

Contents

- Introduction
- Magnet technology
- Luminosity
- LHC layout overview
- Main challenges for the LHC operation
- LHC parameters
- Commissioning plan
- Upgrade options

Introduction: LHC Goals & Performance

Collision energy: Higgs discovery requires $E_{CM} > 1$ TeV

p collisions
$$\rightarrow$$
 E_{beam} > 5 TeV \rightarrow LHC: E = 7 TeV

Instantaneous luminosity: # events in detector = $L \cdot \sigma_{event}$

rare events
$$\rightarrow$$
 L > 10³³cm⁻²sec⁻¹ \rightarrow L = 10³⁴cm⁻²sec⁻¹

Integrated luminosity: L = |L(t)dt|

depends on the beam lifetime, the LHC cycle and 'turn around' time and overall accelerator efficiency

Introduction: the LHC is a Synchrotron

uniform B field:
$$R = constant$$

$$p = q \cdot \frac{B \cdot circ}{2\pi} \approx E / c$$

realistic synchrotron: B-field is not uniform

for $E \gg E_0$

- -drift space for installation
- -different types of magnets
- -space for experiments etc

$$E = \frac{q \cdot c}{2 \pi} \cdot \oint B \cdot ds$$

→ high beam energies require: -high magnetic bending field

- - -large circumference
 - -large packing factor

Introduction: the LHC is a Synchrotron

- physics goal: E = 7 TeV
- existing infrastructure: LEP tunnel: circ = 27 km with 22 km arcs
- assume 80% of arcs can be filled with dipole magnets: F = 0.8
- required dipole field for the LHC:

$$\frac{2\pi}{q} \cdot \frac{E/c}{circ \cdot F} = B \longrightarrow B = 8.38 \text{ T}$$
(earth: 0.3 10⁻⁴ T)

high beam energies require large rings and high fields

1) Iron joke magnet design
2) air coil magnetdesign

- -field quality given by pole face geometry
- -field amplified by Ferromagnetic material
- -iron saturates at 2 T
- -Ohmic losses for high magnet currents

- -field quality given by coil geometry
- -SC technology avoids Ohmic losses
- -risk of magnet quenches
- -field quality changes with time

Critical surface of NbTi:

- -high ambient magnetic field lowers the capability to sustain large current densities
- -low temperatures increase the capability to sustain large current densities
- -LHC: B = 8.4 T; T = 1.9 K $i = 1 - 2 \text{ kA} / \text{mm}^2$
- existing machines: Tev: B=4.5T;HERA: B=5.5T; RHIC: B=3.5T
- He is superfluid below 2K and has a large thermal conductivity!

collider ring design requires 2 beams:

- design with one aperture requires particles & anti-particles

 Not efficient for a hadron collider! (Tevatron, Chicago USA)
- 2-ring design implies twice the hardware
 - → LHC features novel 2-in-1 magnet design

2-in-1 dipole magnet design with common infrastructure:

-15 m long

few interconnects (high filling factor) but difficult transport (ca. 30 tons)

1 --- I ED 4----1

-compact 2-in-1 design → allows p-p collisions in LEP tunnel

-corrector magnets at ends → tight mechanical tolerances

Luminosity

colliding bunches:

$$A = 4\pi \cdot \sigma_x \cdot \sigma_y$$
 with: $\sigma = \sqrt{\beta \cdot \varepsilon}$

 β is determined by the magnet arrangement & powering

$$\varepsilon = \varepsilon_n / \gamma$$
 ε_n is determined by the injector chain

goal: \rightarrow high bunch intensity and many bunches $L = 10^{34} \text{ cm}^{-2}\text{sec}^{-1}$ small β at IP and high collision energy

LHC Layout

- 2-in-1 magnet design p-p & Pb-Pb collisions
- 7 TeV p-beam energy
 - → > 1 TeV CM energy
 - → Higgs discovery
- 2 high L experiments with $^{\text{IP3}}$ L = 10^{34} cm⁻² sec⁻¹
 - → 2808 bunches / beam with 1.15 10¹¹ ppb
- 2 low L experiments: ALICE (Pb-Pb) & LHCb

LHC Layout

- built in old LEP tunnel
 - → 8.4 T dipole magnets
 - → 10 GJ EM energy
 - powering in 8 sectors
- with 1.15 10¹¹ ppb
 - → 360 MJ / beam
 - crossing angle & long range beam-beam
- Combined experiment/ injection regions

Main Challenges for the Operation

- Magnetic field perturbations & resonances
- Collimation efficiency
- Beam power and machine protection
- Collective effects and impedance
- Beam-beam interaction
- Triplet aperture and beam-beam
- Electron cloud effect

LHC Challenges: Field Quality & Resonances

tune:

Q = number of oscillations per revolution

resonances:

$$n Q_x + m Q_y + r Q_s = p$$
; "order" = $n+m+r$

limited accessible area; limit for field quality and ΔQ tolerance

LHC Challenges: Magnet Field Errors

the LHC features 112 circuits / beam (+ orbit correctors)

all magnet circuits are tested before and during installation

→ adjustments during operation

→ non-destructive beam instrumentation

LHC Challenges: Collimation Efficiency

- Magnet Quench:
 - → beam abort → several hours of recovery
- LHC nominal beam intensity: $I = 0.5A \implies 3 \cdot 10^{14} \text{ p/beam}$
- Quench level: $N_{lost} < 7 \ 10^8 \ m^{-1}$ $\rightarrow 2.2 \ 10^{-6} \ N_{beam}!$

(compared to 20% to 30% in other superconducting rings)

- → requires collimation during all operation stages!
- → requires good optic and orbit control! → feedback loops

LHC Challenges: Beam Power

- beam core: $0 \text{ to } 2 \sigma$
- primary beam halo: 2 to 6 s; generated by: non-linearities; noise; IBS etc (can damage equipment)
- secondary halo: 6 to 8 σ; generated by collimators (quench)
- tertiary halo: $> 8 \sigma$; generated by collimators (save)

LHC Challenges: Beam Power

Unprecedented beam power:

Beam Power and Machine Protection

- Unprecedented beam power:
 - → all absorbers and the collimation system must be designed to survive an asynchronous beam dump! (total of up to 136 collimators & absorbers)
 - → Machine protection System!

- → fiber reinforced graphite jaws are more robust than Cu jaws
- → fiber reinforced graphite has a higher impedance and electrical resistivity

LHC Challenges: Collective Effects

- resistive wall impedance:
 - → image charges trail behind due to resistivity of surrounding materials
 - → Wake fields drive beam instabilities
 - → effect increases with decreasing gap opening of the collimator jaws

- \rightarrow impedance of Graphite jaws either limits the minimum collimator opening \rightarrow limit for β^* or the maximum beam current
- phased collimation system for the LHC:
 - → Phase 1: graphite jaws for robustness during commissioning
 - → Phase 2: nominal performance (low impedance, non-linear or feedback)

LHC Challenges: Beam-Beam Interaction

- beam-beam force:
- additional focusing for small amplitudes

- perturbation is proportional to bunch intensity!
- strong non-linear field:
 - tune & perturbation depends on oscillation amplitude
 - bunch intensity limited by non-linear resonances

 $F \propto r$

LHC Challenges: Beam-Beam Interaction

LHC working point: n+m < 12

$$\rightarrow$$
 Q_x = 64.31; Q_y = 59.32

total tune spread must be smaller than 0.015!

- the LHC features 3 proton experiments with
- bunch intensity limited by beam-beam force:

$$\rightarrow$$
 N < 1.5 10¹¹

 \rightarrow nominal: N < 1.15 10¹¹

 \rightarrow ultimate: N < 1.7 10¹¹

LHC Challenges: Triplet Aperture

long range beam-beam:

Operation with 2808 bunches features approximately 30 unwanted collision points per Interaction Region (IR).

→ Operation requires crossing angle→ aperture reduction!

non-linear fields and additional focusing due to beam-beam

efficient operation requires large beam separation at unwanted collision points \rightarrow separation of 9 σ is at the limit of the triplet aperture for nominal β^* values! \rightarrow margins can be introduced by operating with fewer bunches, lower bunch intensities, larger β^* values (or larger triplet apertures \rightarrow upgrade studies)

LHC Challenges: Crossing Angle

geometric luminosity reduction factor:

$$R_{\theta} = \frac{1}{\sqrt{1 + \Theta^2}}; \quad \Theta \equiv \frac{\theta_c \sigma_z}{2\sigma_x}$$

large crossing angle:

- → reduction of long range beam-beam interactions
- → reduction of the mechanical aperture
- → reduction of instantaneous luminosity
 - → inefficient use of beam current (machine protection!)

LHC Challenges: Electron Cloud Effect

- Synchrotron light releases electrons from beam screen:
 - → electrons get accelerated by p-beam → impact on beam screen
 - \rightarrow generation of secondary electrons \rightarrow δ_{max} multiplication; e-cloud
 - → heating, instabilities and emittance growth

average arc heat load [W/m]

- → effect disappears for low bunch currents or large bunch spacing
- → secondary emission yield decreases during operation (beam scrubbing)

[F. Zimmermann / CERN]

Initial Design Parameters

Parameters	'white book'	DIR-TECH/84-01 & ECFA 84/85 CERN 84-10	
# bunches	3564	slightly too large (kicker rise time)	
N / bunch	0.34 * 1011	margins for beam-beam effects	
eta^*	1m	margins for aperture and impedance	
$\epsilon_{\rm n}$	1.07µm	factor 3 margin for N_b/ϵ_n for injector chain	
σ^*	12μm		
$\sigma_{ m L}$	7.55cm		
full crossing angle	100μrad	margins for triplet aperture	
events / crossing	1 ←→ 4	detector efficiency	
peak luminosity	0.1*10 ³⁴ cm ⁻² sec ⁻¹		
luminosity lifetime	56h	long physic runs ==> efficiency	
E[TeV]	8.14	10 T dipole field	
E[MJ]	121	70 x energy in existing SC stortage rings	

Nominal Parameters

Parameters	'white book'	Competition with SSC	
# bunches	2808		
N / bunch	1.15 * 1011	factor 3 smaller margin for beam-beam	
$oldsymbol{eta}^*$	0.55m	reduced margins for aperture and impedance	
$\epsilon_{\rm n}$	1.75µm		
σ_*	16.7µm		
$\sigma_{ m L}$	7.55cm		
full crossing angle	285µrad	factor 3 smaller margin for triplet aperture	
events / crossing	19.2		
peak luminosity	1.0*10 ³⁴ cm ⁻² sec ⁻¹		
luminosity lifetime	15h	1 physics run per day	
E[TeV]	7		
E[MJ]	366	quench & damage potential (200 x)!	

- Pilot physics run
- First collisions
- □ 43 bunches, no crossing angle, no squeeze, moderate intensities
- Push performance (156 bunches, partial squeeze in 1 and 5, push intensity
- 75ns operation
- Establish multi-bunch operation, moderate intensities
- Relaxed machine parameters (squeeze and crossing angle)
- Push squeeze and crossing angle
- 25ns operation I
- Nominal crossing angle
- Push squeeze
- Increase intensity to 50% nominal
- 25ns operation II
- Push towards nominal performance

<u>Summary</u>

- Mechanical aperture
- Polarity errors
- Global magnet field quality & corrector circuit powering

careful analysis and definition of procedures during installation

- → optimization in Stage I
- Collimation efficiency optimization during Stage I
- Beam power and machine protection from Stage I to Stage II
- Collective effects and impedance only at Stage III
- Triplet aperture and beam-beam only > Stage III
- Electron cloud effect only at Stage IV

<u>Summary</u>

already the nominal LHC operation is very challenging!!!

LHC upgrade studies could provide means for overcoming Limitations of nominal configuration

- → R&D results should be available shortly after commissioning!
- radiation limit of triplet magnets (700fb⁻¹) might be reached by 2013
 - → one needs to prepare a replacement now larger triplet aperture will also reduce collimator impedance!
- radiation and machine protection issues are very demanding
- official collaborations for R&D work and machine studies are launched within US-LARP and the European ESGARD initiatives

Upgrade Options

CERN identified 3 main options for the LHC upgrade and grouped them according to their impact on the LHC infrastructure into three phases (2001):

Phase 0: performance upgrade without hardware modifications

Phase 1: performance upgrade with IR modifications

Phase 2: performance upgrade with major hardware modifications

Ultimate Parameters (Phase0)

Parameters	nominal	'Ultimate'		
# bunches	2808	2808		
N / bunch	1.15 * 10 ¹¹	$1.7*10^{11}$	beam-beam	
β^*	0.55m	0.5m	impedance	
ϵ_{n}	1.75µm	1.75µm		
σ^*	16µm	16.7μm		
$\sigma_{ m L}$	7.55cm	7.55cm		
full crossing angle	285µrad	> 315μrad	triplet aperture	
events / crossing	19.2	44.2	detector efficiency?	
peak luminosity	1.0*10 ³⁴ cm ⁻² sec ⁻¹	2.4*10 ³⁴ cm ⁻² sec ⁻¹		
L lifetime	15h	10h	1 physics run per day	
E[TeV]	7	7 -> 7.45		
E[MJ]	366	541	quench & damage risk	

- increase mechanical aperture of the final focus quadrupoles:
 - 1) New final focus magnets with larger aperture:
 - \rightarrow allows smaller $\beta^* \rightarrow$ higher luminosity
 - → larger peak field for constant gradient and higher radiation
 - → a) new magnet technology (Nb₃Sn [USLARP])
 - → b) low gradient final focus layouts (existing NbTi)
 - → implies larger crossing angle

$$sep[\sigma] \approx \theta_c \cdot \frac{\sqrt{\beta^*}}{\sqrt{\varepsilon}}$$
 \rightarrow reduction of luminosity

- minimize detrimental effect of beam-beam interactions:
 - 2) Compensate long range beam-beam effects \rightarrow smaller x-in angle

- → new proposal and technology! → requires machine studies
- \rightarrow can not improve dynamic aperture beyond beam separation (6 σ)
- → similar proposal for head-on collisions (→ larger operation margins)

- minimize luminosity loss due to crossing angle at the IP:
 - 3) early separation scheme in order to minimize geometric reduction:

- → requires magnet integration inside the detectors (back scattering!)
- → requires new magnet technology
- \rightarrow implies parasitic collisions at 4 σ for 25ns bunch spacing

- minimize luminosity loss due to geometric reduction factor:
 - 4) shorter bunch length
 - → expensive in terms of RF

$$R_{\theta} = \frac{1}{\sqrt{1 + \Theta^2}}; \quad \Theta \equiv \frac{\theta_c \sigma_z}{2\sigma_x}$$

[F. Zimmermann]

- 5) bunch rotation via crab cavities
 - → new technology for protons!

Scenarios for $L = 10^{35} \text{ cm}^{-2} \text{ sec}^{-1}$

parameter	symbol	ultimate	25 ns, small β*	50 ns, long
transverse emittance	ε [μ m]	3.75	3.75	3.75
protons per bunch	N _b [10 ¹¹]	1.7	1.7	4.9
bunch spacing	∆t [ns]	25	25	50
beam current	I [A]	0.86	0.86	1.22
longitudinal profile		Gauss	Gauss	Flat
rms bunch length	σ _z [cm]	7.55	7.55	11.8
beta* at IP1&5	β * [m]	0.5	0.08	0.25
full crossing angle	θ_{c} [μrad]	315	0	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.75	0	2.0
Luminosity reduction		0.8	0.86	0.45
peak luminosity	<i>L</i> [10 ³⁴ cm ⁻² s ⁻¹]	2.3	15.5	10.7
peak events per crossing		44	294	403
initial lumi lifetime	τ _L [h]	14	2.2	4.5
effective luminosity (T _{turnaround} =10 h)	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.91	2.4	2.5
	T _{run,opt} [h]	17.0	6.6	9.5
effective luminosity (T _{turnaround} =5 h)	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	1.15	3.6	3.5
	T _{run,opt} [h]	12.0	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.04 (0.59)	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.25	0.25	0.36
image current heat	P _{IC} [W/m]	0.33	0.33	0.78
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.06 (0.56)	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ _ι [cm]	4.3	3.7	5.3
comment			D0 + crab (+ Q0)	wire comp.

Upgrade Options: Phase 1

- final choice depends on main motivation for upgrade:
 - 1) Overcome limitations in nominal LHC
 - 2) Increase luminosity by one order of magnitude
- need to keep all technical options alive until LHC startup

- prepare for a staged upgrade scenario:
 - 1) First upgrade in order to overcome potential bottlenecks in LHC operation
 - 2) Second upgrade to push performance by factor 10

Upgrade Options: Phase 2

- CERN identified 3 main areas for consolidation efforts:
 - 1) New Multi Turn Extraction for the PS \rightarrow smaller losses
 - 2) PS magnet renovation and replacement (PS2):
 - → program for refurbishing and replacing 50 magnets
 until 2008 → not a long term solution → PS2 project
 - 3) replacement for main proton linac: LINAC4
 - → overcomes bottleneck for 'ultimate' LHC parameters
 - → solves maintenance problem for existing LINAC2
 - → SPL (second phase) could 'bypass' PSB (space charge)
 - 4) magnet renovation in the SPS
 - → program for refurbishing and replacing SPS magnets
 - → CERN 'White Paper'

LHC Installation

cryogenic distribution in 12

Q6 with cryogenic connection in IR8 John Adams Seminar; 22. February 2007

electrical distribution in IR8 Oliver Brüning/CERN AB-ABP 41

LHC Installation

Introduction: the LHC is a Synchrotron

