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Strathclyde research group overviewStrathclyde research group overview

 University of Strathclyde ~ 17,000 studentsUniversity of Strathclyde ~ 17,000 students

 Physics Department  one of 8 within SUPAPhysics Department  one of 8 within SUPA

 SUPA graduate school ~ 400 PhD studentsSUPA graduate school ~ 400 PhD students

 Microwave & MM-wave research  (~ 30 people)Microwave & MM-wave research  (~ 30 people)
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Research Themes in SUPAResearch Themes in SUPA

   Nuclear and plasma physicsNuclear and plasma physics
   Particle physicsParticle physics
   Condensed matter & materialsCondensed matter & materials
   PhotonicsPhotonics
   Astronomy and astrophysicsAstronomy and astrophysics
   Physics applied to the life sciencesPhysics applied to the life sciences
   EnergyEnergy
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  Cathodes
  Field emission: FEAField emission: FEA
  Explosive/plasma flare: Metal & VelvetExplosive/plasma flare: Metal & Velvet
  ThermionicThermionic
  PseudosparkPseudospark

  Gun structures
 Pierce, MIG, CUSP

    Coherent hCoherent high power mm-wave generation
 Slow wave: Dielectric Cherenkov, Cherenkov BWO

 Fast wave: FEL, Gyrotron, CARM, Gyro-TWAs Gyro-
BWOs, Superradiance (CRM & Cherenkov)

Strathclyde research group overviewStrathclyde research group overview



Examples of Strathclyde work on high power Examples of Strathclyde work on high power 
vacuum electronic mm-wave devicesvacuum electronic mm-wave devices

     Modelling – using MAGIC, KARAT, SURETRAJ, Modelling – using MAGIC, KARAT, SURETRAJ, 
OPERA, MICROWAVE STUDIO, COMSOL, VORPALOPERA, MICROWAVE STUDIO, COMSOL, VORPAL

   Electron beam research using thermionic, plasma flare, Electron beam research using thermionic, plasma flare, 
field emission array and pseudospark cathodesfield emission array and pseudospark cathodes

   Design, construction and measuring output of high Design, construction and measuring output of high 
power mm-wave vacuum electronic devices. Includes power mm-wave vacuum electronic devices. Includes 
research, design and construction of couplers, cavities, research, design and construction of couplers, cavities, 
converters, collectors and windows converters, collectors and windows 

   (i) high power mm-wave diagnostics (i) high power mm-wave diagnostics 
          (ii) power supplies to drive the devices(ii) power supplies to drive the devices



Several different types of electron sourcesSeveral different types of electron sources

            MM-wave gyrotron driven by a field emission array (FEA) electron gun 

Physical Review Letters  77, 2320-2323, 1996



MM-wave gyrotron driven by a field emission array electron gun



Plasma flare cathodes



Mm-wave sources using a pseudospark generated electron beamMm-wave sources using a pseudospark generated electron beam
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Cherenkov maser using high brightness 
electron beam from pseudospark source
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Experimental setup of the 14-gap PS 
powered by a cable pulser 

and beam-wave interaction investigation



BWO Interaction Region

W-band (75 to 110)GHz

Ka-band
(26.5 to 40)GHz

Advantages: a) compactness (table-top size); 
b) simplicity (no B-field); 

  c) flexibility; d) PRF operation

W-band Aluminium positive former 
- Constructed in University Strathclyde
- Copper is deposited 
- Aluminium dissolved in alkali solution



Time-correlated electron beam pulse (green) 
microwave pulse (red) 

and applied voltage pulse (blue) 

W-band (75-110 GHz) BWO  
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1mm Aperture, 2 Disk, 10kV
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Comparison of four types of electron beam source



206 GHz four cavity klystron206 GHz four cavity klystron



37 GHz Free Electron Laser

Millimetre-wave free electron laserMillimetre-wave free electron laser  

37 GHz Free Electron Laser



Model and basic equations of 2D Bragg FEL

• The 2D Bragg corrugation of the 
waveguide surface can be defined as:

)cos()cos(),( 1, ϕϕ mzkaRzr zoutin +=

• EM field can be represented by  four 
partial waves:

z zik z ik z iM iM
+ - + -E A e A e + B e B eϕ ϕﾢ− −= + +

r rr r r

• Schematic diagram of two-mirror 2D-1D 
 FEM interaction region

Mmkkk zzz =≅′= ,

M  is the number of field variations 
along azimuthal co-ordinate ϕ . The 
partial waves A±  propagate in ±  z 
direction and B±   are near cut-off 
waves. The waves are coupled on the 
corrugation if the following conditions 
are satisfied

• Schematic diagram of 2D distributed
   feedback circle 
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Physical Review Letters  96, art 035002,  2006



The FEL cavity configuration

Active length 860 mm

Schematic diagram of inner conductor with the corrugated  structures 

   (a)  2D-2D

  (b) 2D-1D

   (a) 2D-2D 

    (b) 2D-1D 

Photograph of  inner conductor



Measurements of 1D and 2D Bragg structures

 Frequency [GHz]
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  Co-axial 2D Bragg mirror
- constructed by machining 
square chessboard corrugations 
on the outer surface of the inner 
conductor
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Pulsed power systems that drive Pulsed power systems that drive 
the 600 MW electron beamthe 600 MW electron beam

Assembly of the Marx pulsed power 
supply and the transmission line 

Connection of the transmission line to the 
diode cathode via pressurised spark gap 

and matching resistors 



The FEL experiment

                      FEL apparatus to produce mm-waves  
- co-axial output horn and Mylar window of diameter 0.2m
- matching resistors for capacitor bank powering solenoid
- ignitron switch and fibre optic controlled trigger unit 
- solenoid of length 2.55m, diameter 0.3m with undulator inside
- 3D X-ray shielded enclosure
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High power mm-wave amplifiersHigh power mm-wave amplifiers

     High power broadband mm-wave High power broadband mm-wave 
amplifiers are generally more difficult amplifiers are generally more difficult 
to achieve than the single frequency to achieve than the single frequency 
mm-wave oscillatorsmm-wave oscillators

   A solution Strathclyde has been A solution Strathclyde has been 
working on is the helical waveguide working on is the helical waveguide 
gyro-TWA (a type of gyro-TWT)gyro-TWA (a type of gyro-TWT)



Where s is an integer, ωc is the cyclotron frequency 
and ωco is the cut-off frequency of the waveguide.
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Use of  dispersion graphs to design new RF sources



Use of  dispersion graphs to design new RF sources



Ideal dispersion can be realized by using a helically corrugated interaction 
waveguide
It changes the dispersion diagram such that an eigenwave of a constant 
group velocity (Vg=Vb) exists in the near-infinite phase velocity region 
(kz=0) for a very wide frequency band.

kz

Conventional  Gyro-TWT

ω

Ideal Gyro-amplifier dispersion

ω

kz

High power mm-wave amplifiersHigh power mm-wave amplifiers



Synthesis of Ideal mode to create new  sources



Gyro -TWA amplifier schematicGyro -TWA amplifier schematic

Kicker

Helical waveguide 
with tapers

Main solenoid

High power mm-wave amplifiersHigh power mm-wave amplifiers

Physical Review Letters  81, 5680-5683, 1998
Physical Review Letters  84, 2746-2749, 2000
Physical Review Letters  92, art 118301, 2004



Modelling of a cusp gun for 390GHz gyrotronModelling of a cusp gun for 390GHz gyrotron

Cusp gun

  Axis-encircling, 

      annular electron beam

   Better for energy recovery 

       & mode selection

   Measurement agrees 

      with simulation: 

      40kV 1.5A



Wideband W-band gyro-deviceWideband W-band gyro-device



Helical interaction waveguide 

 - High power, high frequency, high efficiency

- Wide frequency band

W-band Gyro-BWO Dispersion diagram
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Predicted PerformancePredicted Performance

Gyro-BWOGyro-BWO

Centre freq. ≈  94 GHz
Tuning range ≈  20%  

Maximum power ≈  10 kW
Efficiency ≈  15%

Centre freq. ≈  95 GHz
Freq. bandwidth ≈  10%  
Maximum power ≈  10 kW

Efficiency ≈  15%
Gain = 40dB
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390 GHz Harmonic Gyrotron390 GHz Harmonic Gyrotron
Design and simulation of a CW source based on a Design and simulation of a CW source based on a 

cusp gun and working at the 7cusp gun and working at the 7thth harmonic number harmonic number

390 GHz 7th harmonic at TE71 mode

Growth rate at 7th 
harmonic resonance



Cavity & Cold TestCavity & Cold Test

 Cavity designed 

 & manufactured

 

Average 
Losses:

Spark Erosion:
-0.5 dB

Drilled Cavity
-3.1 dB

Cold tested with 
300-500 GHz VNA



Co-harmonic gyrotron using a Co-harmonic gyrotron using a 
novel corrugated cavitynovel corrugated cavity

Mean radius, rMean radius, r00 = 8 mm = 8 mm

Corrugation depth, l = 0.7 mmCorrugation depth, l = 0.7 mm
Length, L = 39 mmLength, L = 39 mm

Modes excited:Modes excited:
22ndnd harmonic, TE harmonic, TE2,22,2 (37.5 GHz) (37.5 GHz)

4th harmonic, TE4th harmonic, TE4,34,3 (69.7 GHz  & 75 GHz) (69.7 GHz  & 75 GHz)

Suggested beam parameters:Suggested beam parameters:
Beam voltage, 60 kVBeam voltage, 60 kV
Beam current, 5 ABeam current, 5 A
Pitch angle, 45 degreesPitch angle, 45 degrees
Magnetic field, 0.7 TMagnetic field, 0.7 T
Axis-encircling beamAxis-encircling beam

( ) ( )0 sin 8r r lφ φ= +



Advantages of depressed collector
   Improve the overall tube efficiency
   Decrease cooling requirement
   Decrease x-ray emission

Depressed collector

collectedbeam

output
overall PP

P

−
=η

Depressed collector research



Depressed Collector SimulationDepressed Collector Simulation
Simulation uses 3D PIC code MAGIC

Genetic algorithm used to optimize geometry

Effect of secondary electrons, including true 
secondary electrons and rediffused electrons

Heat power density distribution on electrodes 

Simulation of X-band Gyro-BWO and  W-band 
Gyro-BWO

L. Zhang, et al, IEEE Trans. Plasma Sci., 
37, 390-394, 2009
L. Zhang, et al, IEEE Trans. Plasma Sci., 
37, 2328-2334, 2009

Primary

True secondary

Rediffused



SUPA II project to apply plasma-based accelerators



Auroral Kilometric Radiation - AKRAuroral Kilometric Radiation - AKR

Aurora Borealis – Northern Lights 



Planetary MagnetospheresPlanetary Magnetospheres

            

Planetary Aurora 

Animation courtesy of NASA

Jupiter’s aurora

Solar 
wind

electron 
beams

Radio emission 
region

All solar system planets with strong magnetic fields (Jupiter, 
Saturn, Uranus, Neptune, and Earth) also produce intense radio 
emission – with frequencies close to the cyclotron frequency.



Natural radiation sources – formation of an Natural radiation sources – formation of an 
electron horseshoe distributionelectron horseshoe distribution

(a) Electron beam enters increasing axial magnetic field(a) Electron beam enters increasing axial magnetic field

(b) Electrons gain transverse velocity at the expense of axial velocity.(b) Electrons gain transverse velocity at the expense of axial velocity.

(c) Beam distribution function develops horseshoe-like profile.(c) Beam distribution function develops horseshoe-like profile.
            - - positive gradientpositive gradient in  in transverse velocitytransverse velocity near the tip of the distribution. near the tip of the distribution.
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AKR Strathclyde Laboratory ExperimentAKR Strathclyde Laboratory Experiment  

Solenoid 1

Solenoid 2
Solenoids 3,4,5 and 6
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ConclusionsConclusions
 Particle-wave interaction synergy of sources & acceleratorsParticle-wave interaction synergy of sources & accelerators

   High power mm-wave oscillators achieving  MWs High power mm-wave oscillators achieving  MWs 

   High power mm-wave amplifiers – novel solutionsHigh power mm-wave amplifiers – novel solutions

          
   MM-wave research moving into THz rangeMM-wave research moving into THz range

     Microwave/RF ultra-high power sources ~1GHzMicrowave/RF ultra-high power sources ~1GHz

     Laser plasma accelerators for applicationsLaser plasma accelerators for applications
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