

New Ideas for 6 D Ionization Cooling

R B Palmer Oxford, UK 5/11/05

- Muon Collider requirements
- Transverse Ionization Cooling Theory
- Longitudinal Emittance Cooling Theory
- Final Reverse Emittance Exchange
- New Ideas on How to do it
- Conclusion
- More New ideas if we have time

Why a Muon Collider

3 TeV Collider requirements from Snowmass 98

Assume

Average bending field T 5.2 Luminosity $10^{33}cm^{-2}$ 70

$$\epsilon_{\parallel} = \beta_v \gamma \ \sigma_z \ \frac{dp}{p} = 1.5 \ 10^4 \ 0.003 \ \frac{0.16}{100} = 7.2 \ 10^{-2}$$
 m
$$\epsilon_6 = \epsilon_{\parallel} \ (\epsilon_{\perp})^2 = 7.2 \ 10^{-2} \times (50 \ 10^{-6})^2 = 180 \ 10^{-12}$$
 m
Initial $\epsilon_6 \approx 2 \ (.02)^2 \approx 10^{-3}$ m

- Cooling Required $\approx 1/5000,000$
- Final Longitudinal Emmittance = 72,000 (pi mm mrad)
- Final Transvers Emittance = 50 (pi mm mrad)

What is Emittance?

normalized emittance =
$$\frac{\text{Phase Space Area}}{\pi \text{ m c}}$$

If x and p_x are both Gaussian and uncorrelated, then the area is that of an upright ellipse, and:

$$\epsilon_{\perp} = \frac{\pi \ \sigma_{p_{\perp}} \sigma_{x}}{\pi \ mc} = (\gamma \beta_{v}) \sigma_{\theta} \sigma_{x} \qquad (\pi \ m \ rad)$$

$$\epsilon_{\parallel} = \frac{\pi \sigma_{p_{\parallel}} \sigma_z}{\pi mc} = (\gamma \beta_v) \frac{\sigma_p}{p} \sigma_z \qquad (\pi \ m \ rad)$$

$$\epsilon_6 = \epsilon_\perp^2 \quad \epsilon_\parallel \qquad (\pi \ m)^3$$

Note that the π , added to the dimension, is a reminder that the emittance is phase space/ π

What is $Beta_{\perp}(Twiss)$ of Beam

Upright phase ellipse in x' vs x,

$$\beta_{\perp} = \left(\frac{\text{width}}{\text{height}}\right) = \frac{\sigma_x}{\sigma_{\theta}}$$

Strong focus \rightarrow low $\sigma_{\mathcal{X}}$ and large σ_{θ} \rightarrow low β

$$\rightarrow$$
 low β

$$\sigma_x = \sqrt{\epsilon_{\perp} \beta_{\perp} \frac{1}{\beta_v \gamma}}$$

$$\sigma_{\theta} = \sqrt{\frac{\epsilon_{\perp}}{\beta_{\perp}}} \frac{1}{\beta_{v} \gamma}$$

Transverse Cooling

Rate of Cooling without scattering

$$\frac{d\epsilon}{\epsilon_{x,y}} = \frac{dp}{p} J_{x,y}$$

For the moment the "partition functions"

$$J_{x,y} = 1$$

Explanation later

Minimum (Equilibrium) Emittance

$$\epsilon_{x,y}(min) = \frac{\beta_{\perp}}{\beta_v J_{x,y}} C(mat, E)$$

$$J_{x,y} = 1 \qquad C(mat, E) \propto \frac{1}{L_R d\gamma/ds}$$

At minimum of dE/dx ($\approx 300 \text{ MeV/c}$)

material	density	dE/dx	\mathbf{L}_R	\mathbf{C}_o	\mathbf{A}_o
	kg/m^3	MeV/m	\mathbf{m}	%	%
	71	28.7	8.65	0.38	1.36
\mathbf{Li}	530	87.5	1.55	0.69	1.31
\mathbf{Be}	1850	295	0.353	0.89	1.28
\mathbf{C}	2260	394	0.47	1.58	1.25
Al	2700	436	0.089	2.48	1.23

- Hydrogen much the best material
- Coefficient A_o is for longitudinal cooling explanation to come

An Aside: Beam Divergence Angles

$$\epsilon_{x,y}(min) = \frac{\beta_{\perp}}{\beta_v J_{x,y}} C(mat, E)$$

$$\sigma_{\theta} = \sqrt{\frac{\epsilon_{\perp}}{\beta \beta_v \gamma}}$$

so for a beam in equilibrium

$$\sigma_{\theta} = \sqrt{\frac{C(mat, E)}{\beta_v^2 \gamma}}$$
 independent of emittance

for 75 % of maximum cooling rate, an aperture at 3 σ , and $\beta_v^2 \gamma = 2$ the required angular acceptance A of the system must be

$$A = 3\sqrt{4} \sqrt{\frac{C(mat, E)}{\beta_v^2 \gamma}}$$

Material	H2	Li	Be	\mathbf{C}	Al
Ang Acceptance (RaD)	0.25	.35	.4	.54	.66

These are very large angular acceptances!

How to get low beta (strong focus)?

• Strong Solenoid

- -Practical limit is 10 T
- Expensive

• Lithium Lens

- For uniform i then perfect lens

$$I \propto A \propto r^2$$

Bending
$$\propto B \propto I/r \propto r$$

- Maximum current limited by breaking containment tube
- -Pressure \propto Surface Field
- Current lenses get up to near 10 T

Compare Solenoids and Li Lenses

- -Even a 20 T Solenoid will not get required emittance
- -Existing Li Lenses (10T) will not reach it
- -30 T Li Lens ok, but not developed and probably impossible from cavitation

At Multiple foci

e.g. Mice cells

- Beta of order 1/3 average beta for moderate B (3-6 T)
- Harder as B rises because of coil thickness
- Hard to get emittances < 400 pi mm mrad

Longitudinal Cooling?

- \bullet At mom $\ll 200 \ \mathrm{MeV/c} \ \mathrm{dp/p}$ is increased (heating)
- \bullet At mom $\gg 200 \text{ MeV/c dp/p}$ is weakly reduced (cooling)
- We Use $\approx 200 \text{ MeV/c}$ negligible heating or cooling

Partition function J_z :

$$\frac{d\epsilon_z}{\epsilon_z} = \frac{dp}{p} J_z$$

$$J_z \approx 0$$

6 dimensional emittance change:

$$\frac{d\epsilon_6}{\epsilon_6} = \frac{dp}{p} J_6$$

where

$$J_6 = J_x + J_y + J_z \approx 2$$

Emittance Exchange

- dp/p (and Longitudinal emittance) reduced
- But σ_y (and transverse emittance) increased
- Transverse cooling from mean loss in absorber
- "Emittance Exchange" + Transverse Cooling = 6 D cooling

$$J_x = (J_x)_o + \Delta J_x$$
 $J_y = (J_y)_o + \Delta J_y$ $J_z = (J_z)_o + \Delta J_z$

 $\Delta J_x + \Delta J_y + \Delta J_z + = 0$

e.g. If cooling only by wedges

Rate of Cooling without straggling

$$\Delta J_z(\text{wedge}) = \frac{D}{h}$$

where $D = dy/(dp/p)$ is the Dispersion

given a finite J_z we get a minimum (equilibrium) dp/p:

$$\frac{\sigma_p}{p} = A_o \sqrt{\frac{\gamma}{\beta_v^2} \left(1 - \frac{\beta_v^2}{2}\right) \frac{1}{J_z}}$$

The values of A_o were given in the above table

For Hydrogen, $A_o \approx 1.36$ %, but it is almost the same for other materials

For $J_z = 2/3$ minimum (equilibrium) dp/p

Minimum at 2.5% around $200~\mathrm{MeV/c}$

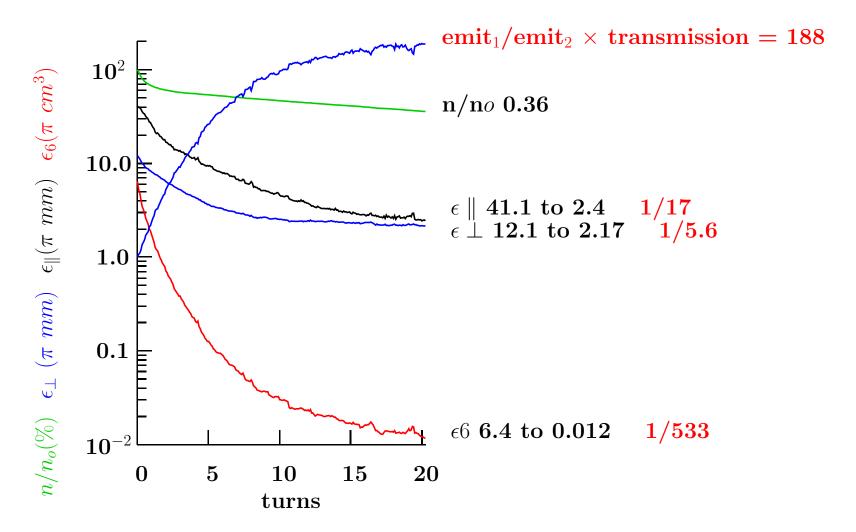
$$\epsilon_z = \frac{\sigma_p}{p} \times \beta_v \gamma \ \sigma_z$$

 σ_z , the bunch length depends on the RF gradient and frequency less at higher frequency

e.g. 6 D cooling in "RFOFO" Ring with Wedges

- Lattice similar to MICE
- Bending gives dispersion
- Wedge absorbers: Cooling also in longitudinal
- Many turns in Ring gives more cooling at lower cost

Injection/Extraction Vertical Kicker


Alternating 3T Solenoids Tilted for Bending B_y

201 MHz rf 12 MV/m

Hydrogen Absorbers

- Could be converted to Helicoil
- No Injection/extraction
- Better performance by tapering
- But more expensive

performance

Final Long Emittance 2400 (pi mm mrad) Second ring at 400 MHz $\rightarrow \approx 1400$ (pi mm mrad) c.f. 7200 (pi mm mrad) Req for Collider

Conclusion as of 2 years ago

- Longitudinal emittance can be Achieved
- Transverse emittance not Achieved
 - $-\approx 800$ pi mm mrad Possible with 10 T Solenoid
 - $-\approx 400$ pi mm mrad Possible with Lattice
 - $-\approx$ 200 pi mm mrad Possible with Lithium lend
 - -Required = 50 pi mm mrad
- Final Reverse Emittance Exchange Proposed with wedges
 But is found to be hard in practice
 See below

New idea Li Jet?

- No containing tube to break
- Use Magnetic field to stabilize (and form?) jet
- Jet larger at nozzle to avoid damage
- Ends in indestructible pool

Is this crazy?

Old solution: Reverse Emittance Exchange at End

- Assume 10 T Li Lens for transverse emittance
- Assume RFOFO Ring for Longitudinal emittance
- This is not quite fair, but reasonable

	Required	Achievable	Achievable/Req
Transverse	$50 10^{-6}$	$200 10^{-6}$	4.0
Longitudinal	$70 10^{-3}$	$1.5 10^{-3}$	1/50
6 D	$180 10^{-12}$	$60 \ 10^{-12}$	1/3

- Required 6D emittance seems achievable
- Longitudinal emittance even too small!
- But Transverse emitance too Large

Suggests Final Reverse emittance Exchange

- 1. Wedges with wrong Dispersion Old Method
- 2. By use of septa (potato slicer) New idea
- 3. Very Low energy in Li Lens New idea

1) Wedges with wrong Dispersion (Old Idea)

Require 4 times smaller equilib transverse emittance

thus
$$J_{x,y} = (J_{x,y})_o \times 4 = 1 \times 4 = 4$$

and $J_z = 2 - 2 \times J_{x,y} = 2 - 8 = -6$

- Required transverse emittance achieved, but
- Required longitudinal emittance lost

2) Potato Slicer (New idea)

- This can be done at any momentum
- Gaussian shapes of beams, and septa, lead to dilution
- Realization may be hard

Needs study, but must work at some level

3) Li Lens at very low Energy

Remember:

$$\epsilon_{x,y}(min) = \frac{\beta_{\perp}}{\beta_v J_{x,y}} C(mat, E)$$

$$J_{x,y} = 1 \qquad C(mat, E) \propto \frac{1}{L_R d\gamma/ds}$$

$$J_{x,y} = 1$$

$$C(mat, E) \propto \frac{1}{L_R d\gamma/ds}$$

- $C(mat, E) = 1/4 \ 10 \ MeV$
- Equilib. emittance $\times 1/4$ = 50 (pi mm mrad)
- Now meets trans. requirement

Effect on Longitudinal emittance

- Long. Emittance will rise from $J_z = -1$
- But J_6 remains positive
- So 6D emittance should not rise
- Effectively: Reverse Emittance Exchange Looks good, but needs study

Schematic of Collider

Conclusion

- Solenoid lattices cannot reach required transverse emittance
- But they can lower longitudinal emittance below requirement
- Li lenses cool to lower trans. emittances than solenoid lattices
- But at moderate momenta cannot achieve the trans. req.
- We need "Emittance exchange"
 - A solenoid focused reverse wedge does this in principle
 But seems to fail in practice
 - A Potato slicer should work, but dilutes 6D emittance
 - -Li Lens at low energy gives "effective emittance exchange" And seems to meet the requirements but has not yet been simulated
- Much more Study is needed
- There are many other problems
- But there is reason to hope

New Idea: Emittance Exchange using path length differences

S. Derbenev, R. Johnson

Figure 1. Use of a Wedge Absorber for Emittance Exchange

Figure 2. Use of Continuous Gaseous Absorber for Emittance Exchange

New idea Gas in a Helical Channel

(Derbenev, Rol Johnson, Muons Inc.)

- Partly for higher acc gradients
 Not yet demonstrated
- Cooling in 6 dimensions of order 1000
- Moderate fields at beam Bz=3.5 T. Br=.5 T
- Better Performance than RFOFO Ring

But Helix Fields at Coils > 24 T

 $\lambda = 1$ m For: $B_{\perp} = 0.5 \; {
m T}$ 10.0 4.961044 $B_r B_\phi B_s$ Coil IR with 200 MHz RF 1.0 0.1 0.000.750.250.501.00 Rad (m)

- Increasing pitch: hurts ds/dp
- Decreasing helix B: hurts ds/dp
- Lowering RF $\lambda \rightarrow$ lower emit + higher B's
- Exploring emittance exchange before bunching and RF

New idea: With Gas in a Ring

A. Garren, H Kirk

- 2 T fields
- 6 D cooling simulated
- Small: diam= 2 m
- Injection/Extraction hard
- Not as good as RFOFO Ring
- But Demonstration Experiment?

Old idea: Friction Cooling

Caldwell, Columbia

New idea: Inverse Cyclotron for Friction Cooling D Summers, A Garren, H Kirk

- fine wedges and gas give graded density with radius
- Ionization Injection simulated
- Axial electric field extracts very cold muons (Caldwell)
- Smaller final volume than Caldwell scheme
- ullet Even Less final emittance (< 50 pi mm mrad)
- Work In progress