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INTRODUCTION

The Standard Model of particle physics is naturally divided into the electroweak and strong
interactions: each has a unique complication that affects both phenomenology and practical
calculations. In the case of the strong interaction, it is the non-perturbative coupling at low
momentum transfer that causes rich phenomena, which at present can only be described
by heuristic models or intensive numerical calculations. In the case of the electroweak
interaction, it is the breaking of the underlying symmetry that leads to a wide range of
phenomena, and predictions can also be computationally challenging (though analytically
tractable). The electroweak interaction is the focus of this text.

The underlying symmetries of both sets of interactions arise from their descriptions
as quantum gauge field theories. To gain a fundamental understand of such theories, we
proceed in the following steps: first, we discuss the geometrical interpretation of a classical
gauge field theory (Chapter 1); second, we describe the quantization of the field and its
physical interpretation (Chapter 2); third, we present the mechanism by which the gauge
symmetry of the theory can be broken (Chapter 3); and finally, we provide the realization
of these concepts in nature, the electroweak theory (Chapter 4).

After this introduction of the underlying principles of the theory, we turn to practical cal-
culations. This begins with a discussion of path integrals and Feynman diagrams (Chapter
5), which are ubiquitous calculational tools that are indispensible in perturbative calcula-
tions. We follow with the application of these tools to calculations of scattering cross sec-
tions and particle widths (Chapter 6). At this point we can begin performing leading-order
calculations of specific processes; however, the precision of electroweak measurements
demands the inclusion of higher order calculations. Here we run into a fly in the oint-
ment of quantum field theory: as soon as we go beyond leading order, we are faced with
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viii INTRODUCTION

quantum contributions that produce unphysical results. This is resolved with a program of
renormalization, which we describe in both scalar and gauge field theories (Chapter 7).

The discussion of renormalization leads naturally into the explanation of the specific
measurements that fix the three parameters required to describe electroweak gauge bo-
son interactions. The first parameter is taken to be the electromagnetic coupling, which
describes the strength of the fermion-fermion-photon interaction and is measured using
the magnetic moment of the electron (Chapter 8); this interaction is one of the elements
of the renormalization program described in the prior chapter. The second parameter is
the weak coupling, which describes the fermion-fermion-W boson interaction, and is in-
directly determined using precise measurements of the muon lifetime (Chapter 9). The
final parameter is the expectation value of the vacuum energy of the scalar field, which is
indirectly determined using precise measurements of the Z boson mass (Chapter 10).

With the input gauge boson parameters in hand, we can now make a first-order pre-
diction of the W boson mass, and demonstrate its sensitivity to other electroweak param-
eters through higher order corrections (Chapter 11). We then discuss the determination
of the remaining parameters: the Higgs boson mass and flavour-diagonal Higgs-fermion-
fermion Yukawa couplings (Chapter 12), measured through direct production of the Higgs
boson; and off-diagonal Yukawa couplings manifested through the CKM matrix, measured
through flavour-changing charged current processes such as Bs mixing (Chapter 13).

A completely open question is the nature of neutrinos and the corresponding parameters
to describe their interactions. There is a model of mixing that can be parameterized with
the PMNS matrix (akin to the CKM matrix), but we do not know the neutrino mass terms.
These issues are touched on in Chapter 14.



CHAPTER 1

THE GEOMETRY OF FORCES

The development of the general theory of relativity was a conceptual breakthrough in the
understanding of the force of gravity. Instead of the mysterious “action at a distance”,
gravity could be explained by the simple premise that energy curves space and time. The
curved trajectory of a particle in a gravitational field can be described as an unaltered path
through a curved spacetime;1 in mathematical terms, the path is a geodesic, the shortest
distance from point a to point b.

It turns out that this concept can be extended to the strong and electroweak gauge forces,
though here the curved space is internal. Charged matter curves the internal space, causing
the trajectories of other charged particles to curve in the projected spacetime. To describe
this phenomenon, an additional layer of mathematics is required that combines spacetime
with the internal space into a fiber bundle.

This chapter provides a heuristic overview of the mathematics required to understand
both the curvature of spacetime and of internal spaces. First, the spacetime manifold is
introduced; it is then combined with internal spaces into a fiber bundle. To describe particle
trajectories, several additional structures are required: the spacetime metric tensor, the
spacetime and fiber connections, and their resulting curvature.

1One can visualize the effect as a bunching of space near an object; space is effectively more dense in the vicinity
of matter (or alternatively as a stretching of time). A particle approaching matter will take less time to travel a
given distance, accelerating towards the object. This effect is uniform for all matter, a crucial requirement for this
intepretation.

Electroweak physics, lecture notes.
By Chris Hays
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2 THE GEOMETRY OF FORCES

Armed with this structure, a trajectory is then described as an integrated path length
over a curved space; this is the familiar action of physics. Choosing the shortest path
leads to the gravitational and gauge force field equations. This minimization is modified
in the quantum theory: the minimum path length corresponds to the peak of a probability
amplitude, rather than the exclusive path of a particle. This will be discussed in more detail
in the next chapter.

The above description applies to a single particle travelling through a background space.
In a multi-particle description a field is used to provide initial and final configurations of
particles. The trajectory of a single particle is replaced with the evolution of the field
from initial to final states. This chapter ends by extending the action of a single-particle
trajectory to the action of a field configuration over space.

1.1 Spacetime manifold

The geometrical representation of spacetime is a manifold, a space that can be locally
mapped onto a Euclidean space, allowing a coordinate system to describe points on the
manifold. More formally, a manifold is defined as a family of open sets Ui and mappings
φi of points in each open set onto Rn. The family of all possible open sets and mappings
is called an atlas. In general more than one mapping, or coordinate system, is needed to
cover the manifold. For example, consider the circle, S1. One coordinate system φi maps
points in an open subset to 0 < x < π in R1, but misses a point on S1. A second coor-
dinate system φj is needed, for example one that maps points in Uj to −π < y < π. A
requirement of a differentiable manifold is that the transformation of a point contained in
both Ui and Uj from one coordinate system to the other, φiφ−1

j , is differentiable.

Remark: Every manifold M that is locally Rn is a submanifold of R2n, and can there-
fore be embedded in R2n.

A vector can be defined as the tangent to a one-parameter curve γ(t) (a map from an
interval in R to the manifold) at a point p. The vector dγp/dt can be expressed in terms of
a coordinate system in Rn as V µ∂/∂xµ, with V µ = dxµ/dt. Acting on a function gives
the directional derivative of the function.

The space of all possible vectors at point p (i.e., the tangents to all possible curves) is
the tangent space TpM . Such vectors are also known as contravariant vectors. A set of
vectors at all points in an open set U is a vector field.

1.2 Universe fiber bundle

The concepts of tangent spaces and vector fields can be combined to create the union
of tangent spaces at all points in the manifold (TM ). Together with a map π associating
a vector in TM to the point p in the manifold where the vector’s tangent space resides,
a tangent bundle is defined. The tangent bundle can be locally mapped to R2n, where n
coordinates map the location on the manifold and n coordinates map the direction of the
vector.

The tangent bundle is an example of a more general mathematical construct, the fiber
bundle, in which the fibers are manifolds rather than tangent spaces (which are a particular
type of manifold). In the case of the tangent bundle, the tangent space TpM is the fiber
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over point p, and M is the base manifold. Since locally the space can be mapped into
coordinates of the base and the fiber, it is locally a product bundle M × TpM . This is true
of a general fiber bundle B, which is locally M × F , where F is the fiber manifold. A
point in B can be mapped into M (π : B →M ) and a point on M can be brought into the
fiber “preimages” Fp with π−1(p). A point on the manifold can be mapped to a point in
the bundle using a section s : M → B.

Examples: A fiber bundle which can be globally expressed asM×F is a global product
bundle (examples are the five-dimensional space M4×S1 or the cylinder C2 = R1×S1).
An example of a fiber bundle that is only locally a product bundle is the Möbius strip,
which is locally R1 × S1.

An important additional construct on the fiber bundle relates to coordinate transfor-
mations on the fiber. Two mappings in an overlap region can lead to different “coordi-
nates”; the mapping from one to the other (φiφ−1

j ) is an element of the structure group
G, and is known as a transition function (gij). A fiber bundle is normally labelled by
(B,M,F,G, π). In a principle fiber bundle a point in the fiber can be mapped locally to
the structure group G.

Example: In the case of a tangent bundle the general linear structure group GL(n,R)
maps Rn onto itself.

The topology of the universe is a principal fiber bundle U containing the spacetime
manifold M and fiber manifolds corresponding to the groups SU(3) × SU(2) × U(1) in
a local region of spacetime.

1.3 Spacetime metric

To describe dynamical processes we need the basic concept of distances and angles.
This requires a mapping of vectors to real numbers, which then allows a metric that sets
vector lengths and angles.

A mapping ω of a vector to R1 is called a covariant vector (or a one-form). In a coor-
dinate system defined on a patch of a manifold, a basis for covariant vectors dxµ can be
defined so that the covariant vector takes the form ω = ωµdx

µ. The space of all maps of
vectors in a tangent space is called the cotangent space, T ∗pM . The concept of vectors can
be extended to tensors: a tensor of type (q, r) has q contravariant vector components and r
covariant vector components. V is a tensor of type (1, 0) and ω is a tensor of type (0, 1).

The infinitesimal distance along a curve dγ/dt is to first order the length of the vector
V at the point p multiplied by dt = ε along the curve. The notion of the length of a vector
is thought of in terms of its magnitude; formally we create a (2, 0) tensor and use a (0, 2)
tensor to map it to a real number (i.e., an inner product). The square root of this number is
the vector’s length. In the case of a distance along a curve, the (0, 2) tensor is the metric g
and the integral of

√
g over a curve gives the length of the curve. Frequently the distance

is written as ds and, in terms of a coordinate system,

ds2 = gµνdx
µdxν . (1.1)
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More rigorously, the metric at a given point p on a manifold can be expressed in a coordi-
nate system as

g(p) =
1

2
gµν(p)[dxµ ⊗ dxν + dxν ⊗ dxµ]. (1.2)

The inverse (2, 0) tensor g−1 can be similarly defined in terms of a coordinate system with
a contravariant basis. A vector on spacetime has units of distance, so the spacetime metric
has units of inverse distance squared. The metric of a flat spacetime is the familiar diagonal
Minkowski metric; in general it is possible to diagonalize the metric. Because the metric
is not positive-definite, the spacetime manifold is pseudo-riemannian.

Historical interlude: In the early twentieth century, Kaluza and Klein discovered that a
metric can be written in the five-dimensional spacetimeM4×S1 with a component that can
be intepreted as the electromagnetic field; the equations of general relatively then contain
the electromagnetic field equations.

In the five-dimensional spacetime the ground state corresponds to the flat diagonal met-
ric g0

AB = (ηµν ,−Φ0), where ηµν = (1,−1,−1,−1) and Φ0 = R2, with R the radius of
the circle S1. Expansions about this ground state produce a metric

gAB =

(
gµν −BµBνΦ BµΦ

BνΦ −Φ

)
, (1.3)

where all terms are generally functions of xµ and x5 ≡ θ. The metric is not diagonal, and
is thus referred to as a non-coordinate metric. It is straightforward to calculate the inverse
of the metric,

gAB =

(
gµν Bνg

µν

Bµg
µν −Φ−1 + gµνBµBν

)
. (1.4)

A general coordinate transformation along the fifth dimension leads to the usual gauge
transformation. To see this, write Bµ = ξAµ and fix the S1 metric to its ground state
Φ = Φ0. Consider the transformation of the off-diagonal term gµθ under a translation
θ = θ′ − ξε(x). Then ∂θ/∂x′µ

′
= −ξδµµ′∂µε(x) (since x′µ

′
= xµ), and

g′µ′5 = gµ5
∂xµ

∂x′µ′
∂θ

∂θ′
+ g5µ

∂θ

∂x′µ′
∂xµ

∂θ′
+ gµν

∂xµ

∂x′µ′
∂xν

∂θ′
+ g55

∂θ

∂x′µ′
∂θ

∂θ′
, (1.5)

giving

B′µ′Φ0 = δµµ′BµΦ0 + δµµ′Φ0ξ∂µε(x). (1.6)

Writing Bµ = ξAµ, we get A′µ = Aµ + ∂µε(x). Thus, a coordinate transformation in the
fifth dimension corresponds to a gauge transformation of the “field” that is the deviation
from the ground state in this dimension. This observation was made in an attempt to unify
gravity and electromagnetism, but problems arose in the predictions of the masses and
charges of the particles. This led to the description of the universe not as a five-dimensional
spacetime, but rather as a fiber bundle consisting of a four-dimensional manifold and group
fibers.
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1.4 Connections

1.4.1 Parallel transport in spacetime

While the metric definition provides a method for determining the length of a vector,
it does not directly provide a comparison of vectors at different points in the manifold.
This is because the metric can change from point to point. To compare vectors, one needs
to transport them to a common point with a common coordinate system. This is done by
parallel transport. Parallel transport keeps a vector at a constant angle with respect to the
tangent of the trajectory. The difference between vectors V ′µ(x′) and V µ(x) at a common
point x will have two components, one from the transport [V ′µ(x′)−V ′µ(x)] and the other
from the intrinsic difference [V ′µ(x) − V µ(x)]. In flat space there will be no difference
arising from the transport. In curvilinear space there will be a difference

V ′µ(x′)− V ′µ(x) = ΓµνλV
νdxλ. (1.7)

Combining the two pieces, the total difference in the vectors is

DV µ = (∂λV
µ − ΓµνλV

µ)dxλ. (1.8)

The right-hand side of the equation makes it is clear that the covariant derivative is a (0, 1)
tensor (i.e. a covariant vector) with a chosen coordinate basis dxλ. The covariant derivative
is along a particular direction. The parallel transport of a vector corresponds to DV µ = 0;
when the direction of the covariant derivative coincides with the direction of the vector, the
vector is transported along a geodesic curve. The linear coefficient Γνµλ is known as the
connection and is clearly dependent on the covariant coordinate basis (it is therefore not a
tensor). The connection can be written in terms of the metric as

Γνµλ =
1

2
gνκ[∂µgκλ + ∂λgκµ − ∂κgµλ]. (1.9)

1.4.2 Parallel transport in a fiber bundle

Extending the concept of parallel transport to a fiber bundle proceeds as follows. Con-
sider a curve γ in M that is “lifted” with a section σ to γ̃ in P such that its tangent vector
is purely along M ; this is known as the “horizontal lift” of γ. Moving along this vector
moves from one fiber to another, with no change in the group position if the fiber space is
“flat”. One can separate a general vector in the fiber space in terms of a horizontal vector
in the direction of another fiber, and a vertical vector in the direction along a fiber. In a
general fiber space, parallel translating an object in group space along the horizontal lift
can change its group position:

dg(t)

dt
= ω(X)g(t), (1.10)

whereX is the tangent vector to the curve inM and g is determined by a particular section
mapping points in M to points in P . Different horizontal lifts are possible, bringing the
curve to different points on the fiber. The connection on the fiber is ω, analogous to the
connection in the spacetime manifold. The connection has a direction in spacetime along
a curve, as in the case of the connection in spacetime, and is not a tensor. It is also specific
to a particular point in the group space (i.e. specific to the lift). To go to a different point in
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group space, one can either use a transition function on the fiber, or change to a different
horizontal lift, or section. In this case the connection transforms as

ω = g−1ωg + g−1dg. (1.11)

In both cases the connection is a horizontal lift, so its propagation along fibers does not
change. In the geometrical description of the gauge forces, ω is related to the gauge po-
tential; for the electromagnetic force the relation is ω = −ieA. A particular choice of
lift corresponds to a choice of gauge. Consequently, a change in the lift corresponds to a
“gauge transformation.” The presence of a gauge symmetry in nature indicates the inde-
pendence of spacetime vectors to the position of the lifted vector in group space.

In the case of electromagnetism, with a structure group U(1), the transition function
between two points in group space is gji(x) = e−iφ(x) at a point x on the base space. The
gauge transformation law for A is therefore (in a coordinate system):

A′µ(x) = Aµ(x) +
1

e
∂µφ(x), (1.12)

where A corresponds to the lift i and A′ corresponds to the lift j.
With a connection in the group space we can define parallel transport and the covariant

derivative. The last piece we need is a representation of the group space, for the connection,
and a corresponding vector space for the object to be translated. This additional structure
provides an associated vector bundle to the principle fiber bundle. Then we can define a
covariant derivative on an object ψ in the group vector space,

Dψi = ∂µψ
i + ωiµjψ

j , (1.13)

in a particular coordinate system in spacetime (represented by µ) and in the group vector
space (represented by i, j). Setting Dψi = 0 corresponds to parallel translating ψ along a
lifted curve in the associated vector bundle.

1.5 Curvature

The curvature of a space can be quantified in terms of the change of a vector when
transported around a closed path. As an example, for the parallelogram shown in Fig. 1.1
the change in the vector Vµ is

∆V µ = RµναβV
νσαβ , (1.14)

where σαβ = aαbβ is the area enclosed by the path and the multiplicative factor Rνµαβ is
the curvature tensor:

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓλνβΓµλα − ΓλναΓµλβ . (1.15)

Because of the symmetries of the curvature tensor, there is only one tensor that can be
constructed by index contraction: the Ricci tensor Rνβ = gαµR

µ
ναβ , whose trace R =

gνβRνβ is the curvature scalar.
A vector in the fiber space also changes as it is transported around a closed curve hori-

zontally lifted into the product bundle P :

∆ψi = F iµνjψ
jσµν , (1.16)

The curvature tensor Fµν is again related to the connection:

F iµνj = ∂µA
i
νj − ∂νAiµj + [Aiµk, A

k
νj ]. (1.17)
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Figure 1.1 A parallelogram defined by vectors aα and bβ at point P , with parallel sides given by
their transported vectors at points P1 and P3.

1.6 Principle of least action

Classically, the equations of motion for a particle of matter can be derived from the
principle of least action, i.e. the requirement that the action is minimized. In general
relativity, the action associated with spacetime is the integral of the scalar curvature:

S =
1

16πG

∫
R
√
−gd4x. (1.18)

Extending this action to the associated vector bundle requires additional mathematical
structure, since the curvature scalar was defined by applying a metric to the curvature
tensor while there is no metric on the fibers. Instead the contraction takes place with an-
other curvature tensor, giving an action that is quadratic in the fiber curvature. Including
this action and that of matter (expressed as the Lagrangian LM ) gives

S =

∫ (
R

16πG
+
F 2

4
+ LM

)√
−gd4x. (1.19)

Historical interlude (II): In a five-dimensional theory, the effective action in four di-
mensions can be derived using the five-dimensional action and integrating over the fifth
dimension. The action in five dimensions is

I5 = − 1

16πG5

∫
d5x|det g5|1/2R5, (1.20)

whereG5 is the gravitational constant in five dimensions,R5 is the five-dimensional curva-
ture scalar, and g5 is the five-dimensional metric. In terms of the Ricci tensor, the curvature
is

R5 = gABRAB . (1.21)



8 THE GEOMETRY OF FORCES

The Ricci tensor is defined as

RBD = gCAR
A
BCD (1.22)

= gCA(∂CΓABD − ∂BΓACD + ΓACEΓEBD − ΓABEΓECD) (1.23)

in terms of the connection

ΓCAB =
1

2
gCD(∂AgDB + ∂BgDA − ∂DgAB). (1.24)

Consider once again the metric expansion about the ground state [Eq. (1.3)]. Terms with
∂5 and ∂µg55 are zero. The Ricci tensor with only θ components is gνβR

β
5ν5, or

R55 = gνβ(∂νΓβ55 + Γλ55Γβλν + Γ5
55Γβν5 − Γλ5νΓβλ5 − Γ5

5νΓν55) + ... (1.25)

The additional terms are zero; the only non-zero term is the one with connections of the
form

Γν5µ =
1

2
gνλ(∂µgλ5 − ∂λg5µ). (1.26)

The curvature from the g55R55 term becomes

g55R55 = −1

4
g55gνβg

λµgβρ(∂νgµ5 − ∂µg5ν)(∂λgρ5 − ∂ρgλ5)

= −1

4
g55(∂νBµΦ− ∂µBνΦ)(∂µBνΦ− ∂νBµΦ)

= −Φξ2

4
FµνF

µν +
Φ2ξ2

4
BαB

αFµνF
µν . (1.27)

The first term contributes to the action, while the second term is cancelled when adding to
g5ρR5ρ. It turns out that there is another term in gµνRµν equal to Φξ2

2 FµνF
µν . Adding

this term gives R5 = R4 + Φξ2F 2/4, resulting in the action

I5 = − 1

16πG5

∫
d5x|det g5|1/2(R4 + Φξ2F 2/4). (1.28)

Integrating over θ gives 2π; we can also pull out
√
g55 = R from the determinant to leave

|det g4|. Writing G4 = G5/(2πR) gives us the four-dimensional gravitational term we
are looking for. Then, recalling that we are considering the ground state Φ = g55 = R2,
we can obtain the desired electromagnetic term by setting ξ2 = 16πG4/R

2. We are left
with the four-dimensional effective action,

I4 = − 1

16πG4

∫
d4x|det g4|1/2R4 −

1

4

∫
d4x|det g4|1/2FµνFµν . (1.29)

We can calculate the mass of a charged scalar field, which has a Fourier expansion

φ(x, θ) =

∞∑
n=−∞

φn(x)einθ (1.30)

and satisfies the five-dimensional Klein-Gordon equation,(
∂µ∂

µ − ∂2

R2∂θ2

)
φ = 0. (1.31)
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Writing the Klein-Gordon equation as

(∂µ∂
µ +m2

n)φn(x) = 0, (1.32)

we see that m2
n = n2/R2, defining the mass of a given Fourier mode. A translation of the

extra dimension leads to the following change in mode n:

φn(x)→ einξεφn(x). (1.33)

Equating the charge with −nξ leads to the following expression for R for n = ±1:

R =
√

16πG4/ξ. (1.34)

If we take U(1) to be that of QED and the unit charge to be e/3 =
√

4παEM/3, the charge
±1 particles have a mass

m = R−1 = 1.7× 1017 GeV, (1.35)

while the chargeless mode will be massless. The large masses of the charged particles is a
weakness of the theory.

1.7 Conservation laws

Noether’s theorem states that any transformation that leaves the Lagrangian invariant
results in a conserved charge. Invariance with respect to a translation in spacetime leads to
the conservation of energy and momentum,

∂µT
µν = 0. (1.36)

A transformation of coordinates in gauge group space leads to the conservation of charge,

∂µJ
µ = 0. (1.37)





CHAPTER 2

PATH INTEGRALS AND FIELDS

The classical description of forces is valid in systems with large action (S � ~), charac-
terized by high particle multiplicity where the effects of individual fluctuations are sup-
pressed. In this limit, a force can be described by a smoothly curved spacetime or fiber,
resulting in the acceleration of particles following a geodesic. To describe forces at a
fundamental level, individual particle interactions must be considered. Quantum mechani-
cally, a force is transmitted by the quantized propagation of a spin-2 tensor (for gravity) or
spin-1 vector (for the other forces) between two particles. Mathematically, the exchanged
gravitational tensor is the metric tensor, inducing a local modification of time and distance
scales for the particles (in particular shortening the distance between the particles, like
pulling two points of a rubber sheet toward each other). The exchanged force vector is the
fiber connection, which modifies the momenta, and thus the trajectories, of the interacting
particles. Physically, the quantized tensor is a graviton and the quantized connection is a
gauge boson. The probability amplitude for such an exchange can be calculated given the
fiber-bundle structure and the elementary matter fields.

To determine the probability of an interaction, we calculate the transition rate from a
given initial state to a given final state. This transition rate will depend on all possible
interactions that produce the final state, given the initial state. In particular, it will depend
on the exchange of not just a single particle, but of multiple particles. Calculating such
exchange is non-trivial, but can be compactly summarized by a phase-weighted integral
over all possible intermediate states. This integral is known as the path integral [8].

Electroweak physics, lecture notes.
By Chris Hays
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2.1 Non-relativistic path integral

To become familiar with the path integral approach, it is useful to first consider a non-
relativistic transition of a particle from an initial state |q, t〉 to a final state 〈q′, t′|. The
Schrödinger equation provides the time dependence of the state, |q, t〉 = eiHt|q〉, so

〈q′, t′|q, t〉 = 〈q′|e−iH(t′−t)|q〉. (2.1)

The amplitude can be split into short steps in time; considering each possible intermediate
state qi at time ti gives

〈q′, t′|q, t〉 =

∫
dq1...dqn〈q′, t′|qn, tn〉...〈q1, t1|q, t〉. (2.2)

The integrals reflect the fact that all possible intermediate states must be considered, since
the states form a complete orthonormal basis. One can say that the particle takes all pos-
sible paths between states, hence the name “path integral”. Each intermediate state has a
phase determined by the Hamiltonian.

To derive an expression for the integrals over intermediate states, consider the transition
amplitude for an individual step τ = ti+1 − ti:

〈qi+1, ti+1|qi, ti〉 ≈ 〈qi+1|1− iHτ |qi〉, (2.3)

where the approximation arises from ignoring higher order terms in Hτ . Inserting a com-
plete set of states in momentum space gives:

〈qi+1, ti+1|qi, ti〉 ≈
∫
dpi
2π

ei[pi(qi+1−qi)−Hτ ], (2.4)

where the first term in the exponential arises from switching from position to momentum
bases, i.e. 〈p|q〉 = eipq , and terms quadratic and higher in Hτ are again assumed to be
negligible. If we now consider the time steps to be infinitesimal, we obtain the path integral
form for the transition amplitude:

〈q′, t′|q, t〉 =

∫
DqDp

2π
ei
∫ t′
t
dt[pq̇−H(p,q)], (2.5)

where Dq and Dp indicate that the integrands are functions of time.
For the non-relativistic Hamiltonian H = p2/2m+ V (q), the integral over momentum

functions can be performed. Making use of the relation∫ ∞
−∞

e(−ax2+bx+c)dx = e

(
b2

4a+c
) (π

a

)1/2

, (2.6)

the path integral becomes

〈q′, t′|q, t〉 = N

∫
Dq ei

∫ t′
t
dtL(q,q̇), (2.7)

where N = lim(n → ∞)[m/(2πiτ)](n+1)/2 is a normalization factor and L = mq̇2/2 −
V (q) is the classical Lagrangian. This is just the integral over all possible paths, with
a phase determined by the action of each path. The phases will cause a cancellation in
amplitudes except near the minimum of the action, where “near” is defined in units of ~.
The limit ~→ 0 reproduces the classical equations of motion.
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2.1.1 Perturbation theory

For a general potential V (q), the transition amplitude is not analytically calculable. If
the potential is small, one can perform a perturbative expansion:

e−i
∫ t′
t
V (q,t1)dt1 = 1− i

∫ t′

t

V (q, t1)dt1 +
1

2

[
−i
∫ t′

t

V (q, t1)dt1

]2

+ ... (2.8)

Inserting the first term into the transition amplitude gives an integral over the free-particle
Lagrangian, which is quadratic in q̇. Splitting this into infinitesimal integrals over the path,
and making use of the general result∫ ∞

−∞
e−a(x′−xi)2e−b(xi−x)2dxi =

√
π

a+ b
e−

ab
a+b (x′−x)2 , (2.9)

the first step in the integral is

m

2πiτ

∫ ∞
−∞

dx1e
im(x2−x1)2/(2τ)eim(x1−x)2/(2τ) =

√
m

2πi(2τ)
eim(x2−x)2/[2(2τ)]. (2.10)

In the next step 2τ → 3τ , so after N steps we have (N + 1)τ = t′ − t. This leads to the
following expression for the free-particle transition function:

〈q′, t′|q, t〉0 = θ(t′ − t)
√

m

2πi(t′ − t)
eim(q′−q)2/[2(t′−t)]. (2.11)

The second term in the perturbative expansion contains a factor eimq̇
2/2V (q, t) in the in-

tegral. To evaluate this we separate the free-particle factor into times before and after the
application of the potential:

〈q′, t′|q, t〉1 = −i
∫ ∞
−∞

dt1

∫
dq1〈q′, t′|q1, t1〉0V (q1, t1)〈q1, t1|q, t〉0. (2.12)

A similar procedure can be performed for the remaining terms, resulting in the Born
series shown pictorially in Fig. 2.1. The series represents a sum over the number of possible
intermediate interactions with the potential V (q, t). The pictorial representation is simply
a combination of lines (propagators) and vertices (interactions) represented respectively by
〈q′, t′|q, t〉0 and V (q, t).

Thus far only initial and final position eigenstates have been considered. One can also
consider initial and final momentum eigenstates. Then the transition, or scattering, ampli-
tude is

S = 〈p′, t′|p, t〉

=

∫
〈p′, t′|q′, t′〉〈q′, t′|q, t〉〈q, t|p, t〉dqdq′ + ...

= δ(p′ − p) +

−i
∫
〈p′t′|q′t′〉〈q′, t′|q1, t1〉0V (q1, t1)〈q1, t1|q, t〉0〈q, t|p, t〉dqdq′dq1dt1 + ...(2.13)

As before, the first term is simply the no-scattering case; additional terms describe the in-
teractions. S is a matrix giving scattering amplitudes from p to p′.
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Figure 2.1 A pictorial representation of the non-relativistic perturbation series for the transition
〈q′, t′|q, t〉 in the presence of potential V (q, t).

2.1.2 Green’s functions

The path integral approach is particularly useful for describing scattering experiments.
One typically has initial and final states consisting of narrow gaussians of momentum
and position eigenstates. The transition amplitudes are computed from Green’s functions,
which can be calculated using perturbative path-integral methods.

The two-point Green’s function G(t, t′) is defined as the propagator between initial and
final free-particle (ground) states. The propagation between an initial position and a final
position can be represented by 〈0|q̂†(t′)q̂(t)|0〉. We can relate the Green’s function to the
measurement of the position of the particle at some times between those of the far distant
past and future:

〈q′,∞|q̂†(t′)q̂(t)|q,−∞〉 = 〈q′,∞|0〉〈0|q̂†(t′)q̂(t)|0〉〈0|q,−∞〉〈q′,∞|q,−∞〉 (2.14)

The expression on the right contains the Green’s function and 〈q′,∞|q,−∞〉, so we can
write the Green’s function in terms of the left-hand quantity. We can then express it in
terms of a path integral that covers all paths between the past and future:

G(t, t′) =
〈q′,∞|q̂†(t′)q̂(t)|q,−∞〉

〈q′,∞|q,−∞〉
(2.15)

= lim
t(i)f→(−)∞

1

〈qf , tf |qi, ti〉

∫
DqDp

2π
q(t′)q(t)ei

∫ tf
ti

dt[pq̇−H(p,q)+iεq2/2].

One can extend this to an n−point Green’s function and express it more compactly by
adding to the Lagrangian a “source” term Jq, which is removed by setting J = 0 at the
end of the calculation:

G(t1...tn) =
(−i)nδnZ[J ]

δJ(t1)...δJ(tn)
|J=0, (2.16)

where

Z[J ] = lim
ti→−∞,tf→∞

1

〈qf , tf |qi, ti〉

∫
DqDp

2π
ei
∫ tf
ti

dt[pq̇−H(p,q)+Jq+iεq2/2]. (2.17)
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The function Z[J ] is the analogue of the partition function of statistical mechanics, with
the replacement T → it. It represents the transition amplitude from the ground state at a
time in the infinite past to a time in the infinite future. We have added a term −iεq2/2 to
the Hamiltonian in order to suppress the contributions from higher energy states at large
values of absolute time. The integral over momentum functions has not been performed,
since in general the integral does not lead to a path integral over the Lagrangian.

2.2 Path integral of a scalar field

To calculate a transition amplitude in relativistic quantum mechanics one has to con-
sider not only all possible paths of a given particle, but all possible paths of all possible
intermediate particles. To facilitate calculation, the wavefunction is elevated to an operator
with a component that produces a particle when operating on the vacuum (the “creation”
operator) and a component that eliminates a particle when operating on the vacuum (the
“annihilation” operator). The wavefunction thus becomes a “field” operator whose excita-
tions correspond to individual particles. Free scalar particles are represented by solutions
to the Klein-Gordon equation,

φ̂(x) =

∫
d3k

(2π)32ω
[â†(k)e−i(kx−ωt) + â(k)ei(kx−ωt)], (2.18)

where a single-particle state is represented by |k〉 = [(2π)32ω]1/2â†(k)|0〉 and the annihi-
lation and creation operators have the commutation relation [â(k), â†(k′)] = δ3(k − k′).

Viewed from a path integral perspective, the relevant transition amplitude is no longer
between initial and final positions or momenta of a single particle, but between initial and
final field configurations. One can still consider single-particle initial and final states, but
intermediate multiparticle states must also be included. The transition amplitude between
initial and final field configurations of a single-particle scalar state is

〈0|φ(x′)φ(x)|0〉 = − δ2Z

δJ(x)δJ(x′)
|J=0 (2.19)

where

Z[J ] =

∫
Dφei

∫
d4x[L(φ)+Jφ+iεφ2/2]. (2.20)

This can be derived in a manner analogous to the single-particle function by slicing up both
space and time into incremental steps and using a Lagrangian density for φ, e.g.

L(φ) =
1

2
(∂µφ∂

µφ−m2φ2)− g

4!
φ4. (2.21)

In a field theory the ground state is the vacuum, so Z[J ] represents the vacuum-to-vacuum
transition amplitude. It is also known as the generating functional.

2.2.1 Free-field transition amplitude

A succinct closed-form expression for the vacuum-to-vacuum transition amplitude can
be derived in the case of a scalar free-field theory (i.e., the Lagrangian in equation 2.21
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without the φ4 term). Expressing ∂µφ∂µφ in terms of a total divergence, which vanishes
as x→∞, the generating functional can be written

Z0[J ] =

∫
Dφe−i

∫
d4x[ 12φ(∂µ∂

µ+m2+iε)φ−Jφ]. (2.22)

To perform this integration, express φ as the deviation from the field φ0 that satisfies an
effective Klein-Gordon equation:

(∂µ∂
µ +m2 − iε)φ0 = J. (2.23)

Then the generating functional is

Z0[J ] =

∫
Dφe−i

∫
d4x[ 12φ(∂µ∂

µ+m2+iε)φ− 1
2Jφ0]. (2.24)

This has two pieces: an integral over φ that doesn’t contribute to the Green’s functions,
and a φ0J integral over space that does. Express φ0 as

φ0 = −
∫

∆F (x− y)J(y)d4y, (2.25)

where ∆F satisfies
(∂µ∂

µ +m2 − iε)∆F (x) = −δ4(x). (2.26)

Now write the integral over φ as a constant N . To normalize the functional such that
Z0[0] = 1 we divide by N to obtain:

Z0[J ] = e−
i
2

∫
d4xd4yJ(x)∆F (x−y)J(y). (2.27)

From this functional it is straightforward to calculate the n-point Green’s function:

G(x1, ..., xn) =

(
1

i

)n
δ

δJ(x1)
...

δ

δJ(xn)
Z[J ]|J=0. (2.28)

The free-field generating functional thus gives a simple n-particle propagator: the 2-point
Green’s function corresponds to single-particle propagation, the 4-point Green’s function
corresponds to two-particle propagation, and so on. The n-th term in the expansion of
the exponential gives the 2n Green’s function for n-particle propagation. The propagator
satisfies the Klein-Gordon equation, with all other field configurations normalized away. It
is straightforward to show that the propagator can be expressed as

∆F (x) =
1

(2π)4

∫
d4k

e−ikx

k2 −m2 + iε
. (2.29)

The expansion of the exponential in Z0 is shown diagramatically in Fig. 2.2, along with
the corresponding “Feynman rules”.

2.2.2 Interacting-field transition amplitude

The generating functional for a self-interacting scalar field (Eq. 2.21) can be expressed
in terms of the free-field functional Z0[J ] as:

Z[J ] = Nei
∫ −g

4! ( δ
iδJ )4dxZ0[J ]. (2.30)
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Figure 2.2 A pictorial representation of the vacuum-to-vacuum transition amplitude for the scalar
free-field theory. Also shown are the “Feynman rules” for the source and the propagator.

While this cannot be solved explicitly, it can be solved at each order in g. The zeroth-order
term just gives the free-particle functional. The term linear in g is:

Zg[J ] = Ng
−ig
4!

∫
d4z

(
δ

iδJ(z)

)4

e−
i
2

∫
d4xd4yJ(x)∆F (x−y)J(y)

= Ng
−ig
4!

∫
d4z{−3 [∆F (0)]

2
+ 6i∆F (0)

[∫
∆F (z − x)J(x)d4x

]2

+[
∆F (z − x)J(x)d4x

]4}e− i
2

∫
d4xd4yJ(x)∆F (x−y)J(y). (2.31)

As in the free-field case, the normalization factor is chosen such that Z[0] = 1, and is just
Z−1[J ]|J=0. Expressing ∆F (x − y) as a line and ∆F (0) as a loop, the functional can be
written as in Fig. 2.3 to first order in g. The n−point Green’s functions are straightforward
to derive; they simply pick out the factors with n factors of J . The 2-point function is
shown in Fig. 2.3 to first order in g. In equation form it is

G(x1, x2) = i∆F (x1 − x2)− g

2
∆F (0)

∫
d4z∆F (z − x1)∆F (x2 − z) + ...

=
i

(2π)4

∫
d4k

e−ik(x1−x2)

k2 −m2 + iε

[
1 +

ig∆F (0)/2

k2 −m2 + iε
+ ...

]
≈ i

(2π)4

∫
d4k

e−ik(x1−x2)

k2 −m2 − ig∆F (0)/2 + iε
. (2.32)

The interaction has a rather remarkable effect: it produces loops in the propagator that shift
the pole. The result is that a particle’s mass is not fixed by the mass term in the Lagrangian,
but rather the combination of such a term with all the possible loops in the propagator. For
an interacting field theory the shift at order g is δm2 = ig∆F (0)/2. By itself such a
shift is problematic, since ∆F (0) is quadratically divergent. This can be handled by a
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Figure 2.3 A pictorial representation of the vacuum-to-vacuum transition amplitude for the scalar
interacting-field theory, to first order in g. Also shown is the first-order correction to the 2-point
Green’s function.

renormalization procedure that uses the mass term in the Lagrangian (the “bare” mass) to
cancel the divergence.

2.3 Path integral of a fermion field

The propagator of a Dirac fermion field can be derived in a similar manner, where the
field has internal degrees of freedom and satisfies the anticommutation relations {ψ̂α(x), ψ̂†β(y)} =
δαβδ(x− y). The field operators can be expressed as

ψ̂(x) =
∑
s=1,2

∫
d3k

(2π)32E

[
b̂(k, s)u(k, s)e−ikx + d̂†(k, s)v(k, s)eikx

]
(2.33)

and ˆ̄ψ ≡ ψ̂†γ0, where b(†) and d(†) are the annihilation (creation) operators for particles (u)
and antiparticles (v). The operators satisfy the anticommutation relations {b(k, s), b†(k′, s′)} =
{d(k, s), d†(k′, s′)} = (2π)32Eδss′δ(k − k′).

The generating functional for a free fermion field is

Z0(η̄, η) =

∫
DψDψ̄ei

∫
d4x[ψ̄(i∂/−m)ψ+η̄ψ+ψ̄η], (2.34)

where η and η̄ are source fields and ∂/ = γµ∂µ. To extract the propagator, we write
ψ = ψ0 + ψ′ and ψ̄ = ψ̄0 + ψ̄′, where

(i∂/−m)ψ0 = −η
ψ̄0(i∂/−m) = −η̄. (2.35)

The solution ψ0 can be written as

ψ0 = −
∫
d4y∆F (x− y)η(y), (2.36)
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where (i∂/−m)∆F (x− y) = δ4(x− y). Writing the delta function as

δ4(x− y) =

∫
d4k

(2π)4
e−ik(x−y), (2.37)

we find the fermion propagator,

∆F (x− y) =

∫
d4k

(2π)4

(
1

k/−m+ iε

)
e−ik(x−y). (2.38)

In terms of the Feynman propagator, the generating functional becomes

Z0(η̄, η) =

∫
Dψ′Dψ̄′ei

∫
d4x[ψ̄′(i∂/−m)ψ′+ 1

2 ψ̄0η+ 1
2 η̄ψ0]

= e−i
∫
d4xd4yη̄(x)∆F (x−y)η(y), (2.39)

where the integral that does not depend on the source has been divided out in the normal-
ization. The Feynman propagator can be derived from the generating functional:

i∆F (x− y) =
δ

iδη̄(x)

δ

iδη(y)
Z0[η, η̄]|η=η̄=0. (2.40)

2.4 Path integral of a gauge field

Quantized fluctuations of the gauge-group connections, expressed as wavefunctions of
Aµ with creation and annihilation operators, are the gauge-boson particles transmitting the
forces of the Standard Model. Because of the gauge freedom, one cannot write a general
gauge field operator; a gauge must be chosen before quantization. Similarly, naively ap-
plying the path integral over all possible field configurations Aµ gives an infinite result
because all possible coordinate transformations are included in the counting.

The coordinates can be set by inserting a delta function in the integration over the coor-
dinate variable. Recall that a general gauge transformation takes the form:

[τaA′aµ ]jm =
[
e−iτ

aθa(x)
]j
k

[τaAaµ]kl

[
eiτ

bθb(x)
]l
m
− i

g

[
eiτ

cθc(x)
]j
k

[
∂µe
−iτaθa(x)

]k
m
,

(2.41)
which for small rotations reduces to

A′aµ = Aaµ + fabcθ
bAcµ −

1

g
∂µθ

a. (2.42)

where only indices representing basis connection matrices are kept. Choose a gauge by
setting some functions of the connections to zero, f i(Aµ) = 0, and then integrate over the
gauges θj : ∫

[dθj(x)]δ[f i(Aµ)] =

[
det

(
∂f i

∂θj

)]−1

. (2.43)

Now, to do the path integral, we include the delta function to choose a particular coordi-
nate system and divide out the extra volume factor that arises from this integration. The
generating functional is then

Z[J ] =

∫
DAjµ det

(
∂f i

∂θj

)
δ[f i(Aµ)]ei

∫
d4x[L+JµAµ]. (2.44)
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This procedure of fixing the coordinate system is known as the Faddeev-Popov ansatz.
To perform calculations it is useful to recast the additional factors as extra terms in the

Lagrangian. The determinant can be written as

det

(
∂f i

∂θj

)
=

∫
Dη̄Dηe−i

∫
η̄iMijηjd4x, (2.45)

where M ij = ∂fi

∂θj and the new fields η̄i and ηj are non-physical fermion “fields”, typ-
ically referred to as “ghost” fields. The delta function can also be expressed as an ex-
ponential by writing it as δ[f i(Aµ) − B(x)] and multiplying by a constant integration∫
DB exp[−i/(2α)

∫
d4xB2(x)], which just affects the normalization. Then the integral

over DB replaces B with f i (due to the delta function) and the generating functional be-
comes

Z[J ] = N

∫
DAµDη̄Dηe−i

∫
Leffd

4x, (2.46)

where

Leff = L − f if i

2α
− η̄iM ijηj

= L+ LGF + LFPG. (2.47)

GF refers to the gauge-fixing term and FPG refers to the Faddeev-Popov ghost term.
This is the starting point from which the Green’s functions, and hence the gauge boson
propagators, can be derived.

2.4.1 Free-field generating functional

To derive the free-field generating functional from the effective Lagrangian, it is con-
venient to use the class of gauges where f i = ∂µAiµ. To find the matrix M , we take
the derivative of ∂µAiµ with respect to θj . Combining this with the other terms in the
Lagrangian, we obtain the following generating functional:

Z[J, c, c†] = N

∫
DAµDηDη† exp{i

∫
d4x[−1

4
(∂µA

i
ν − ∂νAiµ)2 − 1

2α
(∂µAiµ)2 +

ηi†∂µ(δij∂µ − gf ijkAkµ)ηj + J iµAiµ + ci†ηi + ciηi†]}, (2.48)

where Jµ, c and c† are sources of the fields Aµ, η†, and η, respectively (note the normal-
izations have been redefined to take out a factor of 1/g). As in the scalar field case, we can
separate this into a quadratic free-field term and an interaction term at higher order in the
fields. Then we can write the generating functional as

Z[J, c, c†] = e
iSI
[

δ
iδJµ

, δiδc ,
δ

iδc†

]
Z0[J ]Z0[c, c†], (2.49)

where SI contains only interaction terms. The propagators can be extracted from the free-
field functionals Z0[J ] and Z0[c, c†]. We can express Z0[J ] as∫

DAµei
∫
d4x{ 1

2A
i
µ[gµν∂λ∂

λ−(1− 1
α )∂µ∂ν ]Aiν+JiµA

iµ} (2.50)

after removing surface terms (the normalization is implicit here and in the following). The
Gaussian integral can be evaluated using∫

DAe− 1
2AKA+JA ∝ (detK)−

1
2 eJK

−1J , (2.51)
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to obtain:
Z0[J ] = e−

i
2

∫
d4xd4yJiµ(x)Gµνij (x−y)Jjν(y), (2.52)

where

Gµνij (x− y) = −δij
∫

d4k

(2π)4

e−ik(x−y)

k2 + iε

[
gµν − (1− α)

kµkν

k2

]
. (2.53)

Common gauges are α = 0 (Lorentz gauge) and α = 1 (Feynman gauge). One can verify
that this is the inverse ofK by integrating d4yKµν

ab (x−y)Gbcνλ(y−z). A similar procedure
can be applied to obtain the free-field generating functional for ghosts:

Z0[c, c†] = e−i
∫
d4xd4yci†(x)Gij(x−y)cj(y), (2.54)

where

Gij(x− y) = −δij
∫

d4k

(2π)4

e−ik(x−y)

k2 + iε
. (2.55)

Interaction terms can be determined using SI and the derivatives of the free-field generating
functional. We will return to the interaction terms after considering the modification of the
propagator due to the Higgs mechanism.





CHAPTER 3

CROSS SECTIONS AND LIFETIMES

To link the underlying theory to experimental observations we need to translate Lagrangian
densities into differential cross-section predictions. The procedure involves producing a
scattering matrix based on the Green’s functions and relating it to a measurable cross sec-
tion. The matrix can be divided into a phase space component and a fundamental inter-
action component, which can be calculated in a straightforward manner using Feynman
diagrams and rules.

3.1 Scattering matrix

A cross-section or lifetime calculation begins with the scattering matrix S = 〈f |i〉,
where i represents an initial state and f represents a final state. The LSZ reduction formula
expresses an n-particle to n-particle scattering matrix in terms of the Green’s function in
the position basis as

〈x′1, ..., x′n|x1, ..., xn〉 =
∏
i

δ4(x′i−xi)+

[∏
i

φ(xi)φ(x′i)(∂µ∂
µ +m2)i

]
G(x1, ..., x

′
n).

(3.1)
The states φ are expressed as free-particle plane waves with creation and annihilation op-
erators that act on the vacuum. In the momentum basis the differential operators become
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the particle momenta:

〈p′1, ..., p′n|p1, ..., pn〉 =
∏
i

δ4(p′i − pi) + (−i)2n
∏
i

(p′2i −m2)(p2
i −m2)

×G(−p′1, ...,−p′n, p1, ..., pn), (3.2)

where

G(p1, ..., pn) =

∫ [∏
i

d4xie
−ipixi

]
G(x1, ..., xn). (3.3)

The prefactors to the Green’s functions (e.g. p2
i −m2) cancel the external propagators that

don’t contribute to the scattering probability.

Example: In an interacting scalar field theory with a− g
4!φ

4 term, the four-point Green’s
function of two incoming and two outgoing particles is

G(x1, x2, x
′
1, x
′
2) = −ig

∫
d4z∆F (x1 − z)∆F (x2 − z)∆F (z − x′1)∆F (z − x′2). (3.4)

Since we typically have approximate momentum eigenstates, it is most appropriate to cal-
culate the scattering matrix in the momentum basis. Using the Fourier representation of
the propagator,

∆F (x) =
1

(2π)4

∫
d4k

e−ikx

k2 −m2 + iε
(3.5)

the integral over x in equation 3.3 will give a delta function requiring ki = pi; then the
integral over ki just replaces ki with pi. The factors of p2

i − m2 cancel, leaving only
exponentials in the integral over z. This last integral gives (2π)4 times a delta function that
enforces momentum conservation:

〈p′1, p′2|p1, p2〉 = δ4(p1 − p′1)δ4(p2 − p′2)− ig(2π)4δ4(p′1 + p′2 − p1 − p2)

≡ δ4(p′1 − p1)δ4(p′2 − p2) + i(2π)4δ4(p′1 + p′2 − p1 − p2)M, (3.6)

whereM is a Lorentz-invariant quantity generally referred to as the “matrix element” of
the process. In this example, the matrix element is simply equal to −g. In general, every
4-point vertex will contribute a factor of −g to the matrix element; this is an example of a
“Feynman rule”.

3.2 Expressions for cross sections and lifetimes

The scattering matrix represents the probability amplitude for a process. To get a prob-
ability one needs to square the amplitude. Since we are generally interested in probabilities
of scattering processes or decays, we consider only the interaction term in the scattering
matrix (the transition amplitude). We further factor out momentum conservation to get the
matrix element capturing the dynamics of the process:

|〈p′1, ..., p′m|p1, ..., pn〉|2 = δmn
∏
i

|δ4(p′i−pi)|2+(2π)8

[
δ4

(∑
i′

p′i′ −
∑
i

pi

)]2

|M|2.

(3.7)
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A typical scattering experiment will have two colliding particles in the initial state. These
particles will have a spread of momentum with wavefunctions represented by

|φ1, φ2〉 =

∫
d3p1d

3p2

(2π)62E12E2
|p1, p2〉〈p1, p2|φ1, φ2〉. (3.8)

This gives a spread of matrix elements:∫
d3p1d

3p2
(2π)62E12E2

|〈p′1, ..., p′m|p1, p2〉〈p1, p2|φ1, φ2〉|2 =∫
d4x

(2π)2 |φ1(x)|2|φ2(x)|2
[∏

i δ
4(p′i − pi) + (2π)4δ4 (

∑
i′ pi′ −

∑
i pi) |M|2

]
, (3.9)

where we have used one of the delta functions in each term to Fourier transform |φi(p)|2
to |φi(x)|2 for colliding particles 1 and 2. We focus on the interaction term that changes
the state, defined as the transition probability P :

P =

∫
d4x

∏
i

|φi(x)|2(2π)4δ4

∑
j′

pj′ −
∑
j

pj

 |M|2. (3.10)

For a two-particle collision, the cross section is defined as the transition rate per unit vol-
ume divided by the “incident” particle flux and the “target” particle density:

dP

dV dt
= flux× density × dσ. (3.11)

The flux is given by the density of particles per unit volume (|φi(x)|2 × 2Ei) times the
relative velocity of the initial state particles:

|~v| =
[
(p1p2)2 −m2

1m
2
2

] 1
2

E1E2
. (3.12)

The final-state particles are measured in finite momentum range with a density of states
d3pi′/(2π)3 (the “phase space”). Combining all the pieces gives the following differential
cross section:

dσ(p1, p2 → p1, ..., pm) =
(2π)4|M|2

4 [(p1p2)2 −m2
1m

2
2]

1
2

δ4(
∑
j′

pj′ −
∑
j

pj)
∏
i′

d3pi′

(2π)32Ei′
.

(3.13)
We have assumed that the final-state particles are distinguishable; if there are n indistin-
guishable final-state particles then we need to divide by n! to remove the combinatoric
factor.

The expression for inverse lifetime, or width, is nearly equivalent to that of the cross
section; the difference is merely to move one particle from the initial state to the final state:

dΓ(p1 → p′1, ..., p
′
m) =

(2π)4|M|2

2E1
δ4

∑
j′

p′j′ − p1

∏
i′

d3pi′

(2π)32Ei′
. (3.14)

Example: Given the differential equation for the cross section, we can apply it to our
simple example of φφ scattering in a scalar field theory with a − g

4!φ
4 term. Assuming

highly relativistic initial and final states, the differential cross section becomes

dσ(p1, p2 → p′1, p
′
2) =

(2π)4g2

2× 4p1p2
δ4(p′1 + p′2 − p1 − p2)

d3p′1
(2π)32E′1

d3p′2
(2π)32E′2

, (3.15)
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where the factor of 1/2 is the combinatoric factor for indistinguishable particles. In the case
of scattering in the center of mass frame of the initial particles, ~p1 = −~p2 and p1p2 = 2E2

i

(where Ei is the energy of each initial-state particle). Then the cross section equation is

dσ(p1, p2 → p′1, p
′
2) =

(2π)4g2

16E2
i

δ3(~p′1 + ~p′2)δ(E′1 + E′2 − 2Ei)
d3p′1

(2π)32E′1

d3p′2
(2π)32E′2

.

(3.16)
Performing the integral over d3p′2 sets ~p′2 = −~p′1. The integral over d3p1′ = E2

1′dE1′dΩ
then cancels the E2

1′ in the denominator, and δ(2E1′ − 2Ei) contributes a factor of 1
2 . We

are left with:

σ(p1, p2 → p1′ , p2′) =
g2

128πE2
i

. (3.17)

3.3 Feynman rules

The four-point vertex in the scalar field theory gives a simple contribution to the matrix
element: g. This is an exmaple of a Feynman rule. Any matrix element can be constructed
by collecting all diagrams contributing to a process and inserting coupling factors at each
vertex and propagators for each internal line. The coupling factors are straightforward to
extract from the Lagrangian: they correspond to the coefficient in front of a set of field
operators that determine the particle lines emanating from the vertex, times a combinatoric
factor for indisinguishable external lines. In the case of the − g

4!φ
4 term, there are four

scalar operators emanating from a vertex with a coefficient of − g
4! and a combinatoric

factor of 4! for associating each particle momentum with a given line.
Including Lagrangian terms for the fermion fields with covariant derivatives for the

U(1)EM gauge fields, we can construct a complete set of rules for determining the matrix
element for electromagnetic processes from Feynman diagrams:

1. apply a factor of −ieγµ for a vertex with a positive charge emitting or absorbing a
photon;

2. enforce conservation of momentum at each vertex with a delta function;

3. integrate over a propagator for each internal line,∫
d4p

(2π)4

i

γµpµ −m
(3.18)

for a fermion, ∫
d4p

(2π)4

i

p2 −m2
(3.19)

for a scalar, and ∫
d4k

(2π)4

−i
k2 + iε

[
gµν − (1− α)

kµkν

k2

]
(3.20)

for a photon;

4. include arrows for fermion particle flow and consistently order terms in the same
particle-flow direction (conventionally backwards in particle flow);
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5. include spin factors of u(p) [ū(p)] and v̄(p) [v(p)] for external initial-state [final-
state] fermions and antifermions respectively;

6. include polarization factors of εµ [εµ∗] for external initial-state [final-state] photons;

7. and include a factor of -1 for each fermion loop.

These Feynman rules allow the calculation of any QED process. However, at higher orders
loop diagrams appear, which are typically divergent. To remove these divergences and
allow physical predictions requires a program of renormalization.





CHAPTER 4

THE HIGGS MECHANISM

Fundamental scalar fields are a special form of matter. They have explicit self-couplings
and provide potential terms to the fermions, without any known geometrical origin (unlike
the gauge bosons). In addition, the form of the scalar potential can produce a vacuum that
breaks gauge symmetry, giving mass to the gauge bosons.

4.1 Self-interacting scalar field theory

It is instructive to investigate theories of a single self-interacting scalar field described
by various Lagrangians with different ground states. Writing the Lagrangian in terms of
fluctuations about the vacuum (the physical particles) demonstrates how simple changes
to the Lagrangian can lead to a rich set of physical phenomena. The most basic case
to consider is the real scalar field. With a complex scalar field a number of additional
phenomena can appear, such as the presence of massless Goldstone bosons resulting from
an invariance in the Lagrangian with respect to rotations of the field.

4.1.1 Real scalar field

A basic Lagrangian for an interacting real scalar field theory is

L(φ) =
1

2
(∂µφ∂

µφ−m2φ2)− λ

4
φ4.
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As λ → 0, this approaches a free field theory with kinematics described by the Klein-
Gordon equation:

[∂µ∂
µ −m2]φ = 0. (4.1)

This equation represents the physical situation of a ground state at φ = 0 and harmonic
oscillations of the field about this ground state. The solution is given by equation 2.18:

φ̂(x) =

∫
d3k

(2π)3

1

2ω
[eikµx

µ

â†(k) + e−ikµx
µ

â(k)], (4.2)

where â(k) is the destruction operator that removes a particle with momentum k and â†(k)
is the creation operator that produces a particle with momentum k. Incorporating a non-
zero self-coupling λ creates perturbations that affect the propagation of a particle through
emission and reabsorption of additional particles.

Now consider a change in sign of the mass term, taking the mass parameter to be real.
This case corresponds to a potential with a local maximum at φ = 0 rather than a local
minimum. A field starting at φ = 0 will radiate energy until it reaches the ground state at
φ = ±

√
m2/λ. The ground state, or equivalently the vacuum, has a non-zero eigenvalue

for the field operator φ̂. Expressing the operator as φ̂0+δ̂, and choosing a particular ground
state φ̂0|0〉 =

√
m2/λ|0〉, the Lagrangian is:

L(δ) =
1

2
(∂µδ∂

µδ +m2φ2
0 + 2mφ0δ +m2δ2)− λ

4
(φ4

0 + 4φ3
0δ + 6φ2

0δ
2 + 4φ0δ

3 + δ4)

=
1

2
(∂µδ∂

µδ − 2m2δ2) +m
√
λδ3 +

λ

4
δ4 +

m4

4λ
, (4.3)

where in the second line we have assumed operation on a vacuum-to-vacuum transition
and replaced φ0 with

√
m2/λ. This Lagrangian describes an interacting scalar field theory

of a particle oscillating about the ground state with a mass of
√

2m. The theory contains
both δ3 and δ4 self-interaction terms and the ground state corresponds to a potential well
with a minimum V0 = −m4/(4λ). The inclusion of information about the ground state
allows a physically transparent expression for the Lagrangian, including the symmetries of
the Lagrangian with respect to the physical states.

4.1.2 Complex scalar field

It is straightforward to extend this investigation from real to complex scalar fields.
Writing the complex field as φ = (φ1 + iφ2)/

√
2 and the Lagrangian as

L(φ) =
1

2
(∂µφ

∗∂µφ+ µ2φ∗φ)− λ(φ∗φ)2, (4.4)

it is clear that the ground state will occur for a field value of |φ0| = µ/
√

2λ. This corre-
sponds to a circle in the complex φ plane with radius |φ0|. As before, a field starting at
φ = 0 will radiate until it reaches this circle in φ space, and we can rewrite the Lagrangian
by considering variations about the ground state. The ground state will be some point on
the circle and we choose axes such that it is in the direction of the positive axis of the real
field. Then φ = φ0 + (δ + iε)/

√
2 and the Lagrangian becomes:

Lφ(δ, ε) =
1

2
(∂µδ∂

µδ−2µ2δ2)+
1

2
(∂µε∂

µε)−µ
√
λδ(δ2+ε2)− λ

4
(δ2+ε2)2+

µ4

4λ
. (4.5)
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There are two types of oscillations, one along the radial direction and the other along the
azimuthal direction. Since there is no quadratic term for the field in the azimuthal direction,
the corresponding particle is massless. This massless particle arising from an invariance of
the Lagrangian with respect to the ground state is known as a Goldstone boson.

4.2 Gauged scalar field

Perhaps the most interesting phenomena occur when a scalar field possesses a gauge
group charge and has a non-zero vacuum expectation value. This value specifies a di-
rection, or phase, in group space, and gives non-zero masses to the corresponding gauge
bosons. To explore the possibilities, we consider charged scalar fields under an abelian
U(1) gauge group and a non-abelian SU(2) gauge group.

4.2.1 U(1)-charged scalar field

The simplest gauge group is U(1), which can be represented by a phase or a location
on a circle. A single gauge boson, or connection, Aµ, describes the parallel transport of
the momentum vector of a field with a U(1) fiber degree of freedom and charge −e:

Dφ = (∂µ + ieAµ)φdxµ. (4.6)

There are no group indices, since it is a one-dimensional space. The scalar field has no
direction in spacetime, but it has a position in group space; it is a vector in the group space
with location determined by its phase.

The Lagrangian is simply the interacting scalar-field Lagrangian with derivatives given
by equation 4.6, plus a curvature term −FµνFµν/4:

L(φ) =
1

2
(Dµφ

∗Dµφ+ µ2φ∗φ)− λ(φ∗φ)2 − 1

4
FµνF

µν . (4.7)

The minimum of V (φ) has not changed, so again we expand around the ground state of
the vacuum and obtain the terms in equation 4.5 [Lφ(δ, ε)] plus terms with Aµ from the
covariant derivative:

L(δ, ε, Aµ) = Lφ(δ, ε) + LAµ(δ, ε, Aµ)

= Lφ(δ, ε) +
e2µ2

2λ
AµA

µ − eµ√
2λ
∂µεA

µ + e[δ∂µε− ε∂µδ]Aµ +

e2µ

2
√
λ
δAµA

µ +
e2

2
(ε2 + δ2)AµA

µ − 1

4
FµνF

µν . (4.8)

There are a number of remarkable phenomena in this Lagrangian. First, consider the term
e2µ2

2λ AµA
µ = e2〈φ0〉2AµAµ. The non-zero expectation value 〈φ0〉 is at a particular loca-

tion in group space, i.e. it has a specific phase. The e2〈φ0〉2AµAµ term transports fields
with group positions along this specific phase, over a characteristic distance |〈φ0〉|−1. One
can imagine a source with a particular U(1) phase is parallel-transported via Aµ. Since Aµ
has a potential well in the direction 〈φ0〉, the phase “falls” in this direction over a space-
time distance |〈φ0〉|−1. Oscillations in the phase are thus damped out over distances of this
scale.
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The parallel-transport of the phase can be seen in the bilinear term eµ√
λ
∂µεA

µ, which
corresponds to a vertex with one ∂µε line and one Aµ line. Recalling equation 4.2 for
a free field, ∂µε = kµε, the vertex projects Aµ along the direction of propagation of ε.
The connection Aµ parallel-transports ε into the potential well. One can use a coordinate
system, or equivalently a gauge, where this term is zero. Changing to this coordinate
system requires to the following changes in the fields:

φ′ = eiε/φ0φ

A′µ = Aµ +
1

eφ0
∂µε. (4.9)

In this gauge the connection follows the scalar field oscillations about the vacuum in group
space; this component of the scalar field is absorbed by the connection and the Lagrangian
becomes:

L(δ, A′µ) =

[
1

2
(∂µδ∂

µδ − 2µ2δ2)

]
+

[
−1

4
FµνF

µν +
e2µ2

2λ
A′µA

′µ
]

+

e2µ

2
√
λ
δA′µA

′µ +
e2

2
δ2AµA

µ + µ
√
λδ3 − λ

4
δ2 +

µ4

4λ
. (4.10)

We see that oscillations in ε have moved to oscillations in the connection; the two-component
gauge field has acquired a third field, i.e. another degree of freedom, along its direction
of motion. This is the longitudinal component of the massive vector field. This choice of
coordinates is known as the “unitary”, or “physical” gauge.

4.2.2 SU(2)-charged scalar field

A scalar charged under SU(2) can have any half-integer charge. We consider the case
of a charge 1/2 scalar, which can be represented as a complex doublet φi, i = 1, 2. The
analysis continues along the lines of the Abelian case, though now with group indices
on φ, Aµ and Fµν . The set of connections again describes the parallel-transport of the
momentum of the field, but now with the possibility of changing the SU(2) charge of the
field:

Dφi = [δij∂µ − ig(
τa

2
Aa)ijµ]φjdxµ. (4.11)

where τa is an SU(2) basis that can be represented by the usual Pauli matrices. Taking the
potential

V (φ) = −µ2(φ†φ) + λ(φ†φ)2, (4.12)

the ground state corresponds to an expectation value of 〈φ†φ〉 = µ2/2λ. Now we choose
axes such that this expectation value is real, positive, and in the “down” state:

〈φ〉0 =

(
0

µ/
√

2λ

)
. (4.13)

Expanding the scalar fields about the vacuum expectation value gives a Lagrangian

L =

[(
∂µ − ig

τa

2
Aaµ

)
(φ′ + 〈φ〉0)

]† [(
∂µ − ig

τ b

2
Abµ

)
(φ′ + 〈φ〉0)

]
+V (φ)−1

4
F aµνF

aµν ,

(4.14)
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where φ′ = φ− 〈φ〉0. To obtain the gauge boson masses, we take the term combining two
Alµ with two 〈φ〉0:

g2

4 (τaAaµ〈φ〉0)†(τ bAbµ〈φ〉0) =

g2

4

(
0 µ/

√
2λ
)( A3µ A1µ − iA2µ

A1µ + iA2µ −A3µ

)(
Aµ3 Aµ1 − iA

µ
2

Aµ1 + iAµ2 −Aµ3

)(
0

µ/
√

2λ

)

= g2

4
µ2

2λ

(
A1µ + iA2µ −A3µ

)(Aµ1 − iAµ2
−Aµ3

)
= g2

4
µ2

2λ (A1µA
µ
1 +A2µA

µ
2 +A3µA

µ
3 ).

(4.15)

This is of the form 1
2M

2
AA

a
µA

aµ, where MA = gµ/(2
√
λ). Thus, all three gauge bosons

have equal mass in the theory.
To obtain the scalar field masses, the terms quadratic in φ′ must be calculated. We have

µ2(〈φ〉†0 + φ′†)(〈φ〉0 + φ′)− λ(φ′†φ′ + φ′†〈φ〉0 + 〈φ〉†0φ′ + 〈φ〉
†
0〈φ〉0)2 =

µ2φ′†φ′ − λ[φ′†φ′〈φ〉†0〈φ〉0 + (φ′†〈φ〉0)2 + (〈φ〉†0φ′)2 + 2(φ′†〈φ〉0)(〈φ〉†0φ′)] + ...
(4.16)

We now write

φ′ =

(
φ′1

φ′2

)
(4.17)

and expand equation 4.16:

µ2(|φ′1|2 + |φ′2|2)− µ
2

2
(2|φ′1|2 +2|φ′2|2 +φ′∗22 +φ′22 +2|φ′2|2) = −µ

2

2
(φ′2 +φ′∗2 )2. (4.18)

Thus, the real component of φ2 has a mass
√

2µ and the other three scalar fields remain
massless (the Goldstone bosons). The three massless fields are “eaten” by the gauge fields
in the unitary gauge.

4.3 Propagators after symmetry breaking

In a scalar field theory with Lagrangian given by equation 4.7 and a U(1) gauge sym-
metry, the field has a vacuum expectation value that can be defined as 〈φ〉0 = µ/

√
2λ.

Expanding the scalar field about 〈φ〉0 gives equation 4.8. We parametrize the gauge-fixing
condition as

f = ∂µA
µ +

αgµ

2
√
λ
ε, (4.19)

which is set to zero with a delta function in the generating functional. With this gauge-
fixing term and neglecting ghost terms, the free-field Lagrangian is

L(δ, ε, A′µ) =
1

2

(
∂µδ∂

µδ − 2µ2δ2
)

+
1

2

(
∂µε∂

µε− αµ2g2

4λ
ε2
)

+[
−1

4
FµνF

µν +
g2µ2

8λ
A′µA

′µ − 1

2α
(∂µA

′µ)2

]
. (4.20)
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The propagators can be calculated from the generating functional using the expression for
a gaussian integral (equation 2.51). The propagators are:

i∆δ(k) =
i

k2 − 2µ2 + iε
,

i∆ε(k) =
i

k2 − αg2µ2/(4λ) + iε
,

i∆µν(k) =
i

k2 − µ2g2/(4λ) + iε

[
gµν − (1− α)

kµkν
k2 − αg2µ2/(4λ)

]
. (4.21)

There are several useful gauges. The unitary gauge corresponds to α → ∞, where the ε
propagator disappears and becomes the longitudinal component of the gauge boson prop-
agator. The Landau gauge corresponds to α = 0, where the ε propagator is the original
massless Goldstone boson. The ’t Hooft-Feynman gauge corresponds to α = 1, where
the ε has the same mass as the gauge boson; i.e. the longitudinal component of the gauge
boson is kept as a separate propagator.



CHAPTER 5

THE ELECTROWEAK THEORY

The Electroweak theory is based on a simple Lagrangian built from the following compo-
nents: an SU(2)×U(1) gauge group structure; a single scalar field; and three massless gen-
erations of fermion fields that interact with the scalar field. The scalar and fermion fields
have charges in the SU(2)×U(1) group. The scalar field has a potential with a non-zero
vacuum expectation value, resulting in an effective Lagrangian of massive gauge bosons
and fermions, with a residual U(1) gauge symmetry.

5.1 Fundamental Electroweak Lagrangian

Fundamentally, the Electroweak Lagrangian has a remarkably simple structure. It is
composed of a gauge curvature, a complex scalar field, and massless fermions:

L = Lgauge + Lscalar + Lfermion. (5.1)

The gauge group structure governs the interactions between fermions. The curvature
of the group space affects particle trajectories through the gauge bosons; each fermion has
charges that determine how its motion is affected by this curvature. The electroweak gauge
group structure is SU(2)L×U(1)Y and the curvature of the group space can be described
by an effective Lagrangian:

Lgauge = −1

4
F iµνF

iµν − 1

4
F ′µνF

′µν , (5.2)
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where
F iµν = ∂µA

i
ν − ∂νAiµ + gεijkAjµA

k
ν (5.3)

is the field tensor of the SU(2)L gauge group and

F ′µν = ∂µA
′
ν − ∂νA′µ (5.4)

is the field tensor of the U(1)Y group. The charge associated with the SU(2)L group is
called “weak” charge and that associated with the U(1)Y group is called “hypercharge”.

There is one scalar field in the Electroweak theory: a complex doublet under SU(2)L
transformations with hypercharge equal to 1. Its Lagrangian is:

Lscalar = (Dµφ)†(Dµφ) + µ2φ†φ− λ(φ†φ)2, (5.5)

where the covariant derivative is

Dφ =

(
∂µ − ig

τ i

2
Aiµ − i

g′

2
A′µ

)
φdxµ. (5.6)

The fermion fields are massless in the fundamental Lagrangian, so can be separated into
right- and left-handed helicity SU(2)L doublets:

ψR,L =
1

2
(1± γ5)ψ, (5.7)

where the positive (negative) sign corresponds to the right-handed (left-handed) helicity
state. The fermion Lagrangian is

Lfermion = iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR − (ydijψ̄iLφψ
d
jR + yuijψ̄iLφ̃ψ

u
jR + h.c.) (5.8)

where

DψL =

(
∂µ − ig

τ i

2
Aiµ − iY

g′

2
A′µ

)
ψLdx

µ,

DψR =

(
∂µ − iY

g′

2
A′µ

)
ψRdx

µ, (5.9)

φ̃ = iτ2φ, and yuij and ydij are Yukawa fermion-scalar couplings that are different for each
pair of fermions (i, j are generation indices). The right-handed partners to the down-type
and up-type fermions are ψdR and ψuR, respectively. There are three generations of fermions
separated into quarks and leptons, and the Yukawa couplings are not diagonal with re-
spect to these generations. These are the only couplings in the model that are generation-
dependent. The hypercharges Y are respectively 1/3, 4/3, -2/3, -1, and -2 for left-handed
quarks, right-handed up quarks, right-handed down quarks, left-handed leptons, and right-
handed charged leptons. If neutrinos were massless, no right-handed neutrinos would be
required; even with massive neutrinos there may not be right-handed neutrinos (the mass
terms could be of Majorana rather than Dirac form). If right-handed neutrinos exist they
have no weak charge or hypercharge.

To complete the Standard Model, one simply needs to add another gauge field toLgauge.
It transforms under the group SU(3)c; only quarks are charged under this group.
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5.2 Electroweak symmetry breaking

In the Electroweak theory the scalar field has a non-zero vacuum expectation value.
This significantly complicates the effective Lagrangian: three of the four gauge bosons
have non-zero masses, fermions have non-zero masses, and the residual massless gauge
boson is a linear combination of the original “neutral” gauge bosons.

5.2.1 Scalar field Lagrangian

The scalar field potential has a minimum at 〈φ†φ〉0 = µ2/(2λ). Choosing the coordi-
nate axes such that

〈φ〉0 =

(
0

µ/
√

2λ

)
, (5.10)

we can expand Lscalar about φ′ = φ− 〈φ〉0:

Lscalar =

[(
∂µ − ig

τa

2
Aaµ − i

g′

2
A′µ

)
(φ′ + 〈φ〉0)

]†(
∂µ − ig τ

b

2
Abµ − ig

′

2
A′µ
)

(φ′ + 〈φ〉0)

+µ2(φ′ + 〈φ〉0)†(φ′ + 〈φ〉0)− λ[(φ′ + 〈φ〉0)†(φ′ + 〈φ〉0)]2. (5.11)

The covariant derivatives give:

Lscalar = Dµφ
′Dµφ′ +

[(
∂µ − ig

τa

2
Aaµ − i

g′

2
A′µ

)
φ′
]†(
−ig τ

b

2
Abµ − ig

′

2
A′µ
)
〈φ〉0 +[(

−ig τ
a

2
Aaµ − i

g′

2
A′µ

)
〈φ〉0

]†(
∂µ − ig τ

b

2
Abµ − ig

′

2
A′µ
)
φ′ +[(

−ig τ
a

2
Aaµ − i

g′

2
A′µ

)
〈φ〉0

]†(
−ig τ

b

2
Abµ − ig

′

2
A′µ
)
〈φ〉0 (5.12)

The first term is the kinetic term for the physical φ′ field. The second and third terms give
coefficients for φ′AµAµ (a three-point vertex) and ∂µφ′Aµ (a two-point mixing term). The
last term gives the gauge field mass coefficients:

(
µg

2
√

2λ
(iA1µ −A2µ) −i µg

2
√

2λ
A3µ + i µg′

2
√

2λ
A′µ

)( µg

2
√

2λ
(−iAµ1 −A

µ
2 )

i µg

2
√

2λ
Aµ3 − i

µg′

2
√

2λ
A′µ

)
=

µ2g2

8λ
(A1µA

µ
1 +A2µA

µ
2 +A3µA

µ
3 ) +

µ2g′2

8λ
A′µA

′µ − µ2gg′

8λ
(A3µA

′µ +A′µA
3µ).(5.13)

This equation has significant physical ramifications. Individually, the connections in the
U(1) and SU(2) spaces would transport group vectors along the position in group space
chosen by the vacuum. However, since the vacuum has both SU(2)L and U(1)Y charges,
there is a correlation: the transport purely along U(1)L or purely along the τ3 direction in
SU(2)L increases the potential. Constant potential can be maintained by transport along τ3
and U(1)Y in a correlated way. Since the SU(2)L coupling is larger than the U(1)Y coupling
(g > g′), phases can be transported further from the vacuum in the U(1)Y direction for the
same change in potential. Weighting the U(1)Y transport by g and the τ3 transport by g′

gives a direction of constant potential: oscillations about this direction will correspond to
a massless connection.
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We can see this algebraically by writing down the mass eigenstates of the equation:

W±µ =
A1µ ∓ iA2µ√

2
,

Z+
µ =

g′A3µ + gA′µ√
g2 + g′2

,

Z−µ =
gA3µ − g′A′µ√

g2 + g′2
, (5.14)

where the masses are extracted by equating the coefficient of W+
µ W

−µ + W−µ W
µ+ to

m2
W±/2 and the coefficient of Z−µ Z

−µ to m2
Z0/2:

mW± =
µg

2
√
λ
,

mZ0 =
µ
√
g2 + g′2

2
√
λ

. (5.15)

The remaining gauge boson Z+
µ ≡ Bµ is massless. It is common to express the relative

values of g and g′ in terms of an angle, with the SU(2)L direction τ3 along the x-axis and
the U(1)Y direction along the y-axis, so that mW± = mZ0 cos θW .

Another way to look at this is through the Goldstone bosons. The scalar terms in the
Lagrangian lead to three massless scalar fields and one field with mass

√
2µ. The three

massless scalar fields combine with the massive vector bosons to produce the spin-0 lon-
gitudinal components of these vector bosons. The fourth scalar field describes a massive
physical particle with oscillations up the sides of the potential well. With four vector
bosons and only three Goldstone bosons, one vector boson must remain massless.

5.2.2 Fermion field Lagrangian

As with the scalar Lagrangian, we can expand the fermion Lagrangian about the vacuum
expectation value, φ′ = φ− 〈φ〉0:

Lfermion = iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR − (ydijψ̄iLφ
′ψdjR +

µydij√
2λ
ψ̄iLψ

d
jR +

yuijψ̄iLφ̃
′ψujR +

µyuij√
2λ
ψ̄iLψ

u
jR + h.c.), (5.16)

where i and j are generational indices. The fermions have received mass terms through
the vacuum expectation value of the scalar field and the Yukawa couplings, which together
produce a fermion potential well. The terms are complicated by the off-diagonal couplings
of the Yukawa matrix, which leads to a difference between the mass eigenstates and the
weak eigenstates. We can parameterize the relationship between eigenstates with a set of
rotations as follows.

Since none of the other interactions contain off-diagonal couplings, the generation
eigenstates of ψR can be defined by these couplings. That is, only the Yukawa couplings
are sensitive to the rotation

ψ′iR = UijψjR. (5.17)

The generation eigenstates of ψL can also be rotated, but because they are weak doublets,
the up-type and down-type rotations cannot be made independently. Defining their rotation
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matrix as V , the combined rotation results in the following transformation of the Yukawa
couplings:

y′d = V †ydUd

y′u = V †yuUu, (5.18)

where Ud, Uu and V are unitary matrices. It is in general possible to choose Uu and V
such that y′u is diagonal and therefore the mass matrix of up-type fermions:

ψ̄′Ly
′uψ′uR = (ψ̄LV )(V †yuUu)(Uu†ψuR) (5.19)

We then have
ψ̄′Ly

′dψ′dR = (ψ̄LV )(V †ydUd)(Ud†ψdR). (5.20)

Now we can write V = V dV ′, where V d†ydUd is the diagonal mass matrix for down-type
fermions. Then

ψ̄′Ly
′dψ′dR = (ψ̄LVdV

′)V ′†(V d†ydUd)(Ud†ψdR). (5.21)

We see that the difference between mass and weak eigenstates is the matrix V ′. We can
redefine the right-handed eigenstates so that the Yukawa couplings can be expressed in
terms of the mass matrix as:

y′d = V ′†(V †dydUd)V ′. (5.22)

The relationship can be expressed in terms of eigenstates as ψ′massL = V ′ψweakL .
A general N × N unitary matrix has N2 parameters, of which N(N − 1)/2 can be

parameterized as real Euler angles. There are therefore three real angles and six phases
in the matrix V ′. We can freely choose the phases of the right-handed eigenstates. The
ψuR phases will be compensated by a choice for the ψ̄LV states, providing diagonal phases
to multiply the V ′† matrix. The ψdR phases will be compensated by the V d† matrix to
maintain a real mass matrix. These diagonal phases multiply the V ′† on the right. This
leads to a general matrix of

V ′ =

V11e
i(φ1−θ1) V12e

i(φ1−θ2) V13e
i(φ1−θ3)

V21e
i(φ2−θ1) V22e

i(φ2−θ2) V23e
i(φ2−θ3)

V31e
i(φ3−θ1) V32e

i(φ3−θ2) V33e
i(φ3−θ3)

 . (5.23)

Since only phase differences appear in the matrix, five of the six phases can be used to
rotate away the phases in the matrix. The sixth is linearly related to the others:

φ1 − θ1 =
1

2
[φ1 − θ2 + φ1 − θ3 + φ2 − θ1 + φ3 − θ1 −

1

2
(φ2 − θ2 + φ2 − θ3 + φ3 − θ2 + φ3 − θ3)]. (5.24)

With three measurable angles and one measureable phase, the “CKM” matrix can be writ-
ten:

V ′ =

 c12c13 s12c13 s13e
−δ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 , (5.25)
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where c12 = cos θ12, s12 = sin θ12, and so on. This is the CKM matrix for quarks, and if
there are no Majorana neutrinos there is an equivalent matrix for leptons.

It is instructive to make the approximations sin θ ≈ θ and cos θ ≈ 1 − θ2/2 to obtain
the following parametrization:

V ′ ≈

1− (θ2
12 + θ2

13)/2 θ12 θ13e
−δ13

−θ12 1− (θ2
12 + θ2

23)/2 θ23

−θ13e
iδ13 −θ23 1− (θ2

23 + θ2
13)/2

 . (5.26)

We see that for small angles the phase only affects the ij = 13 and ij = 31 elements of
the CKM matrix. In the Wolfenstein parametrization θ12 ∝ λ, θ23 ∝ λ2, and θ13 ∝ λ3.
Experimentally λ = 0.226 and the proportionality constant is 0.814, so there is a hierarchy
in the angles. This demonstrates the challenge in experimentally accessing the phase δ.

Figure 5.1 The self-interaction vertices of the gauge bosons resulting from the non-Abelian gauge
group SU(2). The quartic vertices contain a common factor Sµν,λρ = 2gµνgλρ− gµλgνρ− gµρgνλ.
Not shown is the WWAZ vertex with a factor of −ieg cos θWSµν,λρ.

5.3 Electroweak propagators and Feynman diagrams

We now have the tools to write down the Feynman diagrams for the Electroweak La-
grangian. We define the general gauge-fixing terms

fi = ∂µA
µ
i + igα

(
φ′†

τi
2
〈φ〉0 − 〈φ〉†0

τi
2
φ′
)
,

f = ∂µA
′µ + ig′

α

2

(
φ′†〈φ〉0 − 〈φ〉†0φ′

)
, (5.27)
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Figure 5.2 The φφAµ vertices from the Aµφ∂µφ terms in the Lagrangian.

for SU(2)L and U(1)Y respectively. Inserting these terms into the Lagrangian and solving
the generating functional for the propagators gives:

∆W±

µν =
−i

k2 −m2
W + iε

[
gµν + (α− 1)

kµkν
k2 − αm2

W

]
∆Z
µν =

−i
k2 −m2

Z + iε

[
gµν + (α− 1)

kµkν
k2 − αm2

Z

]
∆A
µν =

−i
k2 + iε

[
gµν + (α− 1)

kµkν
k2

]
∆φ± =

i

k2 − αm2
W + iε

∆φ1
=

i

k2 − 2µ2 + iε

∆φ2
=

i

k2 − αm2
Z + iε

∆ωW±
=

−i
k2 − αm2

W + iε

∆ωZ =
−i

k2 − αm2
Z + iε

∆ωA =
−i

k2 + iε
. (5.28)
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Figure 5.3 The φAµAµ and φφAµAµ vertices from the AµAµφφ terms in the Lagrangian.
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Figure 5.4 The fermion propagator, the fermion-fermion-gauge boson coupling and the fermion-
fermion-scalar field coupling from the iψ̄γµ∂µψ, ψ̄Aµψ and ψφφ terms in the Lagrangian,
respectively.
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From the complete Electroweak Lagrangian, the full set of interaction terms can be ex-
tracted. One needs the number of fields, the spacetime and group indices, and a factor of
momentum for each derivative in the Lagrangian. The complete set of terms is shown in
Figs. 5.1, 5.2, 5.3, and 5.4 [11]. Note that the gauge parameter does not enter any of the
interaction terms.

Example: To familiarize ourselves with the Electroweak Feynman rules, we construct
the matrix element for ZH production in e+e− collisions. The Feynman diagram for
e+e− → ZH production in the s-channel contains an e+e−Z vertex, a Z-boson propaga-
tor, and a ZZH vertex (in the unitary gauge). The e+e−Z vertex contributes a factor:

ve+e−Z =
ig

4 cos θW
γµ[(−1 + 4 sin2 θW )− γ5]. (5.29)

The Z-boson propagator in the unitary gauge is

∆Z
µν =

−i
k2 −m2

Z + iε

[
gµν +

kµkν
m2
Z

]
. (5.30)

The last piece of the matrix element is the ZZH vertex, whose factor is:

vµνZZH =
igmZ

cos θW
gµν . (5.31)

Putting the pieces together, and including the external fermion spinors and external gauge
boson polarization (εµ), gives:

ig

4 cos θW
v̄2γµ[(−1+4 sin2 θW )−γ5]u1

[
−i

k2 −m2
Z + iε

(
gµλ +

kµkλ

m2
Z

)]
igmZ

cos θW
gλνε

ν .

(5.32)
Combining terms, we obtain:

M =
ig2mZ

4 cos2 θW
v̄2γµ

[
(−1 + 4 sin2 θW )− γ5

]
u1

(
gµν + kµkν/m2

Z

k2 −m2
Z + iε

)
εν . (5.33)

Higher-order corrections to the propagator will add a width to the propagator, imZΓZ .
There are also t- and u-channel diagrams, involving an e+e−H vertex and an electron

propagator. These diagrams are negligible by comparison. To see this consider the e+e−H
vertex,

ve+e−H =
−igme

2mW
. (5.34)

The vertex will contribute a factor proportional to me/mW = (1.6 × 105)−1. For com-
pleteness we can write down the corresponding matrix element,

M =
g2me

8mW cos θW
v̄2γµ[(−1 + 4 sin2 θW )− γ5]

i

γαpα −me
u1ε

µ. (5.35)

There will be two such terms with p = p1 − p4 and p = p1 − p3 in the denominator,
corresponding to t- and u-channel production.



CHAPTER 6

RENORMALIZATION

The calculation of physical processes is straightforward in the approximation of a single
particle exchange. However, loop diagrams at the next order in perturbation theory lead
to divergences in the calculations. In a renormalizable theory, the divergences can be re-
moved by fixing the Lagrangian parameters such that their effective values (including loop
corrections) are fixed by measurement. The Lagrangian then contains divergent bare val-
ues of the parameters and divergent counterterms that remove the loop divergences; the
combination is the renormalized measured value. This prescription, known as renormal-
ization, allows physical predictions as long as the divergent quantities can be absorbed
in counterterms without affecting the structure of the Lagrangian. All gauge theories are
renormalizable.

6.1 Renormalized Lagrangian

Recall the two-point Green’s function for a scalar-field Lagrangian L = ∂µφ0∂
µφ0 −

m2
0

2 φ
2
0 −

g0
4! φ

4
0:

G(x1, x2) = i∆F (x1 − x2)− g0

2
∆F (0)

∫
d4z∆F (x1 − z)∆F (x2 − z) + ...

= i∆F (x1 − x2)−
∫
d4z∆F (x1 − z)

[
g0

2

∫
d4q

(2π)4

1

q2 −m2
0 + iε

]
×

∆F (x2 − z) + ... (6.1)
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Replacing d4q with q3dqdΩ, it is clear that the loop integral will be quadratically divergent
(i.e., ∝ q2 as q →∞). Its effect is to modify the pole of the propagator. To see this, define
the correction term as i∆F [−iΣ(p2)]i∆F , where Σ(p2) = i∆(0) for this loop, and p is
the propagator momentum into and out of the vertex. Combining terms with consecutive
loops at all orders gives

i∆F (p) =
i

p2 −m2
0 + iε

+
i

p2 −m2
0 + iε

[−iΣ(p2)]
i

p2 −m2
0 + iε

+ ...

=
i

p2 −m2
0 + iε

[
1

1 + iΣ(p2) i
p2−m2

0+iε

]

=
i

p2 −m2
0 − Σ(p2) + iε

. (6.2)

The function Σ(p2) can be extended to include all irreducible loops, i.e., all diagrams that
cannot be separated into propagator subdiagrams by cutting a line (since the reducible
diagrams enter the infinite sum). This more general function Σ(p2) can be expanded in a
Taylor series about a finite m2:

Σ(p2) = Σ(m2) + (p2 −m2)
∂

∂p2
Σ(p2)|p2=m2 + ... (6.3)

The divergent contribution from the momentum-independent loop can be absorbed com-
pletely by the first term Σ(m2), and we can choosem2

0 such that the divergence is cancelled
and m2 = m2

0 + Σ(m2). Then the propagator is

i∆F (p) =
i

[1− Σ′(p2)](p2 −m2) + iε
, (6.4)

where Σ′(p2) = ∂
∂p2 Σ(p2)|p2=m2 . There is one more divergent loop contributing to the

propagator, arising from the splitting of the initial line into three internal lines, which
then reconnect at the outgoing line. This divergence is momentum-dependent, leading
to a divergent Σ′(p2). We are thus forced to renormalize the fields to cancel the Z ≡
[1− Σ′(p2)] factor and obtain a finite propagator. Writing the inverse of the propagator as
a renormalized two-point function,

iΓ(2)(p2) = p2 −m2, (6.5)

we can fixm2 using a measurement at a scale p2 = µ2. Note thatm2 is in general complex,
producing a finite lifetime of the particle. We can similarly redefine the four-point coupling
to remove the divergence arising from an intermediate loop; the resulting function is

iΓ(4)(p2) = g. (6.6)

We can again fix g using a measurement at a scale p2 = µ2. Then the Lagrangian can be
split into a component corresponding to the physical mass and coupling, and a divergent
component countering the divergences: the counterterms. Explicitly,

L = ∂µφ∂
µφ− m2

2
φ2 − g

4!
φ4 + δZ∂µφ∂

µφ− δm2

2
φ2 − δg

4!
φ4, (6.7)
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where

φ = Z−1/2φ0,

δZ = Z − 1,

δm2 = m2
0Z −m2,

δg = g0Z
2 − g. (6.8)

For this Lagrangian all divergent loops can be absorbed by measurements of the La-
grangian parameters. Such a Lagrangian is renormalizable. The presence of infinities
arises from the naive extension of the theory to infinite momenta. In reality there are
effects at high momentum scales that will modify the effective vertex and render it finite
(specifically gravity and other new physics beyond the Standard Model). The counterterms
can be thought of as integrating out these high-momentum degrees of freedom, leaving a
predictive low-energy theory.

We can define additional Feynman rules for the counterterms to facilitate loop calcula-
tions. There is a propagator counterterm that comes with a factor of i(p2δz − δm2) and
a four-point counterterm with a factor of −iδg. We can then perform loop calculations,
keeping track of the divergences using the process of regularization.

6.2 Regularization

There are a number of possibilities for regularizing an integral. The most straightfor-
ward is to simply define a cutoff Λ, with the integral reproduced when Λ→∞. However,
some care needs to be taken to make this prescription gauge invariant. It is more common
to use the dimensional regularization procedure, where the integral is performed in d di-
mensions. For d < 4, loop integrals are generally finite. We first study the simple case of
the one-loop correction to the scalar propagator, then consider the more challenging com-
putation of the one-loop correction to the four-point vertex, which requires a non-trivial
renormalization condition.

6.2.1 Propagator loop corrections

Since the action is dimensionless and is the integral of the Lagrangian over space, the
Lagrangian has d−1 space dimensions, or d mass dimensions. From the ∂µφ∂µφ term
one can see that the field φ must have d/2 − 1 mass dimensions. In order to keep g
dimensionless, a factor µ4−d is multiplied to the φ4 term. In d dimensions the divergent
loop can be calculated using∫

ddq

(2π)d(q2 + 2pq −m2)α
=

(−1)αi

(4π)2

Γ(α− d/2)

Γ(α)

1

(p2 +m2)α−d/2
, (6.9)

where Γ(α) is the mathematical gamma function, which takes the value (n−1)! for integer
arguments n. For the loop integral in equation 6.1, p = 0 and α = 1. Then

−iΣ(p2) =
gµ4−d

2

∫
ddq

q2 −m2 + iε

= −i gm
2

32π2

[
4πµ2

m2

]2−d/2

Γ(1− d/2). (6.10)
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This expression is cancelled by the counterterm when the physical pole of the propagator is
defined to be m2; this is the on-shell scheme. Other schemes are possible, for example the
minimal subtraction scheme where counterterm removes only the divergent component of
the loop correction. Then m2 is related to the physical pole through finite loop correction
terms.

We can explicitly separate the divergent component of the loop by expanding the gamma
function in terms of the deviation from 4 dimensions, ε ≡ 4− d. Then

Γ(1− d/2) = Γ(ε/2− 1)

= −2

ε
− γ +O(ε), (6.11)

using

Γ(ε− n) = (−1)n−1 Γ(−ε)Γ(1 + ε)

Γ(n+ 1− ε)
(6.12)

and
Γ(ε) =

1

ε
− γ +O(ε), (6.13)

where γ is the Euler-Mascheroni constant, 0.5772157. Now we use the expansion aε ≈
1 + ε ln a for the factor raised to 2− d/2 in equation 6.10. Then −iΣ(p2) becomes

−i gm
2

32π2

[
−2

ε
− γ
] [

1 +
ε

2
ln

(
4πµ2

m2

)]
= i

gm2

32π2

[
2

ε
+ γ + ln

(
4πµ2

m2

)]
. (6.14)

The divergent term can be removed using a counterterm δm2 = gm2/(16π2ε) in the
minimal subtraction (MS) scheme. In the modified minimal subtraction scheme (M̄S)
the additional γ and logarithmic factors are included in the counterterm, since these appear
universally in dimensional regularization.

At O(g2) an additional divergent contribution to the propagator depends on p2 and is
removed by two diagrams with counterterms: the four-point counterterm, where two lines
are connected (the same type of diagram as the leading loop contribution to the propagator);
and the momentum-dependent piece of the two-point counterterm (δZ).

6.2.2 Vertex loop correction

There is a loop in the middle of the s, t and u channel diagrams, with a similar diver-
gent form to the propagator. This one-loop correction to the four-point coupling has the
following form in the s-channel:

−i∆Γ(4) =
(−igµε)2

2

∫
ddk

(2π)d
i

k2 −m2 + iε

i

(k − p1 − p2)2 −m2 + iε
. (6.15)

The first step is to combine the denominator using the standard Feynman integral,

1

ab
=

∫ 1

0

dx

[ax+ b(1− x)]2
. (6.16)

Then the denominator becomes

(k2 −m2)x+ [(k − p1 − p2)2 −m2](1− x) =

k2 −m2 + [−2k(p1 + p2) + 2p1p2 + p2
1 + p2

2](1− x) =

[k − (p1 + p2)(1− x)]2 + (p1 + p2)2x(1− x)−m2. (6.17)
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We shift the integrand to k′ = k− (p1 + p2)(1− x) and use the standard integral equation
to get:

−i∆Γ(4) =
(gµε)2

2(2π)d

[
iπd/2

Γ(2− d/2)

Γ(2)

] ∫ 1

0

dx
1

[−(p1 + p2)2x(1− x) +m2]2−d/2
.

(6.18)
Writing 2− d/2 = ε/2 and using Γ(ε/2) ≈ 2

ε − γ and aε ≈ 1 + ε ln a,

−i∆Γ(4) =
ig2

2(4π)2

[
2

ε
− γ
] [

1− ε

2

∫ 1

0

dx ln

(
−(p1 + p2)2x(1− x) +m2

4πµ2

)]
(6.19)

The integral is soluble and can be expressed as an arctan or a ratio of logarithms. Leav-
ing it in integral form, we have the s-channel result; the t and u channel results add terms
that differ only by p1 + p2 → p1 − p3 and p1 + p2 → p1 − p4. We can now define
the following renormalization condition: the two-to-two scattering is measured with zero
outgoing momentum. Then s = (p1 + p2)2 = 4m2 and t = u = 0. The counterterm is
then:

δg = ∆Γ(4)(s = 4m2, t = u = 0)

=
3g2

(4π)2ε
− g2

2(4π)2

[
3γ +

∫ 1

0

dx ln

(
−4m2x(1− x) +m2

4πµ2

)
+ 2 ln

(
m2

4πµ2

)]
.

Once we fix the coupling for final-state particles with zero momentum, we can calculate
the effect of the loop on particles with non-zero momentum. The one-loop correction to
the coupling is:

[−i∆Γ(4)(s, t, u)]− [−i∆Γ(4)(s = 4m2, t = u = 0)] =

−i g2

2(4π)2

[∫ 1

0
dx ln

(
−sx(1−x)+m2

−4m2x(1−x)+m2

)
+ ln

(
−tx(1−x)+m2

m2

)
+ ln

(
−ux(1−x)+m2

m2

)]
.

This is an important result: the effective coupling is no longer a constant but increases
logarithmically with momentum transfer. The mass of the particle in the loop sets the scale
of the enhancement; the smaller the mass the larger the correction at a given momentum
transfer. We can parametrize the coupling as a function of momentum transfer, g(Q2); this
can be done systematically using renormalization group equations.

6.2.3 The renormalization group

We have seen that after renormalization we have finite loop corrections to interactions.
However, since we are working within a perturbative framework, we must also ensure that
the loop corrections do not become larger than the leading-order approximation. Since the
correction has a logarithmic momentum dependence, divergent behavior is possible if the
parameter is set at a scale far from the process under study. In complicated processes there
may be different scales relevant to different vertices. Using the momentum dependence of
the loop correction, one can define an effective coupling at the relevant scale of the process,
such that higher order logarithmic terms are small.

A change in the renormalization scale will generally affect not only the coupling param-
eter, but also the mass parameter and the field normalization. The Green’s function does
not depend on the scale, so the vertex function generally satisfies µdΓ(4)/dµ = 0, where
µ is the renormalization scale. Generalizing to an n-point vertex and using appropriate



50 RENORMALIZATION

partial derivatives gives[
−nµ ∂

∂µ
ln
√
Z + µ

∂

∂µ
+ µ

∂g

∂µ

∂

∂g
+ µ

∂m

∂µ

∂

∂m

]
Γ(n) = 0. (6.20)

We simplify the expression by defining

α = µ
∂

∂µ
ln
√
Z,

β = µ
∂g

∂µ
,

mγ = µ
∂m

∂µ
. (6.21)

The result is the renormalization group equation,[
µ
∂

∂µ
+ β

∂

∂g
− nα+mγ

∂

∂m

]
Γ(n) = 0. (6.22)

The parameters α, β, and γ must be scale-invariant and can therefore only depend on g.
The renormalization group equation describes the changes in parameters with changes in
renormalization procedure. We can see how this works in practice using the φ4 theory. Set
the vertex renormalization scale to s = t = u = −Q2 and assume Q2 � m2. Then the
four-point function is:

−iΓ(4) = −ig − ig2[V (s) + V (t) + V (u)]− iδg, (6.23)

where the counterterm can be written

δg =
3g2

(4π)2ε
− 3g2

2(4π)2

[
γ +

∫ 1

0

dx ln

(
Q2

µ2

)
+ ln

(
x(1− x)

4π

)]
. (6.24)

We can now calculate the β function to O(g2) with the renormalization group equation.
We neglect the mass term, which does not have a momentum dependence, and the field
renormalization, which has a mass dependence at O(g2) and multiplies g in the four-point
function. Using the renormalization group equation and taking derivatives with respect to
Q gives

−iβ = i

(
− 3g2

2(4π)2
×Q2Q

Q2

)
;

β =
3g2

(4π)2
. (6.25)

The β function determines the momentum dependence of the coupling; since it is positive,
the coupling g increases as the scale increases. The sign of the β function is generally used
to determine the region of perturbativity of a given theory. We can put momenta on one
side and renormalized couplings on the other side to get

∂µ

µ
=

∂g(
3g2

16π2

) (6.26)
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We now integrate both sides starting from the renormalization scale µ = Q to get an
expression for the effective coupling g as a function of µ:

ln(µ/Q) =
16π2

3

(
1

g(Q)
− 1

g

)
1

g
=

1

g(Q)
− 3

16π2
ln(µ/Q), (6.27)

or

g(µ) =
g(Q)

1− 3
16π2 g(Q) ln(µ/Q)

. (6.28)

The denominator decreases as µ increases; thus g increases as µ increases. Starting from a
renormalized value of the coupling, its value at other scales can be used in a calculation to
capture the effect of one-loop corrections at different vertices.





CHAPTER 7

QED RENORMALIZATION

The introduction of renormalization into QED converted many field-theory skeptics, par-
ticularly once it was used to predict the anomalous magnetic moment of the electron. To-
day the prediction and measurement of the anomalous moment are the most precise of
any fundamental physical quantity. The measurement is frequently used to determine the
electromagnetic coupling constant in the renormalization of the Lagrangian.

Because QED is an unbroken Abelian gauge theory, it is among the simplest physical
theories to renormalize. It involves renormalization of fermion wavefunctions and masses,
the photon wavefunction, and the fermion-fermion-photon vertex coupling.

7.1 QED divergences

In QED there are three divergent diagrams at the one-loop level that must be renor-
malized: photon emission and reabsorption in a fermion propagator, a fermion loop in
the photon propagator, and photon emission by one fermion and absorption by the other
fermion at a fermion-fermion-photon vertex. These divergences can be calculated using
dimensional regularization, and then removed with counterterms in the Lagrangian.

The calculations use the QED Lagrangian in d dimensions:

L = iψ̄0γ
µ∂µψ0−m0ψ̄0ψ0− e0µ

2−d/2Aµ0 ψ̄0γµψ0−
1

4
(∂µA0ν −∂νA0µ)2− 1

2
(∂µA

µ
0 )2,

(7.1)
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where the last term is the gauge-fixing term with α = 1. The parameter µ with dimensions
of mass is introduced to keep e dimensionless, and is required because Aµ0 has dimension
d/2− 1 and ψ0 has dimension (d− 1)/2.

7.1.1 Fermion self energy

The one-loop fermion self-energy diagram contains a loop where a photon is emitted
and then absorbed. In d dimensions, the expression for the loop in Feynman gauge is

−iΣ(p) ≡ (−ie0)2µ4−d
∫

ddk

(2π)d
γµ

i

γαpα − γαkα −m0
γν
−igµν

k2
, (7.2)

where we are taking the charge to be that of the electron for simplicity. To calculate this
factor, we first multiply the numerator and denominator by γαpα − γαkα + m0 to move
all gamma matrices to the numerator. We then separate the propagator factors with the
Feynman integral

1

ab
=

∫ 1

0

dz

[az + b(1− z)]2
. (7.3)

Applying this to the loop integral gives

Σ(p) = −ie2
0µ

4−d
∫ 1

0

dz

∫
ddk

(2π)d
γµ(γαp

α − γαkα +m0)γµ

[(p− k)2z −m2
0z + k2(1− z)]2

. (7.4)

The integration variable can now be isolated by defining it as k′ = k − pz:

Σ(p) = −ie2
0µ

4−d
∫ 1

0

dz

∫
ddk′

(2π)d
γµ[γαp

α(1− z)− γαk′α +m0]γµ

[k′2 −m2
0z + p2z(1− z)]2

. (7.5)

The term linear in k′ will integrate to 0 so we have an integral of the familiar form∫
ddq

(2π)d(q2 −m2
0)α

=
(−1)αi

(4π)2

Γ(α− d/2)

Γ(α)

(
4π

m2
0

)α−d/2
. (7.6)

For the loop integral in equation 7.5, p = 0 and α = 2. The loop factor becomes

e2
0µ

4−dΓ(2− d/2)

(4π)2

∫ 1

0

dzγµ[γαp
α(1− z) +m0]γµ

[
m2

0z − p2z(1− z)
4π

]d/2−2

. (7.7)

Now we use γµγµ = d, γµγνγµ = (2− d)γν , and ε = 4− d to get

Σ(p) =
e2

0

16π2
Γ(ε/2)

∫ 1

0

dz{ε[γαpα(1− z)−m0] + 4m0 − 2γαp
α(1− z)} ×(

m2
0z − p2z(1− z)

4πµ2

)−ε/2
=

e2

8π2ε
(−γαpα + 4m0) +

e2
0

16π2
{γαpα(1 + γ)− 2m0(1 + 2γ) +

2

∫ 1

0

dz[γαp
α(1− z)− 2m0] ln

(
m2

0z − p2z(1− z)
4πµ2

)
}. (7.8)
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where we have used Γ(2 − d/2) ≈ 2
ε − γ. The divergent term has two components that

can be removed with corresponding fermion terms in the Lagrangian:

Lct−ψ = − ie2
0

8π2ε
ψ̄0γ

µ∂µψ0 +
m0e

2
0

2π2ε
ψ̄0ψ0. (7.9)

These counterterms correspond to the renormalization of the fermion wave function and
of the fermion mass. It is more physically intuitive to work in the “on-shell” scheme,
where the Lagrangian is split into the finite physical field and mass terms with ψ and m,
and counterterms iδZψ̄γµ∂µψ and −iδmψ̄ψ (ψ = ψ0/

√
δZ, δm =

√
δZm0 −m). The

counterterm propagator is i(δZγµpµ − δm), with the on-shell constraints

mδZ − δm− Σ(m) = 0,

δZ − ∂

∂pµγµ
Σ(γµpµ)|γµpµ=m = 0. (7.10)

We can use the one-loop expression for Σ(p) to solve for the counterterms δm and δZ.

7.1.2 Vacuum polarization

There is a divergent loop in the photon propagator similar to that of the fermion prop-
agator. It occurs when the photon splits into a fermion-antifermion pair, which subse-
quently annihilates into a photon. It is referred to as the vacuum polarization because the
correction to the t-channel exchange of a photon can be viewed as an interaction with a
fermion-antifermion pair appearing from the vacuum and subsequently disappearing into
the vacuum. The polarization screens the “bare” electromagnetic charge in analogy to
charge screening in a dielectric medium.

The vacuum polarization contribution to the photon propagator can be represented as

i∆Fµν = i∆0
Fµν −∆0

FµαiΠ
αβ∆0

Fβν .

Higher-order corrections do not affect the pole of the propagator, as can be seen by ex-
pressing it in the Landau gauge as

i∆µν
F =

−i
k2

(
gµν − qµqν

q2

)
+
−i
k2

(
gµα − qµqα

q2

)
iΠαβ−i

k2

(
gβν − qβqν

q2

)
+ ...

= i∆µν0
F [1 + Π + ...]

=
i∆µν0

F

1−Π
. (7.11)

where Πµν = q2(gµν−qµqν/q2)Π. In a general gauge the second (gauge-dependent) term
in the propagator will be modified by higher-order corrections.

The one-loop correction from a charged lepton is

iΠµν(k) = −µ4−d(ie0)2

∫
ddp

(2π)d
Tr

[
γµ

i

γαpα −m0
γν

i

γβpβ − γβkβ −m0

]
, (7.12)

where the minus sign is due to the fermion loop. To evaluate this integral, we move all
gamma matrices to the numerator by multiplying numerator and denominator by the same
factor, and we separate the propagators with the Feynman integral:

iΠµν = −e2
0µ

4−d
∫ 1

0

dz

∫
ddp

(2π)d
Tr[γµ(γαp

α +m0)γν(γβp
β − γβkβ +m0)]

{(p2 −m2
0)z + [(p− k)2 −m2

0](1− z)}2
. (7.13)
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Again redefining the integrand to p′ = p− kz and recalling that integrals over terms linear
in p′ give zero, the numerator becomes

[p′αp′β − kαkβz(1− z)]Tr(γµγαγνγβ) +m2
0Tr(γµγν). (7.14)

The traces can be evaluated in d dimensions using

Tr(γµγν) = f(d)gµν ,

Tr(γµγαγνγβ) = f(d)(gµαgνβ − gµνgαβ + gµβgνα), (7.15)

where f(d) is some function with the property f(4) = 4. The numerator becomes

f(d){2p′µp′ν − 2z(1− z)(kµkν − k2gµν)− gµν [p′2 −m2
0 + k2z(1− z)]}. (7.16)

Putting this back into the integral gives

iΠµν = −e2
0µ

4−df(d)

∫ 1

0

dz

∫
ddp

(2π)d
{ 2pµpν

[p2 −m2
0 + k2z(1− z)]2

−

2z(1− z)(kµkν − k2gµν)

[p2 −m2
0 + k2z(1− z)]2

− gµν
[p2 −m2

0 + k2z(1− z)]
}. (7.17)

The last term is again of the form of equation 6.9, and it can be shown that the first term
gives the same result [pµpν simply contributes m2

0 − k2z(1− z) times gµν/2], so the two
terms cancel. For the middle term we again use equation 6.9 to obtain

iΠµν =
ie2

0

2π2

(
kµkν − gµνk2

){ 1

3ε
− γ

6
−
∫ 1

0

dz(1− z)z ln

[
m2

0 − k2z(1− z)
4πµ2

]}
.

(7.18)
There is a divergent term and several finite terms. In the minimal subtraction renormaliza-
tion scheme, the counterterm is only the divergent part of −Πµν :

∆Lct−A = − e2

6π2ε

[
−1

4
FµνF

µν − 1

2
(∂µA

µ)2

]
. (7.19)

In the on-shell scheme, the propagator is fixed at k2 = 0 such that the sum of Πµν and
the counterterm factor δA (= − e2

6π2ε in the minimal subtraction scheme) give zero. The
factor δA renormalizes the photon field according to Aµ = Aµ0/

√
δA. At a given k2 the

correction is

i[Πµν(k2)−Πµν(0)] =
ie2

2π2

(
gµνk

2 − kµkν
) ∫ 1

0

dz(1− z)z ln

(
1− k2z(1− z)

m2

)
.

(7.20)
For small spacelike momentum transfer (−k2 � m2 and k2 < 0), the logarithm can be
approximated by ln(1 + x) ≈ x, giving

i[Πµν(k2)−Πµν(0)] =
ie2

60π2

(
gµνk

2 − kµkν
)(
− k

2

m2

)
. (7.21)

We can also consider the limit of high momentum transfer (−k2 � m2 and k2 < 0),
where the integral gives

i[Πµν(k2)−Πµν(0)] =
ie2

12π2

(
gµνk

2 − kµkν
) [

ln

(
− k

2

m2

)
− 5

3

]
. (7.22)
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Recall that we wrote the connection as ω = −iQeA in the covariant derivative. When the
field A is renormalized via Aµ = Aµ0/

√
δA, the coupling factor e must compensate with

e = e0

√
δA. This is because the covariant derivative can be written iψ̄Dµψ, so it receives

just the renormalization factor from the wavefunction ψ = ψ0/
√
δZ. We will see this ex-

plicitly when we calculate the vertex loop correction. Because of this compensating effect
on the coupling, we can view the propagator loop as a correction to the electromagnetic
coupling, and associate the k2 dependence with the coupling.

To see the impact of the loop in the photon propagator, consider the exchange of a
photon between a pair of electrons. The matrix element will have the structure

(−ie)
i∆µν

F

1−Π(k2)
(−ie). (7.23)

At high momentum transfer, |k2| � m2, the effective electromagnetic coupling is

α(k2) =
α(0)

1− α
3π ln

( −k2
m2e5/3

) , (7.24)

where α = e2/(4π). We see that the electromagnetic coupling increases in strength log-
arithmically with increasing momentum transfer. Higher momentum probes shorter dis-
tances and the interaction is therefore more sensitive to the bare charge of the electron.
The typical interpretation is that the loops represent electron-positron pairs in the vacuum
that screen the charges of the interacting electrons.

Application: A practical example of the impact of a running coupling is its contribu-
tion to the Lamb shift of the energy states in the hydrogen atom, whose high experimental
precision provides sensitivity to high-order loop effects. At leading order, the Dirac equa-
tion of an electron orbiting a nucleus can be written(

−i~α · ~∇+ βm− Zα

r

)
ψ = Eψ. (7.25)

The solution to the equation gives a series of hypergeometric functions with energy eigen-
values

Enj = m

[
1− Z2α2

2n2
−
(
Z2α2

)2
2n4

(
n

j + 1/2
− 3/4

)
+ ...

]
. (7.26)

According to this expression, the states 2P1/2 and 2S1/2 should have the same energy,
since they have the same total spin j = 1/2 and radial number n = 2. However, their
different values of orbital momentum (l = 0, 1) lead to slightly different energy levels
when higher order corrections are taken into account. The higher order corrections affect
the l = 0 state, whose wavefunction is substantial at low r (< m−1

e ) where the corrections
are relevant. The energy splitting of these states is known as the hyperfine structure of the
hydrogen energy levels.

The corrections to the potential from loops in the photon propagator can be expressed
as

∆V (r) = QeQp

∫
d3q

(2π)3
eiqr

Π(q2)

q2
(7.27)
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Inserting the one-loop correction relevant at low momentum gives

∆V (r) = (−e2)
e2

60m2π2(2π)3

∫
d3qeiqr

=
−e4

60m2π2
δ(r). (7.28)

The corresponding shift in the energy state is

∆E = |ψ(0)|2
∫
d3r∆V (r)

= − 1

π

(αm
2

)3 e4

60m2π2

= −α
5m

30π
, (7.29)

where we have used the wavefunction at the origin

ψ(0) =
2√
4π

(αm
n

)3/2

. (7.30)

We can evaluate the correction numerically using α = 1/137 and m = 5.11× 105 eV:

∆E = −1.12× 10−7 eV, (7.31)

corresponding to a frequency shift of

ω = −27.2 MHz. (7.32)

This is the Uehling term in the hyperfine splitting, and is a small fraction of the total
predicted splitting of 1051 MHz. However, its inclusion in the prediction provides good
agreement with the measured total splitting of 1054 MHz.

Useful fact: Since QED is a theory based on a U(1) gauge symmetry, the photon does
not interact with itself at tree-level. But an intermediate fermion loop can cause photon
self-interactions, though only with an even number of photon lines. The exclusion of odd
numbers of lines is a result of the charge conjugation symmetry of QED, and can be seen
as follows.

The matrix element for the three-photon vertex has two components corresponding to
the two directions of the internal lines:

Πµνλ = (iQfeµ
2−d/2)3(−1)

∫
ddq

(2π)d

Tr[γµ
i

γαqα + γαkα2 −mf
γν

i

γβqβ −mf
γλ

i

γρqρ − γρkρ1 −mf
+

γµ
i

−γαqα + γαkα1 −mf
γλ

i

−γβqβ −mf
γν

i

−γρqρ − γρkρ2 −mf
],(7.33)

whereM = Πµνλεµ(−k1 − k2)ε∗ν(k2)ε∗λ(k1), the factor of -1 comes from the internal
fermion loop, and the momentum of the fermion connecting the ν and λ vertices is q. The
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sum of these terms are zero. Write the sum as:

Πµνλ = (iQfeµ
2−d/2)3(−1)

∫
ddq

(2π)d

Tr[γµ
i(γαq

α + γαk
α
2 +mf )

(q + k2)2 −m2
f

γν
i(γβq

β +mf )

q2 −m2
f

γλ
i(γρq

ρ − γρkρ1 +mf )

(q − k1)2 −m2
f

+

γµ
i(−γαqα + γαk

α
1 +mf )

(−q + k1)2 −m2
f

γλ
i(−γβqβ +mf )

q2 −m2
f

γν
i(−γρqρ − γρkρ2 +mf )

(−q − k2)2 −m2
f

].

The denominators of the two terms are the same, so we add the numerators. The terms
with even factors of momenta have an odd number of gamma matrices, so their traces
are zero. For the remainder, the momenta in the sum have opposite sign but the gamma
matrices are in a different order. By inserting charge conjugation factors C†C = 1 (where
CγµC

† = −γTµ ), the signs of the terms even in the number of gamma matrices stay the
same and the gamma matrices can be put in the same order. The sum then cancels.





CHAPTER 8

ELECTRON MAGNETIC MOMENT

The measurement of the anomalous magnetic moment of the electron is among the great-
est successes of QED. Within the context of the Electroweak theory, it determines the
electromagnetic coupling constant αEM , fixing one of the three required inputs to the
theory for describing interactions between fermions and gauge bosons. The most precise
measurement using a one-electron quantum cyclotron has an uncertainty of 0.28 parts per
trillion [21]; it can be used to fix αEM to 0.37 parts per billion. This value of the elec-
tromagnetic coupling is confirmed by a measurement using an atom interferometer with
Bloch oscillations, with an accuracy of 0.66 parts per billion [22]. These are the most
precise tests of quantum field theory.

To achieve the required level of theoretical accuracy, five orders in perturbation theory
must be calculated. At next-to-leading order, divergent loop diagrams appear and must
be removed with a renormalization procedure. The divergence relevant for the anomalous
magnetic moment is the loop in the fermion-fermion-photon vertex.

8.1 Vertex correction

To calculate the loop correction to the vertex, we start with the QED Lagrangian in d
dimensions:

L = iψ̄0γ
µ∂µψ0 − e0µ

2− d2Aµ0 ψ̄0γµψ0 −m0ψ̄0ψ0 −
1

4
(∂µA0ν − ∂νA0µ)2 − 1

2
(∂µA

µ
0 )2,

(8.1)
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where the last term is the gauge-fixing term with α = 1 (Feynman gauge), and µ is a
parameter with dimensions of mass.

The Feynman rules give the following expression for the loop at the fermion-fermion-
photon vertex:

−ie0µ
2− d2 Λµ ≡ (−ie0µ

2− d2 )3

∫
ddk

(2π)d
−igλν
k2

γλ
i

γα(p′ − k)α −m0
γµ

i

γβ(p− k)β −m0
γν .

(8.2)
We remove the gamma matrices from the denominator with an appropriate multiplication
of numerator and denominator, and separate the terms in the denominator using the two-
parameter Feynman integral:

1

abc
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

[a(1− x− y) + bx+ cy]3
. (8.3)

The one-loop vertex becomes

Λµ =
−2ie2

0µ
4−d

(2π)d

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddk

γν [γα(p′α − kα) +m0]γµ[γβ(pβ − kβ) +m0]γν

[k2 −m2
0(x+ y)− 2k(px+ p′y) + p2x+ p′2y]3

.

(8.4)
We next remove the term linear in k from the denominator by shifting the integration over
k to an integration over k − px− p′y:

Λµ = −2ie2
0µ

4−d

(2π)d

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddk (8.5)

γν{γα[p′(1− y)− px− k]α +m0}γµ{γβ [p(1− x)− p′y − k]β +m0}γν

[k2 −m2
0(x+ y) + p2x(1− x) + p′2y(1− y)− 2pp′xy]3

.

From counting the factors of k in the numerator and the denominator, we see that the
divergent term is the one with kαkβ in the numerator. Separating out this term and using
the general expression for an integral over kµkν ,∫

ddk
kµkν

(k2 −m2
0)n

= (−1)n−2 iπ
d/2

Γ(n)

1

(m2
0)n−1−d/2

gµν

2
Γ(n− 1− d/2), (8.6)

we get

Λdivµ =
e2

0

2
µ4−d 1

(4π)d/2
Γ(2− d/2)

∫ 1

0

dx

∫ 1−x

0

dy ×

γνγαγµγ
αγν

[m2
0(x+ y)− p2x(1− x)− p′2y(1− y) + 2pp′xy]2−d/2

. (8.7)

The numerator can be calculated using expressions for gamma matrices in d dimensions,

γνγργµγσγ
ν = (2− d)γργµγσ + 2(γµγσγρ − γργσγµ). (8.8)

This gives a numerator of (2− d)2γµ, or equivalently (ε− 2)2γµ. Combining the compo-
nents of the divergent piece (including a factor of 1/2 from the Feynman integrals) gives

Λµ =
e2

0

8π2ε
γµ + F (p, p′)γµ, (8.9)
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where F (p, p′) is finite. The divergence can be removed with a counterterm −Λµ applied
to the interaction term in the Lagrangian (which is negative):

∆Lct−vtx =
e2

0

8π2ε
ψ̄0γ

µAµ0ψ0. (8.10)

Now recall the counterterm associated with the fermion propagator:

∆Lct−f = − ie2
0

8π2ε
ψ̄0γ

µ∂µψ0 +
m0e

2
0

2π2ε
ψ̄0ψ0. (8.11)

We see that the renormalization of the propagator has the same divergent factor as the
vertex. This is in fact required to maintain the covariant form of the Lagrangian, and has
been explicitly derived through the Ward identities. The loop is the same in both diagrams;
the vertex diagram simply involves the radiation of a photon along the propagator (i.e. ∂µ
is replaced withAµ). Including counterterms, the full one-loop QED Lagrangian becomes:

LQED =

(
1− e2

0

8π2ε

)
iψ̄γµDµψ −

(
1− e2

2π2ε

)
mψ̄ψ −(

1− e2
0

6π2ε

)[
1

4
FµνF

µν +
1

2
(∂µA

µ)2

]
= iψ̄0γ

µDµψ0 −mψ̄0ψ0 −
1

4
F0µνF

µν
0 − 1

2
(∂µA

µ
0 )2. (8.12)

The form of the Lagrangian is thus maintained at one-loop level by renormalizing the
fermion and photon wavefunctions, the fermion mass, and the electromagnetic charge.

8.2 Anomalous magnetic moment

The magnetic moment of a fermion arises non-relativistically from the interaction be-
tween the spin and the magnetic field. This can be seen by applying the covariant Hamil-
tonian operator to an energy eigenstate:

[(γµDµ)2/2m+m]ψn = Enψn. (8.13)

In a momentum basis, the operator Dµ is pµ − eAµ, so the equation becomes{
1

2m

1

2
({γµ, γν}+ [γµ, γν ]) (pµ − eAµ)(pν − eAν) +m

}
ψn = Enψn. (8.14)

Using the Dirac commutation relations {γµ, γν} = 2gµν and [γµ, γν ] = −2iσµν , with
σij = εijkσk ⊗ I ,[

1

2m
(pµ − eAµ)2 − iσµν

2m
(pµ − eAµ)(pν − eAν) +m

]
ψn = Enψn. (8.15)

Now use the operator form of pµ(= −i∂µ) and the definition of the magnetic field Bi =
εijk∂jAk to get {

1

2m

[
(p− eA)2 − eσB

]
+m

}
ψn = Enψn. (8.16)
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Comparing the eσB term to the expression for a magnetic moment of a particle with angu-
lar momentum l (µ = el/2m, with E = µB) we see that the effective magnetic moment
of the electron is eσ/2m. In terms of the electron spin s = σ/2, the magnetic moment is
gees/2m, where ge = 2. The factor ge is known as the “anomalous magnetic moment”,
since it is twice as large as would be expected if spin were simply an angular momentum.

The non-relativistic expression for the magnetic moment is affected by the higher or-
der corrections of QED. Including the external spinors, one can expand the leading-order
vertex factor using the Gordon identity,

ū(p′)γµu(p) =
1

2m
ū(p′) [(p+ p′)µ + iσµν(p− p′)ν ]u(p), (8.17)

where the second factor gives the magnetic moment. The next order of corrections is
contained in the convergent component of the vertex factor contribution given by equation
8.5. The momentum dependence in the divergent component does not contribute to the
anomalous magnetic moment after renormalization. Using the equation with renormalized
quantities, we can apply the Dirac equation to replace γαpα (γαp′α) with m when acting
on the right (left) and move momentum factors using γαpαγµ = 2pµ − γµγαp

α. The
convergent part of the integral is then

Λconvµ = − 2ie2

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k ×

γν
[m(1− y)− xγαpα +m]γµ[m(1− x)− yγβp′β +m]

[k2 −m2(x+ y)−m2x2 −m2y2 + p2x+ p′2y − 2pp′xy]3
γν .

Now use (p − p′)2 = q2 = 0 to simplify the denominator to [k2 − m2(x + y)2]3 and
integrate over k:

Λconvµ = − 2ie2

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy
−iπ2

2m2(x+ y)2
×

[2p′ν(1− y)− xγνγαpα + yγνm] γµ
[
2pν(1− x)− yγβp′βγν + xγνm

]
.

Multiplying the pairs of brackets gives nine terms:

(a) 4p′νp
ν(1− y)(1− x)γµ = 4m2(1− y)(1− x)γµ;

(b) −2p′ν(1− y)γµyγβp
′βγν = −2m2y(1− y)γµ;

(c) 2p′ν(1− y)γµxγ
νm = (2p′µ −mγµ)2mx(1− y);

(d) −xγνγαpαγµ2pν(1− x) = −2m2x(1− x)γµ;

(e) xγνγαp
αγµyγβp

′βγν = −2m2xyγµ;

(f) −xγνγαpαγµxγνm = −4x2pµm;

(g) yγνmγµ2pν(1− x) = (2pµ −mγµ)2my(1− x);

(h) −yγνmγµyγβp′βγν = −4y2p′µm;

(i) yγνmγµxγ
νm = −2xym2γµ. (8.18)

Summing the terms gives

{4m2(1− y)(1− x)− 2m2(x+ y)[(1− y) + (1− x)]− 4xym2}γµ+

4(x(1− y)− y2)mp′µ + 4(y(1− x)− x2)mpµ =

2m2γµ[2(1− 2x− 2y) + (x2 + y2 + 2xy)]+

4m[(x− xy − y2)p′µ + (y − yx− x2)pµ]. (8.19)
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We next integrate equation 8.18 over y, focusing on the p′µ and pµ terms:

− π2e2

(2π)4m2

∫ 1

0

dx

∫ 1−x

0

dy
4m[(x− xy − y2)p′µ + (y − yx− x2)pµ]

(x+ y)2

= − e2

4π2m

∫ 1

0

dx

∫ 1−x

0

dy

(
−1 +

x2 + xy + x

(x+ y)2

)
p′µ +

y(1− x)− x2

(x+ y)2
pµ

= − e2

4π2m

∫ 1

0

dx[

(
−y − x2 + x

x+ y
+

x2

x+ y
+ x ln(x+ y)

)
p′µ +(

x− x2

x+ y
+ (1− x) ln(x+ y) +

x2

x+ y

)
pµ]1−x0

= − e2

4π2m

∫ 1

0

dx(−x lnx)p′µ + [x− 1 + (x− 1) lnx]pµ.

= − e2

16π2m
(p′µ + pµ). (8.20)

Finally we substitute for p′µ + pµ using the Gordon identity (equation 8.17) to obtain

− e2

16π2m
ū(p′) [2mγµu(p)− iσµν(p− p′)ν ]u(p). (8.21)

The term with γµ cancels the term neglected above. The total renormalized vertex factor is

ū(p′)(γµ + Λµ)u(p) =
1

2m
ū(p′)

[
(p+ p′)µ +

(
1 +

e2
0

8π2

)
iσµν(p− p′)ν

]
u(p). (8.22)

This is the O(α) expression for the anomalous magnetic moment; the correction from the
vertex loop is α/2π.

8.3 Status

The most precise experimental measurement of the anomalous moment is based on
energy transitions of a single-electron cyclotron, with a value

g/2 = 1.00115965218073(28). (8.23)

The calculation of the relationship between g/2 and αEM has been calculated to fifth order
in αEM , along with the two-loop weak and hadronic corrections [23].





CHAPTER 9

Z BOSON PRODUCTION

The production or exchange of a single gauge boson is perhaps the simplest process to
describe in perturbation theory. Such a process is therefore ideal for the determination
of fundamental parameters of the theory. Measurements of the Z boson production rate
in e+e− collisions as a function of mass have yielded a precise determination of the Z
boson mass (mZ). A dedicated run with the large electron-positron collider (LEP) from
1989-1995 resulted in 17 million measured events at a collision energy near mZ [14].
The mZ measured during this run is now used as an input parameter to the Electroweak
theory. In addition, measurements of the angular distributions of the final-state fermions
were used to determine sin2 θW , allowing a high-precision test of Electroweak predictions.
Measurements at the Stanford Linear Collider performed on a smaller sample of 0.6 million
events yielded similar precision due to the polarization of the initial-state electrons.

9.1 Electroweak schemes

Before detailing mass and asymmetry measurements of Z bosons, we discuss a few pos-
sible schemes for fixing the input parameters of the Electroweak theory. At tree level
there are three parameters describing W and Z boson interactions between fermions, and
the most precise measurements for fixing these are the anomalous magnetic moment (giv-
ing αEM (0)), the mass of the Z boson (giving mZ(mZ)), and the muon lifetime (giving
GF (mµ)). To avoid large radiative corrections from extrapolating the measured inputs to
measurements at the Electroweak scale, it is sometimes preferred to use a direct measure-
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ment of αEM (mZ) (from LEP) and either mW (mW ) (from LEP II and the Tevatron) or
sin2 θW (mZ) (from LEP and SLD).

The most precise predictions of the Electroweak theory are of the W boson mass and
sin2 θW ; the best input parameters for these correspond to those with the highest exper-
imental precision; theoretical uncertainties are small compared to the uncertainties that
appear when using measurements made at the Electroweak scale. We therefore focus on
a scheme with the parameters determined using the low-scale measurements of g − 2 and
the muon lifetime.

Higher order QED corrections are important when relating g− 2 to αEM and the muon
lifetime to GF . These have been calculated to high precision and are largely insensitive
to new high-scale physics. Corrections to sin2 θW extracted from Z boson asymmetries
depend on vertex factors that depend on the interacting fermions; these are fairly involved
and we will not go into detail here. Corrections to theW andZ boson masses are intimately
related and are best handled together; we discuss them in the context of the W boson mass
prediction. The dominant corrections due to top and bottom quark loops, and Higgs boson
loops, in the W and Z propagators can be studied in a simplified analysis. Corrections to
these propagators are most sensitive to unknown high-scale physics, and are referred to as
oblique corrections.

9.2 Z boson measurements

In the Electroweak theory the Z boson mass is expressed in terms of gauge-coupling and
scalar-potential parameters as

mZ0 =
µ
√
g2 + g′2

4
√
λ

. (9.1)

The parameters in this equation determine all tree-level interactions between fermions and
gauge bosons. In fact only three parameters are needed, as the scalar potential parameters
always enter in the combination µ/

√
2λ, i.e. the vacuum expectation value of the field.

The Z-boson mass is measured by determining the position of the resonance in the
propagator using e+e− annihilation into Z/γ∗. Equation 9.1 relates the mass parameter of
theZ-boson gauge field to other parameters in the Lagrangian. However, the effective mass
of the propagator is different from this mass parameter due to loops in the propagator. A
complete treatment needs to account for these loop corrections, which are large compared
to the experimental precision of the measurement. Other parameters measured using Z
boson production include the width of the Z (ΓZ), the weak mixing angle, and the number
of light neutrinos.

9.2.1 Cross section forZ/γ∗ production

Consider the simplest case of µ+µ− production in e+e− collisions. The cross section for
e+e− annihilation into a gauge boson, and subsequent “decay” to a muon-antimuon pair
can be derived from the matrix element

M =MZ +Mγ , (9.2)
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with

MZ =

∫
d4k

(2π)4
δ4[p1 + p2 − k]v̄2

igγµ
2 cos θW

[(geV − geAγ5]u1 ×

−i
k2 −m2

Z + iε

[
gµν + (α− 1)

kµkν

k2 − αm2
Z

]
δ4[k − (p1′ + p2′)]×

ū1′
igγν

2 cos θW
[(gµV − g

µ
Aγ5] v2′ (9.3)

and

Mγ =

∫
d4k

(2π)4
δ4[p1 + p2 − k]v̄2(−ieγµ)u1

−i
k2 + iε

[
gµν + (α− 1)

kµkν

k2

]
×

δ4[k − (p1′ + p2′)]ū1′(−ieγν)v2′ . (9.4)

For other final states, one factor of −e or gV − gAγ5 is modified to the appropriate weak
and electromagnetic charges. For the e+e− and νeν̄e final states there are additional matrix
elements corresponding to t-channel exchange of Z/γ∗ or a W boson . The integrals over
k simply enforce overall momentum conservation due to the delta functions enforcing
momentum conservation at each vertex.

We now set the gauge to the ’t Hooft-Feynman gauge (α = 1). In this gauge there is
an additional diagram for the longitudinal degree of freedom of the Z boson (the scalar
field). This diagram is proportional to the product of the masses of the fermions divided
by the square of the Z boson mass, and can thus be neglected. Alternatively one can use
the unitary gauge, in which case the kµkν term combines with the Dirac spinors to give
mass terms via the Dirac equations. As expected, the results are equivalent to the ’t Hooft-
Feynman gauge, and these extra terms can be neglected.

Squaring the matrix element gives:

|M|2 = |MZ |2 + |Mγ |2 +M∗ZMγ +MZM∗γ . (9.5)

For simplicity start with the |Mγ |2 calculation. Integrating over k replaces k with
√
s =

p1 + p2:

|Mγ |2 =
e4

s2
[gµν v̄2γµu1ū1′γνv2′ ][g

αβ v̄2′γαu1′ ū1γβv2]. (9.6)

Multiplication of two spinor states with an intermediate gamma matrix produces a scalar
number, so we can shift the ū1γβv2 factor from the end of the second bracket to the end of
the first bracket. Then we move the spinor at the end of each bracket to the front and take
the trace:

|Mγ |2 =
e4

s2
gµνgαβTr[v2v̄2γµu1ū1γβ ]Tr[u1′ ū1′γνv2′ v̄2′γα]. (9.7)

The spinor combinations can be simplified if we do not measure initial-state or final-state
spins. In that case we average over initial spins and sum over final spins, and use uū =
vv̄ = γµp

µ for massless particles summed over spin states:

|Mγ |2 =
e4

4s2
gµνgαβTr[γλp

λ
2γµγδp

δ
1γβ ]Tr[γεp

ε
1′γνγφp

φ
2′γα]. (9.8)

Finally we can make use of the following identity:

Tr(γαγβγµγν) = 4[gαβgµν + gανgβµ − gαµgβν ] (9.9)



70 Z BOSON PRODUCTION

to obtain

|Mγ |2 =
4e4

s2
gµνgαβpλ2p

δ
1p
ε
1′p

φ
2′ [gλβgδµ + gλµgβδ − gλδgβµ][gενgφα + gεαgνφ − gεφgνα]

=
4e4

s2
gµνgαβ [pβ2p

µ
1 + pµ2p

β
1 − p1δp

δ
2gβµ][pν1′p

α
2′ + pα1′p

ν
2′ − p1′δp

δ
2′gνα]

=
8e4

s2
[(p1p2′)(p2p1′) + (p1p1′)(p2p2′)]. (9.10)

This is the Lorentz-invariant expression for the matrix element. Now we define a coor-
dinate system: choose the z axis to be along the direction of the incoming electron (p1),
and θ the angle of the outgoing muon (p′1) with respect to the incoming electron. Then
p1p1′ = p2p2′ = s(1− cos θ)/4 and p1p2′ = p2p1′ = s(1 + cos θ)/4:

|Mγ |2 =
8e4

s2

s2

16
[(1 + cos θ)2 + (1− cos θ)2]

= e4(1 + cos2 θ). (9.11)

Using similar methods we can calculate the remaining matrix element factors. The Z-
exchange diagram yields:

|MZ |2 =
g4

16 cos4 θW

[
1

s−m2
Z + iε

]2

gµν v̄2γµ [(geV − geAγ5]u1

ū1′γν [gµV − g
µ
Aγ5] v2′g

αβ v̄2′γα [gµV − g
µ
Aγ5]u1′

ū1γβ [geV − geAγ5] v2

=
g4gµνgαβ

256 cos4 θW

[
1

s−m2
Z + iε

]2

Tr{v2v̄2γµ [geV − geAγ5]

u1ū1γβ [geV − geAγ5]}Tr{u1′ ū1′γν [gµV − g
µ
Aγ5]

v2′ v̄2′γα [gµV − g
µ
Aγ5]}. (9.12)

To evaluate this matrix element we use the anticommutation of γ5 with γµ to move it to
the right end of the brackets. Then use (γ5)2 = 1, average over initial spin states:

|MZ |2 =
g4gµνgαβ

64 cos4 θW

[
1

s−m2
Z + iε

]2

Tr{γδpδ2γµγφp
φ
1γβ [(geV )2 + (geA)2 −

2geV g
e
Aγ5]}Tr{γλpλ1′γνγρp

ρ
2′γα

[
(gµV )2 + (gµA)2 − 2gµAg

µ
V γ5

]
}. (9.13)

As in the case of muon decay, the traces can be evaluated using Eq. 10.9, giving:

|MZ |2 =
g4

2 cos4 θW

[
1

s−m2
Z + imZΓZ

]2

{[(gµV )2 + (gµA)2][(geV )2 + (geA)2][(p1p2′)×

(p2p1′) + (p1p1′)(p2p2′)] + [4gµAg
µ
V g

e
V g

e
A][(p1p2′)(p2p1′)− (p1p1′)(p2p2′)]}

=
g4

16 cos4 θW

[
s

s−m2
Z + imZΓZ

]2

{[(gµV )2 + (gµA)2][(geV )2 + (geA)2]×

[1 + cos2 θ] + [4gµAg
µ
V g

e
V g

e
A][2 cos θ]}, (9.14)
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where we have introduced the Z-boson width ΓZ . For the interference terms we calculate
one of the terms and add its complex conjugate. We start with:

MZM∗γ = − g2e2

16 cos2 θW s

[
1

s−m2
Z + imZΓZ

]
{gµν v̄2γµ2 [geV − geAγ5]u1

ū1′γν2 [gµV − g
µ
Aγ5] v2′}[gαβ v̄2′γαu1′ ū1γβv2].

= − g2e2

4 cos2 θW s

[
1

s−m2
Z + imZΓZ

]
gµνgαβTr{v2v̄2γµ [geV − geAγ5]u1ū1γβ}

Tr{u1′ ū1′γν [gµV − g
µ
Aγ5] v2′ v̄2′γα}. (9.15)

We again move the γ5 to the right, average over initial spin states, and use Eq. 10.9 to get:

MZM∗γ = − 2g2e2

cos2 θW s

[
1

s−m2
Z + imZΓZ

]
{[geV g

µ
V ][(p1p2′)(p2p1′) +

(p1p1′)(p2p2′)] + geAg
µ
A[(p1p2′)(p2p1′)− (p1p1′)(p2p2′)]} (9.16)

= − g2e2

4 cos2 θW

[
s

s−m2
Z + imZΓZ

]
[geV g

µ
V (1 + cos2 θ) + 2geAg

µ
A cos θ].

Adding the complex conjugate gives:

MZM∗γ +M∗ZMγ = − g2e2

2 cos2 θW

[
s(s−m2

Z)

(s−m2
Z)2 +m2

ZΓ2
Z

]
×

[geV g
µ
V (1 + cos2 θ) + 2geAg

µ
A cos θ]. (9.17)

We can now obtain the differential cross section for Z-boson production. In the center of
mass system, the cross section for distinguishable particles is

dσ

dΩ
=
|M|2p1′

64π2sp1
. (9.18)

Integrating over φ and inserting the matrix element gives:

dσ

d cos θ
=

1

32πs
{16π2α2Q2

eQ
2
µ(1 + cos2 θ)− 2πg2αQeQµ

cos2 θW

[
s(s−m2

Z)

(s−m2
Z)2 +m2

ZΓ2
Z

]
×

[geV g
µ
V (1 + cos2 θ) + 2geAg

µ
A cos θ] +

g4

16 cos4 θW

[
s2

(s−m2
Z)2 +m2

ZΓ2
Z

]
×

[((gµV )2 + (gµA)2)((geV )2 + (geA)2)(1 + cos2 θ) + 8gµAg
µ
V g

e
V g

e
A cos θ]}, (9.19)

where we have used α = e2/(4π). The square of the weak coupling g2 is frequently
replaced with either e2/ sin2 θW or 8GFM

2
W /
√

2.
The s dependence of the cross section includes a 1/s piece from the photon propagator,

a small interference contribution that is negative below mZ and positive above it, and a
highly peaked contribution around mZ from Z-boson production. By measuring the cross
section precisely near mZ , the LEP experiments obtained mZ = 91.1875 ± 0.0021 GeV.
The measurement relies on a precise knowledge of the beam energy, which required among
other things correcting for tidal effects from the moon and sun, leakage currents from
Geneva trains, and geological deformations following heavy rainfall. The measurement
also relies on an accurate calibration of the luminosity. This was performed with small-
angle e+e− (“Bhabha”) scattering, which is dominated by t-channel exchange of a photon.
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The width measurement was performed inclusively using the s dependence of the cross
section, and exclusively by calculating the total cross section for individual final states.
From the combination of measurements, the number of neutrinos was measured to be
2.9840± 0.0082.

9.2.2 Longitudinal asymmetry

In 1993-1996 the Stanford Linear Collider produced half a million Z bosons on resonance
(
√
s = 91.2 GeV) using a polarized electron beam colliding with an unpolarized positron

beam. The effect of polarization on the cross section can be calculated by inserting (1 −
γ5)/2 [(1 +γ5)/2] for negatively (positively) polarized electrons in the matrix element for
Z boson production:

ML
Z =

∫
d4k

(2π)4
δ4[p1 + p2 − k]v̄2

igγµ
8 cos θW

[
(−1 + 4 sin2 θW )− γ5

]
×

(1− γ5)u1
−i

k2 −m2
Z + iε

[
gµν + (α− 1)

kµkν

k2 − αm2
Z

]
×

δ4[k − (p1′ + p2′)]ū1′
igγν

4 cos θW

[
(−1 + 4 sin2 θW )− γ5

]
v2′ . (9.20)

We choose the ’t Hooft-Feynman gauge (α = 1) and again neglect the additional diagrams
proportional to the product of fermion masses divided by the square of the Z boson mass.
To perform the calculation, we again write (−1 + 4 sin2 θW ) − γ5 = 2(gV − gAγ5) and
square the matrix element to obtain

|ML
Z |2 =

g4gµνgαβ

128 cos4 θW

[
1

s−m2
Z + imZΓZ

]2

Tr{v2v̄2γµ [geV − geAγ5]

(1− γ5)u1ū1γβ [geV − geAγ5]}Tr{u1′ ū1′γν [gµV − g
µ
Aγ5]

v2′ v̄2′γα [gµV − g
µ
Aγ5]}, (9.21)

where we have averaged over initial spin states and used (1/2 − γ5/2)2 = 1/2 − γ5/2,
since γ2

5 = 1. We use s = m2
Z to simplify the propagator and move the γ5 matrices to the

right end of the brackets to obtain

|ML
Z |2 =

g4gµνgαβ

128 cos4 θW

(
1

m2
ZΓ2

Z

)
Tr{γδpδ2γµγφp

φ
1γβ [(geV + geA)2 ×

(1− γ5)]}Tr{γλpλ1′γνγρp
ρ
2′γα[(gµv )2 + (gµA)2 − 2gµAg

µ
V γ5]}. (9.22)

For the right-handed matrix element we replace (geV +geA)2(1−γ5) with (geV−geA)2(1+γ5).
We now use Eq. 10.9 to obtain

|ML
Z |2 =

g4

4 cos4 θW

1

m2
ZΓ2

Z

{[(gµV )2 + (gµA)2][(geV + geA)2][(p1p2′)×

(p2p1′) + (p1p1′)(p2p2′)] + [2gµAg
µ
V (geV + geA)2][(p1p2′)(p2p1′)

−(p1p1′)(p2p2′)]}

=
g4

32 cos4 θW

s2

m2
ZΓ2

Z

{[(gµV )2 + (gµA)2][(geV + geA)2][1 + cos2 θ]

+[2gµAg
µ
V (geV + geA)2][2 cos θ]}. (9.23)
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Similarly,

|MR
Z |2 =

g4

32 cos4 θW

s2

m2
ZΓ2

Z

{[(gµV )2 + (gµA)2][(geV − geA)2]×

[1 + cos2 θ]− [2gµAg
µ
V (geV − geA)2][2 cos θ]}. (9.24)

Finally, we insert the matrix elements into the differential cross section, dσ/dΩ =
|M|2|p1′ |/(64π2s|p1|), and integrate over φ:

dσL
d cos θ

=
1

32πm2
Z

{8π2α2(1 + cos2 θ) +
g4

32 cos4 θW

m2
Z

Γ2
Z

×

[((gµV )2 + (gµA)2)(geV + geA)2(1 + cos2 θ)

+4gµAg
µ
V (geV + geA)2 cos θ]} (9.25)

dσR
d cos θ

=
1

32πm2
Z

{8π2α2(1 + cos2 θ) +
g4

32 cos4 θW

m2
Z

Γ2
Z

×

[((gµV )2 + (gµA)2)(geV − geA)2(1 + cos2 θ)

−4gµAg
µ
V (geV − geA)2 cos θ]}. (9.26)

Integrating over d cos θ and using g4 = 16π2α2/ sin4 θW , we have

σL =
2πα2

3m2
Z

{
1 +

m2
Z [(gµV )2 + (gµA)2](geV + geA)2

16Γ2
Z sin4 θW cos4 θW

}
σR =

2πα2

3m2
Z

{
1 +

m2
Z [(gµV )2 + (gµA)2](geV − geA)2

16Γ2
Z sin4 θW cos4 θW

}
.

(9.27)

Now we can calculate the longitudinal asymmetry, defined as

AL =
σL − σR
σL + σR

≈ 2geV g
e
A

(geV )2 + (geA)2

[
1− 16 sin4 θW cos4 θWΓ2

Z

m2
Z [(geV )2 + (geA)2][(gµV )2 + (gµA)2]

]
, (9.28)

neglecting terms of order Γ4
Z/m

4
Z .

Combining all final states, the SLD Collaboration measured AL = 0.1516 ± 0.0021.
The uncertainty on the measurement is 1.4% and the Γ2

Z

m2
Z

correction is< 1%, so we can ne-

glect the correction term. Taking gV = (−1/2+2 sin2 θW ) and gA = 1/2, the asymmetry
is

AL =
2(−1/2 + 2 sin2 θW )× 1/2

1/4− 2 sin2 θW + 4 sin4 θW + 1/4

=
−1/2 + 2 sin2 θW

1/2− 2 sin2 θW + 4 sin4 θW
. (9.29)

This can be rewritten as a quadratic in sW ≡ sin2 θW :

4ALs
2
W − (2AL − 2)sw + (AL/2− 1/2) = 0 (9.30)
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with solution

sW =
2AL − 2± [(2AL − 2)2 − 16AL(AL/2− 1/2)]1/2

8AL
(9.31)

The term under the square root is

(4A2
L − 8AL + 4− 8A2

L + 8AL)1/2 = 2(1−A2
L)1/2

≈ 2−A2
L. (9.32)

We can take other measurements (e.g. mW and mZ) to select the positive sign in front of
the square root. Then

sW =
AL − 1 + (1−A2

L)1/2

4AL

≈ 1

4
− AL

8
. (9.33)

Substituting AL = 0.1516 gives sin2 θW = 0.23105 in the approximation and sin2 θW =
0.23094 from the analytic equation. The approximation can be used to calculate the relative
uncertainty on sW :

σ(sW ) =
σ(AL)

8
= 0.00026. (9.34)

Using mZ = 91.1876 GeV and m2
W = m2

Z cos2 θW , this translates into a tree-level W
boson mass of

mW = 79.968 GeV. (9.35)

9.2.3 Forward-backward asymmetry

The measurement of the weak charge of fermions, and the corresponding extraction of
sin2 θW , is greatly simplified by integrating cos θ above and below zero and taking the
difference divided by the sum. At

√
s = mZ the interference term does not contribute and

the symmetric cos θ distribution in the photon term also removes its contribution. Then
one has the simple relation∫ 1

0
d cos θ dσ

d cos θ −
∫ 0

−1
d cos θ dσ

d cos θ∫ 1

0
d cos θ dσ

d cos θ +
∫ 0

−1
d cos θ dσ

d cos θ

=
3gµAg

µ
V g

e
V g

e
A

[(gµV )2 + (gµA)2][(geV )2 + (geA)2]
. (9.36)

Many pieces of the calculation have cancelled, and experimentally many of the uncertain-
ties cancel in this ratio measurement. The determinations of sin2 θW through forward-
backward asymmetry measurements at LEP are among the most precise measurements
of this parameter. The measurements are consistent with the predictions, with a moder-
ate deviation in the case of the forward-backward asymmetry measured using decays to b
quarks. The measurement Ab,LEPFB = 0.0992 ± 0.0016 is 2.5σ lower than the prediction,
Ab,SMFB = 0.1034± 0.0004.



CHAPTER 10

MUON DECAY

The muon lifetime was the earliest calculation of a weak process, made possible by the
description of the decay as an effective four-point interaction because of the relatively
large W -boson mass. The first radiative corrections were performed in the 1950’s, and
the latest corrections (performed more than forty years later) have an uncertainty of 0.3
parts per million. Experimentally, a precision of ≈ 0.01% had been achieved by the early
1970s. Since then the precision has been improved by a factor of 100. Given the precise
theoretical and experimental knowledge of the muon lifetime, it is used as one of the three
input parameters to the Electroweak theory of interactions between fermions and gauge
bosons.

10.1 Tree-level prediction

Using the standard Feynman rules in the unitary gauge, the leading-order matrix ele-
ment for muon decay µ(p1)→ νµ(p2) + e(p1′) + ν̄e(p2′ ) is [16]

M =

∫
d4k

(2π)4
δ4(p1 − p2 − k)ū2

ig

2
√

2
γµ(1− γ5)u1

−i
k2 −m2

W + iε

[
gµν − kµkν

m2
W

]
×

δ4(k − p1′ − p2′)ū1′
ig

2
√

2
γν(1− γ5)v2′ . (10.1)

The integral over k enforces overall momentum conservation through the delta functions
enforcing momentum conservation at each vertex. Performing these integrals and using
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the following Dirac equations:

(γµp
µ −m)u = 0

ū(γµp
µ −m) = 0

(γµp
µ +m)v = 0, (10.2)

the matrix element becomes

M =
ig2

8[(p1 − p2)2 −m2
W ]
{ū2γµ(1− γ5)u1ū1′γ

µ(1− γ5)v2′ −

mµme

m2
W

ū2(1 + γ5)u1ū1′(1− γ5)v2′}, (10.3)

where neutrino masses have been neglected. The second term can also be neglected, since
mµme
m2
W

= 8 × 10−9. Finally, we neglect the (p1 − p2)2 term in the propagator, though its
contribution is of the same order as the theoretical and experimental uncertainties on the
muon lifetime.

With these approximations, the square of the matrix element is

|M|2 =
g4

64m4
W

[ū2γµ(1− γ5)u1ū1′γ
µ(1− γ5)v2′ ][v̄2′γ

ν(1− γ5)u1′ ū1γν(1− γ5)u2].

(10.4)
The multiplication of two spinor states with an intermediate gamma matrix produces a

scalar number, so these combinations can be shifted around in the equation. Moving the
ū1γν(1− γ5)u2 to the front of the calculation,

|M|2 =
g4

64m4
W

[ū1γν(1− γ5)u2ū2γµ(1− γ5)u1][ū1′γ
µ(1− γ5)v2′ v̄2′γ

ν(1− γ5)u1′ ],

(10.5)
the matrices within brackets are the fermion lines at each vertex. We can move the spinor at
the front of the first bracket to the end of the bracket, and vice versa for the second bracket,
and then take the trace:

|M|2 =
g4

64m4
W

Tr[u2ū2γµ(1−γ5)u1ū1γν(1−γ5)]Tr[u1′ ū1′γ
µ(1−γ5)v2′ v̄2′γ

ν(1−γ5)].

(10.6)
We will perform a differential calculation for the final state electron energy and angular
distributions, so we do not average over the muon spins or sum over the electron spins.
Keeping spin and mass information, the spinor combinations are in general:

uū = (γµp
µ +m)(1 + γ5γνs

ν)/2,

where sν is the spin direction. The first trace becomes:

1

2
Tr
[
γρp

ρ
2γµ(1− γ5)(γλp

λ
1 +mµ)(1 + γ5γδs

δ
µ)γν(1− γ5)

]
=

1

2
Tr
[
γρp

ρ
2γµ(1− γ5)(γλp

λ
1 +mµγ5γλs

λ
µ)γν(1− γ5)

]
, (10.7)

where we have used the fact that the trace of an odd number of gamma matrices is zero.
Moving the first (1 − γ5) to the right gives (1 − γ5)2 = (1 − γ5) (recall that γ5 anti-
commutes with γµ). Moving the residual γ5 to the right gives γ5(1 − γ5) = −(1 − γ5)
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(since γ2
5 = 1). Using a similar procedure for the second trace, we get a squared matrix

element of

|M|2 =
g4

64m4
W

{pρ2(pλ1 −mµs
λ
µ)(p1′α −meseα)p2′βTr [γργµγλγν(1− γ5)]

Tr[γαγµγβγν(1− γ5)]}

=
g4

m4
W

[p2 · (p1′ −mese)] [(p1 −mµsµ) · p2′ ] . (10.8)

In the last step we have used the following relation:

gµνgαβTr[γδγµγφγβ(C1 − C2γ5)]Tr[γλγνγργα(C3 − C4γ5)] =

32[C1C3(δδλδφρ + δδρδφλ) + C2C4(δδλδφρ − δδρδφλ)]. (10.9)

We now combine this matrix element with the phase space for muon decay:

dΓ(p1 → p2p1′p2′) =
(2π)4|M|2

2E1
δ4(p2+p1′+p2′−p1)

d3p2

(2π)32E2

d3p1′

(2π)32E1′

d3p2′

(2π)32E2′
.

(10.10)
Inserting the matrix element gives the completely differential cross section for muon de-
cay. Since neutrinos are not observed in a muon decay experiment, we integrate over the
neutrino momenta (note however that there can be applications for an expression with the
neutrino energy dependence, e.g. a neutrino beam generated from decaying muons). The
integral is∫

d3p2

(2π)32E2

d3p2′

(2π)32E2′
δ4(p2 + p1′ + p2′ − p1)pα2 p

β
2′ = π

24 [gαβ(p1 − p1′)
2 +

2(p1 − p1′)
α(p1 − p1′)

β ].(10.11)

The differential decay rate is then

dΓ =
g4d3p1′

192(2π)4m4
WE1E1′

[(p1′ − p1)2(p1 −mµsµ) · (p1′ −mese) +

2(p1′ − p1) · (p1 −mµsµ)(p1′ − p1) · (p1′ −mese)]. (10.12)

This is the Lorentz-invariant decay rate. We now choose a coordinate system where the
muon is at rest and the angle between the muon spin and electron momentum is θ. Ne-
glecting the electron mass and summing over its spin states, we obtain

dΓ = 2g4d3p1′
192(2π)4m4

WmµE1′
[(m2

µ − 2E1′mµ)(mµE1′ +mµE1′ cos θ) +

2(mµE1′ −m2
µ +mµE1′ cos θ)(−mµE1′)]

= 2g4E1′dE1′d cos θdφ
192(2π)4m4

Wmµ
[3m3

µE1′ − 4m2
µE

2
1′ +m3

µE1′ cos θ − 4m2
µE

2
1′ cos θ](10.13)

This expression can be further simplified by recasting E1′ into a ratio x = E1′/(mµ/2),
since the kinematic upper bound on E1′ is half the muon’s mass. Then we have:

dΓ =
g42x2dxd cos θdφ

192× 16π4m4
W

m5
µ

8
[3− 2x− cos θ + 2x cos θ]

=
g4

32m4
W

dxd cos θdφ

4π

m5
µ

192π3

[
2x2(3− 2x)

] [
1 +

1− 2x

3− 2x
cos θ

]
. (10.14)
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This equation has several pieces: the first is g4/(32m4
W ), which is the original definition

of the Fermi coupling G2
F . The correction for the momentum transfer in the propagator

[(p1−p2)2] is included in the definition ofGF . The second piece is the final-state electron
phase space, which integrates to one. The third piece contains a factor of the fifth power
of the muon mass; this power is general to particles decaying weakly, as can be seen from
dimensional arguments. The fourth piece describes the energy distribution of the final-state
electron (or, equivalently, the muon neutrino). It peaks at x = 1 and integrates to one. The
final piece describes the angular distribution of the electron with respect to the muon spin
direction. At x = 1 the distribution is 1− cos θ; the electron momentum is opposite to the
muon spin direction due to the V −A coupling of the weak charge. Figure 10.1 shows the
energy distribution of the electron [n(x)] and electron antineutrino [n′(x)], and the cos θ
coefficient [α(x)]. The figure also shows the momentum and spin directions of the decay
for cos θ = −1.

Figure 10.1 Top: Distributions of the electron energy fraction [n(x)], antineutrino energy fraction
[n′(x)], and the electron angular coefficient [α(x)]. Bottom: A pictorial representation of the decay.
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Starting from equation 10.14, it is trivial to calculate the differential decay rate with
respect to electron energy and the total decay rate. The integrals equal one, so

dΓ

dx
=

G2
Fm

5
µ

192π3

[
2x2(3− 2x)

]
, (10.15)

Γ =
G2
Fm

5
µ

192π3
. (10.16)

This is the total decay width of the muon. A measurement of the muon lifetime, or 1/Γ,
determines G2

F . Additional corrections to Γ from the electron mass and from higher order
diagrams are included when calculating G2

F from the muon lifetime.

10.2 Lifetime corrections

Additional corrections to the lifetime include the effect of accounting for the mass of
the electron, higher-order QED corrections, and the neglected momentum transfer in the
propagator. We show this latter calculation in detail.

We are only concerned with the lifetime, so we average over initial spin states and sum
over final spin states; the sum gives a factor of 2. We additionally expand the denominator
using 1/(1− x) ≈ 1 + x to obtain:

|M|2 =
2g4[1 + 2(m2

µ − 2mµE2)/m2
W ]

m4
W

(p2 · p1′) (p1 · p2′) . (10.17)

In the muon rest frame, p1 · p2′ = mµE2′ . The factor p2 · p1′ can be calculated from the
conservation of energy and momentum, p1 = p2 + p1′ + p2′ :

(p1 − p2′)
2 = (p2 + p1′)

2

m2
µ − 2mµE2′ = 2p2 · p1′ . (10.18)

The matrix element is then

|M|2 =
g4[1 + 2(m2

µ − 2mµE2)/m2
W ]

m4
W

(mµE2′)
(
m2
µ − 2mµE2′

)
. (10.19)

We can now insert the matrix element into the lifetime expression,

dΓ(p1 → p2p1′p2′) =
(2π)4|M|2

2E1
δ4(p2+p1′+p2′−p1)

d3~p2

(2π)32E2

d3~p1′

(2π)32E1′

d3~p2′

(2π)32E2′
.

(10.20)
To simplify the expression, we separate out the energy and momentum delta functions, and
integrate over δ3(~p2 + ~p1′ + ~p2′)d

3~p2:

dΓ(p1 → p2p1′p2′) = 2π
g4[1 + 2(m2

µ − 2mµE2)/m2
W ]

4E1E2m4
W

(
m2
µ − 2mµE2′

)
×

mµE2′δ(E2 + E1′ + E2′ −mµ)
d3~p1′

(2π)32E1′

d3~p2′

(2π)32E2′
,(10.21)

where E2 = |~p1′ + ~p2′ |. At this point we separate the correction factor

∆dΓ(p1 → p2p1′p2′) = 2π
g42(m2

µ − 2mµE2)/m2
W

4E1m4
W

mµE2′
(
m2
µ − 2mµE2′

)
×

δ(E2 + E1′ + E2′ −mµ)
d3~p1′

(2π)32E1′

d3~p2′

(2π)32E2′
. (10.22)
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Now we want to integrate over d3~p2′ . The delta function includes a constraint on this
vector through

E2
2 = E2

1′ + E2
2′ + 2E1′E2′ cos θ, (10.23)

where θ is the angle between the electron and electron neutrino. Defining the z-axis along
the direction of the electron neutrino, the integral over d3~p2′ becomes

E2
2′dE2′dφd cos θ = E2

2′dE2′dφ
2E2dE2

2E1′E2′
. (10.24)

Integrating over φ and E2, we get

∆dΓ(p1 → p2p1′p2′) = (2π)2
2g4(m2

µ/m
2
W )

4E1m4
W

E2′
(
m2
µ − 2mµE2′

)
×

mµ − 2(mµ − E1′ − E2′)

E1′E2′

d3~p1′

(2π)32E1′

E2
2′dE2′

(2π)32E2′
.(10.25)

The integral overE2′ ranges frommµ/2−E1′ tomµ/2; this range is a result of the integral
over the delta function and E2. We get

∆dΓ(p1 → p2p1′p2′) =
2g4m2

µ/m
2
W

16πE1m4
W

d3~p1′

(2π)32E2
1′

∫ mµ/2

mµ/2−E1′

E2′
(
m2
µ − 2mµE2′

)
×(2E1′ + 2E2′ −mµ)dE2′

=
2g4m2

µ/m
2
W

16πE1m4
W

d3~p1′

(2π)32E2
1′

∫ mµ/2

mµ/2−E1′

[(2m2
µE1′ −m3

µ)E2′

+(4m2
µ − 4mµE1′)E

2
2′ − 4mµE

3
2′ ]dE2′ . (10.26)

Evaluating the integral gives

[(2m2
µE1′ −m3

µ)
E2

2′
2 + (2m2

µ − 4mµE1′)
E3

2′
3 − 4mµ

E4
2′
4 ]|mµ/2mµ/2−E1′

=

(2m2
µE1′ −m3

µ)(mµE1′ − E2
1′)/2

+(4m2
µ − 4mµE1′)[3(m2

µ/4)E1′ − 3(mµ/2)E2
1′ + E3

1′ ]/3

−4mµ[4(mµ/2)3E1′ − 6(mµ/2)2E2
1′ + 4(mµ/2)E3

1′ − E4
1′ ]/4. (10.27)

Now integrate over E1′ . The external factors of E1′ cancel, leaving an integral over x =
E1′/mµ:

m5
µ

{[
−x2 + 3x2

2 − x
3
]

+
[
x− 3x2 + 10x3

3 − 4x4

3

]
−
[
x
2 −

3x2

2 + 2x3 − x4
]}

=

m5
µ

[
x3

3 −
x4

3

]
. (10.28)

Integrating x from 0 to 1/2 gives

∆Γ(p1 → p2p1′p2′) =
4π × 2g4m2

µ/m
2
W

32πE1m4
W (2π)3

m5
µ(

mµ

3× 4× 24
− mµ

3× 5× 25
)

=
2g4m2

µ/m
2
W

m4
W (4π)3

m5
µ(

5

3× 10× 25
− 2

3× 10× 25
)

=
g4m2

µ/m
2
W

160m4
W (4π)3

m5
µ. (10.29)
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We can now compare this to the lifetime calculated without the correction,

Γ =
g4

32m4
W

m5
µ

3(4π)3
. (10.30)

Taking the ratio gives

∆Γ/Γ =
3m2

µ

5m2
W

. (10.31)

The relative correction is thus 0.6× (0.105/80.4)2, or 1.02× 10−6.

10.3 Experimental measurements

Two ongoing measurements of the muon lifetime begin with a positive pion beam at
the Paul Scherrer Institute in Switzerland. The pions are stopped in a target and have a
predominant decay into an antimuon and a muon neutrino. Antimuons are preferred to
muons, since muons can be captured by the electromagnetic field of a nucleus (thus af-
fecting their lifetime). The FAST detector [17] reduces deadtime by simultaneously mea-
suring the electrons from multiple muon decays. The MuLan Collaboration [18] uses a
beam kicker to provide 5 µs pulses of muons with 22 µs spacing. MuLan has published its
final measurement using 2 trillion candidates collected in 2006 and 2007, with a statistical
precision of a part per million. Systematic uncertainties are roughly half of this. The part-
per-million uncertainty on the lifetime corresponds to a 0.6 parts-per-million measurement
ofGF (= 1.1663788(7)×10−5 GeV−2). The FAST experiment collected 420 billion can-
didates in 2008 and 2009, allowing a statistical precision of 1.5 parts per million. Analysis
of these events is ongoing.





CHAPTER 11

W BOSON MASS

With the input parameter set mZ , GF , and αEM , the mass of the W boson is the most
straightforward quantity to extract from the Electroweak model. High-statistics data sam-
ples at LEP and the Tevatron have allowed precision measurements of the W boson mass,
resulting in tests of the Electroweak model to a couple parts in ten thousand. The measure-
ments are consistent with the prediction, providing a remarkable validation of the theory.
The consistency hinged on the existence of a Higgs boson in a highly constrained mass
range, and the recent discovery of a Higgs boson completes the model, allowing continued
predictions to very high energy scales.

11.1 Tree-level relations

At tree level, the W and Z boson mass terms in the Lagrangian are

LmV =
µ2

0

2λ0

[
g2

0

2
W+

0µW
µ−
0 +

1

4
(g′0B0µ − g0W

3
0µ)2

]
, (11.1)

where µ2
0/2 and λ0 are respectively the coefficients of the scalar terms φ†0φ0 and (φ†0φ0)2,

g0 is the weak coupling, g′0 is the hypercharge coupling, and W i
0µ and B0µ are the weak

and hypercharge vector fields, respectively. The vector fields W 3
0µ and B0µ are diagonal in

the weak basis and can be expressed in terms of their mass eigenstates Z0µ and A0µ as

W 3
0µ = cos θW0Z0µ + sin θW0A0µ,

B0µ = cos θW0A0µ − sin θW0Z0µ, (11.2)
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where tan θW0 = g′0/g0. Defining a parameter v0 ≡ µ0/
√
λ0 proportional to the vacuum

expectation of the Higgs field, the masses of the W and Z bosons are

mW0 =
g0v0

2
,

mZ0 =
v0

√
g2

0 + g′20
2

. (11.3)

We can express mW0 in terms of the input Electroweak parameters using e0 = g0 sin θW0,
αEM0 = e2

0/4π, and GF0 =
√

2g2
0/8m

2
W :

m2
W0 =

√
2e2

0

8GF0 sin2 θW0

=
παEM0√

2GF0(1−m2
W0/m

2
Z0)

= m2
Z0

[
1

2
+

√
1

4
− παEM0√

2GF0m2
Z0

]
. (11.4)

This tree-level prediction can be calculated using measured quantities such as mZ =
91.1875 ± 0.0021 GeV [14] and GF = 1.16637 ± 0.00001 × 10−5 GeV−2 [24]. For
the electromagnetic coupling αEM , the most precise measurement is at Q2 ≈ 0, giv-
ing 1/αEM (Q2 = 0) = 137.035999679. However, for a prediction of the W boson
mass, we need a measurement at Q2 = m2

W . The standard procedure is to calculate
αEM (Q2 = m2

W ) by including higher order diagrams and measurements at intermediate
Q2 (to account for the hadronic contributions). Direct measurements are complicated by
interference with the Z boson; a LEP measurement that used a global fit to account for the
interference found 1/αEM (Q2 = m2

Z) = 128.937 ± 0.047 [14, 25]. Using this value of
αEM , and the other input parameters, gives

m2
W0 = 91.18752

[
1

2
+

√
1

4
− π

(128.937)
√

2(1.16637× 10−5)(91.18752)

]
. (11.5)

The term in brackets is 0.76899; multiplying by m2
Z and taking the square root gives

mW = 79.964 GeV. This is 395 MeV below the current prediction of 80.359 GeV, which
includes corrections to second order in the couplings. The precision of the input tree-level
parameters predict mW to better than 10 MeV, so the higher order corrections are tested
with precise measurements of mW .

11.2 Renormalization

In order to calculate higher order corrections to the W boson propagator, we need
to define a renormalization procedure for the Lagrangian for the vector boson mass terms
(equation 11.1). We define counterterms for the weak and hypercharge couplings g0 and g′0,
as well as the scalar field parameter v2

0 [26]. Including these counterterms, the Lagrangian
of the mass eigenstates is

LmV + δLmV =
(v20−δv

2)(g0−δg)2

4 W+
0µW

µ−
0 +

(v20−δv
2)

8 [A0µ(g′0 cos θW0 − g0 sin θW0)

−Z0µ(g0 cos θW0 + g′0 sin θW0)− δg′(cos θW0A0µ − sin θW0Z0µ) +

δg(cos θW0Z0µ + sin θW0A0µ)]2. (11.6)
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W-Boson Mass  [GeV]

mW  [GeV]
80 80.2 80.4 80.6

χ2/DoF: 0.1 / 1

TEVATRON 80.387 ± 0.016

LEP2 80.376 ± 0.033

Average 80.385 ± 0.015

NuTeV 80.136 ± 0.084

LEP1/SLD 80.362 ± 0.032

LEP1/SLD/mt 80.363 ± 0.020

March 2012

Figure 11.1 Combined direct and indirect measurements of mW .

This can be rewritten in terms of mass counterterms,

LmV + δLmV = (m2
W0 − δm2

W )W+
0µW

µ−
0 +

(m2
Z0 − δm2

Z)

2
Z0µZ

µ
0 + δm2

ZAZ0µA
µ
0 ,

(11.7)
where

δm2
W =

v2
0δg

2 + g2δv2

4

δm2
Z = (g2 + g′2)

δv2

4
+
v2

0

4
δ(g2 + g′2)

δm2
ZA =

m2
Z0

(g2
0 + g′20 )1/2

(cos θW0δg
′ − sin θW0δg). (11.8)

We see that renormalizing the couplings produces a counterterm that mixes the Z0µ field
with the A0µ field, so we expect loop diagrams to produce divergent terms coupling these
fields, with convergent residual components. Thus, the tree-level mixing angle will in
general be modified by higher order diagrams.

The mass counterterms can be determined by calculating each one-loop boson propaga-
tor, also known as the self-energy diagrams. In general the propagator has the form

Πµν
V V ′(q

2) = AV V ′(q
2)gµν +BV V ′(q

2)qµqν , (11.9)

where V and V ′ are the incoming and outgoing bosons respectively. There are four such
self-energy propagators, ΠWW , ΠZZ , ΠγZ , and Πγγ . If we define the Lagrangian pa-
rameters mW0 and mZ0 to be the physical masses of the gauge bosons, the self-energy
counterterms for the W and Z bosons are simply

δm2
W = ReAWW (m2

W0),

δm2
Z = ReAZZ(m2

Z0). (11.10)
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The cross term δm2
ZA can be written in terms of δm2

Z and δm2
W as

δm2
ZA =

m2
W0

2 sin θW0 cos θW0

[
δm2

Z

m2
Z0

− δm2
W

m2
W0

]
=

m2
W0

2 sin θW0 cos θW0
Re

[
AZZ(m2

Z0)

m2
Z0

− AWW (m2
W0)

m2
W0

]
(11.11)

so the divergences in ΠγZ are removed once ΠWW and ΠZZ are renormalized. The rela-
tions between the mass and coupling counterterms also constrain two of the coupling coun-
terterms. The third can be constrained with the Πγγ propagator, which gives the vacuum
polarization and does not have a mass counterterm. Rather it leads to a renormalization
of the electric charge δe, which can be expressed in terms of the weak and hypercharge
coupling counterterms as

δe = cos3 θW0δg
′ + sin3 θW0δg

= −e0Πγγ/2, (11.12)

where Πγγ is defined by Aγγ(q2) = −q2Πγγ ; this form arises from the lack of a mass
term for the photon propagator.

This prescription translates the fundamental Lagrangian coupling counterterms into
more physically useful mass counterterms. The coupling counterterms can be expressed in
terms of these mass counterterms as,

δg =
−e0Πγγ

2 sin θW0
− e0 cos2 θW0

2 sin3 θW0

Re

[
AZZ(m2

Z0)

m2
Z0

− AWW (m2
W0)

m2
W0

]
,

δg′ =
−e0Πγγ

2 cos θW0
+

e0

2 cos θW0
Re

[
AZZ(m2

Z0)

m2
Z0

− AWW (m2
W0)

m2
W0

]
. (11.13)

11.3 One-loop results

The Fermi coupling constant GF is extracted from the measurement of the muon life-
time using the following formula (including the first-order photon correction):

τ−1
µ =

G2
Fm

5
µ

192π3

(
1− 8m2

e

m2
µ

)[
1 +

3

5

m2
µ

m2
W0

+
α

2π

(
25

4
− π2

)]
. (11.14)

There are additional corrections not included in this equation, in particular the W boson
self-energy diagrams, the electroweak vertex correction diagrams, and box diagrams cor-
responding to additional exchanges between the muon weak doublet line and the electron
weak doublet line. These corrections add a term to the matrix element that can be ex-
pressed as ∆rM0, whereM0 is the tree-level matrix element. They would appear on the
right-hand side of equation 11.14 as a multiplicative factor (1 + ∆r)2, so G−1

F extracted
from the muon lifetime requires a (1 + ∆r) correction to account for these contributions.
Since mW ∝ G−1/2

F , it receives a correction of (1 + ∆r/2).
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One component of the ∆r correction arises from the bosonic contributions to the prop-
agator, vertices, and box diagrams. These can be expressed as

∆rb =
α

4πs2
{F (sin2 θW0) +

1

sin2 θW0

[
I(
m2
H

m2
Z

)− (1− 2 sin2 θW0)I(
m2
H

m2
Z cos2 θW0

)

]

−3

4

 m2
H

m2
Z

ln(
m2
H

m2
Z

)− cos2 θW0 ln cos2 θW0

m2
H

m2
Z
− cos2 θW0

}, (11.15)

where the expression F (sin2 θW0) has the value 2.68 for sin2 θW0 = 0.23 and the Feyn-
man integral I(y) is given by

I(y) =

∫ 1

0

dx

[
1− 1

2
x2 − 1

2
y(1− x)

]
ln[x2 + y(1− x)] +

1

4
y

(
ln y − 1

2

)
. (11.16)

The correction depends logarithmically on the Higgs boson mass. The contribution from
light-fermion loops in the propagator is

∆rf =
2αNc

3π

[∑
ln
mZ

mi
− aq

5

2
+

3

8

(2 sin2 θW0 − 1)

sin4 θW0

ln cos θW0

]
, (11.17)

where quarks receive contributions of Nc = 3 (the color factor) and aq = 5/9. These
contribute a relative correction of 3.3% to the W boson mass, with the largest uncertainty
arising from the light quark masses. These can be incorporated into the running of the
electromagnetic coupling, and currently contribute about 5 MeV uncertainty on the W
boson mass prediction.
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Figure 11.2 Fit for mW using the transverse mass distribution.
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11.3.1 Top-bottom loop

The top-bottom loop is one of the largest contributors to the correction of the W -boson
propagator. This contribution is

−3µ4−dg20 |Vtb|
2

8

∫
ddp

(2π)d
Tr
[
γµ(1− γ5) 1

γαpα−mt γν(1− γ5) 1
γβpβ−γβkβ−mb

]
≡ iΠWW

µν (k), (11.18)

including factors of 3 for color and -1 for the fermion loop. To evaluate this integral, we
move all gamma matrices to the numerator by multiplying the numerator and denominator
by the same factor, and we separate the propagators with the Feynman integral:

iΠWW
µν =

−3g2
0µ

4−d|Vtb|2

8

∫ 1

0

dz

∫
ddp

(2π)d

Tr[γµ(1− γ5)(γαp
α +mt)γν(1− γ5)(γβp

β − γβkβ +mb)]

{(p2 −m2
t )z + [(p− k)2 −m2

b ](1− z)}2
.(11.19)

Redefining the integrand to p′ = p− k(1− z) and recalling that integrals over terms linear
in p′ give zero, the numerator becomes

2[p′αp′β − kαkβz(1− z)]Tr[γµγαγνγβ(1 + γ5)]. (11.20)

The traces can be evaluated in d dimensions using

Tr(γµγαγνγβγ5) = diεµανβ ,

T r(γµγαγνγβ) = f(d)(gµαgνβ − gµνgαβ + gµβgνα), (11.21)

where f(d) is some function with the property f(4) = 4. The antisymmetric tensor εµανβ
combined with the symmetric terms p′αp′β − kαkβz(1− z) will give zero. The numerator
becomes

2f(d){2p′µp′ν − 2z(1− z)(kµkν − k2gµν)− gµν [p′2 + k2z(1− z)]}. (11.22)

In terms of p′, the denominator is

p′2 + k2z(1− z)−m2
t z −m2

b(1− z). (11.23)

Now the first and last terms of the numerator will cancel if we add m2
t z−m2

b(1− z) to the
last term (as in the case for the vacuum polarization of the photon). We are then left with
the integral over the middle term,

iΠWW
µν =

−3f(d)g2
0µ

4−d|Vtb|2

4

∫ 1

0

dz

∫
ddp′

(2π)d

−2z(1− z)(kµkν − k2gµν)− [m2
t z +m2

b(1− z)]gµν
{p′2 + k2z(1− z)−m2

t z −m2
b(1− z)}2

. (11.24)

The integral is calculated using the usual identity (Eq. 6.9) to give

iΠWW
µν = −3g2

0µ
4−d|Vtb|2

∫ 1

0

i(−π)d/2Γ(ε)dz

(2π)dΓ(2)[k2z(1− z)−m2
t z −m2

b(1− z)]ε
×

{−2z(1− z)(kµkν − k2gµν)− [m2
t z +m2

b(1− z)]gµν}, (11.25)
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where f(d) has been set to 4 and ε has been defined to be 2 − d/2. Now we use Γ(ε) ≈
ε−1 − γ, Γ(2) = 1, and aε ≈ 1 + ε ln a to obtain

iΠWW
µν = −3g2

0 |Vtb|2
∫ 1

0

idz

16π2

{
1 + ε ln

4πµ2

[−k2z(1− z) +m2
t z +m2

b(1− z)]

}
×
(

1

ε
− γ
)
{−2z(1− z)(kµkν − k2gµν)− [m2

t z +m2
b(1− z)]gµν}

=
−3ig2

0 |Vtb|2

16π2
{
[
k2 − kµkν

3
− m2

t +m2
b

2

](
1

ε
− γ
)

+∫ 1

0

dz
[
z(1− z)(k2gµν − 2kµkν)−∆gµν

]
ln

4πµ2

∆
}, (11.26)

where
∆ = m2

t z +m2
b(1− z)− k2z(1− z). (11.27)

The correction has a divergent term, which is removed through renormalization, and a finite
term proportional to the square of the top-quark mass. Performing the integral and fixing
the divergence using the Z boson mass, the correction to the W boson mass is:

∆rtb =
−3GFm

2
W

8
√

2π2(m2
Z −m2

W )

[
m2
t +m2

b −
2m2

tm
2
b

m2
t −m2

b

ln

(
m2
t

m2
b

)]
. (11.28)

Since the top-quark mass enters quadratically in the correction, its precise knowledge is
important for predicting the existence of other particles. Prior to its discovery, the top
quark’s mass was predicted to be about 170 GeV, in good agreement with its measured
value. The current uncertainty on the mass of the top quark contributes about 5 MeV
uncertainty on the W boson mass. Uncertainties from higher order corrections also con-
tribute about 5 MeV. The combination of the world measurements of the W boson mass
give an uncertainty of 15 MeV, with the precision dominated by the recent CDF measure-
ment of mW = 80.387 ± 0.019 GeV. The measurement involves fitting the measured
transverse mass distribution of W bosons produced via qq̄′ → W and decaying leptoni-
cally. An example distribution is shown in Fig. 11.2. For an input Higgs boson mass of
mH = 125.7 ± 0.4 GeV, the predicted W boson mass is mW = 80.367 ± 0.007 GeV.
Historically the measured value of the W boson mass was used to predict the mass of
the Higgs boson; this prediction gives mH = 60+56

−19 GeV. A global fit to all W and Z
measurements gives a predicted Higgs boson mass of mH = 94+25

−22 GeV.





CHAPTER 12

THE HIGGS BOSON

The Electroweak theory depends crucially on a mechanism to spontaneously break the
SU(2) × U(1) gauge symmetry. The Higgs boson was the last unobserved particle in
the Standard Model and its discovery provides direct access to the symmetry-breaking
mechanism. In particular it fixes the µ parameter in the scalar potential, completing the
input parameters of the minimal Standard Model (still undetermined are the masses and
mixing phase of the neutrinos). Prior to the discovery, loop contributions of the Higgs
boson to the W -boson mass gave a predicted Higgs-boson mass of 94+29

−24 GeV, with an
upper bound of 152 GeV at 95% CL. Parts of this mass range were accessible to the LEP
and Tevatron colliders, and the entire mass range (and up to a TeV or more) was accessible
to the LHC.

The recent LHC discovery of a boson with a mass of about 125 GeV allows a variety
of tests of the Standard Model predictions. In this mass range the Higgs boson can be
measured using a wide range of production mechanisms and decays, individually testing
the relationship between the mass of each fermion or gauge boson and its coupling to the
Higgs boson.

12.1 Higgs boson mass

The renormalization procedure allows the calculation of physical quantities given mea-
surements of the model parameters at a particular scale. Fundamentally, the cancellation
provided by the procedure is expected to occur via contributions not present in the low-

Electroweak physics, lecture notes.
By Chris Hays

91



92 THE HIGGS BOSON

energy theory. When the parameters require large cancellations to give the observed values,
we say that the theory is fine-tuned. Most of the parameters of the theory grow logarith-
mically with energy, so new contributions occurring at a high energy scale can prevent
fine-tuning. However, the Higgs boson mass grows quadratically with energy, so fine-
tuning appears near the TeV energy scale. This can be seen by explicitly calculating the
one-loop contributions to the Higgs boson mass.

We have evaluated the one-loop contribution to a scalar propagator using dimensional
regularization. In order to study fine-tuning as a function of the scale of new physics, it is
more useful to use a cut-off in the integral. The vertex of the four-Higgs interaction can
be expressed as 3ig2m2

H

4m2
W

and the vertex of the three-Higgs interaction can be expressed as
3igm2

H

2m2
W

, where g = e sin θW is the weak coupling. The loop from the four-point vertex
contributes the following term to the propagator:

−3ig2m2
H

2× 4m2
W

∫
d4q

(2π)4

i

q2 −m2
H + iε

≡ −iΣloop H(p2), (12.1)

where the factor of two in the denominator is a symmetry factor from the loop. The integral
can be easily evaluated by the replacement dE → idE (a Wick rotation), so that the
denominator is −q2 −m2

H . The integration factor d4q can be expressed as 2π2q3dq after
performing the angular integration. Changing variables to u = q2, the integral becomes∫ Λ2

0

−i
8π2

u

2(u+m2
H)
du =

−i
16π2

[Λ2 −m2
H ln(Λ2/m2

H + 1)]. (12.2)

Including the vertex factor and neglecting the logarithmic term, we get

−iΣloop H(p2) =
−3ig2m2

HΛ2

32π2 × 4m2
W

. (12.3)

The three-point function will contribute a logarithmic divergence, since it has two propa-
gators in the denominator giving a factor of 1/q4. So we can neglect this contribution. The
mass becomes

(mloop H
H )2 = m2

H + Σloop H(p2)

= m2
H +

3g2m2
HΛ2

32π2 × 4m2
W

= m2
H +

3× 4π(128)−1 × (1− 80.3852/91.1882)−1 × 1252Λ2

32π2 × 4× 80.3852

= m2
H + 2.53× 10−3Λ2/GeV2. (12.4)

The dominant divergent fermion loop is the top loop, since its coupling is significantly
greater than the other fermions. The vertex factor is −igmt/(2mW ), giving a loop contri-
bution of

3g2m2
t

4m2
W

∫
d4p

(2π)4
Tr

[
i

γαpα −mt

i

γβpβ − γβkβ −mt

]
≡ −iΣloop t(p2), (12.5)

where the factor of 3 accounts for the three top-quark colors and a -1 comes from the inter-
nal fermion loop. Moving all gamma matrices to the numerator by multiplying numerator
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and denominator by the same factor, and separating the propagators with the Feynman
integral gives:

−iΣloop t = −3g2m2
t

4m2
W

∫ 1

0

dz

∫
d4p

(2π)4

Tr[(γαp
α +mt)(γβp

β − γβkβ +mt)]

{(p2 −m2
t )z + [(p− k)2 −m2

t ](1− z)}2
.

(12.6)
Redefining the integrand to p′ = p− kz and recalling that integrals over terms linear in p′

give zero, the numerator becomes

[p′αp′β − kαkβz(1− z)]Tr(γαγβ) + 4m2
0. (12.7)

The trace can be evaluated using Tr(γαγβ) = 4gαβ . The dominant divergence will come
from the p2 term, giving

−iΣloop t = −3g2m2
t

4m2
W

∫ 1

0

dz

∫
d4p

(2π)4

4p2

[p2 −m2
t + k2z(1− z)]2

+ ... (12.8)

With a Wick rotation and defining u = p2 +m2
t − k2z(1− z), keeping only the Λ2 term:

Σloop t = − 3g2m2
t

16π2m2
W

Λ2

= −3× 4π(128)−1 × (1− 80.3852/91.1882)−1 × 1732

16π2 × 80.3852
Λ2

= −3.88× 10−2Λ2. (12.9)

Combining top-quark and Higgs-boson loops, the Higgs boson mass is

(mloop
H )2 = m2

H + 2.53× 10−3Λ2/GeV2 − 3.88× 10−2Λ2/GeV2

= m2
H − 3.63× 10−2Λ2. (12.10)

Fine-tuning to a given percentage would mean that the difference on the right is that per-
centage times m2

H . For 1% tuning, we get

1252 = 0.01× 3.6× 10−2Λ2, (12.11)

or Λ = 6.6 TeV.

12.2 Higgs boson production at hadron colliders

The relative cross sections for Higgs boson production are dominated by the couplings
of the Higgs boson to fermions and vector bosons. At the LHC the process with the highest
cross section contains the tt̄H vertex, where the tt̄ pair is produced by a t-channel inter-
action between two gluons. The diagram, known as gluon-gluon fusion, is a triangle top
loop with two external gluons and an external Higgs boson. The next highest cross sections
are the vector-boson fusion processese WW → H and ZZ → H , where the W and Z
bosons are radiated by the incoming quarks. Associated production follows: WH , ZH ,
tt̄H , involving the same vertices but suppressed by the higher combined mass of the final-
state system. Production via the bb̄H coupling is small by comparison, but can be relevant
in other models. The Higgs boson was first observed via gluon-gluon fusion production,
with several final states showing significances near 5σ. The sensitivity to vector-boson fu-
sion is more marginal, ≈ 3σ, but will significantly increase with the 13-14 TeV collisions
expected to begin in 2015.
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12.2.1 Gluon fusion [27]

The matrix element for gluon-gluon fusion has two components corresponding to the
two directions of the internal top-quark lines:

M = (−igs)2

(
−igmt

2mW

)
i3Tr(tatb)(−1)ενεµ

∫
ddq

(2π)d[
i

γαqα + γαkα2 −mt
γµ

i

γβqβ −mt
γν

i

γρqρ − γρkρ1 −mt

]
+[

i

−γαqα + γαkα1 −mt
γν

i

−γβqβ −mt
γµ

i

−γρqρ − γρkρ2 −mt

]
,(12.12)

where the ε factors are the external gluon polarizations, t are the adjoint representations
of the gluon color charges, gs is the strong coupling constant, the integral is performed
in d dimensions, and there is an overall factor of -1 because of the fermion loop. Rather
than go through the extensive calculation of the matrix element squared, we consider its
components and the various contributions to the cross section.

The cross section is given by

σ =
1

2s

∫
d4p

(2π)4
2πδ(p2 −m2

H)(2π)4δ4(k1 + k2 − p)
1

4

1

64

∑
s,c

|M|2

=
π

256s
δ(s−m2

H)
∑
s,c

|M|2, (12.13)

where the factor of 1/4 comes from averaging over initial-state spins, and the factor of
1/64 comes from averaging over initial-state colors. We can additionally separate out the
prefactors in the matrix element,

|M|2 ≡ g4
s

g2m2
t

4m2
W

Tr(tatb)Tr(t
atb)|Mint|2. (12.14)

We now use αs = g2
s/4π, GF = g2/(2

√
2mW ), and Tr(tatb) = δab/2 and δabδab = 8

for a sum over color factors. The cross section becomes

σ =
π3α2

s

√
2GFm

2
t

16m4
H

δ(s−m2
H)
∑
s,c

m2
H |Mint|2, (12.15)

The matrix element has the form

Mint = a(ε1 · ε2)− 2

m2
H

a(ε1 · k2)(ε2 · k1), (12.16)

where

a =
8mt

1− 1
2m

2
H(1− τ)16π2C0

,

τ =
4m2

t

m2
H

,

C0 =
−i arcsin2(τ−1/2)

8π2s
(12.17)
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for mH < mt. Summing over spin states gives |Mint|2 = 2|a|2, so the total cross section
is

σ =
α2
sGFm

2
H

288
√

2π

{
3

2
τ
[
1 + (1− τ) arcsin2(τ−1/2)

]}2

δ(s−m2
H). (12.18)

This leading-order term is at the order of α2
s and there are large corrections from higher

orders. The calculation has been performed to NNNLO accuracy (α5
s!), and there are signs

of convergence (the uncertainty from missing higher orders is estimated to be 3%). The
cross section is proportional to the top-quark mass to the fourth power due to the loop
(∝ m2

t/m
2
H ) and the Yukawa coupling at the ttH vertex (∝ m2

t/m
2
W ).

12.3 Vector-boson fusion

Higgs boson production through vector-boson fusion was one of the original processes
studied to show the problems that arise in the absence of a physical scalar field, and to
constrain its mass. In particular, the WW →WW process (WW scattering) has a matrix
element that grows quadratically with energy in the absence of a Higgs boson. Since the
scattering of a massless gauge boson does not have this behavior, the unphysical growth
has to come from the longitudinal degree of freedom (the Goldstone boson). From the
perspective of the Electroweak theory, its origin is the consideration of only a subset of di-
agrams of a φ4 theory; the physical Higgs boson is required for a complete renormalizable
φ4 theory.

The calculation of WW scattering involves matrix elements for a 4-point vertex and s-
and t-channel γ/Z/H exchange. The outgoingW -boson lines have associated polarization
vectors, and we consider only the longitudinal polarizations since these are the polariza-
tions that arise from the Higgs mechanism. The longitudinal polarization can be calculated
by considering a boost of the polarization vector (0,0,0,1) along the z axis:

εµ = (γv, 0, 0, γ)

= (p1/mW , 0, 0, E/mW )

≈ (E/mW −mW /2E, 0, 0, E/mW ). (12.19)

For a general momentum vector there is a factor ~p1/|~p1| ≈ (1 + m2
W /E

2)~p1/E for the
spatial components of the polarization vector. Then the polarization tensor can be written:

εµ =
p1µ

mW
− mW

2E2
(E,−~p1)

=
p1µ

mW
− 2mW

s
p2µ, (12.20)

where the last line is a general feature of 2→ 2 processes such as WW scattering.
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Now we consider the 4-point WW vertex, whose matrix element is simply given by the
Feynman rule for the coupling and the external polarizations εµ(p1)εν(p2)→ ερ(k1)ελ(k2):

M4 = ig2{2[ε(p2)ε(k1)][ε(p1)ε(k2)]− [ε(p1)ε(p2)][ε(k1)ε(k2)]− [ε(p1)ε(k1)][ε(p2)ε(k2)]}

≈ i
g2

m4
W

{[2(p2k1)(p1k2)− (p1p2)(k1k2)− (p1k1)(p2k2)] +
2m2

W

s
×

[2(p1k1 + p2k2)(p1k2 + p2k1)− 2m2
W (p1p2 + k1k2)− (p1k2 + p2k1)(p2k2 + p1k1)]}

≈ i
g2

4m4
W

[
2(s+ t− 2m2

W )2 − (s− 2m2
W )2 − (t− 2m2

W )2 − 8m2
W

s
tu

]
≈ i

g2

4m4
W

[
s2 + t2 + 4st− 4(s+ t)m2

W −
8m2

W

s
tu

]
, (12.21)

where we have used p1p2 = k1k2 = s/2 −m2
W , p1k1 = p2k2 = −t/2 + m2

W , p1k2 =
p2k1 = −u/2 +m2

W , and s+ t+ u = 4m2
W .

We next consider s-channel γ/Z exchange:

Ms(γ/Z) = −ig2

(
sin2 θW

s
+

cos2 θW
s−m2

Z

)
{(p1 − p2)µ[ε(p1)ε(p2)] +

[(−2p1 − p2)ε(p2)]ε(p1)µ + [(p1 + 2p2)ε(p1)]ε(p2)µ}{(k2 − k1)µ[ε(k1)ε(k2)]

+[(−2k2 − k1)ε(k1)]ε(k2)µ + [(2k1 + k2)ε(k2)]ε(k1)µ} (12.22)

The polarization vectors satisfy pµεµ = 0, so the matrix element becomes

Ms(γ/Z) = −i g
2

m4
W

(
sin2 θW

s
+

cos2 θW
s−m2

Z

)
[(p1k2 + p2k1 − p1k1 − p2k2)(p1p2)(k1k2) +

(p1k2 − p2k2 − 2p1k1m
2
W /s+ 2p2k1m

2
W /s)(p1p2)(−2k2k1) +

(p1k1 − p2k1 − 2p1k2m
2
W /s+ 2p2k2m

2
W /s)(p1p2)(2k1k2) +

(−2p1p2)(p1k2 − p1k1 − 2p2k2m
2
W /s+ 2p2k1m

2
W /s)(k1k2) +

(−2p1p2)(p1k2 − 2m2
W p1k1/s− 2m2

W p2k2/s)(−2k2k1) +

(−2p1p2)(p1k1 − 2m2
W p2k1/s− 2m2

W p1k2/s)(2k1k2) +

(2p2p1)(k1k2)(p2k2 − p2k1 − 2m2
W p1k2/s+ 2m2

W p1k1/s) +

(2p2p1)(p2k2 − 2m2
W p1k2/s− 2m2

W p2k1/s)(−2k2k1) +

(2p2p1)(p2k1 − 2m2
W p1k1/s− 2m2

W p2k2/s)(2k1k2)]. (12.23)

Again using the Mandelstam variables and assuming m2
W /s� 1, we get:

Ms(γ/Z) ≈ i
g2

m4
W s

(1 +m2
W /s){(u− t)s2/4− (u− t)s2/4 + (t− u)s2/4−

(u− t)s2/4 + s2u/2− s2t/2 + s2(t− u)/4− s2t/2 + s2u/2 +m2
W ×

[(t− u)s+ (u− t)s/4 + (t− u)s/2 + 3(u− t)s/4 + (t− u)s/2 +

(u− t)s/4 + (t− u)s/2− 2us− 2ts+ 2ts+ 2us+ 3(u− t)s/4 +

(t− u)s/2 + 2ts+ 2us− 2us− 2ts]}

≈ −i g2

4m4
W

[
s(t− u)− 3m2

W (t− u)
]
. (12.24)
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The t-channel Z/γ exchange can be obtained by simply exchanging p2 with −k1:

Mt(γ/Z) = −ig2

(
sin2 θW

t
+

cos2 θW
t−m2

Z

)
{(p1 + k1)µ[ε(p1)ε(k1)]− [2p1ε(k1)]ε(p1)µ

−[2k1ε(p1)]ε(k1)µ}{(k2 + p2)µ[ε(p2)ε(k2)]− [2k2ε(p2)]ε(k2)µ −
[2p2ε(k2)]ε(p2)µ}. (12.25)

Multiplying the terms gives

Mt(γ/Z) = −i g
2

m4
W

(
sin2 θW

t
+

cos2 θW
t−m2

Z

)
[(p1k2 + p1p2 + k1k2 + k1p2)×

(p1k1 − 2p1k2m
2
W /s− 2p2k1m

2
W /s)×

(p2k2 − 2p1k2m
2
W /s− 2p2k1m

2
W /s) +

(p1k2 + k1k2 − 2p1k1m
2
W /s)(p1k1 − 2p1k2m

2
W /s− 2p2k1m

2
W /s)×

(−2k2p2 + 4k2p1m
2
W /s) + (p1p2 + k1p2 − 2k1p1m

2
W /s)×

(p1k1 − 2p1k2m
2
W /s− 2p2k1m

2
W /s)(−2p2k2 + 4p2k1m

2
W /s) +

(−2p1k1 + 4p1k2m
2
W /s)(p1k2 + p1p2 − 2p2k2m

2
W /s)×

(p2k2 − 2p1k2m
2
W /s− 2p2k1m

2
W /s) +

(−2p1k1 + 4p1k2m
2
W /s)(p1k2 − 2m2

W p1k1/s− 2m2
W p2k2/s)×

(−2k2p2 + 4k2p1m
2
W /s) +

(−2p1k1 + 4p1k2m
2
W /s)(p1p2)(−2p2k2 + 4p2k1m

2
W /s) +

(−2k1p1 + 4k1p2m
2
W /s)(k1k2 + k1p2 − 2k2p2m

2
W /s)×

(p2k2 − 2p1k2m
2
W /s− 2p2k1m

2
W /s) +

(−2k1p1 + 4k1p2m
2
W /s)(k1k2)(−2k2p2 + 4k2p1m

2
W /s)

(−2k1p1 + 4k1p2m
2
W /s)(k1p2 − 2k2p2m

2
W /s− 2k1p1m

2
W /s)×

(−2p2k2 + 4p2k1m
2
W /s). (12.26)

In terms of Mandelstam variables this is

Mt(γ/Z) ≈ −i g2

4m4
W

[
t(s− u)− 3m2

W (s− u) + 8m2
Wu

2/s
]
. (12.27)

Combining the gauge interactions gives

M4 +Ms(γ/Z) +Mt(γ/Z) ≈ i g2

4m4
W

[s2 + t2 + 4st− 4(s+ t)m2
W − 8m2

W tu/s− s(t− u) + 3m2
W (t− u)− t(s− u)+

3m2
W (s− u)− 8m2

Wu
2/s]. (12.28)

The term quadratic in the Mandelstam variables is

i
g2

4m4
W

[s2 + t2 + 4st− st+ su− ts+ tu] = i
g2

4m4
W

[(s+ t)2 + (s+ t)(−s− t+ 4m2
W )]

= −i g
2

m2
W

(u− 4m2
W ). (12.29)
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The term linear in the Mandelstam variables is

i g2

4m4
W

[−4(s+ t)m2
W − 8m2

W tu/s+ 3m2
W (t− u) + 3m2

W (s− u)− 8m2
Wu

2/s] =

i g2

4m2
W

[4(u− 4m2
W )− 8(t+ u)u/s+ 3(s+ t− 2u)] =

i g2

4m2
W

[4u− 16m2
W − 8(−s+ 4m2

W )u/s+ 3(−3u+ 4m2
W )] =

i g2

4m2
W

[3u− 4m2
W − 32m2

Wu/s]. (12.30)

Combining the terms gives

M4 +Ms(γ/Z) +Mt(γ/Z) ≈ −i g2

4m2
W

(4u− 16m2
W − 3u+ 4m2

W + 32m2
Wu/s)

≈ −i g2

4m2
W

(u− 12m2
W + 32m2

Wu/s). (12.31)

The matrix elements for Higgs exchange are more straightforward. For the s-channel
we have

Ms(H) = −ig2 m2
W

s−m2
H

[ε(p1)ε(p2)][ε(k1)ε(k2)]

≈ ig2m
2
W

s
(1−m2

H/s)(s/2−m2
W )(s/2−m2

W )

≈ ig2m
2
W

s
(s2/4−m2

Hs/4−m2
W s), (12.32)

while the t-channel expression is

Mt(H) = −ig2 m2
W

t−m2
H

[ε(p1)ε(k1)][ε(p2)ε(k2)]

≈ ig2m
2
W

t
(1−m2

H/t)[(t/2−m2
W )(t/2−m2

W )− 2tum2
W /s]

≈ ig2m
2
W

t
(t2/4−m2

Ht/4−m2
W t− 2tum2

W /s). (12.33)

Combining the terms linear in the Mandelstam variables gives

Ms(H) +Mt(H) = −i g2

4m2
W

(s+ t)

= −i g2

4m2
W

(−u+ 4m2
W ) (12.34)

We see that the linear term cancels once the Higgs propagator is included in the matrix
element.

A full analysis, including longitudinal Z production, shows that the cross section for
boson-boson scattering violates unitarity for mH & 1 TeV. This motivates the energy
reach of the LHC, which was designed to definitively determine whether the Higgs boson
exists.

We have focused on WW pairs in the initial state and only considered the divergent
terms. At high enough energy, the initial-stateW bosons can be considered as components
of the original protons as is done with quarks and gluons. At the energy of the LHC
one needs to consider the qq → qqWW process, which has 96 diagrams and is thus
significantly more complicated.
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12.4 Higgs boson production at lepton colliders

An intensive search for Higgs boson production at LEP via the e+e− → ZH process,
whose matrix element is given in Eq. 5.33, took place between 1996 and 2001. No evidence
for Higgs boson production was observed, and a lower limit on the Higgs-boson mass was
set at 114.4 GeV. Future proposed e+e− colliders could produce a large sample of Higgs
bosons with less additional energy in the detector than a hadron collider. Studies of the
possible precision of measurements of such a sample are ongoing.

An interesting long-term possibility is the construction of a muon collider to produce
Higgs bosons on resonance. To get an idea of the potential rates, we can calculate the
production cross section for τ+τ− in µ+µ− collisions. This can occur through s-channel
production of a photon, a Z boson or a Higgs boson. The matrix element can be written as

M =MZ +Mγ +MH , (12.35)

with

MZ =

∫
d4k

(2π)4
δ4(p1 + p2 − k)v̄2

igγµ
4 cos θW

(gµV − g
µ
Aγ5)u1

−igµν

k2 −m2
Z + iΓZ

×

δ4[k − (p1′ + p2′)]ū1′
igγν

4 cos θW
(gτV − gτAγ5) v2′ , (12.36)

Mγ =

∫
d4k

(2π)4
δ4[p1 + p2 − k]v̄2(−ieγµ)u1

−igµν

k2 + iε
δ4[k − (p1′ + p2′)]×

ū1′(−ieγν)v2′ , (12.37)

and

MH =

∫
d4k

(2π)4
δ4(p1 + p2 − k)v̄2

−igmµ

2mW
u1

i

k2 −m2
H + iΓH

δ4(k − p1′ − p2′)

×ū1′
−igmτ

2mW
v2′ (12.38)

in the Feynman gauge. We have already evaluated the contributions of the Z and γ propa-
gators for e+e− → µ+µ−; the contributions are the same for µ+µ− → τ+τ− at

√
s = 125

GeV since we can neglect lepton masses. The additional contributions from the Higgs-
propagator matrix element are:

∆|M|2 = |MH |2 +M∗HMγ +M∗γMH +M∗HMZ +M∗ZM∗H . (12.39)

The square of the Higgs propagator can be calculated by integrating over k:

|MH |2 =
g4m2

µm
2
τ

16m4
W [(s−m2

H)2 +m2
HΓ2

H ]
[v̄2u1ū1′v2′ ][v̄2′u1′ ū1v2]

=
g4m2

µm
2
τ

16m4
Wm

2
HΓ2

H

Tr[ū1v2v̄2u1ū1′v2′ v̄2′u1′ ]

=
g4m2

µm
2
τ

16m4
Wm

2
HΓ2

H

Tr[u1ū1v2v̄2]Tr[u1′ ū1′v2′ v̄2′ ]

=
g4m2

µm
2
τ

64m4
Wm

2
HΓ2

H

[4(p2p1)4(p1′p2′)].

=
g4m2

µm
2
τm

2
H

16m4
WΓ2

H

, (12.40)
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where we have averaged over initial spin states and used Tr(γµγν) = 4gµν and p1p2 =
p1′p2′ = s/2. As expected, there is no angular dependence since the Higgs boson is a
scalar particle.

Turning to the interference terms, we first consider interference between the Higgs and
the photon. Again integrating over the propagators’ momenta, we get:

MHM∗γ = v̄2
−igme

2mW
u1

i

s−m2
H + imHΓH

ū1′
−igmµ

2mW
v2′

gαβ

s
[v̄2′γαu1′ ū1γβv2]

=
e2g2memµ

4m2
W

gαβ

s(s−m2
H + imHΓH)

v̄2u1ū1′v2′ v̄2′γαu1′ ū1γβv2

=
e2g2memµ

4m2
W

gαβ

s(s−m2
H + imHΓH)

[ū1γβv2v̄2u1][ū1′v2′ v̄2′γαu1′ ]

=
e2g2memµ

4m2
W

gαβ

s(s−m2
H + imHΓH)

Tr[u1ū1γβv2v̄2]Tr[u1′ ū1′v2′ v̄2′γα]

= 0, (12.41)

where in the last line we have used the fact that the trace of an odd number of gamma
matrices is zero. This is to be expected, since the Higgs boson is a spin-0 state and the
photon only has spin states of ±1, so there is no interference.

Finally we consider interference between the Higgs and the Z boson. In the Feynman
gauge the spin-1 degrees of freedom are explicitly separated from the spin-0 degree of
freedom. The matrix element for the spin-1 degrees of freedom will have a similar gµν
factor to that of the photon and give a trace over an odd number of gamma matrices. This
contribution will be zero, again as expected for an interference term between spin-1 and
spin-0 propagators. The spin-0 degree of freedom of the Z boson, represented by the φ2

vertex and propagator, has the following matrix element:

MHM∗Z = v̄2
−igme

2mW
u1

i

s−m2
H + imHΓH

ū1′
−igmµ

2mW
v2′ ×

v̄2′
gmeγ5

2mW
u1′

−i
s−m2

Z + imZΓZ
ū1
gmµγ5

2mW
v2

= −
g4m2

em
2
µ

16m4
W

v̄2u1ū1′v2′ v̄2′γ5u1′ ū1γ5v2

(s−m2
H + imHΓH)(s−m2

Z + imZΓZ)

=
Tr(u1ū1γ5v2v̄2)Tr(u1′ ū1′v2′ v̄2′γ5)

(s−m2
H + imHΓH)(s−m2

Z + imZΓZ)

= 0, (12.42)

where in the last line we have used Tr(γ5) = 0. Once again there is no interference. In this
case the interference term disappears because there is no overlap between the production
of a scalar (the Higgs boson) and a pseudoscalar (the φ2 degree of freedom). Pseudoscalar
interactions are identified by the presence of a γ5 matrix.

Now we combine the terms to calculate the cross section. Since the Higgs term has no
angular dependence, its contribution to the cross section will be |MH |2/(16πm2

H). The
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cross section is

σ =
4πα2

3m2
H

{1 +
m4
H [(gµV )2 + (gµA)2][(gτV )2 + (gτA)2]

16[(m2
H −m2

Z)2 + Γ2
Zm

2
Z ] sin4 θW cos4 θW

−

m2
H(m2

H −m2
Z)gµV g

τ
V

2[(m2
H −m2

Z)2 + Γ2
Zm

2
Z ] sin2 θW cos2 θW

+
3m2

µm
2
τm

2
H

64 sin4 θWm4
WΓ2

H

}.(12.43)

For a Higgs boson with a mass of 125 GeV, the width is about 4 MeV. Thus, the last
term dominates and we have

σ ≈
πα2m2

µm
2
τ

16 sin4 θWm4
WΓ2

H

. (12.44)

Using α ≈ 128−1, mµ = 0.1057 GeV, mτ = 1.777 GeV, sinθW = (1 − m2
W /m

2
Z) =

0.2229, mW = 80.385 GeV, and ΓH = 4.07 MeV, we get σ ≈ 1.2 × 10−8 GeV−2.
Multiplying by 0.389 GeV2 mbarn gives 4.7 pb. Thus, a muon collider giving 1 fb−1

of integrated luminosity on the Higgs boson resonance would produce about 4700 Higgs
bosons decaying to τ+τ−.

Another important measurement is the direct measurement of the Higgs boson self-
coupling λ. Again one could consider making such a measurement at a muon collider. The
production of Higgs-boson pairs in µ+µ− collisions can occur through an s-channel Higgs
propagator, or t- or u-channel Higgs-boson emission from two µµH vertices. The matrix
element is

M =

∫
d4k

(2π)4
[δ4(k − p1 − p2)

−3gmµm
2
H v̄(p2)u(p1)

4m2
W (k2 −m2

H)
+

δ4(k − p1 + p1′)
−g2m2

µv̄(p2)u(p1)

4m2
W (γνkν −mµ)

+ δ4(k − p1 + p2′)
−g2m2

µv̄(p2)u(p1)

4m2
W (γνkν −mµ)

],(12.45)

where the factor of 1/2 in front is a symmetry factor for two indistinguishable particles in
the final state. The integral can be performed simply using the delta functions. Moving the
gamma matrices to the numerator and taking the matrix element squared gives

|MH |2 =

[
9g2m2

µm
4
H

16m4
W (s−m2

H)2
+

4g4m4
µ

16m4
W t

+
4g4m4

µ

16m4
Wu

+
4g4(s− 2m2

H)m4
µ

16m4
W tu

]
×

v̄(p2)u(p1)ū(p1)v(p2). (12.46)

where we have used Tr(γµγν) = 4gµν . Now we average over spin states and evaluate the
spinor traces using p1p2 = s/2. This simply gives a factor of s for the spinor term. The
additional terms vanish when we consider s+ t+ u = 2m2

H .
Now we can calculate the cross section. Since there is no angular dependence and the fi-

nal state contains two indistinguishable particles, the cross section will be |MH |2/(32πs):

σ =
g2m2

µ

512πm4
W

9m4
H

16(s−m2
H)2

. (12.47)

At threshold, s = 4m2
H , and we have:

σ =
g2m2

µ

8192πm4
W

. (12.48)
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Figure 12.1 Higgs decay branching ratios.

12.5 Higgs boson decay

The relation between fermion mass and its coupling to the Higgs boson gives detailed
predictions for the decays of the Higgs boson. The Higgs branching ratios as a function of
mass are shown in Fig. 12.1. Its partial width to fermions is given by

Γ(H → ff̄) =
GFm

2
fmH

4
√

2π

(
1−

4m2
f

m2
H

)3/2

. (12.49)

Its partial width to gauge bosons is

Γ(H →WW ) =
GFm

2
WmH

8
√

2π

(1− xW )1/2

xW
(4− 4xW + 3x2

W )

Γ(H → ZZ) =
GFm

2
ZmH

16
√

2π

(1− xZ)1/2

xZ
(4− 4xZ + 3x2

Z). (12.50)

There is no direct coupling between the Higgs and the massless photon, but the Higgs can
decay to photons through loops. There are two diagrams distinguished by the direction of
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fermion flow in the loop. Choosing one of the orientations with external momenta p + k
for the Higgs and p, k for the photons (with respective polarizations µ, ν), we can write
the matrix element as

M = (−1)
−igmt

2mW

∫
d4l

(2π)4
Tr[

i

γα(lα − kα)−mt

2ieγν
3

i

γβlβ −mt

2ieγµ
3
×

i

γδ(lδ + pδ)−mt
]

=
−2gmte

2

9mW

∫
d4l

(2π)4
×

Tr[(γαl
α − γαkα +mt)γν(γβl

β +mt)γµ(γδl
δ + γδp

δ +mt)]

[(l − k)2 −m2
t ](l

2 −m2
t )[(l + p)2 −m2

t ]
. (12.51)

We combine the denominator using the two-parameter Feynman integral,

1

abc
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

[a(1− x− y) + bx+ cy]3
, (12.52)

to obtain

M =
−4gmte

2

9mW

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4l

(2π)4
×

Tr[(γαl
α − γαkα +mt)γν(γβl

β +mt)γµ(γδl
δ + γδp

δ +mt)]

{(l2 −m2
t )(1− x− y) + [(l − k)2 −m2

t ]x+ [(l + p)2 −m2
t ]y}3

.(12.53)

Expanding the denominator,

l2 − 2klx+ 2ply + k2x+ p2y −m2
t = (l − kx+ py)2 + 2pkxy −m2

t , (12.54)

we see that it can be simplified by defining l′ = l− kx+ py, and using m2
H = (p+ k)2 =

2pk. The numerator is

Tr[(γαl
α − γαkα +mt)γν(γβl

β +mt)γµ(γδl
δ + γδp

δ +mt)] =

Tr{[γα(lα − kα)γνγβl
βγµ + γα(lα − kα)γνγµγδ(l

δ + pδ)+

γνγβl
βγµγδ(l

δ + pδ)]mt + γνγµm
3
t}, (12.55)
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neglecting terms with odd multiples of γ. In terms of l′ this is

Tr{[γα(l′α − kα(1− x)− pαy)γνγβ(l′β + kβx− pβy)γµ+

γα(l′α − kα(1− x)− pαy)γνγµγδ(l
′δ + pδ(1− y) + kδx)+

γνγβ(l′β + kβx− pβy)γµγδ(l
′δ + pδ(1− y) + kδx)]mt + γνγµm

3
t}

= 4mt[(gανgβµ − gαβgνµ + gαµgνβ)(l′α − kα(1− x)− pαy)(l′β + kβx− pβy)+

(gανgµδ − gαµgνδ + gαδgνµ)(l′α − kα(1− x)− pαy)(l′δ + pδ(1− y) + kδx)+

(gνβgµδ − gνµgβδ + gνδgβµ)(l′β + kβx− pβy)(l′δ + pδ(1− y) + kδx) + gνµm
2
t ]

= 4mt{(l′ν − kν(1− x)− pνy)(l′µ + kµx− pµy)− gνµ[l′2 + kp(1− 2x)y]+

(l′µ − kµ(1− x)− pµy)(l′ν + kνx− pνy)+

(l′ν − kν(1− x)− pνy)(l′µ + pµ(1− y) + kµx)−
(l′µ − kµ(1− x)− pµy)(l′ν + pν(1− y) + kνx)+

gνµ[l′2 − kp(1− x− y + 2xy)] + (l′ν + kνx− pνy)(l′µ + pµ(1− y) + kµx)−
gνµ[l′2 + kp(x− 2xy)] + (l′µ + kµx− pµy)(l′ν + pν(1− y) + kνx) + gνµm

2
t ]}

= 4mt{4l′ν l′µ − 2kνkµx(1− x) + 2pνpµy
2 + kνpµy(1− x)− 3pνkµxy−

gνµ[l′2 + kp(1− 2x)y]− 2pµpνy(1− y) + kµpν(1− x)y−
kνpµ(1− x)(1− y) + kµpν(1− x)(1− y) + gνµ[l′2 − kp(1− x− y + 2xy)]+

2kµkνx
2 + kνpµx(1− y) + kµpνx(1− y)− knupµxy−

gνµ[l′2 + kp(x− 2xy)] + gνµm
2
t}

= 4mt[4l
′
ν l
′
µ − gνµl′2 + (4y2 − 2y)pνpµ + (4x2 − 2x)kνkµ+

(2x+ 2y − 1− 4xy)kνpµ + (1− 4xy)kµpν + gνµ(2xy − 1)kp+ gνµm
2
t ],(12.56)

where we have used k2 = p2 = 0 and neglected terms linear in l′. The terms with kν and
pµ will give zero when multiplied by the photon polarization vector. The terms quadratic
in l′ are potentially divergent, so we evaluate the integrals in d = 4− 2ε dimensions. The
quadratic terms can be evaluated using the generic integral∫

ddp
pµpν

(p2 −∆)α
= (−1)d/2

iπd/2

Γ(α)
(−∆)d/2−α

[
−∆gµν

2
Γ

(
α− 1− d

2

)]
. (12.57)

In our case ∆ = m2
t − xym2

H so the quadratic terms give

(−1)d/2 4imtπ
d/2

Γ(3)(2π)d
(−m2

t + xym2
H)d/2−3

[
(−m2

t+xym
2
H)gµν(4−d)
2 Γ(3− 1− d

2 )
]

= (−1)2−ε 4imt
2(4π)2−ε (−m2

t + xym2
H)−ε

[
gµν(2ε)

2 Γ(ε)
]

=
(

−1
4π(−m2

t+xym
2
H)

)ε
igµν
32π2 =

imtgµν
8π2 , (12.58)

where gµνgµν = d. We see that this term is not divergent; indeed, this must be the case
because there is no tree-level Hγγ term in the Lagrangian to renormalize the vertex. The
other terms can be evaluated using the general integral relation∫

ddp

(p2 −∆)α
= (−1)d/2

iπd/2Γ(α− d
2 )

Γ(α)
(−∆)d/2−α. (12.59)



HIGGS BOSON DECAY 105

For α = 3 this is convergent so we obtain∫
ddp

(2π)4(p2 −∆)3
=
−iπ2

2∆(2π)4

{
(1− 4xy)kµpν + gµν

[
m2
H

(
xy − 1

2

)
+m2

t

]}
.

(12.60)
Combining the terms gives

−16gm2
te

2

9mW

∫ 1

0
dx
∫ 1−x

0
dy i

32π2

{
gµν [∆−m2

H(xy− 1
2 )−m2

t ]−(1−4xy)kµpν

∆

}
=

−igm2
te

2

18π2mW

∫ 1

0
dx
∫ 1−x

0
dy

{
gµν [−m2

H(2xy− 1
2 )]−(1−4xy)kµpν

∆

}
=

−ige2
18π2mW

(
gµνm

2
H

2 − kµpν
) ∫ 1

0
dx
∫ 1−x

0
dy 1−4xy

1−xym2
H/m

2
t
. (12.61)

The diagram with the fermion loop going in the opposite direction will give an equal con-
tribution. Summing the diagrams and squaring gives:

4|M|2 =
g2e4

81π4m2
W

(
gµνg

µνm4
H

4
− 2kµpνg

µνm
2
H

2

)∫ 1

0

dx

∫ 1−x

0

dy(1− 4xy)

1− xym
2
H

m2
t

2

=
g2e4m4

H

162π4m2
W

∫ 1

0

dx

∫ 1−x

0

dy
1− 4xy

1− xym
2
H

m2
t

2

. (12.62)

There will be another factor of two due to the two possible polarizations of the outgoing
photons. The integral over dy can be performed using∫

1− ay
1− by

dy =
a

b
y +

(a− b) ln |by − 1|
b2

. (12.63)

We can now insert the matrix element into the general formula for the width of a particle
with mass m decaying into two massless particles,

Γ =
S

16πm
|M|2 (12.64)

where S is the symmetry factor; for identical final-state particles this factor is 1/2. We thus
obtain

Γ =
g2α2m3

H

162π3m2
W

∫ 1

0

dx

∫ 1−x

0

dy
1− 4xy

1− xym
2
H

m2
t

2

(12.65)

=
2
√

2GFα
2m3

H

81π3

2m2
t

m2
H

+
m2
t

m2
H

(
4
m2
t

m2
H

− 1

)∫ 1

0

dx
ln
[
1− m2

H

m2
t
x(1− x)

]
x


2

.

The width is proportional to α2
EMm

3
H , with a dependence on the top mass of m4

t , as in
the case of gluon-gluon fusion.





CHAPTER 13

MESON MIXING

The off-diagonal Yukawa couplings in the fundamental Lagrangian lead to four physi-
cal parameters that allow flavor-changing charged-current interactions. A given flavor-
changing interaction can be calculated using these parameters in the CKM matrix, which
translates the mass basis to the weak basis. Mesons with different quark flavors (K0 = s̄d,
D0 = cū, B0 = b̄d, and B0

s = b̄s) can oscillate into their antiparticles via intermediate
states of different flavor. The measurements of these oscillations precisely determine the
parameters of the CKM matrix, with uncertainties dominated by the non-perturbative QCD
description of the bound states.

13.1 CP Violation

A key feature of the CKM matrix is the presence of a complex phase. This phase
necessarily leads to CP violation. In the fermion Lagrangian with weak eigenstate spinors,

Lfermion = iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR− (ydijψ̄iLφψ
d
jR + yuijψ̄iLφ̃ψ

u
jR + h.c.). (13.1)

The fermion spinors appear physically as mass eigenstates, related to the weak eigenstates
by the CKM matrix

V =

 c12c13 s12c13 s13e
−δ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 . (13.2)

Electroweak physics, lecture notes.
By Chris Hays
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This matrix appears explicitly in the charged current terms,

Lcc = igūjLγ
µW+

µ Vijd
i
L + ig∗d̄iLγ

µW−µ V
∗
jiu

j
L. (13.3)

Under a CP transformation, ujL → eiθ
j
u ūjL, diL → eiθ

i
d d̄iL, W+

µ → −W−µ , and q̄′γµq →
−q̄γµq′ (where the phases have been absorbed in the quark fields). The charged current
then becomes

LCP
cc = ig∗ūjLγ

µW+
µ V

∗
ijd

i
L + igd̄iLγ

µW−µ Vjiu
j
L. (13.4)

We have seen that the CKM matrix has a phase that cannot be rotated away. This phase
causes a difference between the charged-current Lagrangian and its CP transformation.
The charged-current Lagrangian thus does not conserve CP; this is inherently due to the
existence of three generations, which in general give a matrix V different from V ∗.

13.2 Mixing overview

The neutral mesons with weak decays oscillate between the particle and antiparticle states
at a measurable rate before they decay. Because these states have a small mass difference,
oscillations into other states are negligible. A 2 × 2 matrix can be constructed for the
transitions 〈M0

il|M̄0
il〉, 〈M̄0

il|M̄0
il〉, and the transitions with M0

il ↔ M̄0
il (M0

il is the meson
composed of qi, ql on-shell valence quarks):

H =

(
m0 + δE W12 + δE12

W ∗12 + δE∗12 m0 + δE

)
+ i

(
Γ Γ12

Γ∗12 Γ

)
, (13.5)

where m0 corresponds to the “tree-level” QCD bound state, δE is the correction to the
meson or anti-meson propagator due to weak interactions, W12 is the perturbative weak
off-shell meson-antimeson transition, δE12 is the off-shell transition through intermediate
states, and Γ12 is the transition through on-shell states. The diagonal elements are equal,
due to CPT invariance.

Diagonalizing the Hamiltonian gives eigenvectors for the physical masses and widths
of the observed states M1

il and M2
il, where

|M1
il〉 = p|B〉 − q|B̄〉,

|M2
il〉 = p|B〉+ q|B̄〉,

(13.6)

with
q

p
=

√
M∗12 − 1

2Γ∗12

M12 − 1
2Γ12

. (13.7)

One can rewrite the eigenstates to more clearly delineate the CP-violating contribution,
e.g.

|M2
il〉 =

p+ q

2

[(
|B〉+ |B̄〉) +

1− q/p
1 + q/p

(|B〉 − |B̄〉
)]

, (13.8)

where ε = (1− q/p)/(1 + q/p) provides a measure of the CP violation.
The eigenvalues are

λ1,2 = m1,2 −
i

2
Γ1,2, (13.9)
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where

m1,2 = M ±Re
√
|M12|2 −

|Γ12|2
4
− iRe(M12Γ∗12) ≡M ±∆m/2, (13.10)

Γ1,2 = Γ± 2Im

√
|M12|2 −

|Γ12|2
4
− iRe(M12Γ∗12) ≡ Γ±∆Γ/2. (13.11)

Given these eigenvalues, one can calculate the time evolution of e.g. M0
il:

|M0
il〉 =

1

2
e−iMte−Γt/2[(e∆Γt/4ei∆mt/2 + e−∆Γt/4e−i∆mt/2)|M0

il〉+

q

p
(e∆Γt/4ei∆mt/2 − e−∆Γt/4e−i∆mt/2)|M̄0

il〉]. (13.12)

The time evolution of the anti-meson M̄0
il has the same form, with a factor of p/q for the

meson state M0
il and 1 for the anti-meson state.

13.3 Mixing at leading order

The leading-order perturbative contribution to meson-antimeson oscillation occurs via
the s or t-channel exchange of two W bosons. In the Feynman-’t Hooft gauge these box
diagrams are manifestly convergent, though one needs to include diagrams with both the
W gauge boson and the charged scalar boson. There are four diagrams each in the s and
t channels. The matrix element is the same for the two channels so only one needs to be
evaluated.

The matrix element with two W -boson propagators and internal quarks j and k is

iMjk
WW = 〈M0

il|
g4

64
ξjξk

∫
d4k

(2π)4
q̄l(p3)γµ(1− γ5)

1

γαkα −mqk

γν(1− γ5)qi(p1)q̄l(p2)

×γν(1− γ5)
1

γβ(k − p1 − p2)β −mqj

γµ(1− γ5)qi(p4)
−i

(k − p1)2 −m2
W

×

−i
(k − p3)2 −m2

W

|M̄0
il〉, (13.13)

where ξj = VijV
∗
jl, ξk = VlkV

∗
ki, and M0

il is a meson composed of quarks i and l. In the
Feynman-’t Hooft gauge, the diagrams with a scalar line replacing a Wµν line will remove
γµγµ or γνγν and replace it with quark mass terms. The diagram with two scalar lines will
remove both pairs of γ matrices.

To simplify the calculation we take the external momenta pi to be negligible compared
to mW and the quark masses in the internal propagators. These external momenta are the
individual quark momenta in the bound hadron and should be small compared to the quark
masses. The mixing is dominated by the internal quark line with the highest mass, since
the effects of mixing disappear as quark masses go to zero.

Setting pi = 0 and moving gamma matrices to the numerator gives

iMjk
WW = 〈M0

il|
g4

64
ξjξk

∫
d4k

(2π)4
q̄lγ

µ(1− γ5)

(
γαk

α +mqk

k2 −m2
qk

)
γν(1− γ5)qi ×

q̄lγν(1− γ5)

(
γβk

β +mqj

k2 −m2
qj

)
γµ(1− γ5)qi

(
−1

k2 −m2
W

)2

|M̄0
il〉.(13.14)
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First, consider the mqkmqj term. Moving the γ5 matrix on the left across the γν will flip
its sign, giving (1 + γ5)(1 − γ5) = 0. The term linear in k will also be zero, since it is
an odd function of k. We are left with the kαkβ term. The integral is simplified using a
Feynman integral,

1

(k2 −m2
qk

)(k2 −m2
qj )(k

2 −m2
W )2

= 6

∫
dxdydzdwδ(1− x− y − z − w)

(k2 − (x+ y)m2
W − zm2

qk
− wm2

qj )
4
,

(13.15)
where the integrations over x, y, z, w go from 0 to 1. We integrate over k using

∫
ddp

pµpν
(p2 + 2pq −m2)α

= (−1)d/2
iπd/2

Γ(α)

1

(−q2 −m2)α−d/2
[qµqνΓ(α− d/2) +

1

2
gµν(−q2 −m2)Γ(α− 1− d/2)]. (13.16)

The integral becomes

∫
d4k

(2π)4

kαkβ

(k2 −m2
qk

)(k2 −m2
qj )(k

2 −m2
W )2

=
−6iπ2

6× (2π)4

∫
dxdydzdw ×

δ(1− x− y − z − w)×
[(x+ y)m2

W + zm2
qk

+ wm2
qj ]
−2 ×

1

2
[(x+ y)m2

W + zm2
qk

+ wm2
qj ]g

αβ

=

∫
dxdydzdwδ(1− x− y − z − w)gαβ

32π2[(x+ y)m2
W + zm2

qk
+ wm2

qj ]
.

Integrating over w removes the delta function; integrating over z gives

∫ dxdydz(−igαβ)
32π2[(x+y)m2

W+(1−x−y)m2
qj

+z(m2
qk
−m2

qj
)]

=∫ dxdy(−igαβ)
32π2(m2

qk
−m2

qj
){ln[(m2

qk
−m2

qj )(1− x− y)+

(x+ y)m2
W + (1− x− y)m2

qj ]− ln[(x+ y)m2
W + (1− x− y)m2

qj ]} =∫ dxdy(−igαβ)
32π2(m2

qk
−m2

qj
){ln[m2

qk
+ (x+ y)(m2

W −m2
qk

)]− ln[m2
qj + (x+ y)(m2

W −m2
qj )]}.

Next we integrate over y to obtain

∫ dx(−igαβ)
32π2(m2

qk
−m2

qj
){
[

m2
W

m2
W−m2

qk

ln(m2
W )− m2

W

m2
W−m2

qj

ln(m2
W )

]
−

[m2
qk

+x(m2
W−m

2
qk

)]

m2
W−m2

qk

ln[m2
qk

+ x(m2
W −m2

qk
)]+

[m2
qj

+x(m2
W−m

2
qj

)]

m2
W−m2

qj

ln[m2
qj + x(m2

W −m2
qj )]}. (13.17)
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Finally, the integration over x gives

(−igαβ)
32π2(m2

qk
−m2

qj
){
[

m2
W

m2
W−m2

qk

ln(m2
W )− m2

W

m2
W−m2

qj

ln(m2
W )

]
−

1
4(m2

W−m2
qk

)2
[2m4

W ln(m2
W )− (m2

W −m2
qk

)(m2
W +m2

qk
)− 2m4

qk
ln(m2

qk
)]+

1
4(m2

W−m2
qj

)2
[2m4

W ln(m2
W )− (m2

W −m2
qj )(m

2
W +m2

qj )− 2m4
qj ln(m2

qj )]} =

(−igαβ)
32π2(m2

qk
−m2

qj
){

1
4(m2

W−m2
qk

)2
[(4m4

W − 4m2
Wm

2
qk
− 2m4

W ) ln(m2
W )+

(m2
W −m2

qk
)(m2

W −m2
qk

+ 2m2
qk

) + 2m4
qk

ln(m2
qk

)]−
1

4(m2
W−m2

qj
)2

[(4m4
W − 4m2

Wm
2
qj − 2m4

W ) ln(m2
W )+

(m2
W −m2

qj )(m
2
W −m2

qj + 2m2
qj ) + 2m4

qj ln(m2
qj )]} =

(−igαβ)
32π2(m2

qk
−m2

qj
){

1
4(m2

W−m2
qk

)2
[(2(m2

W −m2
qk

)2 − 2m4
qk

) ln(m2
W )+

(m2
W −m2

qk
)2 + (m2

W −mqk)2m2
qk

+ 2m4
qk

ln(m2
qk

)]−
1

4(m2
W−m2

qj
)2

[(2(m2
W −m2

qj )
2 − 2m4

qj ) ln(m2
W )+

(m2
W −m2

qj )
2 + (m2

W −mqj )2m
2
qj + 2m4

qj ln(m2
qj )]} =

(−igαβ)
32π2(m2

qk
−m2

qj
){

1
4(m2

W−m2
qk

)2
[(m2

W −mqk)2m2
qk

+ 2m4
qk

ln(m2
qk
/m2

W )]−
1

4(m2
W−m2

qj
)2

[(m2
W −mqj )2m

2
qj + 2m4

qj ln(m2
qj/m

2
W )]} (13.18)

If we now write xj,k ≡ m2
qj,k

/m2
W , the integral becomes

(−igαβ)

64π2m2
W (xk − xj)

(
xk

1− xk
+

x2
k lnxk

(1− xk)2
− xj

1− xj
−

x2
j lnxj

(1− xj)2

)
. (13.19)

To calculate the remainder of the kαkβ term we need to multiply a set of gamma matri-
ces, which can be simplified using

γµγαγν = gµαγν + gναγµ − gµνγα − iεµανβγ5γβ . (13.20)

The (1−γ5) terms can be moved to the right to allow the multiplication of [γµγαγν ][γνγαγµ].
There are three contractions of gδεgδε with an independent gamma matrix to give 12γαγα,
one pair of cross terms giving 2γαγα and another two pairs of cross terms giving−4γαγα.
Finally the contraction of the ε pair give −3!γαγα, leaving a total of 4γαγα after all terms
are summed. Moving the γ5 back between the two γ factors gives

[γµγαγν(1− γ5)]qiq̄l[γνγαγµ(1− γ5)] = 4[γα(1− γ5)]qiq̄l[γα(1− γ5)]. (13.21)

We now return to the matrix element, using g2 = 8GFm
2
W /
√

2 and g2 = 4πα/ sin2 θW
to write g4/64 = παGFm

2
W /(2

√
2 sin2 θW ):

iMjk
WW =

−iπαGF ξjξk
2
√

2 sin2 θWπ2(xk − xj)

(
xk

1− xk
+

x2
k lnxk

(1− xk)2
− xj

1− xj
−

x2
j lnxj

(1− xj)2

)

〈M0
il|
(
q̄l

1− γ5

2
γα

1− γ5

2
qiq̄l

1− γ5

2
γα

1− γ5

2
qi

)
|M̄0

il〉. (13.22)
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There are two channels, and the matrix element will be summed over internal quark lines,
so the total matrix element for WW exchange is 2

∑
jkM

jk
WW . The calculation of the

matrix element with Wφ exchange proceeds along similar lines, except there is e.g. no
γµγµ so moving (1 − γ5) to the right removes the kαkβ term rather than the mqkmqj

term. The integral can be calculated using equation 6.9; the result isMjk
Wφ = Mjk

φW =

−xjxkMjk
WW . The diagrams with φφ exchange have no γµγν matrices, so once again

only the mqkmqj term contributes, givingMjk
φφ = xjxkMjk

WW /4. Summing all the terms
gives

iMjk
WW =

−iπαGF ξjξk
2
√

2 sin2 θWπ2
[
xjxk
xk − xj

(
ln
xk
xj
− 3

4

x2
k lnxk

(1− xk)2
+

3

4

x2
j lnxj

(1− xj)2

)
−

3

4

xjxk
(1− xk)(1− xj)

]〈M0
il| (q̄lLγαqiLq̄lLγαqiL) |M̄0

il〉. (13.23)

Table 13.1 shows the numerical values of the xk, xj expression (known as the Inami-
Lim factor) for the dominant charm and top quark combinations for B0

d, B
0
s , and K0

mixing, along with the corresponding CKM factors. Because of the large contribution
from internal top-quark lines, the Bs system has the largest mixing matrix element.

Table 13.1 The numerical factors entering the leading-order mixing matrix element for B and K
meson mixing [28].

Quarks Inami-Lim factor B0
d CKM factor B0

s CKM factor K0 CKM factor

c, c 3.5× 10−4 A2λ6 A2λ4 λ2

(7.4× 10−5) (1.4× 10−3) (2.7× 10−2)

c, t 3.0× 10−3 A2λ6|1− ρ− iη| A2λ4 A2λ6|1− ρ− iη|
(7.3× 10−5) (1.5× 10−3) (8.8× 10−6)

t, t 2.5 A2λ6|1− ρ− iη| A2λ4 A4λ10|1− ρ− iη|2

(7.2× 10−5) (1.5× 10−3) (1.1× 10−7)

The matrix elements for the valence quarks in the meson bound state can be approxi-
mated by a leading-order vacuum insertion, with an empirical “bag” factor BM to account
for the neglected intermediate states. The meson transition to the vacuum can then be
expressed in terms of the meson decay constant f2

M as 8f2
Mm

2
M/(3 × 2mM ), including

symmetry (4), color (2/3), and normalization [1/(2mM )] factors. Contributions from glu-
ons between any pairs of quark lines are included as a multiplicative factor η to the matrix
element; for B mesons this factor is 0.55 at next-to-leading order.

Given the mixing matrix element, we can calculate the mass and lifetime differences
between the physical states. Typically Γ12 � M12, so the mass difference is ∆m ≈
2|M12| and the width difference is ∆Γ ≈ 2Re(M12Γ∗12)/|M12|. Because of the empirical
bag and decay-constant factors, it is more theoretically precise to consider ratios of mass
differences for similar systems. For example, the ratio of B0

d to B0
s mass differences is

∆ms

∆md
=
mBsf

2
Bs
BBs

mBdf
2
Bd
BBd
|Vts
Vtd
|2. (13.24)

The decay constants can be measured in B-meson decays, so the mass-difference ratio
allows the extraction of the CKM ratio |VtsVtd |

2. The measured mass differences are ∆md =
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0.507 ± 0.004 ps−1 and ∆ms = (17.719 ± 0.043) ps−1, and the combinations of decay-
constant and bag factors are fBd

√
BBd = (211± 12) MeV and fBs

√
BBs = (248± 15)

MeV. The CKM matrix elements and the ratio of matrix elements are thus

|Vtd| = (8.4± 0.6)× 10−3, (13.25)
|Vts| = (42.9± 2.6)× 10−3, (13.26)

|Vtd/Vts| = 0.211± 0.001± 0.006. (13.27)

13.4 CP violation in mixing

The phases of the CKM elements can be accessed in mixing measurements of CP
violation. The phases are usually presented as a triangle, corresponding to one of the off-
diagonal elements in the V V † = 1 matrix. The most commonly studied triangle, shown in
Fig. 13.1, corresponds to the element

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (13.28)

The sides have lengths 1, |VudV ∗ub/(VcdV ∗cb)| and |VtdV ∗tb/(VcdV ∗cb)|, with angles given
by

β = arg(−VcdV
∗
cb

VtdV ∗tb
), (13.29)

α = arg(− VtdV
∗
tb

VudV ∗ub
), (13.30)

γ = arg(−VudV
∗
ub

VcdV ∗cb
). (13.31)

In the Wolfenstein parametrization, the triangle has axes at (0,0), (1,0), and ρ̄. Kaon mixing
provides hyperbolic constraints in the ρ̄− η̄ plane, and the B-meson mass differences give
circular constraints in this plane.
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Figure 13.1 Constraints on one of the CKM triangles from mixing and other measurements.



CHAPTER 14

NEUTRINO MASSES

Neutrino measurements are exceptionally challenging due to their absence of electromag-
netic charge and their very small masses. Demonstration of these non-zero masses has
only recently been achieved, through observation of oscillations between neutrino flavours.
Thus far only the differences in masses between eigenstates has been determined, not the
mass values themselves. Even the structural form of the mass terms in the Lagrangian is
not known.

14.1 Mass terms

In the SM Lagrangian the fermion terms take the form of

Lfermion = iψ̄Lγ
µDµψL + iψ̄Rγ

µDµψR − (ydijψ̄iLφψ
d
jR + yuijψ̄iLφ̃ψ

u
jR + h.c.) (14.1)

This structure naturally accommodates neutrino mass terms; however, it requires the ex-
istence of a right-handed neutrino with no weak coupling. Such a “sterile” neutrino, with
no SM gauge interactions, has not yet been observed. Its only interaction with other SM
particles would be through the Higgs Yukawa terms. Mixing between generations would
occur through the off-diagonal elements, with a mixing matrix connecting the neutrino
electroweak and mass eigenstates.

An alternative set of mass terms can be written by taking the neutrino states to be Ma-
jorana fermions rather than Dirac fermions. A Majorana fermion is its own antiparticle,
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ψ = ψC , so without introducing additional fields we can have neutrino fields

ψ = (ψL + ψCL )/
√

2, (14.2)

where ψC = iγ2γ0ψ̄T . Crucially, ψCL has positive helicity (PLψCL = 0), allowing a mass
term with only one spinor (ψ is thus defined as a combination of positive and negative
helicity components). The Majorana Lagrangian terms are:

LMajorana =
1

2

(
ψ̄γµDµψ + ψγµDµψ̄ −mψ̄ψ

)
. (14.3)

The mass terms combine ψL with ψCL to form a mass term connecting positive and negative
helicity states. This combination has SU(2)L isospin 1, so it is not gauge invariant. To
achieve such a term without adding any new particles, two Higgs fields must be combined
with the ψ̄ψ term:

LMajorana mass =
g

M

(
ψTLσ2φ

)
C†
(
φTσ2ψL

)
, (14.4)

where M is a parameter of dimension mass, required since the fields have a total of five
mass dimensions. The term is not renormalizable, so the parameter M is the scale where
new physical particles would presumably regulate the high-scale behavior.

It is possible to produce a renormalizable Majorana mass term if one introduces a new
Higgs field with SU(2)L isospin 1 (a triplet, rather than the SM doublet). As with the case
of Dirac mass terms, the cost of accommodating mass terms is to introduce a new field. We
see that, in general, the existence of non-zero neutrino masses requires the addition of new
fields, either directly in renormalizable mass terms, or indirectly in non-renormalizable
mass terms. The non-renormalizable term has the form v2/M , where v = 246 GeV is the
vacuum expectation value of the SM Higgs field. The largest neutrino mass difference is
0.05 eV; taking this as the neutrino mass scale, the new-physics scale M is O(1015) GeV,
close to the expected scale of unification of the electroweak and strong forces.

14.2 Left-right symmetric model

A specific realization of neutrino masses including only renormalizable Dirac and Ma-
jorana mass terms can be constructed using a “left-right symmetric model,” where parity
is restored at some high scale through the presence of an SU(2)R gauge symmetry. The
Higgs fields are broadened to include an SU(2)R doublet and Higgs SU(2) triplets:

〈φij〉 =
1√
2

(
κ 0

0 κ′

)
, 〈~∆L,R〉 =

1√
2

 0

0

vL,R

 , (14.5)

where κ corresponds to the vacuum expectation value of the SM Higgs field. The scalar
Lagrangian is expanded to include kinetic terms for the Higgs triplets:

LK = (Dµφ)†(Dµφ) + (Dµ∆L)†(Dµ∆L) + (Dµ∆R)†(Dµ∆R), (14.6)

where the covariant derivatives are

Dµφ = ∂µφ+
i

2
g(~τL · ~WµLφ− φ~τR · ~WµR),

Dµ∆L,R = (∂µ − ig~tL,R · ~WµL,R − ig′t3L,RBµ)∆L,R, (14.7)
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with ~t corresponding to the triplet representation matrices. Expanding the scalar fields
about the vacuum leads to gauge boson mass terms:

LM =
(
W+
L W+

R

)
MW

(
W−L
W−R

)
+

1

2

(
W 3
L W 3

R B
)
MZ/γ

W
3
L

W 3
R

B

 (14.8)

with mass matrices

MW =
1

4
g2

(
κ2 + κ′2 + 2v2

L −2κκ′

−2κκ′ κ2 + κ′2 + 2v2
R

)
(14.9)

and

MZ/γ =


g2

4 (κ2 + κ′2 + 4v2
L) − g

2

4 (κ2 + κ′2) gg′v2
L

− g
2

4 (κ2 + κ′2) g2

4 (κ2 + κ′2 + 4v2
R) gg′v2

R

gg′v2
L gg′v2

R
g′2

2 (v2
R + v2

L)

 . (14.10)

Since vector bosons coupling exclusively to right-handed fermions have not been observed,
the expected hierarchy of vacuum expectation values is vL, κ′ � κ� vR.

The fermion mass terms are produced through the Yukawa couplings of the extended
Higgs sector:

LY = fijψ̄LiφψRj +f ′ijψ̄Liφ̃ψRj + ihij(ψ̄
c
Liτ2∆LψLj + ψ̄cRiτ2∆RψRj) +h.c. (14.11)

Substituting the vacuum expectation values for the Higgs fields in the Yukawa Lagrangian,
we get the neutrino mass terms

Lmνi =
(
ν̄i N̄i

)( √
2hiivL

1√
2
(fiiκ+ f ′iiκ

′)
1√
2
(fiiκ+ f ′iiκ

′)
√

2hiivR

)(
νi

Ni

)
. (14.12)

To find the mass eigenvalues, we use the equation det(λI −Mν) = 0 to obtain

λ2 −
√

2hii(vL + vR)λ+ 2h2
iivLvR −

1

2
(fiiκ+ f ′iiκ

′)2 = 0. (14.13)

The solutions to this quadratic give the eigenvalues of the mass matrix:

λ =
1

2
{
√

2hii(vL + vR)±√
2h2

ii(vL + vR)2 − 4[2h2
iivLvR −

1

2
(fiiκ+ f ′iiκ

′)2]}

=
1√
2

[
hii(vL + vR)±

√
h2
ii(vL − vR)2 + (fiiκ+ f ′iiκ

′)2

]
(14.14)

Using the approximation vR � vL, the neutrino masses are mN ≈
√

2hiivR and mν ≈√
2[hiivL − (fiiκ+f ′iiκ

′)2

4hiivR
]. Taking vL ≈ 0, the left-handed neutrino masses are of order

fiiκ/(4hiivR). The fiiκ term is the normal Dirac term of the Higgs mechanism; assuming
this is of the order of the charged lepton masses, we see that the neutrino masses are
suppressed by v−1

R , giving vR ∼ 1010 GeV for a neutrino mass of ≈ 0.1 eV.
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