Introduction to FFAGs and a Non-Scaling Model

Rob Edgecock CCLRC
Rutherford Appleton Laboratory

Outline

- The FFAG principle
- Brief history of FFAGs
- Developments in Japan
- Applications
- Non-scaling FFAGs
- Recent developments
- Activities in UK/Europe
- Conclusions

What is an FFAG?

Fixed Field Alternating Gradient accelerator

What is an FFAG?

Fixed magnetic field – members of the cyclotron family

Magnetic field variation B (θ)	Fixed RF frequency (CW operation)	Frequency modulated (pulsed beam)
Uniform	Classical	Synchro-
Alternating	Sector-focused	FFAG

FFC + SC

SFC

FFAG

What is an FFAG?

Fixed magnetic field – members of the cyclotron family

Magnetic field variation B (θ)	Fixed RF frequency (CW operation)	Frequency modulated (pulsed beam)
Uniform	Classical	Synchro-
Alternating	Sector-focused	FFAG

Alternative view: cyclotrons are just special cases of FFAGs!

How do they work?

Magnetically: two types

Fig. 2. Plan view of radial-sector magnets.

Radial sector FFAG

Fig. 3. Spiral-sector configuration.

Spiral sector FFAG

How do they work?

Horizontal tune

To 1st order:

where the average field index

and

$$k(r) \equiv \frac{r}{B_{av}} \frac{dB_{av}}{dr}$$

Note:

- If B_{av} increases with r then k > 0
- If k > 0 then always horizontal focussing
- The bigger k the stronger the focussing
- Another reason for large k

$$= \left| \frac{dp}{p} \right| \left| \frac{dL}{L} \right| = k+1$$

How do they work?

Vertical tune

To 1st order:

where the magnetic flutter

Note:

- If k > 0 then vertical de-focussing
- Real v_v requires large F and/or ε
- For radial sector, large F from reversed fields
- Reverse fields increase average orbit radius
- For spiral sector, large ε no field flip
- More compact

- Invented in 1950s: Ohkawa in Japan, Symon in US Kolomensky in Russia
- Interest, then and now, properties arising from FF & AG
- Fixed Field:
- fast cycling , limited (sometimes) only by RF simpler, inexpensive power supplies no eddy-current effects, cyclical coil stress high acceptance high intensity pulsed and continuous low beam loss and activation easy maintenance easy operation
- Strong focussing:
- magnetic ring
 extraction at any energy
 possible

- beam
- higher energies/ions

1950s/60s: most extensive work at MURA

20 to 400 keV
machine
Operated at MURA
in 1956

1950s/60s: most extensive work at MURA

Spiral sector machine
Operated at MURA
in 1957

1950s/60s: most extensive work at MURA

100keV to 50MeV machine

Operated at MURA in 1961

- 1950s/60s: most extensive work at MURA
- Proton proposals failed: technical complexity/energy

200MeV to 1.5GeV neutron spallation source

Proposed by ANL in 1983

- Invented in 1950s: most extensive work at MURA
- Proton proposals failed: technical complexity/energy
- Re-invented late 1990's in Japan for muon acceleration- ideal due to high acceptance & very rapid cycling - for a Neutrino Factory

FFAG based neutrino factory

Innovations at KEK

Two technological innovations made re-invention possible

- rf

High E

Low E

Scaling FFAG

Triplet combined function magnets:
powered as a single unit
D's act as return yokes
3D computation codes for complex shapes

Scaling FFAGs

Resonances big worry at MURA and in Japan

Scaling FFAGs

Resonances big worry at MURA and in Japan:

- Iow ∆E/turn
- Maintain (in principle) fixed tunes, zero chromaticity

$${\stackrel{?}{\underset{\downarrow}{\sim}}} 1+k \qquad \qquad {\stackrel{?}{\underset{\downarrow}{\sim}}} -k+F(1+2\tan^2)$$

- Requires constant: field index magnetic flutter spiral angle
- Gives:
- same orbit shape at all energies same optics " " "
- FFAGs with zero chromaticity are called scaling FFAGs

$$B = B_0 \left(\frac{r}{r_0}\right)^k \qquad k = 2.5 \text{ for POP}$$

$$k = 7.5 \text{ for } 150 \text{ MeV FFAG}$$

Under Development in Japan

Properties of FFAGs have created a great deal of interest in Japan

FFAGs built or being built

	E (MeV)	lon	Radius (m)	k	Rep rate (Hz)	Comments/1st beam	
KEK PoP	1	р	0.8-1.1	2.5		2000	
KEK – p therapy	150	р	4.5-5.2	7.5		2003	
KURRI – ADSR	200	р	4.54-5.12	7.6	1000	100μΑ	
	20	р	1.42-1.71	4.5			
	2.5	р	0.60-0.99	2.5		Spiral	
PRISM	20	μ	6.5	5.0			

ADSR

- Accelerator Driven Sub-critical Reactor
- Use thorium-232: 3x more than U, all burnt
- Doesn't make enough neutrons
- Instead, neutron spallation: 10MW, 1GeV protons
- Advantage: turn accelerator off, reactor stops!
- Later stage: combine with transmutation
- Only possible with linac or FFAGs
- Test facility under construction in Kyoto

ADSR

PRISM

PRISM Layout

- *Solenoid Pion Capture
- *Pion-decay and Transport
- *Phase Rotation

FFAG advantages: synchrotron oscillation

necessary to do phase rotation

large momentum acceptance

necessary to accept large momentum distribution at the beginning to do phase rotation large transverse acceptance

muon beam is broad in space

PRISM-FFAG ring construction has started in JFY2003.

Under Development in Japan

FFAGs at design study phase

	E (MeV)	lon	Radius (m)	k	Rep rate (Hz)	Comments/1st beam	
Ibaraki facility	230	р	2.2-4.1		20	0.1μA, spiral	
MEICo - Laptop	1	е	0.02-0.03	0.8	1000	Spiral	
MEICo – Ion th.	400	C ₆₊	7.0-7.5	12	0.5	Hybrid, spiral	
	7	C ⁴⁺	1.4-1.8	0.7	0.5	Hybrid	
MEICo – p th.	230	р	0.0-0.7		2000	Superconducting, spiral	
NIRS Chiba	400	C_{6+}	10.1-10.8	10.5	200		
	100	C_{6+}	5.9-6.7	10.5	200		
	7	C ⁴⁺	2.1-2.9	6.5	200		
eFFAG	10	е	0.26-1.0		5000	20-100mA, spiral	
KURRI BNCT	10	р	1.5-1.6			>20mA	
Neutrino Factory	300-1000	μ	20.75-21.25	50	1000		
	1000-3000	μ	79.77-80.23	190	1000		
	3000-10000	μ	89.75-90.25	220	1000		
	10000-20000	μ	199.75-200.25	280	1000		

Under Development in Japan

FFAGs at design study phase

	E (MeV)	lon	Radius (m)	k	Rep rate (Hz)	Comments/1st beam	
Ibaraki facility	230	р	2.2-4.1		20	0.1μA, spiral	
MEICo - Laptop	1	е	0.02-0.03	0.8	1000	Spiral	
MEICo – Ion th.	400	C ₆₊	7.0-7.5	12	0.5	Hybrid, spiral	
	7	C ⁴⁺	1.4-1.8	0.7	0.5	Hybrid	
MEICo – p th.	230	р	0.0-0.7		2000	Superconducting, spiral	
NIRS Chiba	400	C ₆₊	10.1-10.8	10.5	200		
	100	C ₆₊	5.9-6.7	10.5	200		
	7	C ⁴⁺	2.1-2.9	6.5	200		
eFFAG	10	е	0.26-1.0		5000	20-100mA, spiral	
KURRI BNCT	10	р	1.5-1.6			>20mA	
Neutrino Factory	300-1000	μ	20.75-21.25	50	1000		
	1000-3000	μ	79.77-80.23	190	1000		
	3000-10000	μ	89.75-90.25	220	1000		
	10000-20000	μ	199.75-200.25	280	1000		

Advantages over radiotherapy with X-rays

Two main types of beam:

Protons:

most commonly used hadron

230MeV for 30cm depth -

cheaper/easier -

advantages over X-rays - mainly

cyclotrons

Carbon ions:much

better Radio Biological Effectiveness - less damage to healthy tissue than neon - 425MeV/u for 30cm

- only synchrotrons

- expensive!

 Ideally, proton + carbon + other ions depends on tumour type and location best

Two main types of beam delivery:

Greater than necessary damage to healthy tissue

• 3D:

- "range-stacking" + multi-leaf collimator - "spot", "raster" or "pencil-beam" scanning

Ideally:

- Both 2D and 3D
- For protons, carbon and other ions
- Respiration mode:
- beam gated using sensors on patient
 delivered at same point in breathing cycle
 damage to healthy issue
- Simultaneous PET scanning:
- \rightarrow ¹¹C via fragmentation in tissue approx same range
- for images (GSI) treatment

- ¹²C - ¹¹C has
- positron emitter
- sufficient quantities
- used to correct range during

Why So Much Interest?

To extend the use of proton/ion therapy widely - in major hospitals:

Efficient treatment patients/year

Y.Mori KEK/Kyoto

- High dose rate>5Gy/min
- Flexibility (for various types of cancer) Respiration
 Spot scanning
 variable energy
 - ion option
- Easy operation
- Easy maintainability activation

- low

- Low cost
 - both construction and operation

Why So Much Interest?

To extend the use of proton/ion therapy widely - in major hospitals:

Y.Mori KEK/Kyoto

	Synchrotron		Cyclot	ron FF	FAG
Intensity (>100nA)	Low 6nA	Plen	ty	Plenty >100nA	
Maintenance	Normal	lormal Hard		No	ormal
Extraction eff (>90%)	Good	<70%	Poor ⁄₀	Good >95%	
Operation	Not easy		Easy		Easy
lons	Ye	es	No	Yes	
Variable energy	Yes	No		Yes	
Multi-extraction	Possible		No	Yes	

Rutherford Appleton Laboratory

Ibaraki Facility

Proton energy 230MeV Intensity >100nA Rep. Rate 20-100Hz, respiration mode Diameter ~8m Extraction fast, multi-port irradiation **FFAG**

Mitsubishi - Laptop

Diameter 10cm

Energy 60 keV to 1 MeV

Rep. Rate 1kHz

BNCT at KURRI

Boron Neutron Capture Therapy

- Used, for example, to treat "glio-blastoma multiforme"
- Type of brain tumour that is 100% fatal
- Afflicts 12500 people in US each year
- Use boron-10: stable, but fissions with a thermal neutron

BNCT at KURRI

- Problem: need a lot of thermal neutrons >1 x 10⁹ cm⁻²s⁻¹ at patient for 30mins
- Only source: reactor

BNCT at KURRI

- Possible with accelerators
- Problem is efficiency for thermal neutrons: 1/1000
- Need: proton energy 3-10 MeV
 - >20mA (instantaneous)
 - energy recovery
 - beam cooling

But....

.....there are two problems:

- all this is happening in Japan
- it is possible to do better

Orbit excursion ~ 0.9m

$$B = B_0 \left(\frac{r}{r_0} \right)^k$$

where k=7.5

Magnets are large, complex & expensive!

- Japanese machines are called "scaling"
- There is a second type called "non-scaling"
- Originally developed for muons for a NF: need rapid acceleration number of turns circumference

limitedminimum ringminimum aperture

- Japanese machines are called "scaling"
- There is a second type called "non-scaling"
- Originally developed for muons for a NF: need rapid acceleration number of turns circumference

limitedminimum ringminimum aperture

- ⇒ need fixed magnetic field: FFAG
- ⇒ need fixed RF frequency: isochronous as possible

- Japanese machines are called "scaling"
- There is a second type called "non-scaling"
- Originally developed for muons for a NF: need rapid acceleration number of turns circumference

- limited

- minimum ringminimum aperture
- ⇒ optical parameters can vary with energy
- ⇒ lattice can be constructed from linear elements: dipoles and quadrupoles
- ⇒ linear variation of field
- ⇒ large dynamic aperture
- ⇒ requires periodic structure of identical cells

- Japanese machines are called "scaling"
- There is a second type called "non-scaling"
- Originally developed for muons for a NF: need rapid acceleration number of turns circumference

- limited - minimum ring - minimum aperture

- Japanese machines are called "scaling"
- There is a second type called "non-scaling"
- Originally developed for muons for a NF: need rapid acceleration number of turns circumference

limitedminimum ringminimum aperture

$$= \left| \frac{dp}{p} \right| \left| \frac{dL}{L} \right|$$

- ⇒ maximise momentum compaction
- \Rightarrow minimise path length change: $L_{ini} = L_{ext} \& L_{min}$ for central orbit

0.2

0.4

0.0

-0.4

-0.2

deltap /p

-100 --200 -

-0.8

-0.6

Longitudinal phase space
Asynchronous acceleration

In practice.....

- It's more complicated than that!
- F0D0, doublet, triplet, etc, cells possible
- Number of lattices = number of theorists/2
- Studied for muons, electrons, protons, carbon
- Many advantages over scaling FFAGs:

 magnet
 can use higher
 mequency, ~200MHz
 mignet
 magnets are linear and
 bigger dynamic aperture
 - bigger transverse acceptance
 - can run CW for muons
- Ideal for the Neutrino Factory

Nota Bene!!

Orbit shape changes with energy:

Muon Lattices

- Study 2a layout
- From Scott Berg
- 2/3 non-scaling FFAGs
- Triplet lattice
- F0D0/doublet also
- Linear magnets ~20cm

Energy (GeV)	Circumference (m)	Cells	Turns	Decay (%)
2.5-5.0	246	64	6	6
5.0-10.0	322	77	10	7
10.0-20.0	426	91	17	8

Muon Lattices

Grahame Rees

Pumplet lattice: 8-20 GeV

Isochronous

123 cells, 1255m circumference, non-linear magnets Latest version has insertions

Horst Schonauer

Quadruplet lattice

10-20 GeV

Non-isochronous, non-linear, approx. constant tunes

66 cells, 1258m circumference

Homogenous Sector

Protons

As with scaling FFAGs, interest spreading:

protons: therapy, drivers

carbon: therapy

- Larger acceleration range desirable
- RF must be modulated
- Resonances might be a problem
- First proton designs avoided tune changes:
 Non-linear magnets
 compensate for tune changes
- New designs have both near linear and non-linear

0.18 GeV H⁻ Linac

- Rees pumplet lattice
- Non-linear ⇒ tune variations small
- 10 GeV ~optimal
- 50Hz ⇒ 0.5*target shock

Proton Therapy

Proton Therapy non-scaling FFAG (20 - 250 MeV)

Major bending field B_v=0.84 T with fixed gradient G_f=18 T/m, Circumference=34 m

- proton therapy
- 20 to 250 MeV
- 10.8m diameter
- 8.6cm orbit ex.
- 30 cells
- 20 to 230 MeV
- 8.5m diameter
- 190cm orbit ex.
- 8 cells

HIMAC at NIRS

HIMAC at NIRS

Proton & Carbon Therapy

- Magnet aperture 65cm
- Transmission < 20%
- Low frequency ~5MHz
- Nearly linear magnets
- Diameter 9.1m
- Consists of:

O ECR, RFQ

FFAG1: 31 MeV p; 7.8 MeV/u C^{6+}

FFAG2: 250 MeV; 68 MeV/u

FFAG3: 502 MeV/u

- Aperture 8.9cm

Other possibilities being investigated.

Uncertainties hampering design

EMMA

"EMMA"

- Non-scaling FFAGs have three unique features:
 multi-resonance crossings huge
 momentum compaction asynchronous
 acceleration
- Must be studied in detail!
- Further design work hampered
- Must build one!
- Proof-of-Principle non-scaling FFAG required
- Original idea: electron model EMMA
- Model of muon accelerators
- Sufficiently flexible to also model protons, ions, etc
- Perfect training facility

EMMA

- Baseline design done
- Selected lattice: 10 to
- 20 MeV 42 cells, doublet lattice 37cm cell length
 - ~16m circumference RF every other cell
 - 1.3GHz, TESLA frequency
- Specification of hardware started

Non-Scaling Electron Model

Location

Need somewhere with flexible injector:

- variable energy - variable bunch structure - ~1.3GHz

Experimental hall

In frastructure

But.....hot off the presses....

- Potential funding for proton non-scaling FFAG
- Proof of principle of non-scaling optics: momentum compaction resonance crossing asynchronous acceleration
- POP for hadron therapy
- Located in new Radio-Oncology building in Oxford
- £3M "available"; same again likely
- Feasibility study just starting:

 18 MeV cyclotron injector (PET production)
 70-100

 MeV non-scaling FFAG
- Consortium forming, participants welcome!
- Needs a name!

But.....hot off the presses....

Latest Plan

- Do both!
- "Independent" funding routes: proton: Medical Research Council & Cancer Research UK
 Technology Fund/CCLRC
- Link together in BT proposal
- Emphasis still on hadron therapy
- Complementarities: therapy prototype; beta non-scaling optics; accelerators

EMMA: UK Basic

proton:
low
EMMA: detailed study of
model of NF
training machine;
high beta

Conclusions

- FFAGs could revolutionise accelerator technology
- Much interest world-wide
- Recent focus on non-scaling FFAGs
- "Best" machine probably depends on application
- Superiority over others already being shown
- Important goals: muon acceleration for NF hadron therapy in the UK
- Early days: model is essential 1st step
- Demonstrate:

it works non-scaling acceleration how to optimise

- learn

- study

Need to build core FFAG expertise in UK