

John Adams Institute Lecture

Optics solutions for the PS2 ring

Y. Papaphilippou CERN

February 7th, 2008

Contributors

■ W. Bartmann, M. Benedikt, C. Carli, J. Jowett (CERN)

Acknowledgements

G. Arduini, R. Garobi, B. Goddard, S. Hancock (CERN), Y. Senichev (FZ Jülich), D. Trbojevic (BNL)

Outline

- Motivation and design constraints for PS2
- FODO lattice
- Doublet/Triplet
- Flexible (Negative) Momentum Compaction modules
 - ☐ High-filling factor design
 - ☐ Tunability and optics' parameter space scan
 - ☐ "Resonant" NMC ring
 - ☐ Hybrid solution
- Comparison and perspectives

Motivation – LHC injectors' upgrade

Upgrade injector complex.

R. Garoby, BEAM' 07

- ☐ Higher injection energy in the SPS => better SPS performance
- ☐ Higher reliability

Design and optics constraints for PS2 ring

- Replace the ageing PS and improve options for physics
 - \square Provide $4x10^{11}$ protons/bunch for LHC (vs. $1.7x10^{11}$)
 - ☐ Higher intensity for fixed target experiments
- Integration in existing CERN accelerator complex
- Versatile machine:

Protons and ions

	Many	different	beams	and	bunch	patterns
--	------	-----------	-------	-----	-------	----------

Basic beam parameters	PS	PS2
Injection kinetic energy [GeV]	1.4	4
Extraction kinetic energy [GeV]	13/25	50
Circumference [m]	200π	1346
Transition energy [GeV]	6	~10/10i
Maximum bending field [T]	1.2	1.8
Maximum quadrupole gradient [T/m]	5	17
Maximum beta functions [m]	23	60
Maximum dispersion function [m]	3	6
Minimum drift space for dipoles [m]	1	0.5
Minimum drift space for quads [m]		0.8
Maximum arc length [m]		510

1	Constrained by incoherent $\Delta Q_{sc} \propto rac{N_b}{\epsilon_n \beta \gamma^2 B_f}$ space charge tune-shift	- F
' 	Improve SPS performance	•
	Analysis of possible bunch patterns: $C_{PS2} = (15/77) C_{SPS} = (15/7) C_{PS}$	
	Longitudinal aspects	
\ 	Normal conducting magnets	
\ 	Aperture considerations for high intensity SPS physics beam	
]	Space considerations 5	

< 0.2

FODO Ring

- Conventional Approach:
 - ☐ FODO with missing dipole for dispersion suppression in straights
 - □ 7 LSS cells, 22 asymmetric FODO arc cells, 2 dipoles per half cell, 2 quadrupole families
 - \square Phase advance of 88°, γ_{tr} of 11.4
 - □ 7 cells/straight and 22 cells/arc -> in total 58 cells
 - $\square \ Q_{H,V} = 14.1-14.9$
 - ☐ Alternative design with matching section and increased number of quadrupole families
 - ☐ Transition jump scheme under study

Dispersion suppressor and straight section

Cell length [m]	23.21
Dipole length [m]	3.79
Quadrupole length [m]	1.49
LSS [m]	324.99
Free drift [m]	10.12
# arc cells	22
# LSS cells:	7
# dipoles:	168
# quadrupoles:	116
# dipoles/half cell:	2

Doublet and Triplet arc cells

- Advantages
 - □ Long straight sections and small maximum ß's in bending magnets (especially for triplet)
- Disadvantage
 - ☐ High focusing gradients

Flexible Momentum

Compaction Modules

Aim at negative momentum compaction (NMC modules), i.e.

$$a_c = \frac{1}{C} \oint \frac{D(s)}{\rho} ds < 0$$

Similar to and inspired from existing modules

(SY. Lee et al, PRE, 1992, J-PARC high energy ring)

- First approach
 - ☐ Module made of three FODO cells
 - ☐ Match regular FODO to 90° phase advance
 - ☐ Reduced central straight section without bends
 - □ Re-matched to obtain phase advance (close to three times that of the FODO, i.e. 270°)
- Disadvantage: Maximum vertical β above 80m

10 20 30 40 50 reduced drift in center, average 90°/cell -> negative dispersion at beginning/end $\gamma_{tr} \sim 10i$

-25

NMC modules with high filling factor

- Improve filling factor: four FODO per module
- Dispersion beating excited by "kicks" in bends
- Resonant behavior: total phase advance $< 2\pi$
- Large radii of the dispersion vector produce negative momentum compaction
- High phase advance is necessary

Improving the high filling factor FMC

 $\delta_{\kappa}(m), \ \beta_{\nu}(m)$

- The "high-filling" factor arc module
 - □ Phase advances of **280°,320°** per module
 - \square γ_t of 8.2i
 - □ Four families of quads, with max. strength of **0.095m**⁻²
 - ☐ Max. horizontal beta of 67m and vertical of 43m
 - ☐ Min. dispersion of -6m and maximum of 4m
 - □ Chromaticities of -1.96,-1.14
 - ☐ Total length of 96.2m
- Slightly high horizontal β and particularly long module, leaving very little space for dispersion suppressors and/or long straight sections

 Reduce further the transition energy by moving bends towards areas of negative dispersion and shorten the module

- 1 FODO cell with 4 + 4 bends and an asymmetric low-beta triplet
 - □ Phase advances of **320°**,**320°** per module
 - \square γ_t of **6.2i**
 - □ Five families of quads, with max. strength of **0.1m**⁻²
 - ☐ Max. beta of **58m** in both planes
 - ☐ Min. dispersion of -8m and maximum of 6m
 - □ Chromaticities of -1.6,-1.3
 - ☐ Total length of 90.56m
- Fifth quad family not entirely necessary
- Straight section in the middle can control γ_t
- Phase advance tunable between
 240° and 330°

Main disadvantage the length of the module, giving an arc of around 560m (5 modules + dispersion suppressors), versus 510m for the FODO cell arc

 λ (m), D_{x}

The "short" NMC module

- Remove middle straight section and reduce the number of dipoles
- 1 asymmetric FODO cell with 4 + 2 bends and a lowbeta doublet
 - □ Phase advances of 272°,260° per module
 - □ **γ**_t of **10i**
 - ☐ Five families of quads, with max. strength of **0.1m**⁻²
 - ☐ Max. beta of around 60m in both planes
 - ☐ Min. dispersion of -2.3m and maximum of 4.6m
 - □ Chromaticities of -1.1,-1.7
 - □ Total length of **71.72**m

Considering an arc of 6 modules
 + 2 dispersion suppressors of similar length, the total length of the arc is around 510m

 $D_{x}(m), D_{xx}$

■ Phase advance tunable between 240° and 420° in the horizontal and between 250° and 320° in the vertical plane

Transition energy versus horizontal phase advance 65.0 $D_{\rm c}(m), D_{\rm cc}$ β_x 30 4.0 58.5 3.5 52.0 20 3.0 45.5 2.5 39.0 10 2.0 32.5 $\mathbf{\gamma_t}_{0}$ 1.5 26.0 1.0 19.5 0.5 -10 13.0 0.0 6.5 -0.5 -20 0.0 0.0 10. 20. 30. 40. 50. 60. 70. 80. imaginary s(m) $D(m), D_m$ 05.0 240 280 300 320 340 360 380 420 260 400 β_x μ_{x} [°] 6. 58.5 5. 52.0 65.0 -20. $3_{k}(m), \beta_{k}(m)$ D_{x} 45.5 58.5 3. 15. 39.0 52.0 2. 10. 45.5 32.5 5. 0.0 39.0 26.0 32.5 0.0 19.5 26.0 -5. 13.0 19.5 6.5 -10. 13.0 0.0 -15. 6.5 20. 50. 70. 10. 30. 40. 60. s(m)-20. 0.0 20. 30. 80. 0.0 10. 40. 50. 60. 70.

s(m)

- Almost linear dependence of momentum compaction with dispersion min/max values
- Higher dispersion variation for γ_t closer to 0
- lacktriangle Smaller dispersion variation for higher γ_t

Transition energy versus chromaticity

- Higher in absolute horizontal chromaticities for smaller transition energies
- Vertical chromaticities between -1.8 and -2 (depending on vertical phase advance)
- Main challenge: design of dispersion suppressor and matching to straights

Dispersion suppressor cell

- Similar half module as for the NMC with **2+5** dipoles (instead of 2+4)
- Using 4 families of quads to suppress dispersion, while keeping beta functions "small"
- Maximum beta of 70m
- Total length of 77.31m

- Adding a straight section with 7 FODO cells, using 2 matching quadrupoles
 - ☐ Straight drift of 9.5m

 $\beta_x(m), \beta_y(m)$

- □ Tunes of (12.1,11.4)
- □ **y**, of **12.9i**
- □ 13 families of quads, with max. strength of 0.1 m⁻²
- Max. beta of around 71m in horizontal and 68m in the vertical plane
- ☐ Dispersion of -2.3m and maximum of **4.6m**
- □ Chromaticities of -16.7, -25.8
- □ Total length of 1346m

The ring I

- 1 symmetric FODO cell with 3 + 3 bends and a low-beta doublet
 - □ Phase advances of 315°,270° per module
 - **8** x 315°->7 x 2 π
 - $8 \times 270^{\circ} > 6 \times 2\pi$
 - \square γ_t of 5.7i!!!
 - □ **Four** families of quads, with max. strength of 0.1m⁻²
 - ☐ Max. beta of around **59m** in both planes
 - ☐ Min. and max. dispersion of -8.5m and 8.9m
 - □ Chromaticities of -1.5,-1.7
 - ☐ Length of 1.2m between QF and D
 - ☐ Total length of 64.8m

Suppressing dispersion

- Dispersion is suppressed by fixing horizontal phase advance to multiple of 2π
- Solution with **odd** number of 2π multiples is preferable for getting **lower imaginary**

 $\beta_{\epsilon}(m), \beta_{\epsilon}(m)$

The "resonant" NMC arc

- 8 NMC modules
- Total horizontal phase advance multiple of 2π
- Maximum β of 59m
- Total length of **518m**

- Adding a straight section with 7 FODO cells, using 2 matching quadrupoles
 - ☐ Straight drift of 9.4m
 - □ Tunes of (16.8,9.8)
 - □ **γ**_t of **10.7i**
 - □ 8 families of quads, with max. strength of 0.1m⁻²
 - Extra families for phase advance flexibility in the straight
 - ☐ Max beta of around60.5m in horizontal and vertical plane
 - ☐ Min. and max. dispersion of **-8.5m** and **8.9m**
 - □ Chromaticities of -21.7, -19.8
 - ☐ Total length of 1346m

The "resonant" NMC ring II

An optimized NMC module

- 1 asymmetric FODO cell with 4 + 3 bends and a low-beta doublet
 - □ Phase advances of 316°,300° per module
 - \square γ_t of 5.6i!!!
 - □ **Four** families of quads, with max. strength of 0.1m⁻²
 - ☐ Max. beta of around 54m and 58m
 - ☐ Min. and max. dispersion of **-7.8m** and **10.2m**
 - □ Chromaticities of -1.3,-2
 - □ Total length of 73m

Suppressing dispersion

- Hybrid approach:
 - \square Phase advance close to multiple of 2π and 2 extra quad families ₂₆

12.

10.

8.

6.

The arc III

- 7 NMC modules
- Phase advances of $5.8 \times 2\pi$ and $5.5 \times 2\pi$
- Maximum β of 60m
- Total length of 511m

12.

- Adding a straight section with 7 FODO cells, using 2 matching quadrupoles
 - ☐ Straight drift of 9.5m
 - □ Tunes of (13.8,13.4)
 - □ **γ**_t of **10.9i**
 - □ 10 families of quads, with max. strength of 0.1 m⁻²
 - Extra families for phase advance flexibility in the straight

 $\delta_{\kappa}(m), \ \beta_{\nu}(m)$

- ☐ Max beta of around 58m in horizontal and 56m in the vertical plane
- ☐ Min. and max. dispersion of **-8.2m** and **10.2m**
- □ Chromaticities of -18.7, -29.5
- □ Total length of 1346m

The NMC ring III

Comparison

Parameters	RING I	RING II	RING II
Transition energy	12.9i	10.7i	10.9i
Number of dipoles	172	192	196
Dipole length [m]	3.45	3.11	3.03
Arc module length [m]	71.7	64.8	73
Number of arc modules	5+2	8	7
Arc length [m]	513.5	518	511
Straight section drift length [m]	9.5	9.4	9.5
Quadrupole families	13	8	10
Arc phase advance [2π]	5.2/5.2	7/6	5.8/5.5
Maximum beta functions [m]	71/68	61/61	58/56
Maximum dispersion function [m]	4.7	8.9	10.2
Tunes	12.1/11.4	16.8/9.8	13.8/13.4
Chromaticity	-16.7/-26.8	-21.7/-19.8	-18.7/-29.5

Summary

- Different lattice types for PS2 optics investigated
 - ☐ FODO type lattice a straightforward solution
 - Challenge: Transition crossing scheme
 - □ NMC lattice possible alternative
 - No transition crossing
 - Challenge: low imaginary transition energy

Perspectives:

- ☐ Complete the lattice design including chromaticity correction and dynamic aperture evaluation
- ☐ Detailed comparison based on performance with respect to beam losses
 - Collimation system
 - Non-linear dynamics
 - Collective effects