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The LWFA

• Tajima & Dawson PRL 43, 267 (1979). 

• Intense femtosecond laser propagating

in underdense plasma.

• Relativistically self-guided channel.

• Ponderomotive force leads to charge

separation and plasma density wake.

• Electrons trapped at back of bubble

and accelerated in the very large

electrostatic fields.

• Electron velocity (~c) > laser group velocity and electrons catch up on laser.

• Energy at dephasing length:

laser

self-injected electron bunch 
undergoing betatron oscillations

ion bubble



Motivation

User Facilities:
SSRL synchrotron
LCLS X-ray FEL
RF Linac: 
3.2 km long
50 GeV electrons
16 MeV/m gradient

• Conventional synchrotrons and FELs are very large

• A LWFA-driven light source is ultra-compact

• Accelerating gradient  ~100 GeV/m

• Great uses: short pulses, small source sizes

• Wider accessibility

ALPHA-X
Length ~10 m



Conventional v Plasma Accelerators

Plasma wavesRF Cavities

• Max. E field ~100 MV/m
• Limited by breakdown

• 1000 times smaller & cheaper
• 1 GeV in 33 mm capillary (LBNL 2006)

Strathclyde
Capillary



Our goal
LWFAs to date

• High charge density: 10’s of pC in inferred ~ 10 fs (peak current I ~ kA)

• Low emittance: inferred εN ~ few π mm mrad (no direct measurements)

• Significant relative energy spread σγ/γ ~ 1 – 2% at best

• X-ray FEL needs σγ/γ ~0.1%

• We are looking to produce high quality electron beams (high I, low εN , low σγ/γ)
• And to apply them in useful ways:

• Medical imaging

• Ultrafast probing

• Detector development for nuclear physics

• Strathclyde/Glasgow/Institute for Cancer Research project (e− beam therapy)

• Future plans at the end...



Synchrotron / undulator radiation

• Relativistic electrons in a magnetic field follow a curved trajectory and 
i.e. they are accelerated.

• Radiation emitted into a narrow cone (lab frame of reference).
• Single magnet: synchrotron,   Magnet array: undulator or wiggler.
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LWFA undulator radiation 

• Jena / Strathclyde / Stellenbosch experiment

• 55-70 MeV electrons

•VIS/IR synchrotron radiation

Schlenvoigt et al.,
Nature Phys. 4, 130 (2008)

Gallacher et al.,
Phys. Plasmas 16, 093102 (2009)



LWFA undulator radiation 

• MPQ/ FZD / Oxford experiment

• 150-210 MeV electrons

• XUV synchrotron radiation

Fuchs et al.,
Nature Phys. 5, 826 (2009)

• Next step:  Free-electron laser for 106 – 108 increase in photon output

• High FEL gain criteria:  εn < λγ/4π and σγ/γ < ρ
• Need the beam quality and good transport...



ALPHA-X Beam Line

• Laser:  λ0 = 800 nm, E = 900 mJ, τ = 35 fs, P = 26 TW,  I = 2 × 1018 Wcm-2,  initial a0 = 1.0

• Gas Jet: helium, 2 mm nozzle, ne ≈ 1 – 5 × 1019 cm-3

• Quadrupole magnets: permanent (PMQs) & electromagnetic (EMQs)

• Beam profile monitors:  pop-in Lanex screens / Ce:YAG crystals

• Diagnostics: pop-in emittance mask & pop-in aluminium pellicle for transition radiation

Accelerator

Pepper pot
PMQs

EMQs Electron
Spectrometer Undulator

Pellicle



Electron Spectrometer

Dual function device
High resolution chamber

Resolution – design ~ 0.1%
Electron energy up to 105 MeV (Bmax = 1.65 T)

High energy chamber
Uses upstream quadrupoles to aid focusing
Energy resolution ~0.2 – 10% (energy dependent)
Electron energy up to ~ 660 MeV (Bmax = 1.65 T)

Ce:YAG crystal
300 × 10 × 1 mm

14-bit PGR Grasshopper camera not shown

• Designed by Allan Gillespie / Allan MacLeod

• Built by Sigmaphi (France)



Experimental Results – beam pointing

• 500 consecutive shots
• narrow divergence (~2 mrad) beam
• wide divergence halo
• θX = (7 ± 3) mrad, θY = (3 ± 2) mrad

5 mrad

• 8 mrad acceptance angle for EMQs

• 25% pointing reduction with

PMQs installed

no PMQs PMQs in



Experimental Results – PMQs

• 1.5 T magnets (similar to the MPQ design)

• Triplet settings for collimation of the “main peak” monoenergetic electron bunch

• Swirls due to low energy halo electrons

PMQs inno PMQs



Experimental Results – energy stability

Electron Spectrometer: 200 consecutive shots (spectrum on 196 shots)

69 90 124 185Energy (MeV)




69 90 124 185Energy (MeV)

100 consecutive shots
Mean E0 = (137 ± 4) MeV

2.8% stability



Experimental Results – charge

LANEX 2
Imaging Plate All screens now calibrated



Experimental Results – energy spectra I

NO
QUADS

QUADS

QUADS

NO
QUADS



i.e. to measure small spreads, emittance must be small!

electron beam energy = 83 MeV
r.m.s. source size = 2 μm
spectrometer field = 0.59 T
zero energy spread

electron beam energy = 83 MeV
r.m.s. source size = 2 μm
spectrometer field = 0.59 T
emittance εN = 0.5π mm mrad
zero energy spread

Simulations of electron spectrometer response

NO
QUADS

QUADS

• General Particle Tracer (GPT) code

• Analytical B field (fringe field responsible for the butterfly profile at 0% spread)



Experimental Results – energy spectra II

• Scaling of central energy and energy spread with charge 

Beam loading
Beam loading

• Wiggins et al., PPCF 52, 124032 (2010).



Experimental Results – energy spectra III

σγ/γ MEAS
= 0.7%

simulation
at 146 MeV

σγ/γ MEAS
= 0.4%

simulation
at 85 MeV



Experimental Results – energy spectra III

• 2mm gas jet: accelerating gradient ≈1 GeV/cm
• A hint of a fixed absolute energy spread ~ 0.6-0.8 MeV

E0 = 172 MeV
meas. σE = 1.3 MeV
meas. σγ / γ = 0.75%

E0 = 210 MeV



Experimental Results – transverse emittance 
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Direct Calculation:
(Zhang FERMILAB-TM-1988)

• divergence 4 mrad
• hole size correction
• limited by detection system
• εN < (5.5 ± 1)π mm mrad

• Pepper pot mask technique

• First generation mask with hole φ ~ 55 μm



Experimental Results – transverse emittance 

• divergence 2-4 mrad for this run
with 125 MeV electrons

• average εN = (2.0 ± 0.6)π mm mrad
• best εN = (1.0 ± 0.1)π mm mrad
• Elliptical beam: εN, X > εN, Y 
• Resolution limited 

• Second generation mask with hole φ ~ 25 μm and improved detection system

False colour image of an electron beam with and 
without the pepper‐pot mask.



Experimental Results – transverse emittance 

• Measured emittance consistent
with ~1 fs bunch

• θ ∝ Q1/2 scaling: implies constant σz

• θ ∝ Q1/3 scaling: very slow increase

of σz with Q

• Brunetti et al., Phys. Rev. Lett. 105, 215007 (2010).

• Experiments with third generation mask in progress.



State of play

• Measured low σγ/γ < 1% (→ 0% with spectrometer response)

• Measured εN = 1π mm mrad (detector-limited,  inferred ~0.5 π mm mrad)

• Measured στ = 2 fs 
• Measured charge Q = 1-5 pC

• Why do we get these high quality beams?

• Operating in a near-threshold, low charge regime.

• Use PIC simulations and reduced models to understand our accelerator.

• Injection of electrons from a small volume of phase-space.

• Reduced model in progress.



PIC simulations of our LWFA

Measured beam profile

Phase-space distribution



Beam loading simulations
• 2-D reduced model

• No self-injection

(external 6 MeV beam

is input)

• Optimal charge for

flattening potential along

beam and obtaining

minimum spread 

No beam loading

With beam loading

With beam loading
and 10 pC change

• λp = 7 μm

• lbunch = 1 μm

• Beam loading reduces the variation in accelerating potential along the bunch



Electron
energy 
(MeV)

Radiation
λ

(nm)

Emittance 
criterion

(π mm mrad)

Gain 
parameter

ρ

Relative 
energy 
spread 

90 261 3 0.011 0.007
150 94 2 0.006 0.004
500 8 0.6 0.002 0.001(?)

Viability of LWFA-driven FEL
• High FEL gain criteria:  εn < λγ/4π & σγ/γ < ρ
• Experimental εn ≤ 1π mm mrad & σγ/γ ≤ 0.007

• For fixed σγ = 0.6 MeV, σγ/γ reduces at short λ
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λu = 15 mm, N = 200, au = 0.38

ALPHA-X Undulator

• Actually, need to consider the slice parameters:

• slice εn & σγ/γ in a co-operation length



FEL Simulation
SIMPLEX CODE SIMULATION RESULTS
(100 MeV electrons)
Saturation power(1st harmonic): 20 GW
@ saturation distance: 1.8 m

Synchrotron:

Peak Brilliance B = 3 x 1025 photons/sec/mrad2/mm2/0.1% BW

Average brilliance B = 2.5 x 1011 for PRF 10 Hz 

With laser improvements: PRF 1 kHz  → average brilliance B >1013

FEL: B >106 times higher
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synchrotron radiation matched beam
SASE FEL



Strathclyde capillary beams
• RAL  Astra Gemini experiment (X-ray betatron radiation)

• 40 mm, 280 μm capillary
• Stable electron beam generation with large plasma discharge time window.



ALPHA-X Summary

• High quality 70 – 180 MeV electron beams produced on the ALPHA-X beam line.

• energy spread, emittance, bunch length and charge are inter-connected.

• low charge for good quality with kA peak current.

• FEL gain should be observable in VUV – XUV spectral range.

Progress is advancing nicely towards a working

compact soft X-ray FEL driven by a LWFA electron beam

→ long gas jet, gas cell or capillary accelerator



Funded by
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