

Towards a CLIC detector, opportunities for R&D

Lucie Linssen CERN

Outline and useful links

Outline:

- Short introduction to the CLIC accelerator
- CLIC physics
- CLIC detector issues <= difference wit ILC case
- CLIC detector R&D opportunities
- Outlook

Useful links:

- CLIC website
- http://clic-study.web.cern.ch/CLIC-Study/
- CLIC08 workshop, October 14-17 2008
- http://project-clic08-workshop.web.cern.ch/project-clic08-workshop/

CLIC base-line

Electron-Positron Collider

Centre-of-mass-energy: 0.5 - 3 TeV

Present R&D proceeds with following requirements:

- Luminosity L > few 10³⁴ cm⁻² s⁻¹ with acceptable background and energy spread
- Design should be compatible with a maximum length ~ 50 km
- Total power consumption < 500 MW

```
(cf LEP@100 GeV => 237 MW)
```

Affordable (CHF, €, \$,.....)

The CLIC Two Beam Scheme

Two Beam Scheme:

Drive Beam supplies RF power

- 12 GHz bunch structure
- low energy (2.4 GeV 240 MeV)
- high current (100A)

Main beam for physics

- high energy (9 GeV 1.5 TeV)
- current 1.2 A

No individual RF power sources

Main beam accelerating structures

Objective:

- Withstand of 100 MV/m without damage
- breakdown rate < 10⁻⁷
- Strong damping of HOMs Technologies:

Brazed disks - milled quadrants

Collaboration: CERN, KEK, SLAC

Best result so far

High Power test of T18_VG2.4_disk (without damping)

- Designed at CERN,
- Machined by KEK,
- Brazed and tested at SLAC

CLIC test facility CTF3

- Demonstrate Drive Beam generation
 (fully loaded acceleration, beam intensity and bunch frequency multiplication x8)
- Demonstrate RF Power Production and test Power Structures
- Demonstrate Two Beam Acceleration and test Accelerating Structures
- Operational Experience (reliability) by continuous operation (10m/year)

World-wide CLIC / CTF3 collaboration

http://clic-meeting.web.cern.ch/clic-meeting/CTF3 Coordination Mtg/Table MoU.htm

24 members representing 27 institutes involving 17 funding agencies of 15 countries

CIEMAT (Spain)

Cockcroft Institute (UK)

Gazi Universities (Turkey)

IAP NASU (Ukraine)

Instituto de Fisica Corpuscular (Spain)

INFN / LNF (Italy)

J.Adams Institute. (UK)

LAL/Orsay (France)

LAPP/ESIA (France)

NCP (Pakistan)

RRCAT-Indore (India)

Royal Holloway, Univ. London, (UK)

SLAC (USA)

Collaboration between ILC and CLIC

Since February 2008: official collaboration between ILC and CLIC http://clic-study.web.cern.ch/CLIC-Study/CLIC ILC Collab Mtg/Index.htm

Topic	Conveners	
Civil Engineering and Conventional Facilities (CFS)	Claude Hauviller (CERN), John Osborne (CERN), Vic Kuchler (FNAL)	
Beam Delivery Systems and Machine Detector Interface	Brett Parker (BNL), Daniel Schulte (CERN), Andrei Seryi (SLAC), Emmanuel Tsesmelis (CERN), Rogelio Tomas Garcia (CERN)	
Detectors and Physics	Lucie Linssen (CERN), Francois Richard (LAL), Dieter Schlatter (CERN), Sakue Yamada (KEK)	
Cost & Schedule	Hans Braun (CERN), John Carwardine (ANL), Katy Foraz (CERN), Peter Garbincius (FNAL), Tetsuo Shidara (KEK), Sylvain Weisz (CERN)	
Beam Dynamics	Andrea Latina (FNAL), Kiyoshi Kubo (KEK), Daniel Schulte (CERN), Nick Walker (DESY)	
Damping rings	*** new ***	
Positron generation	*** new ***	

CLIC parameters

Center-of-mass energy	3 TeV	
Peak Luminosity	6·10 ³⁴ cm ⁻² s ⁻¹	
Peak luminosity (in 1% of energy)	2·10 ³⁴ cm ⁻² s ⁻¹	
Repetition rate	50 Hz	
Loaded accelerating gradient	100 MV/m	
Main linac RF frequency	12 GHz	
Overall two-linac length	42 km	
Bunch charge	3.72·10 ⁹	
Bunch separation	0.5 ns	
Beam pulse duration	156 ns	
Beam power/beam	14 MWatts	
Hor./vert. normalized emittance	660 / 20 nm rad	
Hor./vert. IP beam size bef. pinch	40 / ~1 nm	
Total site length	48 km	
Total power consumption	415 MW	

Lucie Linssen, Oxford, 23/10/2008

CLIC physics

General Physics Context

- New physics expected in TeV energy range
 - Higgs, Supersymmetry, extra dimensions, ...?
- LHC will indicate what physics, and at which energy scale (is 500 GeV enough or need for multi TeV?)
- However, even if multi-TeV is final goal, most likely
 CLIC would run over wide range of energies (e.g. 0.5 3.0 TeV)
- ILC detector concepts are excellent starting point for high energy detector
- Like for ILC, assume 2 CLIC detectors in pull push mode

Cross-sections at a few TeV

Event Rates	3 TeV
(1000 fb^{-1})	10 ³ events
$e^+e^- o tar{t}$	20
$e^+e^- o b \overline{b}$	11
$e^+e^- o ZZ$	27
$e^+e^- \to WW$	490
$e^+e^- \rightarrow hZ/h u u$ (120 GeV)	1.4/530
$e^+e^- ightarrow H^+H^-(1 \text{ TeV})$	1.5
$e^+e^- ightarrow ilde{\mu}^+ ilde{\mu}^- ilde{(}1\; ext{TeV)}$	1.3

Luminosity spectrum and effect on **Resonance Production**

@CLIC significant beamstrahlung

- → Luminosity spectrum not as sharply peaked as at lower energy
- → need for luminosity

Resonance scans, e.g. a Z'

FIT ACCURACY

Observable	Breit Wigner	CLIC.01	CLIC.02
$M_{Z^{'}}$ (GeV)	3000 ± .12	± .15	± .21
$\Gamma(Z')/\Gamma_{SM}$	1. ± .001	± .003	± .004
σ_{peak}^{eff} (fb)	1493 ± 2.0	564 ± 1.7	669 ± 2.9
1 ab ⁻¹ =	⇒δ M/M ~ 1	0- 4 & δΓ/	'Γ = 3.10 ⁻³

If there is a light Higgs boson ...

- Large cross section @ CLIC
- Measure rare Higgs decays unobservable at LHC or a lower-energy e⁺ e⁻ collider
- CLIC could measure the effective potential with 10% precision
- CLIC could search indirectly for accompanying new physics up to 100 TeV
- CLIC could identify any heavier partners

Physics case: Supersymmetry

Examples of mass spectra for 4 SUSY scenarios (there are many more!)

Physics case: Supersymmetry

Mass determinations: $e^+e^- \rightarrow \widetilde{\mu}_I^+ \widetilde{\mu}_I^- \rightarrow \mu^+ \chi_1^0 \mu^- \chi_1^0$

• If $\sqrt{s} >> 2\widetilde{m}_{\mu}$, μ spectrum end points

$$E_{\text{min,max}} = \frac{\sqrt{s}}{4} \left(1 - \widetilde{m}_{\chi}^2 / \widetilde{m}_{\mu}^2 \right) \left(1 \pm \sqrt{1 - 4\widetilde{m}_{\mu}^2 / s} \right)$$

$$\widetilde{m}_{\mu} = (1145 \pm 25) \,\text{GeV}$$
 2% $\widetilde{m}_{\gamma} = (652 \pm 22) \,\text{GeV}$

$$\widetilde{m}_{\chi} = (652 \pm 22) \,\text{GeV}$$
 3%

Physics case: Extra dimensions

Extra-dimension scenario (Randall, Sundrum) predicts production of

- TeV-scale graviton resonances, decaying into two fermions.
- Cross sections are large, but wide range of parameters.

Examples:

Could be discovered at LHC

CLIC detector issues, and comparison with ILC

ILC experiment example

Harry Weerts

SiD Starting Point
Details & Dimensions

Flux return/muon

 R_{in} = 333 cm

 $R_{out} = 645 \text{ cm}$

Solenoid: 5 T; R_{in}= 250 cm

PFA

HCAL Fe: 34 layers; R_{in}= 138 cm

EMCAL Si/W: 30 layers R_{in}= 125 cm

Si tracking: 5 layers; R_{in}= 18 cm

Vertex detector:

5 barrels, 4 disks; R_{in}= 1.4 cm

Some Detector Design Criteria

Requirement for ILC

Impact parameter resolution

$$\sigma_{r\phi} \approx \sigma_{rz} \approx 5 \oplus 10/(p \sin^{3/2} \vartheta)$$

Momentum resolution

$$\sigma\left(\frac{1}{p_T}\right) = 5 \times 10^{-5} (GeV^{-1})$$

Jet energy resolution goal

$$\frac{\sigma_E}{E} = \frac{30\%}{\sqrt{E}} \qquad \frac{\sigma_E}{E} = 3 - 4\%$$

- Detector implications:
 - Calorimeter granularity
 - Pixel size
 - Material budget, central
 - Material budget, forward

Compared to best performance to date

Need factor 3 better than SLD

$$\sigma_{r\phi} = 7.7 \oplus 33/(p\sin^{3/2}\vartheta)$$

- Need factor 10 (3) better than LEP (CMS)
- Need factor 2 better than ZEUS

$$\frac{\sigma_E}{E} = \frac{60\%}{\sqrt{E}}$$

- Detector implications:
 - Need factor ~200 better than LHC
 - Need factor ~20 smaller than LHC
 - Need factor ~10 less than LHC
 - Need factor ~>100 less than LHC

LHC: staggering increase in scale, but modest extrapolation of performance ILC: modest increase in scale, but significant push in performance

CLIC detector issues

3 main differences with ILC:

- •Energy 500 GeV => 3 TeV
- More severe background conditions
 - Due to higher energy
 - Due to smaller beam sizes
- •Time structure of the accelerator

CLIC time structure

Train repetition rate 50 Hz

CLIC: 1 train = 312 bunches 0.5 ns apart 50 Hz

ILC: 1 train = 2820 bunches 337 ns apart 5 Hz

Consequences for CLIC detector:

- Assess need for detection layers with time-stamping
 - •Innermost tracker layer with sub-ns resolution
 - Additional time-stamping layers for photons and for neutrons
- Readout electronics will be different from ILC
- Consequences for power pulsing?

Beam-induced background

Background sources: CLIC and ILC similar

Due to the higher beam energy and small bunch sizes they are significantly more severe at CLIC.

- CLIC 3TeV beamstrahlung ΔE/E = 29% (10×ILC_{value})
 - Coherent pairs (3.8×10⁸ per bunch crossing) <= disappear in beam pipe
 - Incoherent pairs (3.0×10⁵ per bunch crossing) <= suppressed by strong B-field
 - γγ interactions => hadrons
- Muon background from upstream linac
 - More difficult to stop due to higher CLIC energy (active muon shield)
- Synchrotron radiation
- Beam tails from the linac
- Backscattered particles from the spent beam (neutrons)

CLIC CM energy spectrum

Due to beamstrahlung:

- At 3 TeV only 1/3 of the luminosity is in the top 1% Centre-of-mass energy bin
- Many events with large forward or backward boost

Beamstrahlung

Beamstrahlung, continued.....

At 3 TeV many events have a large forward or backward boost, plus many backscattered photons/neutrons

Lessons learnt from ILC case

Courtesy: Adrian Vogel, DESY

- Pair production is the dominant background
- Most backgrounds can be controlled by a careful design
- Use full detector simulation to avoid overlooking effects

- Innermost Vertex layer (r=1.5 cm) has 0.04 hits/mm²/BX
- Critical level of neutrons (radiation damage) at small radii of HCAL endcap

Extrapolation ILC = > CLIC

Full LDC detector simulation at 3 TeV

Simulation of e⁺e⁻ pairs from beamstrahlung origin

•Conclusion of the comparison:

- •ILC, use 100 BX (1/20 bunch train)
- •CLIC, use full bunch train (312 BX)

•CLIC VTX: O(10) times more background

•CLIC TPC: O(30) times more background

Courtesy: Adrian Vogel, DESY

LDC 3 TeV, with forward mask

Opening angle forward region

Consequences of machine-induced background for CLIC detector:

Need: higher magnetic field and/or larger tracking/vertex opening angle and larger crossing angle (20 mrad) and Mask in forward region

Background energy spectrum (without mask)

Origin: beamstrahlung => coherent pairs => backscattering γ,e,n

Andrey Sapronov

200000

its shielding

Detector

Intratrain

feedback

kicker and

BPM

2m from IP

New CLIC IR

Andrei Seryi, CLIC08

 Reduced feedback latency – several iterations of intratrain feedback over 150ns train

• FF QDs placed on tunnel floor, which is ~ten times

- Reduced risk and increased feasibility
- $L^* = 8m$?
- May still consider shortened L* for upgrade

Beam-Beam Jitter Tolerance

Daniel Schulte, CLIC08

- ullet At $3\,\mathrm{TeV}$ one finds vertical beam-beam jitter tolerance of $0.3\,\mathrm{nm}$
- At 500 GeV $\approx 0.7 \,\mathrm{nm}$
 - for conservative parameters $\approx 1.7 \, \mathrm{nm}$
- Quadrupole jitter tolerances range from 0.5 to 4 times beam-beam jitter tolerance, depending on configuration
- Can on imagine a support through the detector?
- Beam-beam feedback can give up to about a factor 2

These extremely high stability requirements of the accelerator also impose high stability requirements on the experiment (vibrations, turbulences...)

CLIC Calorimetry

Need deep HCAL $(7\Lambda_i \text{ to } 9\Lambda_i, \text{ tbc})$

Cannot increase coil radius too much => need heavy absorber Which HCAL material to use?

•Tradeoff between X_0 and Λ_i for hadron calorimetry

3 TeV e⁺e⁻ event on SiD detector layout, illustrating the need for deeper calorimetry

Lucie Linssen, Oxford, 23/10/2008

Which calorimetry at CLIC energies?

To overcome known shortfalls from LEP/LHC experience, new

concepts/technologies are chosen for ILC:

Based on Particle Flow Algorithm

- •Highly segmented (13-25 mm²) ECAL (analog)
- Very highly segmented ECAL (digital)
- •Highly segmented (1 cm²) HCAL (digital)
- •Segmented HCAL (analog)

Based on Dual (Triple) readout

- Sampling calorimeter
 - Plastic fibres
 - Crystal fibres (<= materials studies)
- Fully active calorimeter (EM part)
 - Crystal-based

Method and Engineering difficult, but conventional

Limited in energy-range to a few hundred GeV

Method and Engineering difficult and non-proven

Not limited in energy range

PFA for high-energy jets

Mark Thomson CLIC08 ILD detector description

$$\star$$Traditional calorimetry $\sigma_E/E \approx 60\%/\sqrt{E/\text{GeV}}$

- **★Does not degrade significantly** with energy (but leakage will be important at CLIC)
- **★Particle flow gives much better** performance at "low" energies very promising for ILC

What about at CLiC?

- **★PFA** perf. degrades with energy
- **★For 500 GeV jets, current alg.** and ILD concept:

$$\sigma_E/E \approx 85\%/\sqrt{E/\text{GeV}}$$

★Crank up field, HCAL depth...

$$\sigma_E/E \approx 65\%/\sqrt{E/\text{GeV}}$$

★Algorithm not tuned for very high energy jets, so can probably do significantly better

rms90 PandoraPFA v03-β

E _{JET}	$\sigma_{\rm E}/{\rm E} = \alpha/\sqrt{\rm E_{jj}}$ $ \cos\theta < 0.7$	σ _E / E j
45 GeV	23.8 %	3.5 %
100 GeV	29.1 %	2.9 %
180 GeV	37.7 %	2.8 %
250 GeV	45.6 %	2.9 %
500 GeV	84.1 %	3.7 %
500 GeV	64.3 %	3.0 %

63 layer HCAL (8 λ_I) B = 5.0 Tesla

Conclude: for 500 GeV jets, PFA reconstruction not ruled out

W/Z Separation at high Energies

★On-shell W/Z decay topology depends on energy: Mark Thomson CLIC08

- **★A few comments:**
 - Particle multiplicity does not change
 - Boost means higher particle density
 - •PFA could be better for "mono-jet" mass resolution
- **★PandoraPFA + ILD performance studied for:**

Larger track length beneficial for particle flow

Tracking

Tracking issues:

- Due to beam-induced background and short time between bunches:
 - Inner radius of Vertex Detector has to move out (30-40 mm)
 - High occupancy in the inner regions
- Narrow jets at high energy
 - 2-track separation is an issue for the tracker/vertex detector
 - Track length may have to increase (fan-out of jet constituents)?

Opportunities for Detector R&D and engineering studies

Opportunities for detector R&D

Just a first assessment of which R&D would be needed beyond present ILC developments

- Time stamping
- Alternative to PFA calorimetry
- Mechanical engineering studies
 - Integration studies
 - Heavy calorimeter concept
 - Large high-field solenoid concept
 - Sub-lifting studies
- Precise alignment studies
- Power pulsing and other electronics developments

R&D for Time stamping

0.5 nsec bunch spacing, 312 bunches/train, 50 Hz

Overlapping background for 312 BX will be an issue

Exact needs will come out of detector concept simulations

- (sub)-ns time stamping in most inner tracking layer
- Time stamping needed for photons? => preshower
- Time stamping needed for neutron? => layer within HCAL

Critical issue for time-stamping in the inner tracking layer (and preshower)

- Critical analog design involving sensor+electronics for good time resolution
- High granularity (short strips?)
- Power consumption is an issue for high-precision TDC

Alternative to PFA calorimetry

R&D on dual/triple readout calorimetry

Basic principle:

- Measure EM shower component separately
- Measure HAD shower component separately
- Measure Slow Neutron component separately

EM-part=> electrons => highly relativistic => Cerenkov light emission

HAD-part=> "less" relativistic => Scintillation signal

Slow neutrons => late fraction of the Scintillation signal

Requires broader collaboration on materials + concept

Mechanical engineering studies

Integration studies

- Detailed forward region integration
- Overall detector integration studies
- Overall care for precise mechanical stability (decoupling from accelerator!)

- Heavy calorimeter concept (with 7-9 Λ_i)

- · Choice of suitable materials
- Overall concept design

Large high-field solenoid concept

- Extrapolation from CMS solenoid
- Replacement of Al coil stabiliser by stronger doped alloy (hardware R&D)
- Welding technique of reinforced conductor cable (hardware R&D)
- Suspension of heavy barrel calorimeter from coil cryostat

Sub-lifting studies

Smooth/precise displacements without vertical move (e.g. for push-pull)

Precise alignment

- Precise alignment studies/technologies
 - How to link left-arm and right-arm?
 - E.g. needed for luminosity measurement using Bhabha scattering
 - ILC requirements => $<4 \mu m (x,y)$, $<100 \mu m (z)$
 - CLIC requirement may be more severe
 - study requirements
 - develop technology
 - → solutions for integration

Leszek Zawiejski, FCAL collab.

Power pulsing and other electronics developments

- ILC => 5Hz => "on"-time 0.5% CLIC => 50 Hz => "on"-time 10⁻⁵
- Systematic study of power-pulsing feasibility
 - Needed for ILC and CLIC
 - Leading to recommendations for optimised design
 - Real case implementation
 - (What about influence on wire-bonds?)
- Overall electronics implementation compatible with CLIC timestructure
 - Study of the adaptations required (analog, digital, readout sequence)
 - Implementation of some of the ILC vertex/tracker/calo hardware developments for CLIC

Conclusions

- Work on the CLIC detector/physics has re-started
- CLIC detector concept studies are based on the ILC work
 - Basic concepts will be similar
 - ILC hardware developments are most relevant for CLIC
 - Software tools
- A number of areas have been identified, where the CLIC detector at 3
 TeV differs from the ILC concepts at 500 GeV
 - The initial CLIC concept simulation studies will concentrate on these areas
 - CLIC-specific R&D will be required in a number of technology domains
- Many thanks to ILC physics community, who helped to get the CLIC detector studies restarted in the framework of the recently established CLIC-ILC collaboration!

Spare slides

Major parameters for Linear Collider

Filling factor Linac length Gradient

Energy reach

$$E_{cm} = 2F_{fi} L_{linac} G_{RF}$$

Lucie Linssen, Oxford, 23/10/2008

interaction point

RF power source

Drive beam time structure - initial

Drive beam time structure - final

Tentative long-term CLIC scenario

Technology evaluation and Physics assessment based on LHC results for a possible decision on Linear Collider with staged construction starting with the lowest energy required by Physics

Forward region

 Tungsten Mask with polyethylene coating to absorb lowenergy backscattered relics (e,γ,n) from beamstrahlung.
 Containing Lumical and BeamCal

3 TeV centre-of-mass

In a snapshot.....

Differences between CLIC and ILC due to higher energy (3 TeV)

(details in following slides)

- Much increased background conditions (beamstrahlung and muons)
 - With several consequences for detector design
- More longitudinal depth of calorimetry
- Is PFA a good option for the higher CLIC energies?
- Cope with higher tracker occupancy and dense jets
- Solenoid size/strength expected to become an issue

Calorimeter depth

Figure 28.22: Required calorimeter thickness for 95% and 99% hadronic cascade containment in iron, on the basis of data from two large neutrino detectors and Bock's parameterization [143].

2 The Particle Flow Paradigm

★ In a typical jet :

Mark Thomson CLIC08

- 60 % of jet energy in charged hadrons
- 30 % in photons (mainly from $\pi^0 o \gamma\gamma$)
- + 10 % in neutral hadrons (mainly $\, {f n} \,$ and $\, {f K}_L$)

★ Traditional calorimetric approach:

- Measure all components of jet energy in ECAL/HCAL!
- ~70 % of energy measured in HCAL: $\sigma_{\rm E}/{\rm E} \approx 60\,\%/\sqrt{\rm E(GeV)}$
- · Intrinsically "poor" HCAL resolution limits jet energy resolution

★ Particle Flow Calorimetry paradigm:

- charged particles measured in tracker (essentially perfectly)
- Photons in ECAL: $\sigma_E/E < 20\%/\sqrt{E(GeV)}$
- Neutral hadrons (ONLY) in HCAL
- Only 10 % of jet energy from HCAL

 much improved resolution