Hadron Therapy Technologies

S. Peggs, BNL & ESS-S

Bevalac 1950-1993

Many figures courtesy of Jay Flanz

Consumer demand

1 in 3 Europeans will confront some form of cancer in their lifetime.

Cancer is the 2nd most frequent cause of death.

Hadron therapy [protons, carbon, neutrons] is 2nd only to surgery in its success rates.

45% of cancer cases can be treated, mainly by surgery and/or radiation therapy.

Rapid growth

Courtesy J. Sisterson, MGH

Clinical requirements

A hadron therapy facility in a hospital must be:

Easy to operate

environment is very different from a national lab

Overall availability of 95%

accelerator availibility greater than 99%

Compact

- less than 10 m across, or
- fit in a single treatment room

Beam parameters must deliver the treatment plan!

- depends on details of treatment sites & modalities
- but some generalization can be made

Painting a tumor

A perfect monochromatic proton beam, with zero initial emittance:

TOP spreads out transversely

BOTTOM acquires an energy spread that blurs the Bragg peak

Steer the beam and modulate its energy to "paint" the tumor!

Beam parameters

Penetration depth

- 250 MeV protons penetrate 38 cm in water
- carbon equivalent is 410 MeV/u, with
 - 2.6 times the rigidity

Dose rate

- deliver daily dose of 2 Grays (J/kg) in 1 or 2 minutes
- 1 liter tumor needs (only) $\sim 0.02 \text{ W}$ (0.08 nA @200 MeV)
- need x10 or x100 with degraders & passive scattering

Conformity

- integrated dose must agree with plan within 1% or 2%
- dose should decrease sharply across the tumor surface

History

1930's	Experimental neutron therapy	
1946	R.R. Wilson proposes proton & ion therapy	
1950's	Proton & helium therapy, LBL (184" cyclotron)	
1975	Begin carbon therapy in Bevalac synchrotron	
	including wobbling & scanning	
1984	Proton therapy begins at PSI	
1990	Neutrons on gantry mounted SC cyclo, Harper-Grace	
1990	Protons with 1st hospital based synchrotron, LLUMC	
1993	Precision raster scanning with carbon, GSI	
1994	Carbon therapy begins at HIMAC, Chiba	
1996	Spot scanning, PSI	
1997	Protons with 1st hospital based cyclotron, MGH	

Cyclotrons

Cyclotrons, big ...

Proof-of-principle & R&D therapy was performed in national labs

National lab operation is increasingly deprecated, especially in U.S.

PSI

TRIUMFPion therapy, briefly

... "small" ...

IBA C230

230 MeV protons, 300 nA Saturated field ~ 3 T 200 tons 4 m diameter

1997

First C230 begins operation at MGH as 1st hospital based commercial cyclotron

Isochronous cyclotrons

Few adjustable parameters CW beams, constant energy

- energy degraders
- larger emittance,
- larger energy spread

Easy to operate!

... smaller ...

1980's Design studies confirm 1/B³ scaling of SC cyclotrons, but leave synchrocyclotrons (swept RF frequency) out of reach.

ACCEL Superconducting COMET (below): 80 tons, 3 m dia. 250 MeV protons with markedly better extraction efficiency

... smallest: cyclotron on a gantry

U.S. Patent Feb. 3, 1987 Sheet 9 of 11 4,641,104

1990 MSU / Harper-Grace

Superconducting NbTi

~5.6 T 70 MeV neutrons

2008 MIT / Still River Systems

React-and-Wind Nb₃Sn

~9 T 250 MeV protons

Synchrocyclotron < 35 tons

pulsed bunch structure

Cryogen free (cryo-coolers)

Slow cycling synchrotrons

Synchrotrons

1990 Loma Linda: 1st hospital based proton therapy center Standard against which other synchrotrons are measured

Designed and commissioned at **FNAL**

Weak focusing

Slow extraction

Space charge dominated

Small number of operating energies

Oxford, Jan 15 '09

NATIONAL LABORATORY

14

Slow extraction

Resonant extraction, acceleration driven, RF knockout, betatron core, or stochastic noise

- feedback runs against "easy operation" & "availibility"
- often deforms beam distribution (enlarged beam size)
- energy degraders sometimes necessary

But it works!

LEFT: Hitachi synchrotron at MDACC

Strong focusing

Synchronize beam delivery with respiration!

Carbon

"Synchrotrons are better suited to high rigidity beams" (but SC cyclotron designers are pushing towards carbon)

LEFT: Pavia design uses PIMMS (CERN) design synchrotron

Avoids a gantry in the initial layout

Siemens/GSI carbon synchrotron at HIT includes a gantry (commissioning)

Med-Austron / CERN

New & revisited concepts

Perception ...

FFAG reprise

Ring of magnets like a synchrotron, fixed field like a cyclotron.

Fast acceleration (think muons)

Compact footprint

Magnet aperture must accept large momentum range

Variable energy extraction?

Possible very high rep rate

Much world wide interest.

Demo machines in early operation, construction & design

Oxford, Jan 15 '09

FFAG - continued

Linacs

Figure 1. Schematic Layout of Model PL-250 Proton Therapy Linac.

Linacs

< 10 MeV/m complex RF

"TOP" @ ENEA SCDTL

200 MeV protons

1st in hospital?

Table I Preliminary Specifications for a Dedicated Proton Therapy Linac

Accelerated particle	H^{+}	
Maximum beam energy	250	MeV
Minimum beam energy	70	MeV
No. energy increments	11	
Peak beam current	100-300	μΑ
Beam pulse width	1-3	μsec
Repetition rate	100-300	Hz
Average intensity	10-270	nA
Beam emittance (norm.)	< 0.1	π mm-mrad
Beam energy spread	±0.4	%
Max. rf duty factor	0.125	%
Peak rf power	62	MW
Maximum input power	350	kW
Stand-by power	25	kW
Accelerator length	28	m

HERE: 1999

R. Hamm PL-250

Fast neutrons proposal

"High Gradient Induction Accelerator"

G. Caporaso et al, LLNL

250 MeV protons in 2.5 m?

Pulse-to-pulse energy & intensity variation

"Hoping to build a full-scale prototype soon"

Figure 1: Dielectric wall induction accelerator configuration.

Gantries

Proton gantries

PSI IBA

Normal conducting proton gantries:

weight > 100 tons

diameter ~ 10 m

max deformation $\sim 0.5 \text{ mm}$

Carbon gantries

It is hard to bend same-depth carbon ions (2.6 times the rigidity of protons)

Heidelberg carbon gantry

13 m diameter

25 m length

630 tons!!

New gantry technologies – for Carbon?

Emerging technologies mainly aimed at carbon gantries

- direct wind iron-free NbTi superconducting magnets
- High Temperature Superconductor magnets one day?
- cryo-coolers
- FFAG optics

Small beams (eg the BNL RCMS)

enable small light magnets & simple light gantries

Superconducting gantry magnets

SC magnets + small beam size = practical light gantries

New SC magnets are light & strong Iron-free (coil dominated fields)

Solid state coolers (no He)

Field containment

"Direct wind" construction

BNLs Rapid Cycling Medical Synchrotron RCMS

Multiple RCS proposals, from 25 Hz to 60 Hz

Inject in one turn, extract on any single turn (any energy)

Beam scanning rates

What rates do current "point-and-shoot" slow extraction facilities deliver?

PSI 50 Hz (Med. Phys. 31 (11) Nov 2004)
20 to 4,500 ml per treatment volume
1 to 4 fields per plan
200 to 45,000 Bragg peaks per field
3,000 Bragg peaks per minute
few seconds to 20 minutes per field

MDACC ~ 70 Hz (PTCOG 42, Al Smith, 2005) 10x10x10 cm tumor treated in 71 seconds 22 layers, 5,000 voxels

RCS advantages & challenges

Advantages

"No" space charge

High efficiency (eg antiprotons?)

Small emittances enable small light (air-cooled?) magnets

Light gantries

Extreme flexibility – the sharpest possible scalpel

Challenges

Rapid RF frequency swing (eg 1.2 MHz to 6.0 Mhz in ms) Eddy currents

- ISIS 50 Hz, Cornell 60 Hz, transformers 50/60 Hz

Nozzle beam diagnostics with short (100 ns) bunches

RCS vs Cyclotron

Rapid Cycling S	ynch. Cyclotron
------------------------	-----------------

Energy flexibility Flexible (fast extraction) Fixed (needs degraders)

Typical diameter 5-7 m 4 m

Power consumption Low (resonant) High (except SC)

Typical beam size 1 mm 10 mm

Typical energy spread < 2e-3 > 5e-3

Beam intensity High Very high

Complexity Flexible Simple

Weight Light (7-10 tons) Heavy (100-200 tons)

Approximate cost \$10M \$10M

Other costs Lower Higher

The BNL RCMS

BPM V-CORR

BPM V-CORR

WALL CURRENT MONITOR

EXTRACTION KICKER

BPM FLAG

V-CORR

V-CORR

WALL CURRENT MONITOR

V-CORR

EXTRACTION KICKER

BPM FLAG

V-COLLIMATOR CTX

EXTRACTION SEPTUM H-COLLIMATOR

Racetrack design

2 super-periods

Strong focusing minimizes the beam size

FODO/combined function mags with edge focusing

2x7.6m straight sections, zero dispersion, tune quads

Working tunes: 3.38, 3.36

Compact footprint

Circumference: 27.8 m

Area: 37 sq m

Oxford, Jan 15 '09

BHOKHA

RCMS Optics

Zero dispersion in straights: injection/extraction/RF Room for two RF cavities, long injection/extraction Strong focusing: small beam, large γ_T , large natural negative chromaticities, improved beam stability

RCMS arc magnets

Latest design (2007) has improved field quality
Careful shaping of pole tips; broader pole face; air cooled
2.5% change through cycle for quad gradient, optimized
for injection

RCMS RF cavities

1/2 RF cavity design is ready for early prototyping

Ferrites procured and tested for large frequency swing

- 1.3-6.6 MHz
- 60 Hz is aggressive, feasible

 Expected voltage limit is about 6-7 kV/cavity

Proton Imaging

Conventional CT measures the wrong thing

Vertex2002

pCT: Hartmut F.-W. Sadrozinski, SCIPP

Use of Proton Beam CT: Treatment Planning

Range Uncertainties (measured with PTR)

> 5 mm

> 10 mm

> 15 mm

Schneider U. & Pedroni E. (1995), "Proton radiography as a tool for quality control in proton therapy," Med Phys. 22, 353.

X-ray CT use in Proton Cancer Therapy can lead to large Uncertainties in Range Determination

Alderson Head Phantom

Advanced proton cameras are under development

(Potentially) a very nice example of tech transfer from HEP/NP

Silicon strip/pixel detectors defeat blurring!

Simple proton radiography is rejected because multiple scattering makes blurry images

Modern silicon strip detectors can acquire individual proton trajectories at high bandwidth.

Track reconstruction enables sharp images of the right thing!

BROOKHAVEN
NATIONAL LABORATORY

Conclusion – the Environment

Accelerator Science & Technology

Why is the U.S. accelerator industry so strikingly underdeveloped in comparison with EU and Japan?

Medical accelerators provide the clearest example: (ACCEL), Danfysik, Hitachi, IBA, Mitsubishi, Siemens, ...

The U.S. Department of Energy HEP/NP program is the "steward" of Accelerator Science at a time when:

- 1) HEP/NP budgets are in decline
- 2) Accelerator Science & Technology blossom
- 3) The economy suffers

How to teach & do research in Accelerator Science, across University & national lab boundaries?

Accelerator Science & Technology - 2

- 1) Accelerator Physics is a science in its own right, not just a provider of technology for particular users
- 2) "Centers for Accelerator Science & Engineering" need reinventing, across laboratory & university boundaries

But accelerator technology needs direct stimulation:

3) "What challenges should be put to accelerator companies to make them profit sources, and not tax sinks, in the global economy?"

What is the "third way" that synthesizes these apparently antithetical statements?