The

Laser Wakefield Accelerator (LWFA): towards a compact light source

Mark Wiggins

Contents

- ALPHA-X project
- What is a LWFA?
- Motivation: quality electron beams and light sources
- The ALPHA-X beam line: experimental setup
- Experimental results:
 - pointing and energy stability, charge, energy spread, emittance, bunch length
- LWFA and beam transport simulations
- Outlook for free-electron laser (FEL) driven by LWFA beam
- Summary

ALPHA-X Project

Advanced Laser Plasma High-energy Accelerators towards X-rays

- Basic Technology grant (2002) and EPSRC grant (2007)
- Consortium of U.K. research teams (Stage 2)

Strathclyde

D. Jaroszynski

B. Bingham

K. Ledingham

P. McKenna

St. Andrews

A. Cairns

U.

Dundee

A. Gillespie

U.

Abertay

Dundee

A. MacLeod

Institute

M. Poole

Cockcroft

R. Tucker

Partners - L. Silva & T. Mendonca (IST), B. Cros (UPS - LPGP), W. Leemans (LBNL),

B. van der Geer & M. de Loos (Pulsar Phys), G. Shvets (UTA), J. Zhang (CAS)

And numerous collaborators

ALPHA-X Project

Group Leader: Prof. Dino Jaroszynski

Experiments: Riju Issac, Gregor Welsh, Enrico Brunetti, Gregory Vieux

PhDs: Richard Shanks, Maria Pia Anania, Silvia Cipiccia, Salima Abuazoum,

Grace Manahan, Constantin Aniculaesei, Anna Subiel, David Grant

Theory: Bernhard Ersfeld, Ranaul Islam, Gaurav Raj, Adam Noble

PhDs: John Farmer, Sijia Chen, Ronan Burgess, Yevgen Kravets

Technicians: David Clark, Tom McCanny

Visiting Professor: Rodolfo Bonifacio

The LWFA

- Tajima & Dawson PRL **43**, 267 (1979).
- Intense femtosecond laser propagating in underdense plasma.
- Relativistically self-guided channel.
- Ponderomotive force leads to charge separation and plasma density wake.
- Electrons trapped at back of bubble and accelerated in the very large electrostatic fields.

self-injected electron bunch undergoing betatron oscillations

- Electron velocity ($\sim c$) > laser group velocity and electrons catch up on laser.
- Energy at dephasing length: $\gamma_{\text{max}} \approx \frac{2 a_0 \gamma_g^2}{3}$, $\gamma_g = \frac{\omega_0}{\omega}$

Motivation

User Facilities:
SSRL synchrotron
LCLS X-ray FEL
RF Linac:
3.2 km long
50 GeV electrons
16 MeV/m gradient

- Conventional synchrotrons and FELs are <u>very</u> large
- A LWFA-driven light source is ultra-compact
- Accelerating gradient ~100 GeV/m
- Great uses: short pulses, small source sizes
- Wider accessibility

Conventional v Plasma Accelerators

- Max. E field ~100 MV/m
- Limited by breakdown

- 1000 times smaller & cheaper
- 1 GeV in 33 mm capillary (LBNL 2006)

Strathclyde Capillary

Our goal

LWFAs to date

- High charge density: 10's of pC in inferred ~ 10 fs (peak current / ~ kA)
- Low emittance: inferred ε_N ~ few π mm mrad (no direct measurements)
- Significant relative energy spread $\sigma_{\nu}/\gamma \sim 1-2\%$ at best
- X-ray FEL needs $\sigma_{\gamma}/\gamma \sim 0.1\%$
- We are looking to produce high quality electron beams (high I, low ε_N , low σ_v/γ)
- And to apply them in useful ways:
- Medical imaging
- Ultrafast probing
- Detector development for nuclear physics
- Strathclyde/Glasgow/Institute for Cancer Research project (e⁻ beam therapy)
- Future plans at the end...

Synchrotron / undulator radiation

- Relativistic electrons in a magnetic field follow a curved trajectory and i.e. they are accelerated.
- Radiation emitted into a narrow cone (lab frame of reference).
- Single magnet: synchrotron, Magnet array: undulator or wiggler.

Undulator Equation

$$\lambda = \frac{\lambda_u}{2h\gamma^2} \left(1 + \frac{K^2}{2} + \theta^2 \gamma^2 \right)$$
 where *h* is the harmonic order and K = $\lambda_u eB/2\pi m_0 c < 1$

LWFA undulator radiation

- Jena / Strathclyde / Stellenbosch experiment
- 55-70 MeV electrons
- VIS/IR synchrotron radiation

Schlenvoigt et al., Nature Phys. 4, 130 (2008)

Gallacher et al., Phys. Plasmas **16**, 093102 (2009)

LWFA undulator radiation

- MPQ/ FZD / Oxford experiment
- 150-210 MeV electrons
- XUV synchrotron radiation

Fuchs et al., Nature Phys. **5**, 826 (2009)

- Next step: Free-electron laser for $10^6 10^8$ increase in photon output
- High FEL gain criteria: $\epsilon_n < \lambda \gamma/4\pi$ and $\sigma_\gamma/\gamma < \rho$
- Need the beam quality and good transport...

ALPHA-X Beam Line

- Laser: $\lambda_0 = 800$ nm, E = 900 mJ, $\tau = 35$ fs, P = 26 TW, $I = 2 \times 10^{18}$ Wcm⁻², initial $a_0 = 1.0$
- Gas Jet: helium, 2 mm nozzle, $n_e \approx 1 5 \times 10^{19}$ cm⁻³
- Quadrupole magnets: permanent (PMQs) & electromagnetic (EMQs)
- Beam profile monitors: pop-in Lanex screens / Ce:YAG crystals
- Diagnostics: pop-in emittance mask & pop-in aluminium pellicle for transition radiation

Electron Spectrometer

- Designed by Allan Gillespie / Allan MacLeod
- Built by Sigmaphi (France)

Dual function device

High resolution chamber

Resolution – design ~ 0.1%

Electron energy up to 105 MeV ($B_{max} = 1.65 T$)

High energy chamber

Uses upstream quadrupoles to aid focusing

Energy resolution ~0.2 – 10% (energy dependent)

Electron energy up to $\sim 660 \text{ MeV } (B_{\text{max}} = 1.65 \text{ T})$

Ce:YAG crystal $300 \times 10 \times 1 \text{ mm}$

14-bit PGR Grasshopper camera not shown

Experimental Results - beam pointing

- 500 consecutive shots
- narrow divergence (~2 mrad) beam
- wide divergence halo
- $\theta_X = (7 \pm 3)$ mrad, $\theta_Y = (3 \pm 2)$ mrad

- 8 mrad acceptance angle for EMQs
- 25% pointing reduction with PMQs installed

Experimental Results - PMQs

- 1.5 T magnets (similar to the MPQ design)
- Triplet settings for collimation of the "main peak" monoenergetic electron bunch
- Swirls due to low energy halo electrons

no PMQs

PMQs in

Experimental Results - energy stability

Electron Spectrometer: 200 consecutive shots (spectrum on 196 shots)

Experimental Results - charge

Experimental Results - energy spectra I

Simulations of electron spectrometer response

- General Particle Tracer (GPT) code
- Analytical B field (fringe field responsible for the butterfly profile at 0% spread)

electron beam energy = 83 MeV r.m.s. source size = 2 μ m spectrometer field = 0.59 T emittance ϵ_{N} = 0.5 π mm mrad zero energy spread

electron beam energy = 83 MeV r.m.s. source size = $2 \mu m$ spectrometer field = 0.59 T zero energy spread

i.e. to measure small spreads, emittance must be small!

Experimental Results - energy spectra II

Scaling of central energy and energy spread with charge

Wiggins et al., PPCF 52, 124032 (2010).

Experimental Results - energy spectra III

Experimental Results - energy spectra III

- 2mm gas jet: accelerating gradient ≈1 GeV/cm
- A hint of a fixed absolute energy spread ~ 0.6-0.8 MeV

Experimental Results - transverse emittance

Pepper pot mask technique

$$<$$
x> \propto I*x - averaged $<$ x'> \propto I*(θ_x + σ_x) - averaged Emittance (rms): $\epsilon_{x,\,rms} = [<$ x²> $<$ x'²> - $<$ xx'>²]1/2 Direct Calculation: (Zhang FERMILAB-TM-1988)

• First generation mask with hole $\phi \sim 55 \mu m$

- divergence 4 mrad
- hole size correction
- limited by detection system
- $\varepsilon_{N} < (5.5 \pm 1)\pi$ mm mrad

Experimental Results - transverse emittance

• Second generation mask with hole $\phi \sim 25 \mu m$ and improved detection system

False colour image of an electron beam with and without the pepper-pot mask.

- divergence 2-4 mrad for this run with 125 MeV electrons
- average $\varepsilon_N = (2.0 \pm 0.6)\pi$ mm mrad
- best $\varepsilon_N = (1.0 \pm 0.1)\pi$ mm mrad
- Elliptical beam: $\varepsilon_{N,X} > \varepsilon_{N,Y}$
- Resolution limited

Experimental Results - transverse emittance

- Measured emittance consistent
 with ~1 fs bunch
- $\theta \propto Q^{1/2}$ scaling: implies constant σ_z
- $\theta \propto \mathcal{Q}^{1/3}$ scaling: very slow increase of σ_z with \mathcal{Q}

- Brunetti et al., Phys. Rev. Lett. 105, 215007 (2010).
- Experiments with third generation mask in progress.

State of play

- Measured low $\sigma_{\gamma}/\gamma < 1\%$ ($\rightarrow 0\%$ with spectrometer response)
- Measured $\varepsilon_N = 1\pi$ mm mrad (detector-limited, inferred ~0.5 π mm mrad)
- Measured σ_{τ} = 2 fs
- Measured charge Q = 1-5 pC
- Why do we get these high quality beams?

- Operating in a near-threshold, low charge regime.
- Use PIC simulations and reduced models to understand our accelerator.
- Injection of electrons from a small volume of phase-space.
- Reduced model in progress.

PIC simulations of our LWFA

Phase-space distribution

Measured beam profile

Strathclyde

Beam loading simulations

- 2-D reduced model
- No self-injection

 (external 6 MeV beam is input)
- Optimal charge for flattening potential along beam and obtaining minimum spread

Beam loading reduces the variation in accelerating potential along the bunch

Viability of LWFA-driven FEL

- High FEL gain criteria: $\varepsilon_{\rm n} < \lambda \gamma/4\pi \ \& \ \sigma_{\rm v}/\gamma < \rho$
- Experimental $\epsilon_n \leq 1\pi$ mm mrad & $\sigma_v/\gamma \leq 0.007$
- For fixed $\sigma_{\gamma} = 0.6$ MeV, σ_{γ}/γ reduces at short λ

ρ=	1	$I_p \left(\lambda_u \right)$	a_u
	$\overline{2\gamma}$	$\overline{I_A} \left(\overline{2\pi \epsilon} \right)$	$\overline{\sigma_x}$

Electron energy (MeV)	Radiation λ (nm)	Emittance criterion (π mm mrad)	Gain parameter ρ	Relative energy spread
90	261	3	0.011	0.007
150	94	2	0.006	0.004
500	8	0.6	0.002	0.001(?)

$$\lambda_u = 15 \text{ mm}, \ N = 200, \ a_u = 0.38$$

- Actually, need to consider the slice parameters:
- slice ε_n & σ_γ/γ in a co-operation length

$$l_c = l_g \left(\frac{\lambda}{\lambda_u}\right), \quad l_g = \frac{(1+\Lambda)\lambda_u}{4\pi\sqrt{3}\rho}$$

FEL Simulation

SIMPLEX CODE SIMULATION RESULTS (100 MeV electrons)

Saturation power(1st harmonic): 20 GW

@ saturation distance: 1.8 m

synchrotron radiation

matched beam SASE FEL

Synchrotron:

Peak Brilliance B = 3×10^{25} photons/sec/mrad²/mm²/0.1% BW

Average brilliance $B = 2.5 \times 10^{11}$ for PRF 10 Hz

With laser improvements: PRF 1 kHz \rightarrow average brilliance $B > 10^{13}$

FEL: $B > 10^6$ times higher

Strathclyde capillary beams

- RAL Astra Gemini experiment (X-ray betatron radiation)
- 40 mm, 280 μm capillary
- Stable electron beam generation with large plasma discharge time window.

ALPHA-X Summary

- High quality 70 180 MeV electron beams produced on the ALPHA-X beam line.
- energy spread, emittance, bunch length and <u>charge</u> are inter-connected.
- low charge for good quality with kA peak current.
- FEL gain should be observable in VUV XUV spectral range.

Progress is advancing nicely towards a working compact soft X-ray FEL driven by a LWFA electron beam

→ long gas jet, gas cell or capillary accelerator

Thank you

Funded by

