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20 member states + observers (USA, Russian Federation, Japan....)

Some 2500 staff members and 8000 visitors
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The LHC is installed in a 27km long tunnel,
~100m underground. It is designed to supply 7
TeV proton on 7 TeV proton collisions to 4
experiments, as well as heavy ion collisions
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The machine is made-up of 8 arcs and 8
‘long straight sections’ . 2 counter-
rotating beams are injected into the LHC

from the SPS at 450 GeV. They are then
accelerated in the LHC and put into

collision
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* Why do we need Ultra-High Vacuum in the LHC?

 The cryogenic vacuum system

— Beam screen concept and technology
— Installing and commissioning the cold sectors

* The room temperature vacuum system

— NEG coating technology
— Beam vacuum for the LHC experiments
— LHC beam dump window

* Getting the LHC started

— ‘the sector 3-4 incident’
— Consolidation after the incident

e Summary
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* Cryogenic heat loads

— Removing 1 W of heat at 2K requires
~1kW of power at 300K

— Image currents induced in the beam
pipe by the beam current depend on
the resistivity of the wall material

— Synchrotron radiation photons and
subsequent photoelectrons
e ~10' photons s*m giving 0.2 Wm

e Gas desorption and recycling

— Synchrotron radiation photons
desorb cryo-pumped gas
* Desorption yield for H, on copper at 10
K~ 5x10* mol photon!
— Photons have a high reflectivity at
grazing incidence, so could impact
many times on the beam pipe surface

15th April 2010 R.Veness: LHC Vacuum Challenges
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* Concept

— Add beam ‘screen’ inside vacuum - —— COOLING TUBES
chamber to intercept synchrotron MOLECULES
radiation

— Copper lining on the inside of the
screen minimise image current

BEAM SCREEN
5-20K

losses
* Cooling PUMPING SLOTS
— Maintain screen at a higher =7 4f MAGNET COLD BORE

temperature 5-20 K 19K

— Power needed to remove heat
from liquid helium at 5 K is less
than half that for superfluid at 2K

* Pumping

— Add pumping slots to allow desorbed and recycled gas to migrate through
and be pumped by the 2 K cold bore

— Cryopumped gas on cold bore is screened from desorption by SR
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* Residual Resistivity Ratio (RRR)

— ratio of the resistivity at 273K to that
at 4K

— Strong RRR effect in copper allows a
thin, low resistivity coating, but
sensitive to lattice imperfections such
as impurities and mechanical work

— Beam screen uses a 50um co-
laminated coating

e Saw teeth

— Photon reflectivity cut by adding a saw
tooth pattern strip to the inner surface
of the beam screen
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e Beam screen form

— ‘race track’ shape to maximise beam
aperture whilst leaving room for the
liquid helium cooling tubes

— Pumping slots randomly distributed to
prevent beam instabilities

e Stainless steel with copper liner

— High conductivity copper with gives low beam impedance and minimises image current
heating, but eddy currents during quench give large electro-mechanical forces, so you
need a high-strength steel support

— Stainless steels at very low temperatures have high strength, but show a number of
undesirable effects, such as martensitic transformations and increased magnetic
permeability

— A special stainless steel grade (P506), high in manganese was developed with very low

(>1.005) relative magnetic permeability
15th April 2010 R.Veness: LHC Vacuum Challenges 16



# assemblies  # variants of Total assembled

installed assemblies components
Beam Screens 3464 66 3464
Cold interconnects 3440 23 89440
Cold-warm transitions 212 13 2756
Cold BPMs 830 6 4150

* European industry manufacture

— Beam screens and beam position monitors (BPMs) were
manufactured by European contractors following standard
‘lowest compliant bidder’ tendering process

e Russian institute manufacture

— All cold interconnects and many other components were
manufactured, assembled and tested in a Russian HEP institute,
via a collaboration agreement with the Russian Federation

— CERN made all detailed designs and supplied all materials
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Optimised DC-magnetron process with target made of inter twisted wires of titanium,
zirconium and vanadium allows the whole inside surface of vacuum chambers to be
coated. This turns the chamber — usually the source of outgassing — into a pump
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low activation Ti grain size Ti grain size

below 5 nm

There is a strong correlation between structure and activation T: diffusion at lower T
is favoured in coatings with very small grains. Activation temperature was reduced
from 450-700°C down to 200°C. This allowed sputtered NEG coatings to be used on
standard (high-temperature grade) engineering materials such as OFS copper and

2219 aluminium
15th April 2010 R.Veness: LHC Vacuum Challenges
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Pumping speeds and pump capacity were optimised by adjusting surface roughness.

The pumping speed for chemically active gases is extremely high. However, the pump
capacity between re-activations is still in the order of a few mono-layers of gas, so the

technology requires ultra-high vacuum design to eliminate leaks and minimise
contamination from non-NEG coated surfaces
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A sputtered NEG coating, activated at 200°C for 2 hours also has a low secondary

electron yield. Tests made in the SPS ring at CERN have shown that this successfully

suppresses electron cloud effects with LHC-type beams
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SATLAS
A EXPERIMENT

2009-12-06, 10:04 CET
Run 141749, Event 406601

| Collision Event

htip:/atias web.cern.chVAtlas/pubic/EVTDISPLAY /events imi
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One of the ‘special’ straight sections
of the LHC, the beam dump system
safely removes the spent beams at
the end of a fill.

The beam is ejected from the LHC into a

600 m long tunnel before being
absorbed in a large carbon block
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* The physics requirements for the LHC has pushed
forward vacuum technology in many areas, and these
will be applied to future machines such as ILC and CLIC

— New vacuum technologies such as sputtered NEG and optimised
equipment for experiments

— New materials such as P506, carbon-carbon composites and new
beryllium technology

— UHV engineering, but on an industrial scale never before seen

e Although the LHC beam vacuum is built and initial
experience has been good, we are now exploring new
territory...

— Interactions between particles and surfaces at high energy
— Performance of transparent, radiation resistant materials
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* Development work on the vacuum system is
far from finished

— We have a 10-year upgrade programme for all 4
experimental vacuum systems, implementing new
materials and techniques to optimise the physics
performance of the detectors

— Planned performance upgrades to the LHC and it’s injector
chain will require significant re-design and new
technologies such as amorphous carbon coatings

— LHC has moved from a phase of construction and
commissioning to one of operation, but also R&D. This
requires new skills and new collaborations
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* | would like to thank the following colleagues at CERN
for their help and materials:
— V.Baglin, F.Bordry, P.Cruikshank, C.Garion, B.Goddard, J.M. Jimenez,
L.Rossi, M.Taborelli,
e Several of the better photos are from:
— M.Brice/CERN Photo

e General background material can be found at:

— 0.Grobner, “Overview of the LHC vacuum system” Vacuum 60 (2001)
25-34

— P.Chiggiato and P. Costa Pinto, “Ti-Zr-V non-evaporable getter films:
from development to large scale production for the Large Hadron
Collider”, Thin Solid Films 515 (2006) 382-388

— M.Bajko et al. “Report of the Task Force on the Incident of 19th
September 2008 at the LHC”, CERN-LHC-PROJECT-Report-1168
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