

High average current photo injector (PHIN) for the CLIC Test Facility at CERN

- CLIC and CTF3 motivation
- Photo injectors, PHIN
- Emittance measurements
- Long pulse operation, time resolved measurements
- Cathode studies
- Stability
- Phase coding
- Conclusion and outlook

PHIN team

PHIN team and collaboration,
Joint venture within the European CARE program of:

LAL, rf-gun RAL, laser INFN, laser and phase coding CERN, laser, cathodes, integration, commissioning

CERN people:

A. Andersson, B. Bolzon, E. Bravin, M. Csatari, E. Chevallay, S. Doebert, A. Drodzy, D. Egger, V. Fedosseev, C. Hessler, T. Lefevre, R. Losito, O. Mete, M. Olvegaard, M. Petrarca, A. Rabiller

CLIC-layout

Compact Linear Collider for 3 TeV c.m., normal conducting, highfrequency, high-gradient, high efficiency, two beam acceleration, high-current drive beam

Two Beam acceleration

Transformer principle: high-current low-energy drive beam to low-current high energy main beam

Bunch combination in CTF3

[[[]]]

	DRIVE beam	MAIN beam
	PHIN	CALIFES
charge/bunch (nC)	2.3	0.6
Number of subtrains	8	NA
Number of pulses in subtrain	212	NA
gate (ns)	1272	20-150
bunch spacing(ns)	0.666	0.666
bunch length (ps)	10	10
Rf reprate (GHz)	1.5	1.5
number of bunches	1802	32
machine reprate (Hz)	5	5
margine for the laser	1.5	1.5
charge stability	<0.25%	<3%
QE(%) of Cs2Te cathode	3	0.3
	Number of subtrains Number of pulses in subtrain gate (ns) bunch spacing(ns) bunch length (ps) Rf reprate (GHz) number of bunches machine reprate (Hz) margine for the laser charge stability	PHIN

Machine parameters set the requirement for the laser

Time structure requirement

	PHIN
Micropulse repetition rate	1.5GHz
Macropulse repetition rate	1-5 Hz
Number of pulses	1900
Gate length	1254 ns
Number of subtrains	8
Length of subtrains	140.7ns

Thermionic injector

The existing thermionic gun for the CLIC Test Facility 3

time structure is produced by

- DC thermionic gun
 - three 1.5 GHz subharmonic bunchers
 - buncher
 - buncher buncher

Drawback: creation of satellites and beam quality degradation

What is a photo injector

- A photoinjector is an electron source that uses laser pulses in order to extract electrons from the surface of a metallic or semiconductor cathode by using the photoemission process.
- ▶ The electron beam resembles the temporal structure of the laser beam therefore it is a compact system without need for an additional bunching system.
- An RF cavity is used for rapid acceleration of the electrons after the emission.
- Solenoid magnets are placed in order to focus the space charge dominated beam and achieve the emittance compensation.

Photo injector option

Advantages

- No satellites or tails, phase coding on the laser side
- No or less bunching needed, possibly better emittance
- Flexible time structure

Concerns

- Cathode lifetime
- Challenging laser, peak and average po
- Intensity stability
- Maintenance and operation

PHIN parameters

Parameter	Achieved	
RF		
RF Gradient (MV/m)	85	
RF Frequency (GHz)		
Electron Beam		
Charge per Bunch (nC)	2.33	9.2
Charge per Train (nC)	> 5800	
Train Length (ns)	> 1500	
Bunch Length (ps)	7	
Number of Bunches / Train	1908	2250
Current (A)	3.5	13
Normalized Emittance (mm mrad)	<25	14
Energy Spread (%)	<1	0.7
Energy (MeV)	5.5	5.5
Charge stability, flat top and p. to p. (%)	0.25	0.8

PHIN is special due to the high average charge requirements and the emphasis on stability along the train

Photo injectors from Öznur's thesis

The magnoment is deposed.	2 Your cinquist may not have exough mornior to spen the image, or	Y THE HOSE HIS TIME BOOK CHILDRED AUTOM ANY CHILDRES WITCHES SPAY THE ME HE WERE ATTRIBUTED, AND	minimatic follows the majoration man't spin.			
-					compled fester your cospu	lan, and then

PHIN research objectives

- Comprehensive simulations for the PHIN photo injector beam dynamics,
- Optimization of the working point providing the specifications,
- Full experimental characterization of the PHIN beam for short and long pulse trains,
- Development of a single shot emittance measurement system for space charge dominated beams,
- To measure the beam properties and their **stability** along the bunch train (time-resolved measurements),
- To compare the measurement results with the simulations,
- Eventually, to study the consequences of the findings to constitute a preliminary RF gun design for CLIC-DB injector.

A bit of theory from C. Travier

Maximum gradient

$$E_{0,max} = 8.47 + 1.57\sqrt{f[MHz]}$$

Bunch length

$$\sigma_b[ps] \le \frac{5 \times 10^4}{f[MHz]}$$

Maximum bunch charge, space charge limitations

$$Q_{max}[nC] = \frac{E_{acc}[MV/m]\sigma_x^2}{18}$$

Emission phase, Energy, Energy spread, Emittance
 Depends on rf- phase and focusing, phase < 90 deg (on crest)

$$\epsilon_{n,x,y,tot} = \sqrt{\epsilon_{rf}^2 + \epsilon_{sc}^2 + \epsilon_{th}^2}$$

PHIN Photo injector Layout

PHIN picture

RF-GUN developed by LAL

Laser Developed by RAL

Dream Laser

Laser setup

Phasecoding test

10W

amplifie r

3.5kW

2-pass

8.3kW 7.8kW 14.8mJ in 1.2μ

<u>W</u> 2ω

3.6kW 4.67mJ in 1.2µs 4ω 1.25kW

1.5mJ in 1.2µs

HighQ front end

Science & Technology
Facilities Council

AMP1 head assembly

Harmonics test stand

Phin parameters

DRIVE beam

		PHIN	CLIC
	charge/bunch (nC)	2.3	8.4
	train length (ns)	1200	140371
ω.	bunch spacing(ns)	0.666	1.992
Electrons	bunch length (ps)	10	10
ctr	bunch rep rate (GHz)	1.5	0.5
Ele	number of bunches	1802	70467
	machine rep rate (Hz)	5	100
	margine for the laser	1.5	2.9
	charge stability	<0.25%	<0.1%
	Cathode lifetime (h) at QE > 3%	>50	>150
	laser wavelegth (nm)	262	262
>	energy/micropulse on cathode (nJ)	363	1988
	energy/micropulse laserroom (nJ)	544	5765
Laser in UV	energy/macrop. laserroom (uJ)	9.8E+02	4.1E+05
ase	mean power (kW)	0.8	2.9
ĭ	average power at cathode wavelength(W)	0.005	41
	micro/macropulse stability	1.30%	<0.1%
	conversion efficiency	0.1	0.1
<u>~</u>	energy/macropulse in IR (mJ)	9.8	4062.2
Laser in IR	energy/micropulse in IR (uJ)	5.4	57.6
Ser	mean power in IR (kW)	8.2	28.9
La La	average power on second harmonic (W)	0.49	406
	average power in final amplifier (W)	9	608

Charge measurement

$$Q_{max}[nC] = \frac{E_{acc}[MV/m]\sigma_x^2}{18} = \frac{85[MV/m](1[mm])^2}{18} = 4.7nC$$

Charge production

Showed in CTF2 already the bunch charge needed (> 10 nC)
Total charge test performed in the cathode lab (> 1 mC)
460 h with 1.5% QE have been shown in excellent vacuum
Combination of those together has not yet been demonstrated
Cathode lifetime under this rough conditions is a big concern

Beam loading compensation

Beam size and Emittance

Transverse Diagnostics Solenoid scan

Multi slit emittance measurment

Multi slit emittance

 ρ_i , intensity of individual beamlets.

 $x_{i,c}$, mean positions of the beamlets.

 $x_{i,c}^{\prime}=< x_i-iw>/L$, divergences of the beamlets

 σ'_i , spread on the divergences.

Emittance Calculation

The definition of the transverse geometric emittance.

$$\epsilon_x \equiv \sqrt{\langle x^2 > \langle x'^2 > - \langle xx' >^2 \rangle}$$

$$< x^2 > = \frac{\sum_{i=1}^{N} \rho_i x_{i,c}^2}{\sum_{i=1}^{N} \rho_i}$$

$$< x^{'2}> = \frac{\sum_{i=1}^{N} \rho_i (x_{i,c}^{'2} - \sigma_i^{'2})}{\sum_{i=1}^{N} \rho_i}$$

$$< xx'> = \frac{\sum_{i=1}^{N} \rho_i x_{i,c} x'_{i,c}}{\sum_{i=1}^{N} \rho_i}$$

Data analysis

Example measurement vs simulation

Example: ϵ = 10.7 mm mrad for 1.28 nC beam at the energy of 5.5 MeV. The measurement was performed with the laser spot size of 4 mm.

Emittance vs charge

$$\epsilon_n[mm\,mrad] \approx 1\mu m\sqrt{Q[nC]}$$

$$\epsilon_{n,x,y,tot} = \sqrt{\epsilon_{rf}^2 + \epsilon_{sc}^2 + \epsilon_{th}^2}$$

 ε_{rf} ~ 1.4 mm mrad ε_{th} < 1 mm mrad

It is all about the space charge distribution

Can be optimized by laser shaping

Time resolved emittance measurements Beam size

Time resolved emittance measurements

Correlation with rf power

Spectrometer

Spectrometer

Energy and energy spread

Time resolved energy spread segmented beam dump

Cathode lifetime

Measurements from 1996 for Cs2Te

Lifetime of photocathodes No 36 and 37

New software enables continuous Qe monitoring

Cathode life time studies Correlation with vacuum and bunch charge

Cathode life time studies

Again strong correlation with the pressure in the gun

Phase coding

Streak measurements after AMP1&2

999ps switch

333ps switch

Using 523nm 2nd harmonic

Streak measurements with Cherenkov-line

Correlation Between the Laser and the electron Beam

Stability

In laser room

Macrop	IR	Green	UV
RMS stability	0.23%	0.8%	1.3%

Nonlinear conversion increases noise and causes amplitude variations along the train

In PHIN

Laser RMS	Current RMS	Train length(ns)	
1.3% RMS	0.8% RMS	1250	best
2.6%	2.4%	1300	worst

Beam stability seems almost entirely determined by laser stability First tests of feedback system is encouraging

Beam pointing stability

mm	June 2010 no cover	Feb 2011 HighQ input & cover	Feb 2011 fiber input &cover
Size x	0.65	2.76	0.344
δ movement	0.21 (32%)	0.74 (27%)	0.067 (19%)
Size y	0.67	2.73	0.524
δ movement	0.14 (21%)	0.87 (32%)	0.079 (15.2%)

Continuing research program Photo injector option

PHIN:

- study cathode lifetime:
 lifetime vs bunch charge (2-8 nC),
 total charge (0.5-4 μs pulse length),
 vacuum
- activate NEG chamber (partially done)
- test Cs₃Sb with green light (next run March 2012)
- study 8.4 nC beam dynamics, lower gradient?

CLIC DB beam:

Design 1 GHz rf gun and investigate if full pulse length can be demonstrated

CLIC DB injector specifications

Parameter	Nominal value	Unit
Beam Energy	50	MeV
Pulse Length	140.3 / 243.7	μs/ ns
Beam current	4.2	Α
Bunch charge	8.4	nC
Number of bunches	70128	
Total charge per pulse	590	μС
Bunch spacing	1.992	ns
Emittance at 50 MeV	100	mm mrad
Repetition rate	100	Hz
Energy spread at 50 Mev	1	% FWHM
Bunch length at 50 MeV	3	mm rms
Charge variation shot to shot	0.1	%
Charge flatness on flat top	0.1	%
Allowed satellite charge	< 7	%
Allowed switching time	5	ns

Challenges for the Photo injector option

- High single bunch charge 8.4 nC
- Extremely high total charge per pulse 590 μC
- Cathode life time, dynamic vacuum
- Extremely high average power for the laser
- Challenging stability requirements, laser, rf, ...
- Challenging 1 GHz rf system, 140 µs long pulse
- RF design and engineering for the rf gun, gradient and cooling
- Budget situation

Conclusions

- PHIN completely constructed and commissioned
- Experimental characterizations agrees with simulations
- Design parameters for CTF3 demonstrated including phase coding and high average charge
- Pretty good beam and laser stability, needs to be improved for CLIC
- Working towards a photo injector option for the CLIC DB injector