Optics solutions for the PS2 ring

Y. Papaphilippou
CERN

February 7th, 2008
Contributors

- W. Bartmann, M. Benedikt, C. Carli, J. Jowett (CERN)

Acknowledgements

Outline

- Motivation and design constraints for PS2
- FODO lattice
- Doublet/Triplet
- Flexible (Negative) Momentum Compaction modules
 - High-filling factor design
 - Tunability and optics’ parameter space scan
 - “Resonant” NMC ring
 - Hybrid solution
- Comparison and perspectives
Motivation – LHC injectors’ upgrade

- Upgrade injector complex.
 - Higher injection energy in the SPS => better SPS performance
 - Higher reliability

Present accelerators

- Linac2
 - Output energy: 160 MeV

- PSB
 - Output energy: 1.4 GeV

- PS
 - Output energy: 4 GeV, 26 GeV, 50 GeV

- SPS
 - Output energy: 450 GeV, 1 TeV

Future accelerators

- Linac4
 - Output energy: 50 MeV

- (LP)SPL
 - Output energy: 1.4 GeV

- PS2
 - Output energy: ~ 5 to 50 GeV – 0.3 Hz

- SPS+
 - Output energy: 50 to 1000 GeV

- SPS
 - Output energy: ~ 14 TeV

- LHC / SLHC

- DLHC

(LP)SPL: (Low Power)
Superconducting Proton Linac (4-5 GeV)
PS2: High Energy PS
(~ 5 to 50 GeV – 0.3 Hz)
SPS+: Superconducting SPS (50 to 1000 GeV)
SLHC: “Super-luminosity”
LHC (up to 10^{35} cm$^{-2}$s$^{-1}$)
DLHC: “Double energy”
LHC (1 to ~14 TeV)
Design and optics constraints for PS2 ring

- Replace the ageing PS and improve options for physics
 - Provide 4×10^{11} protons/bunch for LHC (vs. 1.7×10^{11})
 - Higher intensity for fixed target experiments
- Integration in existing CERN accelerator complex
- Versatile machine:
 - Many different beams and bunch patterns
 - Protons and ions

Basic beam parameters

<table>
<thead>
<tr>
<th></th>
<th>PS</th>
<th>PS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection kinetic energy [GeV]</td>
<td>1.4</td>
<td>4</td>
</tr>
<tr>
<td>Extraction kinetic energy [GeV]</td>
<td>13/25</td>
<td>50</td>
</tr>
<tr>
<td>Circumference [m]</td>
<td>200π</td>
<td>1346</td>
</tr>
<tr>
<td>Transition energy [GeV]</td>
<td>6</td>
<td>$\sim 10/10i$</td>
</tr>
<tr>
<td>Maximum bending field [T]</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Maximum quadrupole gradient [T/m]</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>Maximum beta functions [m]</td>
<td>23</td>
<td>60</td>
</tr>
<tr>
<td>Maximum dispersion function [m]</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Minimum drift space for dipoles [m]</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Minimum drift space for quads [m]</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Maximum arc length [m]</td>
<td></td>
<td>510</td>
</tr>
</tbody>
</table>

Constrained by incoherent space charge tune-shift

$$\Delta Q_{sc} \propto \frac{N_b}{\epsilon_n \beta \gamma^2 B_f} < 0.2$$

Improve SPS performance

Analysis of possible bunch patterns:

$$C_{PS2} = \frac{15}{77} \quad C_{SPS} = \frac{15}{7} \quad C_{PS}$$

Longitudinal aspects

Normal conducting magnets

Aperture considerations for high intensity SPS physics beam

Space considerations
Racetrack:

- Integration into existing/planned complex:
 - Beam injected from SPL
 - Short transfer to SPS
 - Ions from existing complex
- All transfer channels in one straight
- Minimum number of D suppressors
 - High bending filling factor
 - Required to reach 50GeV
FODO Ring

- Conventional Approach:
 - FODO with missing dipole for dispersion suppression in straights
 - 7 LSS cells, 22 asymmetric FODO arc cells, 2 dipoles per half cell, 2 quadrupole families
 - Phase advance of 88°, γ_{tr} of 11.4
 - 7 cells/straight and 22 cells/arc -> in total 58 cells
 - $Q_{H,V} = 14.1-14.9$
 - Alternative design with matching section and increased number of quadrupole families
 - Transition jump scheme under study

Optics solutions for the PS2 ring
Dispersion suppressor and straight section

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell length [m]</td>
<td>23.21</td>
</tr>
<tr>
<td>Dipole length [m]</td>
<td>3.79</td>
</tr>
<tr>
<td>Quadrupole length [m]</td>
<td>1.49</td>
</tr>
<tr>
<td>LSS [m]</td>
<td>324.99</td>
</tr>
<tr>
<td>Free drift [m]</td>
<td>10.12</td>
</tr>
<tr>
<td># arc cells</td>
<td>22</td>
</tr>
<tr>
<td># LSS cells:</td>
<td>7</td>
</tr>
<tr>
<td># dipoles:</td>
<td>168</td>
</tr>
<tr>
<td># quadrupoles:</td>
<td>116</td>
</tr>
<tr>
<td># dipoles/half cell:</td>
<td>2</td>
</tr>
</tbody>
</table>

![Graph showing dispersion and injection points within the PS2 Ring FODO]

Optics solutions for the PS2 ring
Doublet and Triplet arc cells

- **Advantages**
 - Long straight sections and small maximum β’s in bending magnets (especially for triplet)

- **Disadvantage**
 - High focusing gradients
Flexible Momentum Compaction Modules

- Aim at negative momentum compaction (NMC modules), i.e.
 \[a_c = \frac{1}{C} \int \frac{D(s)}{\rho} ds < 0 \]

- Similar to and inspired from existing modules
 (SY. Lee et al, PRE, 1992, J-PARC high energy ring)

- First approach
 - Module made of three FODO cells
 - Match regular FODO to 90° phase advance
 - Reduced central straight section without bends
 - Re-matched to obtain phase advance (close to three times that of the FODO, i.e. 270°)

- Disadvantage: Maximum vertical \(\beta \) above 80m

- regular FODO 90°/cell
 -> zero dispersion at beginning/end

- reduced drift in center, average 90°/cell
 -> negative dispersion at beginning/end
 \(\gamma_{tr} \sim 10i \)
NMC modules with high filling factor

- Improve filling factor: four FODO per module
- Dispersion beating excited by “kicks” in bends
- Resonant behavior: total phase advance $< 2\pi$
- Large radii of the dispersion vector produce negative momentum compaction
- High phase advance is necessary

C. Carli et al. PAC07

Optics solutions for the PS2 ring
Improving the high filling factor FMC

- The “high-filling” factor arc module
 - Phase advances of 280°, 320° per module
 - γ_t of 8.2i
 - Four families of quads, with max. strength of 0.095m$^{-2}$
 - Max. horizontal beta of 67m and vertical of 43m
 - Min. dispersion of -6m and maximum of 4m
 - Chromaticities of -1.96, -1.14
 - Total length of 96.2m

- Slightly high horizontal β and particularly long module, leaving very little space for dispersion suppressors and/or long straight sections

- Reduce further the transition energy by moving bends towards areas of negative dispersion and shorten the module
Alternative NMC module

- 1 FODO cell with 4 + 4 bends and an asymmetric low-beta triplet
 - Phase advances of $320^\circ, 320^\circ$ per module
 - γ_t of 6.2i
 - Five families of quads, with max. strength of 0.1m$^{-2}$
 - Max. beta of 58m in both planes
 - Min. dispersion of -8m and maximum of 6m
 - Chromaticities of -1.6, -1.3
 - Total length of 90.56m

- Fifth quad family not entirely necessary
- Straight section in the middle can control γ_t
- Phase advance tunable between 240° and 330°

- Main disadvantage the length of the module, giving an arc of around 560m (5 modules + dispersion suppressors), versus 510m for the FODO cell arc
The “short” NMC module

- Remove middle straight section and reduce the number of dipoles
- 1 asymmetric FODO cell with 4 + 2 bends and a low-beta doublet
 - Phase advances of $272^\circ, 260^\circ$ per module
 - γ_t of 10i
 - Five families of quads, with max. strength of 0.1m$^{-2}$
 - Max. beta of around 60m in both planes
 - Min. dispersion of -2.3m and maximum of 4.6m
 - Chromaticities of -1.1,-1.7
 - Total length of 71.72m

- Considering an arc of 6 modules + 2 dispersion suppressors of similar length, the total length of the arc is around 510m
Phase advance tunable between 240° and 420° in the horizontal and between 250° and 320° in the vertical plane.
Transition energy versus horizontal phase advance
Almost linear dependence of momentum compaction with dispersion min/max values

Higher dispersion variation for γ_t closer to 0

Smaller dispersion variation for higher γ_t
Transition energy versus chromaticity

- Higher in absolute horizontal chromaticities for smaller transition energies
- Vertical chromaticities between -1.8 and -2 (depending on vertical phase advance)
- Main challenge: design of dispersion suppressor and matching to straights

07/02/08 Optics solutions for the PS2 ring
- Similar half module as for the NMC with \(2+5\) dipoles (instead of \(2+4\))
- Using 4 families of quads to suppress dispersion, while keeping beta functions “small”
- Maximum beta of 70m
- Total length of 77.31m
Adding a straight section with 7 FODO cells, using 2 matching quadrupoles

- Straight drift of **9.5m**
- Tunes of (12.1, 11.4)
- \(\gamma_t \) of **12.9i**
- 13 families of quads, with max. strength of 0.1m\(^{-2}\)
- Max. beta of around **71m** in horizontal and **68m** in the vertical plane
- Dispersion of -2.3m and maximum of **4.6m**
- Chromaticities of -16.7, -25.8
- Total length of **1346m**
The resonant NMC module

- 1 symmetric FODO cell with 3 + 3 bends and a low-beta doublet
- Phase advances of $315^\circ, 270^\circ$ per module
 - $8 \times 315^\circ \rightarrow 7 \times 2\pi$
 - $8 \times 270^\circ \rightarrow 6 \times 2\pi$
- γ_t of 5.7i!!!
- Four families of quads, with max. strength of 0.1m2
- Max. beta of around 59m in both planes
- Min. and max. dispersion of -8.5m and 8.9m
- Chromaticities of -1.5, -1.7
- Length of 1.2m between QF and D
- Total length of 64.8m
Dispersion is suppressed by fixing horizontal phase advance to multiple of 2π

Solution with **odd** number of 2π multiples is preferable for getting **lower imaginary γ_t**
The “resonant” NMC arc

- 8 NMC modules
- Total horizontal phase advance multiple of 2π
- Maximum β of 59m
- Total length of 518m
- Adding a straight section with 7 FODO cells, using 2 matching quadrupoles
 - Straight drift of 9.4m
 - Tunes of $(16.8,9.8)$
 - γ_t of $10.7i$
 - 8 families of quads, with max. strength of 0.1m^{-2}
 - Extra families for phase advance flexibility in the straight section
 - Max beta of around 60.5m in horizontal and vertical plane
 - Min. and max. dispersion of -8.5m and 8.9m
 - Chromaticities of -21.7, -19.8
 - Total length of 1346m
An optimized NMC module

- 1 asymmetric FODO cell with 4 + 3 bends and a low-beta doublet
 - Phase advances of $316^\circ, 300^\circ$ per module
 - γ_t of 5.6i!!!
 - Four families of quads, with max. strength of 0.1m2
 - Max. beta of around 54m and 58m
 - Min. and max. dispersion of -7.8m and 10.2m
 - Chromaticities of -1.3, -2
 - Total length of 73m

![Diagram showing beta and dispersion profiles](image)
Hybrid approach:

- Phase advance close to multiple of 2π and 2 extra quad families
The arc III

- 7 NMC modules
- Phase advances of $5.8 \times 2\pi$ and $5.5 \times 2\pi$
- Maximum β of 60m
- Total length of 511m
Adding a straight section with 7 FODO cells, using 2 matching quadrupoles

- Straight drift of 9.5m
- Tunes of (13.8, 13.4)
- γ_t of 10.9i
- 10 families of quads, with max. strength of 0.1m$^{-2}$
 - Extra families for phase advance flexibility in the straight
- Max beta of around 58m in horizontal and 56m in the vertical plane
- Min. and max. dispersion of -8.2m and 10.2m
- Chromaticities of -18.7, -29.5
- Total length of 1346m
Comparison

<table>
<thead>
<tr>
<th>Parameters</th>
<th>RING I</th>
<th>RING II</th>
<th>RING II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition energy</td>
<td>12.9i</td>
<td>10.7i</td>
<td>10.9i</td>
</tr>
<tr>
<td>Number of dipoles</td>
<td>172</td>
<td>192</td>
<td>196</td>
</tr>
<tr>
<td>Dipole length [m]</td>
<td>3.45</td>
<td>3.11</td>
<td>3.03</td>
</tr>
<tr>
<td>Arc module length [m]</td>
<td>71.7</td>
<td>64.8</td>
<td>73</td>
</tr>
<tr>
<td>Number of arc modules</td>
<td>5+2</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Arc length [m]</td>
<td>513.5</td>
<td>518</td>
<td>511</td>
</tr>
<tr>
<td>Straight section drift length [m]</td>
<td>9.5</td>
<td>9.4</td>
<td>9.5</td>
</tr>
<tr>
<td>Quadrupole families</td>
<td>13</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Arc phase advance [2\pi]</td>
<td>5.2/5.2</td>
<td>7/6</td>
<td>5.8/5.5</td>
</tr>
<tr>
<td>Maximum beta functions [m]</td>
<td>71/68</td>
<td>61/61</td>
<td>58/56</td>
</tr>
<tr>
<td>Maximum dispersion function [m]</td>
<td>4.7</td>
<td>8.9</td>
<td>10.2</td>
</tr>
<tr>
<td>Tunes</td>
<td>12.1/11.4</td>
<td>16.8/9.8</td>
<td>13.8/13.4</td>
</tr>
<tr>
<td>Chromaticity</td>
<td>-16.7/-26.8</td>
<td>-21.7/-19.8</td>
<td>-18.7/-29.5</td>
</tr>
</tbody>
</table>
Summary

- Different lattice types for PS2 optics investigated
 - FODO type lattice a straightforward solution
 - Challenge: Transition crossing scheme
 - NMC lattice possible alternative
 - No transition crossing
 - Challenge: low imaginary transition energy

- Perspectives:
 - Complete the lattice design including chromaticity correction and dynamic aperture evaluation
 - Detailed comparison based on performance with respect to beam losses
 - Collimation system
 - Non-linear dynamics
 - Collective effects