

e2
q

∫
dx1dx2fq(x1)fq̄(x2)δ

(
x1x2 −

M2

s

)
(6.5)

=
4πα2

9M2

1

s

∑
q

e2
q

∫
dx1dx2fq(x1)fq̄(x2)

1

x1
δ

(
x2 −

τ

x1

)
(6.6)

=
4πα2

9M2

1

s

∑
q

e2
q

∫
dx1

x1
fq(x1)fq̄

(
x2 =

τ

x1

)
(6.7)(

dσ

dM2dy

)
Born

=
4πα2

9M2

1

s

∑
q

e2
qfq(x1)fq̄

(
x2 =

τ

x1

)
(6.8)

with dy = dx1
x1

, where the terminology Born means lowest order.

6.1.1 Factorization of production and decay in Drell Yan processes

Calculating O(αs) correction to DY production involves 2 → 3 processes. However, we can sim-
plify the calculation if we apply the same methods as in DIS: we try to separate the production
process from the decay, as illustrated in fig. 6.3. By doing so, we can reduce the problem to a

x=

Figure 6.3: Schematic diagram to separate the production from the decay in a Drell Yan process.

simple calculation of a 2→ 2 process. The cross section is then written in a factorized form:

dσ(q + q̄ → l+ + l−) = dσ(q + q̄ → γ∗) ⊗ 1

Q4
⊗ dσ(γ∗ → l+ + l−)

where the first term corresponds to the production, the second term is the photon propagator and
the third term describes the decay.

The matrix element for γ∗(q)→ l−(k1) + l+(k2) is given by [12][see exercise 10.2]:

M(γ∗ → l+l−) = eū(k1)γµν(k2)

|M(γ∗ → l+l−)|2 =
16πα

3
Q2
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with q2 = Q2 being the timelike mass of γ∗.
The matrix element for qq̄ → γ∗ is given by:

|M(qq̄ → γ∗)|2 =
4πα

3
M2e2

q

with M2 = Q2 being the mass of the qq̄ system (note: do not confuse this with the notation for the
matrix element).

We write the cross section for q + q̄ → l+ + l− as (where the particles are treated massless):

dσ(q + q̄ → l+ + l−) =
1

M2
|M(qq̄ → l+l−)|2 d

4k1

(2π)3

d4k2

(2π)3
(2π)4δ4(p1 + p2 − k1 − k2) (6.9)

=
1

M2
|M(qq̄ → γ∗)|2d4qδ4(p1 + p2 − q)

1

Q4
|M(γ∗ → l+l−)|2

× d4k1

(2π)3

d4k2

(2π)3
(2π)4δ4(q − k1 − k2)

=
1

2M2
|M(qq̄ → γ∗)|2d4qδ4(p1 + p2 − q)

1

Q4
|M(γ∗ → l+l−)|2 dΩ

32π2

=
1

2M2

4πα

3
M2e2

qd
4q δ4(p1 + p2 − q)

1

Q4

16πα

3
Q2 dΩ

32π2

=
1

2M2

4πα

3
M2e2

qd
4q δ4(p1 + p2 − q)2π

α

3πM2
(6.10)

dσ

dM2
=

4π2αe2
q

3
× α

3πM2
δ(Q2 −M2) (6.11)

=
4π2α2e2

q

9M2
δ(Q2 −M2) (6.12)

where we recovered in the last line again eq.(6.3). With this result we only need to calculate the
cross sections for:

pp → Z0 +X

pp → γ∗ +X

pp → W± +X

pp → H +X etc.

where H stands for the Higgs boson.

6.1.2 Factorization in Drell Yan processes

A crucial assumption of Bjorken scaling is, that the amplitude of a process is suppressed, when
the virtuality of the partons become larger than a typical hadronic mass scale (see discussion
in [14][p 304]). This assumption is equivalent to the requirement that the partons can have only
limited transverse momenta with respect to the direction of the beam hadron. We can generalize
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Figure 6.4: The transverse momentum of the Z0 boson as measured by [66].

the parton distribution function to take into account also transverse momenta (see discussion on
unintegrated PDFs section 5.2)

dξf(ξ) → d2~ktdξP (kt, ξ) with
∫
d2~ktP (~kt, ξ) = f(ξ)

where ~kt is a 2-dimensional vector.
For a hard scattering scale in an inclusive process (where we do not investigate observables

sensitive to kt) one can set
P (~kt, ξ) = δ(~kt)f(ξ)

and neglect all transverse momenta (as was done in the discussion of the DGLAP PDFs). If the
transverse momentum of the partons is zero, then also the DY pair has zero transverse momen-
tum, which is in contrast to what is observed in measurements [66] (fig. 6.4).

Assuming a distribution function P (~kt, ξ) with:

P (~kt, ξ) = h(~kt)f(ξ)

h(~kt) =
b

π
exp

(
−b~k2

t

)
we obtain:

1

σ

dσ

dpt
=

∫
d2~kt1d

2~kt2δ
(2)(~kt1 + ~kt2 − ~pt)h(~kt1)h(~kt2) (6.13)
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=

∫
d2~kt1h(~kt1)h(~pt − ~kt1) (6.14)

Applying the substitution1 ~k = 1
2~pt − ~kt1 we obtain (using d2~kt = dk2

t
dφ
2 ):

1

σ

dσ

dpt
=

b2

π2

∫
d2~kh(

1

2
~pt − ~k)h(~k +

1

2
~pt) (6.15)

=
b2

π2

∫
d2~k exp

(
− b

2
p2
t − 2bk2

)
(6.16)

=
b2

π
exp

(
− b

2
p2
t

)∫ ∞
0

dk2 exp
(
−2bk2

)
(6.17)

=
b

2π
exp

(
− b

2
p2
t

)
(6.18)

Another way to solve the integral is shown in Appendix 8.2
At low pt the measurements are well described by this expression, however a tail towards

high pt is observed (see fig. 6.4), which cannot be described by the (limited) intrinsic transverse
momentum of partons inside the hadrons.

6.1.3 O(αs) contributions to Drell Yan production

From the early measurements of the transverse momentum spectrum of Drell Yan production (see
fig. 6.4) it became clear, that the naive parton model is incomplete: the tail of large pt could not
be described assuming that the intrinsic pt of the partons inside the hadrons is small. Already by
comparing the measured cross section of Drell Yan production with the prediction based on the
parton model, the so called K-factor defined as

K =
σmeasured

σcalculated(LO)

was found to be large, of the order of 2 – 3, indicating that important contributions to the cross
section were not included in the lowest order (LO) calculation.

Figure 6.5: Diagrams contributing to Drell Yan production up to O(αs).

The O(αs) contributions to Drell Yan production can be calculated using the same matrix ele-
ments, which have been used for the O(αs) corrections to DIS (see section 3.5). The LO and O(αs)
diagrams are shown in Fig. 6.5, which are the diagrams from DIS with exchanged initial and final
particles.

1Thanks to Radek Zlebcik for pointing out this elegant solution during the lecture at DESY 2013
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The matrix element for qq̄ → γ∗g is given by:

|M |2 = 16π2αsα
8

9

[
û

t̂
+
t̂

û
+

2(M2ŝ)

ût̂

]
(6.19)

= 16π2αsα
8

9

[(
1 + z2

1− z

)(
−ŝ
t̂

+
−ŝ
û

)
− 2

]
(6.20)

= 16π2αsα
2

3

[
Pqq(z)

(
−ŝ
t̂

+
−ŝ
û

)
− 2

]
(6.21)

where we have used z = M2

ŝ and û+ t̂ = M2− ŝ = −ŝ(1−z). We have also introduced the splitting
function (known from DIS):

Pqq =
4

3

1 + z2

1− z
Similarly, we obtain for qg → γ∗q:

|M |2 = 16π2αsα
1

3

[
− t̂
ŝ
− ŝ

t̂
− 2(M2û)

ŝt̂

]
(6.22)

= 16π2αsα
1

3

[(
z2 + (1− z)2

)
× · · ·

)
(6.23)

= 16π2αsα
2

3
[Pqg(z)× · · ·) (6.24)

with the splitting function

Pqg(z) =
1

2
(z2 + (1− z)2)

We can now calculate the cross section for Drell Yan production up to O(αs) using the relation
for pt as given in eq.(8.6) in section 8.1.2 with the Jacobean

dp2
t = dt̂

u− t
s

= (1− z)dt̂.

In order to simplify the calculation we consider again only the leading contribution at small trans-
verse momenta (taking the small t̂ approximation, as done in the DIS case). We see, that we obtain
a similar behavior of the cross section:

dσ

dp2
t

=
1

1− z
dσ

dt̂

∝ 1

16π2ŝ

1

1− z
Pqq(z)ŝ

(
−1

t
+ · · ·

)
∝ 1

ŝ
Pqq(z)

1

p2
t

We observe the same behavior as in DIS. The cross section in divergent if we perform the integral
over pt from zero, and we have to apply the same renormalization procedure as in the DIS case.



6.1. DRELL-YAN PRODUCTION IN PP 87

We also observe, that the renormalization is the same as in DIS, as we obtained the same splitting
functions. This is one of the important results of the QCD improved parton model: the parton
densities, including the renormalization of the bare parton densities, are the same in DIS lepton
proton scattering as in pp or pp̄ scattering: this is a consequence of factorization.

6.1.4 The pt spectrum of Drell Yan production

The complete calculation of the transverse momentum spectrum of Drell Yan production becomes
complicated, because of the integration over the longitudinal and transverse components of the
interaction partons. The original papers on this are very interesting [67,68]. Here we only consider
the small pt approximation and give the final result (without attempting to perform the calculation
in detail, the full derivation can be found in [13]):

dσ

dM2dydp2
t

=
8

27

α2αs

sM2

1

p2
T

∫ 1

xmina

dxaH(xa, xb,M
2)

xa xb
xa − x1

(
1 +

τ2

(xaxb)2
−

x2
T

2xaxb

)
(6.25)

∼ 8

27

α2αs

sM2

2

p2
T

H(xa, xb,M
2) log

s

p2
t

(6.26)

=

(
dσ

dM2dy

)
Born

×
(

4αs
3π

1

p2
t

log
s

p2
t

)
with the product of the parton densities defined by:

H(xa, xb, Q
2) =

∑
e2
q

(
qi(xa, Q

2)q̄i(xb, Q
2) + q̄i(xa, Q

2)qi(xb, Q
2)
)

and the lowest order (O(α0
s ) Born cross section given in eq.(6.8):(

dσ

dM2dy

)
Born

=
4πα2

9sM2
Hq(xa, xb,M

2) (6.27)

As we know already from the discussion of DIS, the divergent behavior is absorbed by vir-
tual corrections, for example vertex corrections. As in the DIS case, we can calculate the virtual
corrections explicitly, or argue on the basis of unitarity (and knowing that the final state of the
virtual correction to the lowest order process is the same as the lowest order process). We use
here a heuristic argument to obtain the behavior of the cross section at small pt, by assuming that
the virtual and the non-branching corrections will compensate the divergent behavior of the real
emission cross section. We write:∫ s

0

dσ

dM2dydp2
t

dp2
t =

(
dσ

dM2dy

)
Born

+O(αs) (6.28)

We rearrange the integral:∫ s

0

dσ

dM2dydp2
t

dp2
t =

∫ p2t

0

dσ

dM2dydp′2t
dp′2t +

∫ s

p2t

dσ

dM2dydp′2t
dp′2t (6.29)
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giving: ∫ p2t

0

dσ

dM2dydp′2t
dp′2t =

∫ s

0

dσ

dM2dydp′2t
dp′2t −

∫ s

p2t

dσ

dM2dydp′2t
dp′2t (6.30)

Assuming that the total cross section is the Born cross section multiplied with a k- factor k (which
we will neglect) we can write:∫ p2t

0

dσ

dM2dydp′2t
dp′2t =

(
dσ

dM2dy

)
Born

(1 + k)−
∫ s

p2t

dσ

dM2dydp′2t
dp′2t (6.31)

=

(
dσ

dM2dy

)
Born

(
1− 4αs

3π

∫ s

p2t

log s
p′2t

p′2t
dp′2t

)
(6.32)

=

(
dσ

dM2dy

)
Born

(
1− 2αs

3π

(
log

s

p2
t

)2
)

(6.33)

This form is suggestive to extend to higher orders in αs, and we assume that the corrections in the
bracket will exponentiate:

1 + a+
a2

2!
+
a3

3!
+ · · · = exp a

and we write for the cross section:

 
∫ p2t

0

dσ

dM2dydp′2t
dp′2t =

(
dσ

dM2dy

)
Born

exp

(
−2αs

3π
log2 s

p2
t

)
(6.34)

We have obtained a integrated cross section which with the assumption that the αs corrections
exponentiate, is finite over the whole range in pt. To obtain the the differential cross section as a
function of p2

t , we differentiate eq.(6.34) with respect to p2
t and obtain:

dσ

dM2dydp2
t

=

(
dσ

dM2dy

)
Born

4αs

3π

1

p2
t

log
s

p2
t

exp

(
−2αs

3π
log2 s

p2
t

)
(6.35)

We see, that the cross section for pt → 0 vanishes. This is the effect of the all order resummation of
soft gluon emissions. A similar effect we have already observed in the discussion of the Sudakov
form factor in section 4.3.2, where we found that the probability for no branching from one scale
to another is very small: only if there is no resolvable branching, the pt of the Drell Yan pair is zero
(except if the emitted partons all compensate each other in transverse momentum).

In fig. 6.6 the measured cross section for W -boson production at LHC [66] is shown.
A more detailed discussion and calculation of the Drell Yan pt spectrum can be found in [69].
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Figure 6.6: The transverse momentum of the W boson as measured by [66].

6.1.5 Measurement of the W mass

The W boson can be detected via the decay products in a leptonic decay:

W → l + ν

where the ν escapes detection.
In the rest frame of the W -boson the cross section for the leptonic decay is [14][p 320]:

1

σ

dσ(W → νl)

d cos θ∗
=

3

8
(1 + cos2 θ∗) (6.36)

with the angular dependence similar to that of the process e+e− → µ+µ−:

dσ

d cos θ
∼ 1

s
(1 + cos2 θ)
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Figure 6.7: The transverse mass of the W boson as measured by [70].

where the difference in the pre-factors comes from the flux factor. In the W rest frame the trans-
verse momentum of the lepton l and that of the neutrino are balanced. Changing the variables in
eq.(6.36) from d cos θ to dp2

t using p2
t = t̂û

ŝ = 1
4 ŝ sin2 θ (see appendix 8.1.2) we obtain:

d cos θ

dp2
t

=
1

2

(
1− 4p2

t

ŝ

)− 1
2 4

ŝ

=
2

ŝ

(
1− 4p2

t

ŝ

)− 1
2

=
2

ŝ cos θ
(6.37)

With eq(6.37) we obtain for the cross section:

dσ

dp2
t

=
dσ

d cos θ

d cos θ

dp2
t

(6.38)
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' 1 + cos2 θ

cos θ
(6.39)

'
2
(

1− 2p2t
ŝ

)
√

1− 4p2t
ŝ

(6.40)

showing the Jacobean peak for p2
t = ŝ

4 =
M2
W
4 , which corresponds to cos θ = 0 or θ = π/2. Thus

the cross section 1
σ
dσ
dp2t

is strongly sensitive to MW and can be used to measure the W mass.
The transverse mass M⊥ is defined as:

M2
⊥ = (|~pe⊥|+ |~pν⊥|)

2 − (~pe⊥ + ~pν⊥)2

M2 = (|~pe|+ |~pν |)2 − (~pe + ~pν)2

Obviously, in the limit of vanishing longitudinal momentum M⊥ → M . The transverse mass
M⊥ can be calculated as:

M2
⊥ = (|~pe⊥|+ |~pν⊥|)

2 − (~pe⊥ + ~pν⊥)2

= 2|pe⊥||pν⊥|(1− cos ∆φ)

with pν⊥ being the neutrino transverse momentum (or identified as the missing transverse mo-
mentum as calculated from energy momentum conservation) and ∆φ being the angle between
the observed electron and the missing transverse momentum vector.

The transverse mass has been obtained in early measurements at the LHC [70]. The measure-
ment is shown in fig. 6.7.
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Chapter 7

High Parton Densities and small x
effects

We have seen in the discussion of DIS and the parton densities that all evolution equations,
DGLAP, BFKL and CCFM, predict a strong rise of the parton densities at high energies because of
the dominance of the g → gg splitting. However, the rise of the parton densities and the influence
on observables of the hadronic final state will depend on the details of the parton evolution.

In this chapter we will discuss the high energy behavior of the γ∗p cross section, effects of small
x evolution on the differential cross section of Drell Yan production at the high energies available
at LHC, as well as effects on the final state coming from high parton densities which will result in
contributions of multiple parton interaction (MPI).

7.1 The high energy behavior of the γ∗p cross section
In Fig. 4.2 we have seen that the structure function F2(x,Q2) rises with decreasing x. The structure
function F2 is connected directly with σγ∗p. The cross section for γ∗p as a function of W 2 = Q2 1−x

x
is shown in Fig. 7.1 (taken from [71]). The cross section increases wit W 2, for small Q2 the increase
is weak, whereas for large Q2 the increase is strong. At large values of W 2 the partial cross section
for large Q2 eventually becomes larger than the total γp cross section, violating unitarity. At large
W the rise of the cross section therefore has to become weaker, leading so so-called saturation ef-
fects: the parton density cannot increase forever, but saturates. The basic mechanism of saturation
is gluon fusion g + g → g. Where exactly this happens is unclear, it also depends on the spatial
distribution of the partons inside the proton.

7.2 The pt spectrum of Drell Yan production at high energies
At high energies, when the transverse momenta can be of similar size as the longitudinal mo-
menta of the interacting partons, the collinear approximation leading to the DGLAP evolution
equation might be insufficient and the BFKL or CCFM evolution might be a better representa-
tion of parton evolution. Effects beyond DGLAP have been observed at HERA in energy flow

93
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Figure 7.1: γ∗p cross section as a function of the Wγ∗p center of mass energy for different values of
Q2 [71] .

measurements [72], pt spectra of charged particles [73] and the cross sections for forward jet pro-
duction [58–60]. These measurements have been used in [74] to predict a significant broadening
of the transverse momentum spectrum of Drell Yan pairs at LHC energies.

First measurements of forward Drell Yan production at LHCb [75] show a significant deviation
of the measurement from the theoretical prediction as shown in Fig. 7.2

7.2.1 Multiparton interactions

When the parton densities are high, the probability to have more than one partonic interaction per
hadron hadron collision increases [76–80]. For simplicity we illustrate the problem with (mini)-jet
production at highest energies. The partonic cross section for (mini) - jet production diverges for
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Figure 7.2: Cross section as a function of the transverse momentum pt of the Z boson as measured
by [75].

ptmin → 0:

σhard =

∫
p2tmin

dσhard(p
2
t )

dp2
t

dp2
t (7.1)

The partonic cross section as a function of ptmin is shown in Fig. 7.3 (taken from [78]. One can see,
that the cross section exceeds the inelastic (non-diffractive) cross section σnd at values of ptmin,
which are above a typical hadronic scale, at LHC for ptmin ∼ 5 GeV. The solution out of this
dilemma is to assume that there could be more than one partonic interaction per hadron - hadron
collision, with the average number of interactions given by:

〈n〉 =
σhard(ptmin)

σnd
(7.2)

Here, σnd is the non-diffractive inelastic pp cross section. However, this does not solve the problem
of the divergency for pt → 0. To treat this we remember that the hadrons are color neutral and
when pt becomes small, the wavelength increases such that a gluon cannot resolve anymore any
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Figure 7.3: Mini jet cross section as a function of ptmin for Tevatron and LHC energies (from [78]).

individual color charges (see discussion on angular ordering section 5.3.1), resulting in a reduction
of the effective strong coupling.

Let us define (following the discussion in [77]):

p(xt) =
1

σnd

dσ

dxt
(7.3)

with xt = 2pt√
s

. To understand this argumentation, let us go back to the derivation of a Poisson
distribution. If λ is the average rate for occurrence of specific events, then the probability that a
single event happens at δt is:

λδt

The probability that nothing happens is 1−λδt. The probability that no event happens in [t, t+ δt]
under the condition that there was no event in [0, t] with P0(t) is:

P0(t+ δt) = P0(t)(1− λδt)

 
P0(t+ δt)− P0(t)

δt
= −λP0(t)

 
∂P0(t)

∂t
= −λP0(t)

 P0(t) = exp (−λt)
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which is the Poisson distribution for the observation of r = 0 events with a mean of the distribu-
tion of µ = λt.

To obtain the probability for the hardest scattering at xt1:

P1 = p(xt1) exp

(
−
∫ 1

xt1

p(x′)dx′
)

(7.4)

The naive probability p(xt1) is multiplied by Sudakov type form factor to ensure, that there is no
other scattering with xt > xt1 in the event. Now we can calculate the probability to have the
second hardest scattering at xt2:

P2 =

∫ 1

xt2

dxt1 p(xt1) exp

(
−
∫ 1

xt1

p(x′)dx′
)

exp

(
−
∫ xt1

xt2

p(x′)dx′
)
p(xt2) (7.5)

=

∫ 1

xt1

dxt1 p(xt1)p(xt2) exp

(
−
∫ 1

xt2

p(x′)dx′
)

(7.6)

This equation can be understood as follows: there is no scattering between xt1 and 1, we have
a scattering at xt1 and there is no scattering between xt2 and xt1. Finally we integrate over all
possible values of xt1. A similar argumentation was made for the parton evolution in terms of
Sudakov form factors in section 4.3.2. The expression can be iterated to give:

Pn = p(xt)
1

(n− 1)!

[∫ 1

xt

p(x′)dx′
]n−1

exp

(
−
∫ 1

xt

p(x′)dx′
)

(7.7)

which is a Poisson distribution with

µ =

∫ 1

xt

p(x′)dx′ =
1

σnd

∫
p2tmin

dσhard(p
2
t )

dp2
t

dp2
t

pr =
µr

r!
exp (−µ)

Summing up all pr gives:∑
r

pr =
∑
r

µr

r!
exp (−µ) = exp (µ) exp (−µ) = 1

which says, in the case of jet production, that the total rate of mini-jet production is not changed,
the probability that a scattering occurs is 1, which is that the inclusive cross section is not changed
by introducing the concept of multi-parton interactions.

The concept of multi-parton interaction has been successfully applied to describe event prop-
erties in soft collisions but also to describe details of the hadronic final state in perturbative pro-
cesses.
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Chapter 8

Appendix

8.1 Kinematics
In a 2 → 2 process we can relate the Mandelstam variable t̂ to the transverse momentum of the
t̂-propagator.

(a)

2

k
1

k
2

q
1

γ

q
2

q
1

k
2

k
1

*
γ

(b)

q

Figure 8.1: Schematic drawing of γ∗ + g → qq̄ (a) and g + g → qq̄ (b) scattering..

8.1.1 ep - case

In the center of mass frame of the parton process γ∗(k1)q(q1) → q(q2)g(k2) the four-vectors of the
incoming and outgoing particles are (see Fig. 8.1(a)) :

k1 = (

√
~k2 −Q2, 0, 0, k)

q1 = (k, 0, 0,−k)

q2 = (q,−q sin θ, 0,−q cos θ)

k2 = (q, q sin θ, 0, q cos θ)
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with k2
1 = −Q2. From this we obtain

ŝ = (k2 + q2)2 = 4q2

t̂ = (k1 − q2)2 = (q1 − k2)2 = −2(kq + kq cos θ) = −2kq(1 + cos θ)

û = (q1 − q2)2 = −2(kq − kq cos θ) = −2kq(1− cos θ)

ŝt̂û = 4q24(qk)2(1 + cos θ)(1− cos θ) = (4kq)2q2 sin2 θ

t̂+ û = −ŝ−Q2 = −2kq(1 + cos θ)− 2kq(1− cos θ) = −4kq

With this we obtain:

p2
t = q2 sin2 θ (8.1)

=
t̂ûŝ

(ŝ+Q2)2
(8.2)

In the small t limit we obtain from t̂ + û + ŝ = −Q2  û = −Q2 − ŝ. Using z = Q2

2k1.q1
and

ŝ = −Q2 +Q2/z we obtain:

p2
t = − t̂ŝ

ŝ+Q2
(8.3)

= −t̂(1− z) (8.4)

8.1.2 pp - case

Here we calculate the relation between the tansverse momentum pt of a final state parton in a
2 → 2 process, like q(q1)q̄(q2) → γ∗(k1)g(k2) with the four-vectors indicated in the brackets. The
four-vectors are given by (see Fig. 8.1(b)):

q1 = (q, 0, 0, q)

q2 = (q, 0, 0,−q)

k1 = (

√
M2 + ~k2,−k sin θ, 0,−k cos θ)

k2 = (k, k sin θ, 0, k cos θ)

with k2
1 = M2. From this we obtain

ŝ = (q1 + q2)2 = 4k1k2 = 4q2

t̂ = (q1 − k1)2 = (q2 − k2)2 = −2(qk + qk cos θ) = −2qk(1 + cos θ)

û = (q1 − k2)2 = −2(qk − qk cos θ) = −2qk(1− cos θ)

t̂û = 4(qk)2(1− cos θ)(1 + cos θ) = 4(qk)2 sin2 θ
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With this we obtain:

p2
t = k2 sin2 θ (8.5)

=
t̂û

ŝ
(8.6)

Please note that this is different compare to the DIS case (eq.(8.2), where we obtained:

p2
t =

t̂ûŝ

(ŝ+Q2)2

However, performing the small t limit and using ŝ + t̂ + û = M2 together with z = M2/ŝ we
obtain:

p2
t =

t̂û

ŝ
(8.7)

 p2
t =

t̂(ŝ−M2)

ŝ
(8.8)

= −t̂(1− z) (8.9)

which agrees with what is obtained in the DIS case.

8.2 Calculation of transverse momentum of Drell Yan pair
Starting from eq.(6.14) we obtain:

1

σ

dσ

dpt
=

∫
d2~kt1d

2~kt2δ
(2)(~kt1 + ~kt2 − ~pt)h(~kt1)h(~kt2) (8.10)

=

∫
d2~kt1h(~kt1)h(~pt − ~kt1) (8.11)

=
1

2

∫ ∞
0

dk2
t1

∫
dφ

b2

π2
exp

(
−2bk2

t1

)
exp

(
−bp2

t

)
exp (2bptkt1 cosφ) (8.12)

=
b2

2π2
exp

(
−bp2

t

) ∫
dk2

t1 exp
(
−2bk2

t1

)
2πI0(2bptkt1) (8.13)

=
b

2π
exp

(
−1

2
bp2
t

)
(8.14)

where we have used the expression for the modified Bessel function:∫ 2π

0
dφ exp (z cosφ) = 2πI0(z)

with:

I0(z) =
∑
n

(
1
4z

2
)n

(n!)2
(8.15)
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and have integrated this expression term by term1. Using eq.(8.13):

1

σ

dσ

dpt
=

∫
d2~kt1d

2~kt2δ
(2)(~kt1 + ~kt2 − ~pt)h(~kt1)h(~kt2)

=
b2

2π2
exp

(
−bp2

t

) ∫
dk2

t1 exp
(
−2bk2

t1

)
2πI0(2bptkt1)

together with eq.(8.15):

I0(z) =
∑
n

(
1
4z

2
)n

(n!)2

gives:

1

σ

dσ

dpt
=

b2

2π2
exp

(
−bp2

t

) ∫
dk2

t1 exp
(
−2bk2

t1

)
2π

n=∞∑
n=0

(
1
4(2bptkt1)2

)n
(n!)2

and we can perform the integration term by term giving:

S =
1

σ

dσ

dpt

=
n=∞∑
n=0

Sn

with:

S0 =
b2

2π2
exp

(
−bp2

t

) ∫
dk2

t12π exp
(
−2bk2

t1

)
=

b2

π
exp

(
−bp2

t

) 1

2b

=
b

2π
exp

(
−bp2

t

)
S1 =

b2

2π2
exp

(
−bp2

t

) ∫
dk2

t12π exp
(
−2bk2

t1

) 1

4
(2bptkt1)2

=
b2

π
exp

(
−bp2

t

) 1

4
4b2p2

t

∫
dk2

t1π exp
(
−2bk2

t1

)
k2
t1

=
b

2π
exp

(
−bp2

t

) b
2
p2
t

S2 =
b2

2π2
exp

(
−bp2

t

) ∫
dk2

t12π exp
(
−2bk2

t1

) 1
4

(
4b2k2

t1p
2
t

)2
4

=
b2

2π
exp

(
−bp2

t

) 1

2
b4p4

t

∫
dk2

t1π exp
(
−2bk2

t1

)
k4
t1

1Courtesy of K. Kutak, who showed how to perform the integral
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=
b

2π
exp

(
−bp2

t

) b2
8
p4
t

...

Summing up all terms gives:

S = S0 + S1 + S2 + · · ·

=
b

2π
exp

(
−bp2

t

)(
1 +

b

2
p2
t +

1

8
b2p4

t + · · ·
)

=
b

2π
exp

(
−bp2

t

)(
1 +

1

1!

bp2
t

2
+

1

2!

(
bp2
t

2

)2

+ · · ·

)

=
b

2π
exp

(
−1

2
bp2
t

)
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