Synergies and Collaboration between CLIC and ILC on e+/e- Linear Collider studies

http://clic-study.web.cern.ch/CLIC-Study/
http://www.linearcollider.org/cms/
OUTLINE

- Linear Colliders in the HEP world-wide landscape
- The Compact Linear Collider (CLIC) concept
 - Design and new parameters recently adopted
 - Main challenges and key issues
 - The facilities to address the feasibility issues
 - Plans and schedule
- Synergies and Collaboration with the ILC
- Possible UK contribution
- Conclusion
World consensus about a Linear Collider as the next HEP facility after LHC

- **2001**: ICFA recommendation of a world-wide collaboration to construct a high luminosity e+/e- Linear Collider with an energy range up to at least 400 GeV/c

- **2003**: ILC-Technical Review Committee to assess the technical status of the various designs of Linear Colliders

- **2004**: International Technology Recommendation Panel selecting the Super-Conducting technology for an International Linear Collider (ILC) Linear Collider in the TeV energy range

- **2004**: CERN council support for R&D addressing the feasibility of the CLIC technology to possibly extend Linear Colliders into the Multi-TeV energy range.
Particle physics stands on the threshold of a new and exciting era of discovery. The next generation of experiments will explore new domains and probe the deep structure of space-time. They will measure the properties of the elementary constituents of matter and their interactions with unprecedented accuracy, and they will uncover new phenomena such as the Higgs boson or new forms of matter. Long-standing puzzles such as the origin of mass, the matter-antimatter asymmetry of the Universe and the mysterious dark matter and energy that permeate the cosmos will soon benefit from the insights that new measurements will bring. Together, the results will have a profound impact on the way we see our Universe; European particle physics should thoroughly exploit its current exciting and diverse research programme. It should position itself to stand ready to address the challenges that will emerge from exploration of the new frontier, and it should participate fully in an increasingly global adventure.

General issues

1. European particle physics is founded on strong national institutes, universities and laboratories and the CERN Organization; Europe should maintain and strengthen its central position in particle physics.

2. Increased globalization, concentration and scale of particle physics make a well coordinated strategy in Europe paramount; this strategy will be defined and updated by CERN Council as outlined below.

Scientific activities

3. The LHC will be the energy frontier machine for the foreseeable future, maintaining European leadership in the field; the highest priority is to fully exploit the physics potential of the LHC; measures for completion of the initial programme have to be assured such that machine and experiments can operate optimally at their design performance. A subsequent major luminosity upgrade (SLHC), motivated by physics results and operational experience, will be enabled by focussed R&D, to this end R&D for machine and detectors has to be rigorously pursued now and centrally organised towards a luminosity upgrade by around 2015.

4. In order to be in a position to push the energy and luminosity frontier even further it is vital to strengthen the advanced accelerator R&D programme; a coordinated programme should be intensified, to develop the CLIC technology and high performance magnets for future accelerators, and to play a significant role in the study and development of a high-intensity neutrino facility.

5. It is fundamental to complement the results of the LHC with measurements at a linear collider. In the energy range of 0.5 to 1 TeV, the ILC, based on superconducting technology, will provide a unique scientific opportunity at the precision frontier; there should be a strong well-coordinated European activity, including CERN, through the Global Design Effort, for its design and technical preparations towards the construction decision, to be ready for a new assessment by Council around 2010.

6. Studies of the scientific case for future reaction facilities and the R&D into associated technologies are required to be in a position to define the optimal neutrino programme based on the information available in around 2012. Council will play an active role in promoting a coordinated European participation in a global neutrino programme.

7. A range of very important non-accelerator experiments take place at the overlap between particle and astroparticle physics exploring otherwise inaccessible phenomena. Council will task its work on aPEC to develop a coordinated strategy in these areas of mutual interest.
Parameters for the Linear Collider

September 30, 2003

- Ecm adjustable from 200 – 500 GeV
- Luminosity $\rightarrow \int L dt = 500 \text{ fb}^{-1}$ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%

- The machine must be upgradeable to 1 TeV
The ILC Plan and Schedule

(B.Barish/CERN/SPC 050913)
Site independent feasibility study aiming at the development of a realistic technology to extend e-/e+ linear colliders into the Multi-TeV energy range:

- \(E_{CM} \) energy range complementary to LHC
 \(\Rightarrow E_{CM} = 0.5-3 \) TeV
- \(L > \text{few} \ 10^{34} \text{cm}^{-2} \) with acceptable background
 \(\Rightarrow E_{CM} \) and \(L \) to be reviewed when LHC physics results avail.
- Affordable cost and power consumption

Physics motivation: http://clicphysics.web.cern.ch/CLICphysics/

"Physics at the CLIC Multi-TeV Linear Collider:
by the CLIC Physics Working Group:CERN 2004-5"

Present goal:

CLIC Advisory Committee (ACE):
CLIC – basic features

• High acceleration gradient: > 100 MV/m
• “Compact” collider - total length < 50 km at 3 TeV
• Normal conducting acceleration structures at high frequency

• Novel Two-Beam Acceleration Scheme
 • Cost effective, reliable, efficient
 • Simple tunnel, no active elements
 • Modular, easy energy upgrade in stages

Main beam – 1 A, 156 ns from 9 GeV to 1.5 TeV
100 MV/m

Drive beam - 95 A, 240 ns from 2.4 GeV to 240 MeV

CLIC TUNNEL CROSS-SECTION

4.5 m diameter

CLIC @ OXFORD 22-05-08
J.P.Delahaye
Strategy to address key issues

• Key issues common to all Linear Collider studies independently of the chosen technology in close collaboration with the International Linear Collider (ILC) study:
 • On Accelerator Test Facility (ATF1&ATF2@KEK)
 • With European Laboratories in the frame of the Coordinated Accelerator Research in Europe (CARE) and of a “Design Study” (EUROTeV) funded by EU Framework Programmes (FP6 presently and FP7 Integrated Activity in the future)

• Key issues specific to CLIC technology:
 • Focus of the CLIC study
 • All R1 (feasibility) and R2 (design finalisation) key issues addressed in test facilities: CTF1,2,3@CERN
Close CLIC & ILC Collaboration

- CLIC study members participating to ILC GDE
 - Major partners in specific studies and ILC Reference Design Report
 - ILC@CERN Site Specific Cost Study (CERN = European sample site)
- Key ILC experts in CLIC Advisory Committee
- Fruitful collaboration on R&D of generic Linear Colliders (CLIC&ILC) key issues
 - Participation in EUROTeV design study & CARE project
 - R&D on Beam diagnostics, Beam Delivery System (BDS), Beam dynamics
 - Tests with beam in CTF3 Test facility
 - Common participation to R&D on generation of Low Emittances generation @ ATF1/KEK and Strong Beam Focusing to nanometers sizes @ATF2/KEK
- Future common study of subjects with strong synergy between CLIC & ILC
 - FP7 EU supported in Coordinated Accelerator R&D (EUCARD) with a CLIC/ILC work package (NC Linacs)
 - Launching common CLIC/ILC studies with ILC Project Managers (Feb08 @ CERN) following constructive visit of B.Barish (Nov 07):
 - Civil engineering & conventional facilities
 - Beam delivery System and Machine -Detector Interface
 - Physics & Detectors
 - Cost & Schedule
CLIC/CTF3 Multi-Lateral Collaboration of Volunteer Institutes
Organized as a Physics Detector Collaboration

20 members representing 25 institutes involv. 17 funding agencies from 14 countries

Collab. Board: Chairperson: M. Calvetti/INFN; Spokesperson: G. Geschonke/CERN

MoU with addenda describing specific contribution (& resources)

<table>
<thead>
<tr>
<th>Countries</th>
<th>Funding Agencies</th>
<th>Laboratory</th>
<th>Representatives & Advisory</th>
<th>Team Leaders</th>
<th>MoU – Addenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINLAND</td>
<td>CEA/DSM-Saclay</td>
<td>IPP (DAEPNIA)</td>
<td>D.O. Riske, K. Osterberg</td>
<td>K. Osterberg (Former: D.O. Riske)</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>FRANCE</td>
<td>CNRS/IN2P3</td>
<td>LAL, LURE</td>
<td>G. Wurmser</td>
<td>V. Vilaite (Former: V. Kariotakis)</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>INDIA*</td>
<td>Indian DOE</td>
<td>Bhabhato, Indore</td>
<td>V. Sahni, P. Srivastava</td>
<td>V. Sahni (Deputy: P. Srivastava)</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>ITALY</td>
<td>INFN</td>
<td>INF</td>
<td>M. Calvetti, A. Ghigo</td>
<td>A. Ghigo (Deputies: C. Biscari & F. Marcellini)</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>NORWAY</td>
<td>The Research Council of Norway</td>
<td>University of Oslo</td>
<td>S. Stepnes</td>
<td>S. Stepnes (Deputy: E. Adli)</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>PAKISTAN</td>
<td></td>
<td></td>
<td>H. Hoornari, S. Ahmad</td>
<td>H. Hoornari</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>Budker Inst (BINP)</td>
<td>JINR</td>
<td>A. Skrinskii</td>
<td>Not yet nominated</td>
<td>Link to pdf - Amend: pdf</td>
</tr>
<tr>
<td>SPAIN</td>
<td>Ministry of Education & Science (MEC)</td>
<td>CIEMAT, UPC, IFIC</td>
<td>J. Fuster, L. Garcia-Tabariz</td>
<td>F. Toral (Deputy: L. Garcia-Tabariz)</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>SWEDEN</td>
<td>Swedish Research Council</td>
<td>Uppsala Univ and Svedberg Lab (TSL)</td>
<td>T. Ekelo, V. Ziemenn</td>
<td>T. Ekelo (Deputy: V. Ziemenn)</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>SWITZERLAND</td>
<td>Wallenberg Foundation</td>
<td>Paul Scherrer Inst (PSI)</td>
<td>L. Rivkin, T. Garvey</td>
<td>L. Rivkin (Deputy: T. Garvey)</td>
<td>Link to pdf</td>
</tr>
<tr>
<td>TURKEY</td>
<td>Ankara Univ & Gazi Univ</td>
<td>A.K. Ciftçi</td>
<td>A.K. Ciftçi (Deputy: S. Sultanov)</td>
<td></td>
<td>Link to pdf</td>
</tr>
<tr>
<td>UNITED-kingdom</td>
<td>STFC</td>
<td>I. Adams Institute for Accelerator Science</td>
<td>G. Blair, K. Peach</td>
<td></td>
<td>Link to pdf</td>
</tr>
<tr>
<td>USA</td>
<td>DOE</td>
<td>Northwestern Univ Illinois (NWU)</td>
<td>M. Velasco</td>
<td>Not yet nominated</td>
<td>Link to pdf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SLAC</td>
<td>R. Ruth, S. Tantawi</td>
<td>Not yet nominated</td>
<td>Link to pdf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jefferson Laboratory (JLAB)</td>
<td>A. Hutton</td>
<td>Not yet nominated</td>
<td>Link to pdf</td>
</tr>
</tbody>
</table>
Discussion with possible future collaboration partners:

<table>
<thead>
<tr>
<th>Countries</th>
<th>Funding Agencies</th>
<th>Laboratory</th>
<th>Representatives & Advisors</th>
<th>MoU_Addenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHINA</td>
<td></td>
<td>Tsinghua Univ</td>
<td>H. Chen, H. Wenhui</td>
<td></td>
</tr>
<tr>
<td>IRAN</td>
<td></td>
<td>Inst for Theoretical Phys and Math (IPM)</td>
<td>H. Arfaei</td>
<td></td>
</tr>
<tr>
<td>UNITED-</td>
<td>STEFC</td>
<td>RAL</td>
<td>G. Hirst, H. Hutchinson</td>
<td></td>
</tr>
<tr>
<td>KINGDOM</td>
<td></td>
<td>Cockcroft Institute</td>
<td>S. Chattopadhyay, J. Dainton</td>
<td></td>
</tr>
</tbody>
</table>

Visiting Scientist: MoU being finalized

MoUs being finalized

Present collaboration with RAL on Laser development for PHIN in EU FP6 CARE
ANKARA UNIVERSITY (TURKEY)
BERLIN TECH. UNIVERSITAT (GERMANY)
BINP (RUSSIA)
CERN
CIEMAT (SPAIN)
DAPNIA/Saclay (FRANCE)
RRCAT-Indore (INDIA)

FINNISH INDUSTRY (FINLAND)
GAZI UNIVERSITIES (TURKEY)
HELSINKI INSTITUTE OF PHYSICS (FINLAND)
IAP (RUSSIA)
INSTITUTO DE FISICA CORPUSCULAR (SPAIN)
INFN / LNF (ITALY)
J. ADDAMS INSTITUTE (UK)

JASRI (JAPAN)
JEFFERSON LAB (USA)
JINR (RUSSIA)
KEK (JAPAN)
LAL/Orsay (FRANCE)
LAPP/ESIA (FRANCE)
LLBL/LBL (USA)
NCP (PAKISTAN)

OSLO UNIVERSITY (NORWAY)
PSI (SWITZERLAND)
NORTH-WEST. UNIV. ILLINOIS (USA)
POLYTECH. UNIVERSITY OF CATALONIA (SPAIN)
RAL (UK)
SLAC (USA)
Svedberg Laboratory (Sweden)
UPPSALA UNIVERSITY (SWEDEN)
Addressing all major CLIC technology key issues in CLIC Test Facility (CTF3)

First Accelerator R&D recognized as CERN Physics Experiment (Grey Book)
Demonstrate Drive Beam generation
(fully loaded acceleration, beam intensity and bunch frequency multiplication x8)

Demonstrate RF Power Production and test Power Structures (PETS)

Demonstrate Two Beam Acceleration and test Accelerating Structures
CTF3 – Collaborations

- INFN-LNF CIEMAT
- BINP LURE CERN
- NWU LAPP Uppsala

- INFN-LNF CERN

- CERN NWU
- PSI Uppsala

- CERN LAL
- SLAC

- IAP

- Uppsala CERN

- CIEMAT
- UPC IFIC
- CERN

- CERN LAL
- SLAC

- CERN NWU
- PSI Uppsala

- INFN-LNF CERN

- CERN LAL
- SLAC
CTF3 – R&D Issues - where

- recombination x 2
- bunch length control
- fully loaded acceleration
- phase-coding

- recombination x 4
- bunch compression
- PETS on-off
- two-beam acceleration
- structures 12 GHz
- deceleration stability
- structures 30 GHz

TRC Issues addressed When?

- R1.1 – structures 2006-10
- R1.2 – DB generation 2006-08
- R1.3 – PETS on-off 2009-10
- R 2.1 – structure materials 2006-10
- R 2.2 – DB decelerator 2009-10
- R 2.3 – CLIC sub-unit 2008-10
Drive beam generation with full beam-loading acceleration in CTF3 linac

- Measured RF-to-beam efficiency 95.3%
- Theory 96% (~4% ohmic losses)

Dipole modes suppressed by slotted iris damping (first dipole’s Q factor < 20) and HOM frequency detuning

RF pulse at structure input
RF pulse at structure output

1.5 µs beam pulse
analog signal

SiC load
Damping slot

Drive beam generation with full beam-loading acceleration in CTF3 linac

- Measured RF-to-beam efficiency 95.3%
- Theory 96% (~4% ohmic losses)

Dipole modes suppressed by slotted iris damping (first dipole’s Q factor < 20) and HOM frequency detuning

RF pulse at structure input
RF pulse at structure output

1.5 µs beam pulse
analog signal

SiC load
Damping slot

Drive beam generation with full beam-loading acceleration in CTF3 linac
Beam intensity and RF frequency multiplication (factor 2) in CTF3 Delay Loop
Beam commissioning of the Combiner ring

Intensity and Frequency multiplication by factor 4 (3 to 12 GHz)

2.6 A

8.5 A
CLIC Experimental Area (CLEX)

- Test beam line (TBL) to study RF power production (2.5 TW at 12 GHz) and drive beam decelerator dynamics, stability & losses
- Two Beam Test Stand to study probe beam acceleration with high fields at high frequency and the feasibility of Two Beam modules

Construction on schedule
Equipment installation from May 2007, Beam foreseen from March 2008

CLIC @ OXFORD 22-05-08
Produced power at 30 GHz up to about 100 MW – long pulses (up to 300 ns) available for the first time

Structure tests started in 2005 - 8 structures tested until now
CLIC Power Extraction and Transfer Structure (PETS)

In its final configuration, PETS comprises eight octants separated by the damping slots. Each of the slots is equipped with HOM damping loads. This arrangement follows the need to provide strong damping of the transverse modes.

To reduce the surface field concentration in the presence of the damping slot, the special profiling of the iris was adopted.

CLIC ClC @ Oxford 22-05-08
J.P. Delahaye 24

PETS parameters:
- Aperture = 23 mm
- Period = 6.253 mm (90°/cell)
- Iris thickness = 2 mm
- R/Q = 2258 Ω
- V group = 0.453
- Q = 7200
- P/C = 13.4
- E surf. (135 MW) = 56 MV/m
- H surf. (135 MW) = 0.08 MA/m (ΔT max (240 ns, Cu) = 1.8 °C)

E-field
H-field

I. Syratchev
Testing Accelerating Structures
CTF3 High-Power test results @ 30 GHz

CTF II experiment

CLIC goal

$E \sim T^{1/6}$

$E \sim T^{1/4}$

Reached nominal CLIC values:

$150 \text{ MV/m} - 70 \text{ ns}$

Breakdown Rate not compatible with LC operation
• Acceptable Breakdown Rate in linear collider operation not higher than 10^{-6}
• Reduction of accelerating field by about 30 MV/m for low BR with Cu

CTF3 High-Power tests

Various materials results @ 30 GHz

CLIC operational goal
CTF3 - SLAC High-Power test results @ 30 & 11.4 GHz

- Structures with scaled geometries at different frequencies have the same performance.

Scaling introduced in a parametric model (taking into account RF structure & beam dynamics constraint), used to study optimum cost & efficiency.
Accelerating structure limitations:
 rf breakdown and pulsed surface heating (rf) constraints:

Beam dynamics constraints:
 Beam quality preservation during acceleration in main linac with high wake fields environment: *(conditions similar to NLC)*
 Beam focusing in Beam Delivery System and collision in detector in high beamstrahlung regime

Deduce CLIC parameters and performance: > 200 millions structures

Optimising

Performance or figure of merit
Luminosity per linac input power:
\[\frac{\int L \, dt}{\int P \, dt} \sim \frac{L_b \times \eta}{N} \]

Cost estimation of the overall complex at 3 TeV
(invest. & exploit. 10 years)
Two Beam Module

20760 modules
71460 power production structures PETS (drive beam)
143010 accelerating structures (main beam)
CLIC Standard Two Beam Module
Single CLIC tunnel

with alcoves for
drive beam return
loops and dumps
Longitudinal section of a laser straight Linear Collider on CERN site–

Phase 1: 1 TeV extension 19.5 km
Phase 2: 3 TeV extension 48.5 km

Detectors and Interaction Point

IP under CERN Prevessin site

CERN site Prevessin
CLIC performances (FoM) and cost (relative) as a function of the accelerating gradient

- Performances increasing with lower accelerating gradient (mainly due to higher efficiency)
- Flat cost variation in 100 to 130 MV/m with a minimum around 120 MV/m

\[E_{\text{cms}} = 3 \, \text{TeV} \quad L_{(1\%)} = 2.0 \times 10^{34} \, \text{cm}^{-2}\text{s}^{-1} \]
CLIC performances (FoM) and cost optimisation as function of RF frequency

- Maximum Performance around 14 GHz
- Flat cost variation in 12 to 16 GHz frequency range with a minimum around 14 GHz

\[E_{\text{cms}} = 3 \text{ TeV} \quad L(1\%) = 2.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \]
The beauty of 12 GHz

- Close to maximum Performance and minimum Cost (14 GHz)
- Very close to the NLC and JLC frequency: 11.4 GHz
 - Building up on wide expertise and long-term R&D made during many years on warm structures, RF power sources, beam dynamics at SLAC and KEK
 - Take advantage of low(er than 30 GHz) frequency for easier fabrication (tolerances, vacuum), relaxed requirements (alignment, timing, etc…),
- RF power generation and frequency multiplication in CLIC TBA RF Power Source
 - Possibly drive beam linac at 1.3 GHz (with possible synergy with ILC MBK developments) and multiplication by 8 (2*4) instead 36
 - High gradients achievable with short RF pulse provided by TBA RF power source
 - Easy adaptation of CTF3 (multiplication factor by 8 instead of 10)
- Stand alone power sources available:
 - Makes the best use of developments and equipments at SLAC and KEK
Date: March 29, 2007

To: Jean-Pierre Delahaye (jean-pierre.delahaye@cern.ch)

CC: Sami Tantawi, Ronald Ruth, Chris Pearson, Chris Adolphsen

From: Persis S. Drell

Re: CERN and CLIC Collaboration

With the recent change of the CLIC linac frequency to 12 GHz, we anticipate a growing collaboration between our two laboratories on high gradient research. Not only do we welcome this, but believe the resulting synergy is necessary for the future developments of accelerators and related technologies.

Our work on high gradient research is done under the auspices of the US High-Gradient Research Collaboration for future colliders. This effort at SLAC is managed by Sami Tantawi, who is also the spokesman for the national collaboration. Under this umbrella we are increasing our capabilities to serve users and collaborators. Collaborators can utilize the SLAC facilities in three ways:

1. Take advantage of the world-class design capabilities and manufacturing facilities to have accelerator structures, rf components, and rf sources (klystrons) designed and built. In particular, our extensive expertise for X-band systems will help ensure a successful design and implementation.

2. SLAC can provide reusable input power couplers and compatible flanges so you need only worry about the design of the accelerator structure “proper.”

3. Finally, SLAC can offer high-power rf testing at 11.424 GHz.

For collaborative efforts, including pulsed heating research, manufacturing of accelerator structures, rf components, klystrons, modifying existing 11.424 GHz components to work at 12 GHz, and acquiring reusable couplers, please contact Sami directly. He will organize the work with others including Chris Pearson, the head of the klystron department, which is the prime manufacturing facility for these components.

For the time being, the NLCTA infrastructure is the best place for testing CERN-manufactured accelerator structures at 11.424 GHz. For this, as usual, please contact Chris Adolphsen directly, who will make the appropriate arrangements. On the timescale of summer 2007 we will have dedicated test stands in the Klystron Test Lab capable of 11.424 GHz testing. We anticipate these new test stands will offer faster turn around and
Appendix 2 to Agreement on Collaborative Work (V3)

Collaboration on Fabrication and Tests of High-Gradient X-Band Accelerating Structures

1. Personnel of the Collaboration:

KEK: Yukihide Kamiga, Director of Accelerator Laboratory of KEK
Toshiyuki Higo, Accelerator Laboratory of KEK
Shigeaki Fukuda, Accelerator Laboratory of KEK

CERN: Jean-Pierre Delahaye, Accelerators and Beams Department
Walter Wuytsch, Accelerators and Beams Department

2. Time schedule:

3. Scope of the Collaboration:

3.1 Test of high-field structures:
KEK utilizes the Nextef (X-band test facility) at KEK for this collaboration. KEK staff will visit KEK to help prepare the system to suit the Compact Linear Collider (CLIC) study. KEK expects to conduct a test of at least one CLIC structure in 2007. KEK will pursue the tests in a concerted manner with SLAC and CERN.

3.2 Fabrication of high-field test structures:
Test structures will be made by CERN, SLAC and KEK. The actual division of work will be decided by discussion among these three laboratories. KEK will focus in 2007 on the fabrication of "CLIC vg1" structures composed of disks.

3.3 Fabrication of CLIC structures:
KEK starts studying the fabrication of a quadrant of a CLIC structure in 2007. If this is successful, KEK will make a high-power-ready CLIC structure in 2008.

3.4 Future studies:
Further possible structure fabrications and tests will be defined by common agreement between CERN and KEK based on the outcomes of the initial tests.
New CLIC Parameters (December 2006)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Old Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Linac RF frequency</td>
<td>30 GHz</td>
<td>12 GHz</td>
</tr>
<tr>
<td>Accelerating field</td>
<td>150 MV/m</td>
<td>100 MV/m</td>
</tr>
<tr>
<td>Overall length @ $E_{CMS} = 3$ TeV</td>
<td>33.6 km</td>
<td>48.2 km</td>
</tr>
</tbody>
</table>

- Substantial cost savings and performance improvements for 12 GHz / 100 MV/m indicated by parametric model (flat optimum in parameter range)

- Promising results already achieved with structures in test conditions close to LC requirements (low breakdown rate) but still to be demonstrated with long RF pulses and fully equipped structures with HOM damping.

- Realistic feasibility demonstration by 2010
A shining example of fruitful collaboration

CLIC

T18_VG2.4_disk: Designed at CERN, Built at KEK, RF Tested at SLAC

![Graph](image)

- Improvement by RF conditioning (under progress)
- Latest data
- CLIC target
Accelerating Structure Performances

- ILC design
 - SC 1.3 GHz
- SLC operation
 - 3 GHz
- NLC design
 - 11.4 GHz
- CLIC design
 - 12 GHz
- C40vg8
 - 30 GHz
 - 2006
- T53vg3
 - 11.4 GHz
 - 2007
- T18vg24
 - 11.4 GHz
 - 2008

Loaded & Average Accelerating Field (MV/m)

RF to Beam efficiency (%)
12 GHz Structure Tests Flow Chart

2007

CLIC geometry OK

2008

CLICvg1 geometry OK

Disks OK

Quads OK +Damp

TD18_vg2.4_disk

T28_vg2.9

T18_vg2.4_disk

2009

Damping Not OK

TD18_vg2.4_disk

(T18_vg2.4_quad)

CLIC prototype quads damped

CLIC prototype disks damped

2010

CLICvg1 geometry not OK

TD28_vg2.9

Input from break down R&D

CLIC prototype TD28 like

Go towards more extreme structures
Current structure testing program

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan-Mar</th>
<th>Apr-Jun</th>
<th>Jul-Sep</th>
<th>Oct-Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTF3/CERN</td>
<td>30 GHz</td>
<td></td>
<td>HDS11_vg2</td>
<td>C30_vg2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C30_vg8.2</td>
<td>C30_vg2_TM02</td>
</tr>
<tr>
<td>NLCTA/SLAC</td>
<td>Station 1</td>
<td>11.4 GHz</td>
<td>T18_vg2.4_quad</td>
<td>C10vg2.9 [2x]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C10vg1.5 [2x]</td>
<td>C10vg0.6 [2x]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C10vg2.4_thick [2x]</td>
</tr>
<tr>
<td>NLCTA/SLAC</td>
<td>Station 2</td>
<td>11.4 GHz</td>
<td>T28_vg2.9</td>
<td>T18_vg2.4_disk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PETS 11.4 GHz</td>
</tr>
<tr>
<td>XTF/KEK</td>
<td>11.4 GHz</td>
<td></td>
<td>T18_vg2.4_disk [2]</td>
<td>TD18_vg2.4_quad [2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TD18_vg2.4 [2]</td>
</tr>
<tr>
<td>CLEX/CTF3</td>
<td>12GHz</td>
<td>PETS 12 GHz</td>
<td></td>
<td>T18_vg2.4_disk</td>
</tr>
</tbody>
</table>

Institution and Frequency
- CTF3/CERN: 30 GHz
- NLCTA/SLAC Station 1: 11.4 GHz
- NLCTA/SLAC Station 2: 11.4 GHz
- XTF/KEK: 11.4 GHz
- CLEX/CTF3: 12 GHz

Testing Materials
- HDS11_vg2
- C30_vg2.6
- C30_vg8.2
- C30_vg2_TM02
- T18_vg2.4_quad
- C10vg2.9 [2x]
- C10vg1.5 [2x]
- C10vg0.6 [2x]
- C10vg2.4_thick [2x]
- T28_vg2.9
- T18_vg2.4_disk
- TD18_vg2.4
- PETS 11.4 GHz
- T18_vg2.4_disk

Notes

- Current structure testing program to be conducted.

Image credit: iLC
New CLIC main parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center-of-mass energy</td>
<td>3 TeV</td>
</tr>
<tr>
<td>Peak Luminosity</td>
<td>$7 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Peak luminosity (in 1% of energy)</td>
<td>$2 \cdot 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Loaded accelerating gradient</td>
<td>100 MV/m</td>
</tr>
<tr>
<td>Main linac RF frequency</td>
<td>12 GHz</td>
</tr>
<tr>
<td>Overall two-linac length</td>
<td>41.7 km</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>$4 \cdot 10^9$</td>
</tr>
<tr>
<td>Beam pulse length</td>
<td>200 ns</td>
</tr>
<tr>
<td>Average current in pulse</td>
<td>1 A</td>
</tr>
<tr>
<td>Hor./vert. normalized emittance</td>
<td>660 / 20 nm rad</td>
</tr>
<tr>
<td>Hor./vert. IP beam size bef. pinch</td>
<td>53 / ~1 nm</td>
</tr>
<tr>
<td>Total site length</td>
<td>48.25 km</td>
</tr>
<tr>
<td>Total power consumption</td>
<td>322 MW</td>
</tr>
</tbody>
</table>

Provisional values
Main CLIC/ILC parameters @ various energies

See [Comparison Table RC 12Oct07 HTML](https://clic-meeting.web.cern.ch/clic-meeting/ComparisonTable_RC_12oct07.html)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>3 TeV</th>
<th>1 TeV</th>
<th>0.5 TeV</th>
<th>ILC</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center of mass energy</td>
<td>E_{cm}</td>
<td>3000</td>
<td>1000</td>
<td>500</td>
<td>500</td>
<td>GeV</td>
</tr>
<tr>
<td>Main Linac RF Frequency</td>
<td>f_{RF}</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1.3</td>
<td>GHz</td>
</tr>
<tr>
<td>Luminosity</td>
<td>L</td>
<td>5.9</td>
<td>2.25</td>
<td>2.24</td>
<td>2</td>
<td>$10^{34} \text{cm}^{-2} \text{s}^{-1}$</td>
</tr>
<tr>
<td>Luminosity (in 1% of energy)</td>
<td>$L_{99.9%}$</td>
<td>2</td>
<td>1.08</td>
<td>1.36</td>
<td></td>
<td>$10^{34} \text{cm}^{-2} \text{s}^{-1}$</td>
</tr>
<tr>
<td>Linac repetition rate</td>
<td>f_{rep}</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>5</td>
<td>Hz</td>
</tr>
<tr>
<td>No. of particles / bunch</td>
<td>N_{b}</td>
<td>3.72</td>
<td>3.72</td>
<td>3.72</td>
<td>20</td>
<td>10^8</td>
</tr>
<tr>
<td>No. of bunches / pulse</td>
<td>l_{b}</td>
<td>312</td>
<td>312</td>
<td>312</td>
<td>2670</td>
<td></td>
</tr>
<tr>
<td>No. of drive beam sectors / linac</td>
<td>N_{unit}</td>
<td>24</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overall two linac length</td>
<td>l_{linac}</td>
<td>42</td>
<td>14</td>
<td>7</td>
<td>22</td>
<td>km</td>
</tr>
<tr>
<td>Proposed site length</td>
<td>l_{tot}</td>
<td>48</td>
<td>19.5</td>
<td>12</td>
<td>31</td>
<td>km</td>
</tr>
<tr>
<td>DB Pulse length (total train)</td>
<td>r_{t}</td>
<td>139</td>
<td>46</td>
<td>23</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td>Beam power / beam</td>
<td>P_{b}</td>
<td>14</td>
<td>4.6</td>
<td>4.6</td>
<td>10.8</td>
<td>MW</td>
</tr>
<tr>
<td>Wall-plug power to beam efficiency</td>
<td>n_{wpelf}</td>
<td>8.7</td>
<td>6.1</td>
<td>6.1</td>
<td>9.4</td>
<td>%</td>
</tr>
<tr>
<td>Total site AC power</td>
<td>P_{tot}</td>
<td>322</td>
<td>~150</td>
<td>~150</td>
<td>230</td>
<td>MW</td>
</tr>
<tr>
<td>Transverse horizontal emittance</td>
<td>γ_{x}</td>
<td>660</td>
<td>660</td>
<td>660</td>
<td>8000</td>
<td>nm rad</td>
</tr>
<tr>
<td>Transverse vertical emittance</td>
<td>γ_{y}</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>nm rad</td>
</tr>
<tr>
<td>Horizontal beam size at IP before pinch</td>
<td>β_{x}</td>
<td>40</td>
<td>142</td>
<td>640</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Vertical beam size at IP before pinch</td>
<td>β_{y}</td>
<td>1</td>
<td>2</td>
<td>5.7</td>
<td></td>
<td>mm</td>
</tr>
</tbody>
</table>
Beam emittances at Damping Rings

![Graph showing beam emittances for different experiments.](image)

- CLIC TeV 3
- ATF achieved
- ILC GeV 500
- ATF Design
- SLC

Horizontal Emittance (μrad-m)

Vertical Emittance (μrad-m)
R.M.S. Beam Sizes at Collision in Linear Colliders

- **CLIC 500**
- **CLIC 3000**
- **ILC 500**
- **SLC**
- **FFTBB**
- **ATF2**

- **Horizontal Beam Size (nm)**
- **Vertical Beam Size (nm)**
Performances of Lepton Colliders

![Graph showing performances of LEP, SLC, ILC, and CLIC colliders.](image)

- **CLIC**
 - Luminosity (cm⁻² sec⁻¹)
 - Energy (TeV)
 - 1.0 x 10³⁰ to 1.0 x 10³⁵
 - 0 to 5 TeV

- **ILC**, **SLC**, **LEP**

CLIC @ OXFORD 22-05-08

J.P. Delahaye
CLIC Work program till 2010

- Work programme and resources (2007-2015)

- Demonstrate feasibility of CLIC technology in CTF3

- Design of a linear Collider based on CLIC technology
 http://clic-study.web.cern.ch/CLIC-Study/Design.htm

- Estimation of its cost in the CERN area and comparison with ILC

- CLIC Physics study and detector development:
 http://clic-meeting.web.cern.ch/clic-meeting/CLIC_Phy_Study_Website/default.html

- Preparation of a Conceptual Design Report to be published in 2010
CLIC'07 provides a forum to review all aspects related to the Accelerator, Detector and Particle Physics of a Multi-TeV Linear Collider based on the CLIC technology.

It is open to any interested Accelerator and Physics expert already part or not of the CLIC/CTF3 collaboration.

The workshop will address in particular:

- Present status and future plans of the CLIC study
- CLIC physics case and detector issues
- The Test Facility CTF3 used to address major CLIC technology issues
- The ongoing CLIC R&D, future plans (including FP7 proposals) and open issues
- The CLIC related collaborative efforts
CLIC 07 participation
200 (registered) from 49 Inst. of 19 countries

• China: Tsinghua University
• Finland: Helsinki Univ.- HIP
• France: CNRS/IN2P3/LAL-LAPP
 LPNHE-LPSC, THALES, CEA DAPNIA
• Germany: DESY-ANKA/FZK
• Greece: Athens NTU-IASA-PATRAS
• India: BARC-RRCAT
• Iran: IPM
• Italy: INFN/LNF-Napoly Fed.II
• Japan: KEK
• Norway: NTNU
• Pakistan: NCP
• Russia: IAP—BINP-JINR
• Spain: CIENT-IFIC-UPC
• Sweden: Uppsala Univ.
• Switzerland: CERN-ETHZ-IPP-PSI
• Turkey: Ankara U-Dumlupinar U
 TOBB Univ Eco&Tech
• UK: COCKROFT-J.ADAMS-
 Lancaster Univ-Oxford-RHUL
• Ukraine: IAP-NAS
• USA: LBNL-Northwestern U.-
 TJNAF-OHMEGA-
 Oklahoma Univ-SLAC
- Following visit of Barry @ CERN (Nov 07)

 Independently of US/UK financial crisis,
 but even more desirable now

- CLIC-ILC Collaboration meeting #1 (Feb 08)
 http://indico.cern.ch/conferenceDisplay.py?confId=27435

- GDE/ACFA Meeting at Sendai/Japan (March 08)
 http://www.awa.tohoku.ac.jp/TILC08/

- CLIC-ILC Collaboration meeting #2 (May 08)
 http://indico.cern.ch/conferenceDisplay.py?confId=32263
The LHC is going to open a new energy frontier and we all anticipate the discoveries.

A complementary lepton collider will almost certainly be strongly motivated by those discoveries.

- Different approaches: ILC, CLIC; Muon Collider
- Issues include technological hurdles; parameters (e.g. energy); cost; site; timescales

The choice should be determined by the science!

Common goal! We need to optimize the developments, so a lepton collider can become a reality.
(My) motivations for CLIC/ILC collaboration

- Lack of resources: (both CLIC and ILC)
 - Join resources where useful and avoid duplication

- Foster ideas and favor exchanges
 - Beneficial to both

- Aiming (as much as possible) on common system designs
 - Similar energy: Ex: BDS, MDI, Detector, Cost....
 - Identify necessary differences due to technology and/or energy

- Avoid negative image of conflicting teams
 - Devastating for HEP

- Minimize contradicting presentations in 2010-12 (?):
 - Develop common knowledge of both designs and technologies on status, advantages, issues and prospects for the best use of future HEP
 - Common preparation of the (unavoidable) evaluation of technology
 - Avoid (another) evaluation by external (wise?) body. Better done by this community with technical expertise

- Even if ILC technology more mature, timescale not so ≠:
 - Technical Design in 2010-2012 for ILC and 2014 for CLIC
LHC, ILC & CLIC Schedules

<table>
<thead>
<tr>
<th>Year</th>
<th>LHC</th>
<th>ILC</th>
<th>CLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **LHC**
 - LHC Operation + LHC upgrade: 2008-2016
 - SLHC Operation: 2017-2024

- **ILC**
 - Technical design & industrialisation: 2012-2018
 - Construction (first stage): 2019-2022
 - Commissioning & Operation: 2023-2024

- **CLIC**
 - Technical design & industrialisation: 2012-2018
 - Construction (first stage): 2019-2022
 - Commissioning & Operation: 2023-2024

![Diagram of LHC, ILC & CLIC Schedules](image)
Prospects for Scientific Activities over the Period 2012 - 2016

To be decided in 2010-2011 in light of first physics results from LHC, and designed and R&D results from the previous years. This programme could most probably comprise:

- An LHC luminosity increase requiring a new injector (SPL and PS).

 The total cost of the investment over 6 years (2011-2016: 1000-1200 MCHF + a staff of 200-300 per year. Total budget: ~200-250 MCHF per year.

- Preparation of a Technical Design for the CLIC programme, for a possible construction decision in 2016 after the LHC upgrade (depending on the ILC future).
 Total CERN M + P contribution + ~250 MCHF + 1000-1200 FTE over 6 years.

- Enhanced infrastructure consolidation: 30 MCHF + 40 FTEs from 2011.

NB: Over the period 2012-2016. Effective participation of CERN in another large programme (ILC or a neutrino factory) will not be possible within the expected resources if positive decisions taken on LHC upgrade and CLIC Technical Design. This situation could totally change if none of the above programmes is approved or if a new, more ambitious level of activities and support is envisaged in the European framework.
Electrons

Undulator

Detectors

Electron source

Beam delivery system

Main Linac

Damping Rings

Main Linac

Positrons
Co-conveners of the CLIC-ILC working groups

- Civil Engineering and Conventional Facilities (CFS):
 Claude Hauviller/CERN, John Osborne/CERN, Vic Kuchler (FNAL)

- Beam Delivery Systems and Machine Detector Interface:
 D.Schulte/CERN, Brett Parker (BNL), Andrei Seryi (SLAC), Emmanuel Tsesmelis/CERN

- Detectors:
 L.Linssen/CERN, Francois Richard/LAL, Dieter.Schlatter/CERN, Sakue Yamada/KEK

- Cost & Schedule:
 H.Braun/CERN, John Carwardine (ANL), Katy Foraz/CERN, Peter Garbincius (FNAL), Tetsuo Shidara (KEK), Sylvain Weisz/CERN

- Beam Dynamics:
 A.Latina/FNAL), Kiyoshi Kubo (KEK), D.Schulte/CERN, Nick Walker (DESY)

Mandates & Plans of actions:
http://indico.cern.ch/conferenceDisplay.py?confId=32263
Other subjects

Possible future CLIC/ILC working groups:

- Polarised Positron generation (Posipol):
 - Undulator based
 - Compton Scattering
- Damping Rings
 - Electron clouds
 - IBS
- Beam Instrumentation

Later?

- Klystrons (L band) & Modulators with long pulses and high efficiency
- High power beam dumps
- Operational & reliability issues
- Machine Protection System
- Others?
• Presently (for each sub-system):
 • ILC team working on ILC system with ILC beam at 500 GeV
 • CLIC team working on CLIC system with CLIC beam at 3 TeV and scaling down to 1 TeV and 500 GeV
 • Fruitful exchanges between technical experts
 • Different designs of sub-systems for (not always) good reasons

• Possible future
 • CLIC & ILC teams working together on CLIC and ILC systems at 500 GeV
 • Identify together if same design/technology can be used or not
 • understand why and what necessary differences
 • Define together necessary modifications of the sub-system for the upgrade in energy to 1 TeV for ILC and 3 TeV for CLIC
Management?

ILC GDE

CLIC Collaboration Board

ILC

CLIC
Next Steps

- No additional organisation
- No additional meetings
- Participation of CLIC members to ILC meetings
- Participation to ILC members to CLIC meetings
- Working groups reporting on progress at already scheduled meetings:
 - GDE meeting - ILC conventional facilities and siting workshop: Dubna, June 4-6, 2008
 - ECFA workshop (Physics & Detectors): Warsaw, June 6-9, 2008
 - CLIC08 workshop: CERN, Oct 14-17, 2008
Plea for (enlarged) UK participation

• Existing contribution to CLIC:
 • Collaboration with J. Adams Institute (member of CLIC collaboration)
 • Could be enlarged

• Being defined:
 • Collaboration with Cockroft Institute (MoU under preparation)

• Proposal under evaluation by European Commissioning in FP7 framework program:
 • Building-up on successful IA “CARE” in FP6 (ending end 2008)
 • Integrated Activity “European Coordinated Accelerator R&D (EUCARD)” starting early 2009 for 4 years
JAI contribution to CLIC (Addendum to CLIC/CTF3 Collaboration MoU)

THE JOHN ADAMS INSTITUTE AT ROYAL HOLLOWAY, UNIVERSITY OF LONDON (JAI@RHUL) REPRESENTED BY GRAHAME BLAIR, in its capacity as Member of the CTF3 Collaboration, HEREBITII AGREES to make the following contributions:

Already provided until/inclusive 30th April 2007

- Simulation studies, including the CLIC beam delivery system.
- Plans for collaboration in the EU-FP7 scheme.

The JAI@RHUL shall assume responsibility for the provision of the following contributions for the period 2007-2010 to CTF3:

- Collaboration in the area of radiative processes from electron beams such as transition, diffraction and synchrotron radiation consisting of a PhD student, 0.5 FTE of a post doc, fractional effort from Academic Staff at the John Adams Institute at RHUL, plus hardware contributions.
- Contributions to the design and proposal to the EU of an instrumentation test beam at the CTF3/CLEX facility.
- The total financial equivalent of these contributions will be approximately 640 kCHF.

This Addendum shall form an integral part of the MoU.

Done in Geneva on 21st June 2007

For John Adams Institute at RHUL

Prof. Grahame Blair
Deputy Director of JAI

Dr. Hitesh Patel
Deputy Head (Research)
Research & Enterprise Office
Royal Holloway and Bedford New College
This letter is to assure you that the Cockcroft Institute remains committed to a growing collaboration with CERN on the CLIC program and in particular its CTF3 project, where topics below remain our foci:

- Multi-beam Klystrons (Richard Carter),
- Coherent Synchrotron Radiation from very short bunches of relativistic electrons (Robin Tucker)
- RF Crab Cavities (Amos Dexter)
- RF Cavity Design and Higher Order Mode Damping (R. Jones)

We are working hard to secure funding from multiple sources to promote activities in these areas along. Though we are proud and thankful of our 'observer status', as soon as we convince ourselves of delivering some real work on these via some symbolic funding from UK research councils, no matter how small, we will join the Collaboration proper as a full-fledged member.
Integrated Activity (IA) on European Coordination of Accelerator R&D (EUCARD): J.P.Koutchouk/CERN: https://eucard.web.cern.ch/EuCARD/

• Joint Research Activity (JRA):
 • Normal Conducting Linac: CLIC-ILC common subjects: E.Jensen/CERN
 - 8.7: Nb3Sn short SC helical undulator (J. Clarke),
 - 10.4: BDS (Angal-Kalinin)
 - 10.6: DR Vacuum (Malyshev)
 - 11.5: Crab cavities (A.Dexter)
 - 10.2: NC High Gradient (R. Jones)
 - 10.4: BDS (Appleby)
 - 11.5: Crab cavities (McIntosh)
 - 11.7: HOM distribution (R. Jones)

• Submitted on May 1rst
• Recently evaluated: high score: 14.5/15
• Negotiation phase till end of 2008
• Starting early 2009 for 4 years
Proposal for ITB Instrumentation Test Beamline at CTF3

Interested partners an contact persons

- Royal Holloway University of London, Grahame Blair
- LAPP Annecy, Yannis Karyotakis
- North Western University Chicago, Mayda Velasco
- University of Heidelberg, Carsten Welsch
- FZK and University of Karlsruhe, Anke-Susanne Mueller,
- University of Dortmund, Thomas Weis
- CERN, Hans Braun

Description

CTF3 is an accelerator test facility build at CERN by an international collaboration to develop CLIC linear collider technology. The construction of the CLEX area (=CLIC EXperimental area) at CTF3 has revealed an excellent opportunity to build a flexible Instrumentation Test Beam (ITB), allowing the development and testing of a vast range of advanced beam instrumentation in a dedicated beamline. This R&D is in high demand for both CLIC and ILC instrumentation issues but also beneficial for many other accelerator applications. The ITB is using the 180 MeV, low emittance beam from the CALIFES linac of CTF3.
The baseline concept of ITB comprises

- A bunch compressor to achieve bunch length as short as required by CLIC and ILC
- Focusing magnets to adjust beam size at test location
- Standard instrumentation to have best possible beam characterisation at the test location
- Dedicated vacuum sector to allow easy and rapid installation and pump down of experiments
- Magnet spectrometer to measure energy loss for specific experiments
- A gas target to generate beam halo in a controlled manner

A first set of experiments in ITB will address

- Novel bunch length diagnostics with coherent diffraction radiation
- Novel beam halo monitoring devices
- Novel beam loss monitoring devices
- Novel methods of single shot emittance measurement with OTR
- Characterization of precision beam position monitors
- Many other ideas for experiments are evolving

Cost & schedule

Technical infrastructure, floor space and a part of the magnets will be provided by CERN. The missing investment costs for the baseline ITB facility is estimated at 500 k€. Design and construction of ITB from t0 to first experiments will take about 2 years.
ITB doesn’t start from scratch but is an add-on to existing accelerator infrastructure of CTF3!
Conclusion

- Plea for participation of UK laboratories to future accelerator R&D:
 - CLIC R&D as active members of the CLIC/CTF3 collaboration
 - Generic Linear Collider R&D subjects
- Welcome to participate to CLIC/ILC collaboration on subjects with strong synergies between the two studies as recently launched:
 - Electron and positron sources (Compton scattering)
 - Damping ring issues (IBS)
 - Beam Delivery Systems (BDS)
 - Beam instrumentation:
 - BPM, Fast feedback, Laser wire
 - ATF2 developments towards nm beam sizes
 - CTF3 generic Instrumentation Test Line (ITB)
 - RF designs
 - Crab cavities, RF structures
- Etc...