

Laser plasma accelerators: state-of-the-art and perspective

Brigitte CROS CNRS-Université Paris Sud 11

Laboratoire de Physique des Gaz et des Plasmas

Interaction et Transport de Faisceaux Intenses dans les Plasmas

Outline

- Motivation
- Accelerating field in a plasma
 - Plasma wave
 - How to create it
 - Properties for acceleration
- Evolution of laser-plasma acceleration
 - Milestones
 - On-going studies
- Conclusion

Limitation of linear accelerators

RF technology limitation

- E<50 MV/m</p>
- B<10 Tesla</p>
- Synchrotron radiation (e-)

Test of new concepts: accelerators using plasmas

Interest of plasma for acceleration

Accelerating fields > 100 GV/m

Charge space field and plasma wave

➡ Relativistic wave:
phase velocity of the order of c

$$E(GV/m) = 30 \left[\frac{n_e(cm^{-3})}{10^{17}} \right]^{1/2} \frac{dn_e}{n_e}$$

How to create a plasma wave

How to accelerate electrons

Energy gain of a relativistic electron in a plasma wave

► Energy gain
$$ΔW = e Ep La$$

$$~ 4mc2γφ2$$

$$\gamma_{\phi} = \lambda_{p} / \lambda_{0}$$

$$\rightarrow \Delta W \sim n_e^{-1}$$

$$\bullet E_p \sim n_e^{1/2}$$

$$+ L_a \sim n_e^{-3/2}$$

n _e	10 ¹⁷ cm ⁻³	10 ¹⁹ cm ⁻³
γ_{ϕ}	100	10
L _a	1 m	1 mm
$\Delta W_{\sf max}$	20 GeV	200 MeV

How to create a plasma wave

- Plasma wakefield
 - Linear, resonant
- Laser wakefield
 - Linear, resonant
- Laser beatwave
 - Linear, resonant
- Non linear wakefield
 - Self-modulated
 - bubble
 - Instability leads to wavebreaking

Example of wakefield

Characteristics of laser wakefield

→ Ponderomotive force

$$F_p = -\operatorname{cste} \cdot \nabla I_L$$

•Ultra-short pulse duration

$$\tau_L < 100 \, \mathrm{fs}$$
, ultra-intense $I_L > 10^{17} \, \mathrm{W.cm}^{-2}$

•« Resonant » mechanism

$$\rightarrow \lambda_p \simeq 2 \cdot c \cdot \tau$$

$$n_e^r [\text{cm}^{-3}] = \frac{1.7 \times 10^{21}}{\tau_{FWHM}^2 [\text{fs}]}$$

•Phase velocity $\omega_L \gg \omega_p$ $v_\phi = c(1 - \omega_p^2/\omega_L^2) \simeq c$

Depends on laser intensity

Laser wakefield is a simple and efficient mechanism

- Linear or non linear plasma waves can be created
- Plasma wave creation and electron acceleration can be controlled
 - Large « resonance »
 - Longitudinal and transverse fields amplitude can be tuned independantly
 - \clubsuit Accelerating and focusing length of the order of $\lambda_p/4$
- Injection of electrons : external source or from the plasma itself

Pioneering work and first advances

Original proposal for plasma accelerators

PRL Tajima et Dawson 1979

- Proof of principal as soon as 1993: UCLA et LULI
- First peaked spectra in 2004:
 RAL et LOA

The progress of laser plasma accelerators follows the evolution of laser systems

First demonstration of wakefield and beatwave at LULI

Collaboration LULI, LPGP, LLR, SESI

Acceleration in linear wakefield: Proof of principle

•1998, 400fs, 2J

$$\bullet n_e = 5 \ 10^{16} \ cm^{-3}$$

$$L_{laser} = \lambda_{p}$$

Electrons injected at 3 MeV
Accelerated to 4.5 MeV
in a field of 1 GV/m

- Few electrons
- No trapping $\gamma_{e-} << \gamma_{onde} \sim 100$

Noise produced by scattered electrons in the plasma or the spectrometre

Self-modulated wakefield (1995)

•Laser power P = 25 TW (VULCAN), 0.8 ps, 20 J

 $L_{laser} >> \lambda_{p}$

Maxwellian spectrum in 2002

Gas jet, $I = 3x10^{18}W/cm^2$, LOA salle Jaune 1J, 30fs

 $L_{laser} > \lambda_{p}$

- • $n_{\rm e}$ = 2.5 10¹⁹ cm-³ (squares)
- $\bullet n_{\rm e} = 6 \ 10^{19} \ {\rm cm}^{-3} \ ({\rm dots}).$
- Effective electron temperature 18 MeV exponential fit

Breakthrough in 2004: Better quality spectra

- Obtained by 3 groups
 - * RAL/IC/UK: Mangles et al.
 - ***** LOA/France: Faure et al.
 - LBNL/USA: C.G.R. Geddes et al.

$L_{laser} \sim \lambda_{p}$ High intensity

Typical experimental set-up using gas jet target

Non linear wakefield (Nature 2004)

 $x10^7$ 500 pC +/-200 pC in the peak at 170 MeV

- Wavebreaking
- Trapping of plasma electrons
 - Lot of e-
 - Peaked spectra
 - Short pulse
 - Small emittance
- →But difficult to control

⇒ laser pulse: 1 J, 35 fs, 0.8 μm (30 TW) LOA

helium gas jet

J. Faure et al., Nature 431, 541 (2004)

Wakefield in a plasma channel (2006)

Summary of experimental results

Mechanism	Labs	Energy Gain	Acc field	Acc length
Beatwave	UCLA, LULI, Canada, ILE	1 à 30 MeV	1 GV/m	1 à 10 mm
Linear laser wakefield	LULI	1.5 MeV	1 GV/m	2 mm
Non Linear laser wakefield	RAL, LULI, LOA, LBNL	60 à 1000 MeV	100 à 400 GV/m	1 à 30 mm

- High accelerating gradients
- Agreement with theory
- Broad spectra due to inadequate injectors
- **→**Guiding and controlled injection to improve the properties of the accelerated beam

Towards a controllable laser plasma accelerator at high energy

- →Strongly non linear regime: the bubble
 - ■Laser compression, ultra-high intensity >10¹⁸ W.cm⁻²
 - Seld-injection of electrons
 - High electron density
 - Energy of accelerated e- can be increased by increasing laser energy

▶Linear regime

- •Intermediate intensity < 10¹⁸ W.cm⁻²
- External injection of electrons
- Low electron density
- Energy of accelerated e- can be increased by guiding and staging

Non linear wakefield with self-injection

- Compression and selffocusing of the pulse
- Expulsion of electrons: creation of a bubble (ions)
- Electrons self-injected at the back of the bubble by accelerating and focusing fields
- Injected electrons modify the back of the bubble (beam loading)

Scaling in non-linear regime

For a constant value of

$$\frac{P}{P_c} = C_0 \Longrightarrow P \propto \frac{n_c}{n_p}$$

1.5 TeV (200 PW laser)

 $\Delta E \propto P$

The increase of laser power allows to decrease electron density and maintain self-focusing (to compensate diffraction)

• IST, UCLA

Evaluation of non-linear regime

- Single stage, single laser beam....more simple to set-up
- Progress is linked to the evolution of laser systems:
 - Current power up to 1PW (100 TW)
 - Efficiency and repetition rate tend to decrease when the power is increased

Evaluation of linear regime

- Moderate accelerating field (1-10 GV/m) but the process can be controlled and the laser energy is lower
- Successive stages can be used to increase electron energy
- It is necessary to:
 - Guide the laser beam to create a long plasma
 - Control the length of the plasma to achieve a good quality of acceleration
 - Inject electrons from an external source

On-going efforts in the linear regime

Dephasing length for linear resonant wakefield increases with pulse duration

Guiding is necessary to create a plasma over the dephasing length

- •Diffraction limits the interaction length to 0.1 to 5 mm
- •Guiding using plasma channel, capillary tubes

Guiding in capillary tubes

Multimode w/a =0.52, transmission in energy 93%

Incident power 24TW, (37 fs, 0.9J) Intensity 9 10¹⁷W cm⁻² vaccuum Capillary output
L = 81.7mm, 2r = 150µm
Intensity 1.6 10¹⁸W cm⁻²
30 mbar H2

LPGP-LLC

Laser wakefield in linear regime

Laser system at LLC (40 TW)

Experimental area

Measurement of the amplitude of the plasma wave over 8 cm

Capillary Tube D = 100 μ m, L = 8 cm, filled with hydrogen Laser $\lambda = 0.8 \, \mu$ m, $\tau_{\text{FWHM}} = 51 \, \text{fs}$, $I_L = 10^{17} \, \text{W/cm}^2$

Optical diagnostic:

Changes of the laser spectrum due to the density modulation

Excellent agreement with simulation

F. Wojda, et al. PRE **80**, 066403 (2009)

Accelerating field in the linear regime

Capillary Tube D = 100 μ m, L = 8 cm, filled with hydrogen Laser $\lambda = 0.8 \mu$ m, $\tau_{FWHM} = 51 \text{ fs}$, $I_L = 10^{17} \text{ W/cm}^2$

Electric field of the plasma wave deduced from optical diagnostic

How to inject electrons in the linear regime

•Linear regime: electrons of the plasma are not trapped

•External electron sources:

laser-plasma OR

RF photo-injector

Project of RF injection at TUE

How to synchronise?

- It is necessary to synchronise the electron bunch and put it in the accelerating phase of the plasma wave
 - # Electrons source: duration ~ 200 fs
 - Plasma wave: period 50fs and 10 fs useful for acceleration
- It is necessary to compress the electron bunch and to find an alternative to electronic systems which cannot achieve this time range

Injection of electrons in front of the laser pulse

plasma. (U. Twente)

NIM A 566 p.244 (2006)

technische universiteit eindhoven

Laser Wakefield Acceleration with External Injection

Injection of 200 fs electron bunch Into (linear) Laser Wakefield Driven by 2 TW laser pulse

Setup

Expected Results

Status: Testing (training) Photogun

Conclusion

- Non linear wakefiled
- Important advances have been made over the last few years
 - Spectrum: max energy (GeV), peak dE/E qq %
 - Beam quality: collimated, short pulse duration
- First applications underway
- Next steps: non linear wakefield will be tested with high power lasers under construction (P > 10 PW)
- Linear wakefield
 - PW created successfuly over a long distance
 - a dedicated facility to test external injection is necessary
 - Laser (1-10 J, 50-100 fs), multi- beams
 - Injector: electron bunches of short duration <100 fs, or compression (100) in the plasma, Relativistic, a few MeV
 - Coupling and transport between stages