Diamond Light Source – a New Light for Science

Richard P. Walker, Technical Director

- 1. Introduction
- 2. The Building
- 3. The Machine
- 4. The Beamlines
- 5. Commissioning
- 6. Future Plans

What is Synchrotron Light?

Synchrotron Light is electromagnetic radiation emitted when a high energy beam of charged particles (electrons) is deflected by a magnetic field

a single bending magnet produces a wide fan of radiation

multiple bends in an "undulator" or "wiggler" magnet give higher intensity and brighter radiation

What's so special about it?

Covers the electromagnetic spectrum from microwaves to hard X-rays:

 can select the wavelength required for a given experiment

light

Extremely intense and well collimated:

- can be focused to sub-micron spot sizes, allows rapid experiments on small and dilute samples

Highly polarised

- generally linear, but circular also possible

Pulsed time structure

- allows dynamic studies of fast chemical or biological processes (10-100 ps scale)

light

What can it be used for?

protein crystallography and cell biology; **Biomedical** -

Medical research microbiology, disease mechanisms, high resolution imaging;

Environmental science toxicology, atmospheric research, clean

combustion and cleaner industrial production

technologies:

plant genomics, soil studies and plant imaging; **Agriculture** -

Advanced materials nanostructured materials, intelligent polymers,

ceramics, light metals and alloys, electronic and

magnetic materials;

imaging of industrial processes in real time, high **Engineering** -

resolution imaging of cracks and defects in structures,

operation of catalysts in chemical engineering

processes;

Forensic Science identification from extremely small and dilute samples.

ancient metalworking processes, identification of **Archaeometry** production sites etc.

John Adams Institute Seminar Dec. 13th 2006

A Brief History of Synchrotron Light Sources:

- Discovery: 1947, General Electric 70 MeV synchrotron
- First use for experiments: 1956, Cornell 300 MeV synchrotron
- 1st generation:
 machines built for other purposes, mainly High Energy Physics
 e.g. Synchrotron Radiation Facility at the NINA Synchrotron, Daresbury
 (1971-1977)
- 2nd generation:
 purpose-built storage rings for synchrotron light
 e.g. the SRS at Daresbury, the world's first dedicated synchrotron X-ray source (1981-2008)
- 3rd generation:
 higher brightness synchrotron light sources, using mainly undulators as the X-ray source
 e.g. ESRF, Diamond etc.
 diamond

How does it work?

A beam of electrons is accelerated in a linac, further accelerated in a booster, then accumulated in a storage ring.

The circulating electrons emit intense beams of synchrotron light that are sent along beamlines to the

Diamond Project Evolution

1993 Woolfson Review: SRS to be replaced by a

new medium energy machine

1997 Feasibility Study ("Red Book") published

3 GeV, 16 cells, 345 m circumference, 14 nm rads

1998 Wellcome Trust joins as partner

Mar. '00 Decision to build Diamond at Rutherford Appleton Lab.

Oct. '00 3 GeV, 24 cells, 560 m circumference design approved

Apr. '02 Joint Venture Agreement signed (UK Govt./WellcomeTrust)

Diamond Light Source Ltd. established

Design Specification Report ("Green Book") completed by CCLRC

Jan. '07 Start of Operations

Diamond Design Criteria

- Large capacity for Insertion Device beamlines
- High brightness synchrotron light from undulators optimised in the range 0.1-10 keV, extending to 15-20 keV
- High flux from wigglers up to 100 keV
- Cost constraint
- "medium" energy of 3 GeV
- → relatively large circumference (562 m) and no. of cells (24) to give large no. of insertion devices and low emittance
- extensive use of in-vacuum undulators

it's all about brightness ...

diamond

Diamond – Main Parameters

nominal, non-zero dispersion lattice

Energy 3 GeV Circumference 561.6 m 24 No. cells **Symmetry Straight sections** 6 x 8m, 18 x 5m **Insertion devices** 4 x 8m, 18 x 5m **Beam current** 300 mA **Emittance (h, v)** 2.7, 0.03 nm rad > 10 hLifetime Min. ID gap **7 mm** Beam size (h, v) **123**, 6 μm

Beam divergence (h, v)

(at centre of 5 m ID)

24, 4 μrad

Diamond is a one of a new class of Medium Energy, 3rd Generation Light Sources.

Diamond compared to SRS

	SRS	Diamond
Electron Beam Energy	2 GeV	3 GeV
Storage ring circumference	96.0 m	561.6 m
Available space for Insertion Devices	6x1m	4x8m, 18x5m
Beam current	250 mA	300 mA
Emittance (hor., vert.) (nm rad)	190, 3.8	2.7, 0.03
Minimum ID gap	20 mm	7 mm
Electron beam sizes (hor., vert) (μm)	1000, 160	123, 6
Electron beam divergences (hor., ver	t) 590, 60	24 , 4 μ rad
Peak brightness	3 10 ¹⁵	2 10 ²⁰
Peak brightness (1Å)	1014	10 ¹⁹
	R	1

100,000 times brighter than the SRS!

Key Dates

〇	Start	enabling	works

Start main building works

Linac commissioning

Booster commissioning

Storage ring commissioning

Start of Operations

Mar. '03

Oct. '03

Aug. - Nov. '05

Jan. - Jun. '06

May - Dec. '06

Jan. '07

Diamond Buildings: architect's concept to reality

"a spaceship landing in the natural landscape.."

"the curved outer form reflects the form of the synchrotron within .."

Buildings and services also designed for thermal stability:

experimental hall +/- 1 °C storage ring tunnel +/- 0.5 °C

Courtesy of JacobsGibb Ltd.

June 2003

June 2004

October 2005

The Machine: Linac

- 100 MeV Linac of the DESY S-band Linear Collider Type II design, supplied "turn-key" by Accel Instruments.
 (DLS supplied diagnostics, vacuum and control system components, and beam analysis software)
- thermionic gun; short (< 1 ns) and long pulse (0.1-1 μs) modes
- 500 MHz sub-harmonic pre-buncher, 3 GHz primary buncher,
 3 GHz final buncher
- two 5.2 m constant gradient accelerating sections fed by independent klystrons

Booster

Energy 3 GeV
Circumference 158.4 m
Emittance 141 nm rad
Repetition rate 5 Hz
Lattice FODO, missing dipole

Storage Ring

Magnets and vacuum chambers

Power Supplies

Analog- Digital-Converter

Standardisation

- minimum no. of different types
- all 1038 power supplies use the same (PSI type) digital controller and ADC cards.

Maintainability and Reliability

- plug-in modules
- reduced component count
- redundancy of 24 V control power and power modules

DSP-controller incl. PWM generator

RF System

Superconducting cavities (2)

IOT-based 300 kW amplifiers

Liquid He plant

John Adams Institute Se

Digital Beam Position Monitor Electronics

(Libera, integrated in EPICS)

John Adams Institute Seminar Dec. 13th 2006

Phase I Insertion Devices

Beamline	ID	Туре	
102	U23	In-vacuum	
103	U21	In-vacuum 🔨	
104	U23	In-vacuum	
106	HU64	APPLE-II	
l15	SCW	Superconducting Multipole Wiggler	
/ 116	U27	In-vacuum	
l18	U27	In-vacuum	

Beamlines

- Phase I: 7 beamlines –
 ready for operations in
 January 2007
- Phase II (funded):
 15 additional beamlines
 at 4 per year from 2008 to 2011/12
- Phase III (proposal):
 10 additional beamlines,
 2011-2015

Scope of Research

Expected Usage

✓ Engineering and Physical Sciences 48%

- ✓Life Sciences 40%
- ✓ Environmental Sciences 12%

Reaching new communities from both academia & industry

- ✓ Advanced techniques
- √ High throughput

Beamline Plan – Science "Villages"

Beamline Programme

Phase I Beamlines

- I02,3,4 3-25 keV Macromolecular crystallography
 For the determination of the structure of macromolecules with rapid sample through-put.
- 106 80- 1500 eV Nanoscience
 To study the morphology, chemical and magnetic state of nanostructures with <10 nm resolution.</p>
- I15 5-200 keV Extreme conditions
 Study of materials at very high temperatures and pressures, typical of planetary interiors and industrial processes.
- I16 3-25 keV Materials and magnetism
 Study of materials including magnetic systems, high temperature superconductors.
- I18 2-13 keV X-ray microfocus spectroscopy
 Chemical imaging and structural studies of complex
 multicomponent systems with sub-micron resolution.

User Access

- User Office is operational
- Call for first users: October 2006
- First "experienced" users and optimisation of Phase I beam lines: January - September 2007
- Call for 2nd user proposals: May 2007

Machine Commissioning: Linac

Installation complete: Aug. 3rd 2005

1st beam from gun: Aug. 31st 2005

1st 100 MeV beam:

Acceptance test complete:

Sep. 7th 2005

mid-Oct. 2005

Linac Performance

Parameter	Specification	Single bunch	Multi bunch
Energy [MeV]	> 100	103	103
x norm. emittance [π.mm.mrad]	< 50	18	16
y norm. emittance [π.mm.mrad]	< 50	27	11
Charge [nC]	> 1.5 / 3.0	2.1	4.8
Pulse width [ns]	< 1	~ 0.2 fwhm	~ 0.2 fwhm
Jitter [ps]	< 100	11	11
Energy variation [%]	< 0.25	0.05 rms, 0.21 full	0.05 rms, 0.16 full
Energy spread [%]	< 0.5	< 0.2	0.2

(Same at 1 Hz or 5 Hz)

Booster Commissioning

First beam in the Booster Dec. 21st 2005

John Adams Institute Seminar Dec. 13th 2006

Feb. 13th:
Beam surviving for
200 ms between
injections at 100 MeV
(RF on)

1/e lifetime = 1 s

John Adams Institute Seminar Dec. 13th 2006

Closed orbit

within +/- 5 mm, with no correctors powered

First orbit correction Feb. 17th within +/- 1 mm

First acceleration to 700 MeV, March 10th

First extraction at 700 MeV, April 4th

Commissioning to 3 GeV (June 2006)

image of the beam extracted from the booster:

Closed orbit

Closed orbit can be corrected during the ramp, but is not needed.

After 400 MeV stays constant, within ± 3 mm.

Initially had some stability problems, linked to mains frequency variationsparticularly during the World Cup!.

uring the World Cup!.

First observation of the effect of a major sporting

Problem has now been solved by deriving 50 Hz from the timing system, independent of mains frequency.

Storage Ring Commissioning: Phase I - 700 MeV

May 3rd/4th:

First beam in the storage ring – immediately after the septum

Celebrating the First Turn! - 03:00 May 5th 2006

May 5th/6th: 4 turns

John Adams Institute Seminar Dec. 13th 2006

May 6th/7th: 600 turns (sextupoles off, RF off)

May 19th/20th: 2000 turns (sextupoles on, RF off)

May 20th/21st: 106,764 turns!

May 21st/22nd: 0.4 mA

First stored beam!...

0.5 hour lifetime at 0.5 mA

But initially the beam did not accumulate ...

- believed to be due to differences between the kicker pulse shapes (which were not tuned for operation at 700 MeV)

then after an "optimisation procedure"

> 2 mA "accumulated" .. but not easily

First Synchrotron Light!

- from the visible Synchrotron Light Monitor

First use of the streak camera:

35 μ**s**

John Adams Institute Seminar Dec. 13th 2006

Storage Ring Commissioning: Phase II - 3 GeV

Sep. 4th/5th – 5 turns, no correctors!

Sep. 5th/6th – 120 turns, no RF on

Sep. 6th/7th – RF on .. 2 mA stored; (limited since absorber water flow interlocks not commissioned ..)

Sep. 9th – 10 mA; (limited since orbit interlock not commissioned ..)

Sep. 25th - 25 mA

Oct. 2nd – 60 mA

Oct. 10th - 90 mA

Closed Orbit

Following Beam Based Alignment, the closed orbit has been corrected to the 1 μ m level at the BPMs ...

... and is maintained using Slow Orbit FeedBack (SOFB)

Optical functions measured and corrected using the response matrix technique and "LOCO".

Optical functions before correction:

- errors in the beta functions up to 40%

Optical functions after correction:

Measured beam sizes and emittance (from two X-ray pinhole cameras)

Pinhole camera #1 nominal: Pinhole camera #2 nominal:

sigma-x = 56 μm 52 μm sigma-x = 47 μm 45 μm sigma-y = 14.5 μm 25 μm sigma-y = 19 μm 25 μm

Best fit: emittance 3.2 nm, energy spread 0.012%, coupling 0.4%

Coupling correction using skew-quadrupoles

before correction

K = 0.4%

after correction

K = 0.04%

John Adams Institute Seminar Dec. .. 2000

Storage ring vacuum conditioning progress

Dynamic pressure vs. "dose"

Beam lifetime vs "dose"

Machine Status Summary

- All systems working; reliability so far is good
- 125 mA achieved Closed-orbit and optics well corrected Good injection efficiency Measured emittance close to nominal
- All 7 Insertion Devices commissioned with beam
- Vacuum conditioning progressing in line with expectations
- 24h/day operation, and regular beamline commissioning shifts, have started.

Future Plans, and Possibilities

2007 (definitely):

- 3000h of User Mode
- Install 3 more Insertion Devices and Front-Ends
- 300 mA, 10 h lifetime by end of September
- implement Fast Orbit Feedback
- implement Transverse Multibunch Feedback
- prepare for Top-up

Later (maybe):

Cryo-cooled permanent magnet & Superconducting undulators

diamond

- 3rd Harmonic cavity (bunch lengthening, and shortening)
- Short pulses: various options being considered –
 "low-alpha" optics, crab cavities, etc.

Fast Orbit Feedback

This implementation will allow full global functionality, with high level of fault tolerance, at 10 kHz cycle rate

Transverse Multibunch Feedback

Top-up Operation

<u>Usual operation</u> for the majority of Synchrotron Light Sources: injection at intervals of 8-24 h, with beam decay in between:

Top-up mode that will be used for Diamond, keeping the beam current constant (as at APS, SLS, Spring-8), providing increased average intensity, and better beam STABILITY:

Time

John Adams Institute Seminar Dec. 13th 2006

Short pulses: "low-alpha" mode

bunch length

$$\alpha$$
 (normal, 1.7·10⁻⁴)

$$\rightarrow$$
 $\sigma_z = 2.8 \text{ mm } (9.4 \text{ ps})$

$$\alpha$$
 (low-alpha optics) $\approx 10^{-6}$

$$\rightarrow$$
 $\sigma_z \approx 0.3 \text{ mm (1 ps)}$

I _b (mA)	Normal	Low a
0.01	10 ps	1 ps
1.0	13 ps	12 ps
10.0	25 ps	25 ps

Short pulses: Crab-Cavities †

Preliminary studies* show the feasibility of the crab-cavity scheme to generate 1 ps pulses in Diamond.

* in collaboration with K. Harkay, M. Borland, APS

[†] A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM A425 (1999)

illuminating the future

Pioneering research into materials, medicines and the environment, beginning in 2007.

