

Accelerators for neutrons

David Findlay
Head, Accelerator Division
ISIS Department
Rutherford Appleton Laboratory / STFC

John Adams Institute, Oxford, 14 February 2013

Neutrons used in: reactors, fusion, condensed matter physics, security screening, radiopharmaceutical production, ...

But neutron $t_{1/2}$ ~10 mins.

→ must make when wanted

Radioisotope sources (e.g. Am/Be, Cf-252, Sb/Be)

D-T accelerators and D-T tubes (14 MeV)

Electron accelerator sources (e.g. Harwell linacs (final one, 90 kW))

Proton accelerator sources (e.g. ISIS, J-PARC, LANL, PSI, SNS, ESS)

Heavier ion accelerator sources (e.g. IFMIF, FAFNIR)

Radioisotope	Am/Be	(α,n)	4.2 MeV mean energy	lin to
sources (Cf-252	Cf-252 (sf)	2.2 MeV	$\sim 10^7 - 10^8$
	Am/Li	(α,n)	0.45 MeV	
	Sb/Be	(γ, \mathbf{n})	0.025 MeV	n/sec

D-T sources 14 MeV (deuterons on tritiated target)

RTNS-II, $1-4\times10^{13}$ n/sec (LLNL)

D-T tubes, $\sim 10^{10}$ n/sec, ~ 1000 hours

(limits are heating, inventory)

Electron accel. sources $(\gamma,n) + (\gamma,f)$ on U, Ta, ... ~few × 10¹⁴ n/sec

Proton accelerator sources (*e.g.* ISIS, J-PARC, LANL, PSI, SNS, *ESS*) spallation, ~10¹⁶ – 10¹⁷ n/sec

Heavier ion accelerator sources (*e.g.* IFMIF, FAFNIR)

deuteron beams, (d,n)

~3×10¹⁶, ~0.5–5×10¹⁵ n/sec

~1 inch

Radioisotope sources

~1 m

Fig. 1. General plan of HELIOS facilities.

~100 m

Harwell electron linear accelerator neutron source, 90 kW

~1 km

SNS spallation neutron source, Oak Ridge, 1 MW

Neutron output ∞ size²

Machine parameters

Accelerator production of neutrons — some challenges

Neutron factories — not accelerator R&D projects

Not

- Familia Paramore	
Mean radius (3 × ISIS)	78.0 m
Repetition frequency	50 Hz
Injection energy from ISIS	0.8 GeV
Extraction energy(option of 8 GeV)	3 GeV
Number of circulating protons	3.75×10^{13}
Ring acceptance	$304 \pi \text{ mm mrad}$
Magnet lattice type	racetrack
Number of ring superperiods	2
Number of 3-cell periods per arc	5
Number of arc cells	2 × 15
Number of straight section cells	2×7
Number of main B dipoles	2×10
Number of secondary b dipoles	2×5
Number of main D quadrupoles	2 × 22
Number of trim d quadrupoles	2 × 12
Number of main F quadrupoles	2 × 22
Number of trim f quadrupoles	2 × 12
Gamma transition	13.8
Horizontal betatron tune	11.7
Vertical hetatron tune	7.4
Bending angle for B dipoles	16.5°
Bending angle for b dipoles	3.0°
Bending angle for 3-cell arc periods	36.0°
Length of main B dipoles	5.940 m
Length of secondary b dipoles	1.080 m
Length of main D quadrupoles	1.036 m
Length of main F quadrupoles	1.200 m
Length of trim quadrupoles	0.200 m
RMS unnorm injection trans. emittance	19 π mm mrad
100% unnorm injection trans. emittance	125 π mm mrad
100% unnorm 3 GeV trans. emittance	50 π mm mrad
100% unnorm 8 GeV trans. emittance	25 π mm mrad
100% norm. longitudinal emittance	<1.0 eV sec

but Reliability
Output

Accelerator operations

Beam losses

Induction of radioactivity in machine

Hands-on maintenance — usually ~few mSv/year limit

Typical beam loss criterion ~1 W/m — challenging with MW

Knowledge of haloes very important in high-power machines

→ beam dynamics critical

Example — ISIS (0.2 MW)

~0.3–1.0 kW lost at injection into 163-m-circumfer. synchrotron

 \rightarrow ~3 W/m

But some people clock up 2-3 mSv/year

If beam losses inevitable, lose beam in one place, e.g. on collimators

Accelerator operations must be integrated into design process — retro-fitting is very expensive

Design is more than

E.g. designing for maintenance \rightarrow "time, distance, shielding"

V-band vacuum seals

Time

ISIS synchrotron room — originally built for Nimrod

Ample space essential for repairs, exchange of large components, etc.

Nimrod sector

Space

FAFNIR (FAcility for Fusion Neutron Irradiation Research)

Neutron source for materials damage tests for fusion reactors

- 14 MeV neutrons from deuterium-tritium
- d + 3 H → 4 He + n + 17.6 MeV

Poor database of radiation damage effects by 14 MeV neutrons

FAFNIR

40 MeV deuteron linac
~ 3–30 mA CW
~ 100 kW – 1 MW
Rotating carbon target
C(d,n) reaction
14-MeV-like spectrum

Can be built relatively easily

ITER (~now)

DEMO Power Plant (2030–40)

- Long-burn
 Q ≥ 10 300 ~ 500 sec
 Q ~ 5 Steady State
- Integration of fusion technology

Advanced Tokamak Research

Materials Development & IFMIF

Electric Power Generation ex. Q = 30 ~ 50 Steady State

IFMIF (International Fusion Materials Irradiation Facility)

Designed as ideal machine for 14 MeV radiation damage studies

2 × 5 MW 40 MeV deuterium beams

Liquid Li target

But both accelerator and target challenging long time scales politically difficult

Relaxed test requirements, improved interpretation of data, ...

→ can relax machine requirements

IFMIF

(International Fusion Materials Irradiation Facility)

~40 kW/cm³

Vacuum coupling to accelerator

Beam profile on target critical

40 MeV deuterons on lithium (IFMIF) and carbon (FAFNIR)

FAFNIR — being promoted by CCFE (Culham)

40 MeV D+ on C target, 3 – 30 mA mean beam current

→ CW machine

40 MeV? Cyclotron, FFAG, RFQ + linac

Cyclotron Well-established technology, but current too low

FFAG Immature, decades from "factory" use, if ever

RFQ + linac Only practical choice

Other considerations

Superconducting? Adds complications (e.g. engineering, He)

Low beam losses essential — suggests big-aperture structures

Good beam diagnostics very important — not easiest in a DTL

Beam transport to target

Scanning issues?

Ion source

Base deuteron ion source on proven proton ion source SILHI microwave discharge source, 2.45 GHz, 1.2 kW magnetron 140 mA protons, CW, 0.2π mm-mrad, several months lifetime Deuteron ion source already demonstrated

RFQ

CW, whereas RFQs mostly pulsed hitherto

"Normal" RFQ, but liberal water-cooling e.g. IPHI and IFMIF CW RFQs, 120–130 kW/m heat

"Reduced gradient" RFQ

e.g. PXIE CW RFQ, 50-60 kW/m heat

~30% smaller acceleration gradient, longer structure, more conservative

Structure power ∞ accelerating field ²

For ~30 mA, match into linac at 2–3 MeV

CAD model of PXIE RFQ (FNAL) 162.5 MHz, 4.45 m long, four-vane CW structure

4-vane, 324 MHz, 60 mA, RFQ Front End Test Stand, RAL

Linac

Beam dynamics for ~30 mA not especially challenging, but CW is challenging

Availability of RF sources — strong driver for frequency choice → triodes, tetrodes — probably ≤200 MHz

Superconducting or normally conducting?

S/C advantages: reduced RF requirements

lower operating costs

larger structure apertures

S/C disadvantages: cryogenic systems

lower maturity of cavity technology (especially

at low energies)

more challenging engineering

increased complexity

longer repair times

If superconducting —

Accelerating structures for ~3–40 MeV limited to half-wave and spoke resonators — but operational experience limited

Cold or warm focussing elements?

Cold quadrupoles or solenoids enable better accelerating gradients but are considerably more complex

Warm focussing elements lead to more cryo-modules and reduced accelerating gradients

If normally conducting —

Room-temperature drift tube linac (DTL) conservative option

Usual pulsed DTL design → ~200 kW/m heat

→ difficult since heat mostly in drift tubes

But if halve usual accelerating gradient → ~50 kW/m

E.g. 10-metre-long cavity

→ ~15 MeV energy gain, ~500 kW beam power, ~500 kW structure power

Permanent or electromagnetic quadrupoles in drift tubes?

→ electromagnetic to tune for minimum beam losses

2-metre-long test section of 202.5 MHz linac tank for testing at full RF power at RAL — currently out for manufacture

High-energy beam transport (HEBT) [to target]

Nothing particularly challenging

Focussing structure probably FODO (like recently constructed 140-metre beam line to ISIS TS-2)

Double-bend achromat to eliminate "shine back" from target to linac

Air-cooled elements wherever possible — avoids water problems

Gaussian beam profile on target not difficult — could make squarer using octupoles

Beam diagnostics

High-power low-energy beam \rightarrow non-invasive diagnostics

Beam currents: DC toroidal current transformers

Beam positions and profiles: residual gas ionisation monitors

Beam losses: ionisation chambers, plastic scintillators

Comprehensive beam dilution system to facilitate set-up and fault diagnosis

Target (1)

Range of 40 MeV deuteron in carbon = 0.94 g/cm² → 0.5 cm

Range of deuteron = twice range of proton of half energy

Target (2)

40 MeV D, 6 mA, 1/e-radius 14 mm (σ = 10 mm), carbon

- \rightarrow ~230 kW/cm³
- → rotation essential
- \rightarrow ~2000°K

 σ = 10 mm, 231 kW/cm³ 25 mm, 37 kW/cm³ 50 mm, 9.3 kW/cm³

GeV/cm³/deuteron for σ = 50 mm

Target (3)

Single-slice rotating targets already accommodate ~100 kW (*e.g.* PSI) → 40 MeV, ~3 mA — starting specification

Later — multi-slice target for higher beam currents

Radiation damage / graphite strength considerations

Optimisation of irradiation geometry

numbers and sizes of samples to be irradiated fluences required fluxes deliverable neutronics thermal issues stresses, etc.

Current situation

EFDA (European Fusion Development Agreement) setting up review of 14 MeV neutron sources for radiation damage measurements

Options — IFMIF-lite and FAFNIR

Awaiting conclusion of review

Imperial College London

UNIVERSITY^{OF} BIRMINGHAM

ISIS — spallation neutron source

World-leading centre for research in the physical and life sciences

world's most productive spallation neutron source

~30 neutron and muon instruments for properties of materials in terms of molecular structure

National and international community of >2000 scientists

Driven by UK's high-power proton accelerators

Research fields include clean energy, environment, pharmaceuticals and health care, nanotechnology, materials engineering and IT

~450 publications/year (~10000 total over 28 years)

MICE (Muon Ionisation Cooling Experiment)

Need to plan for upgrades

Rutherford Appleton Laboratory, Oxfordshire

ISIS from air

RFQ: 665 keV H⁻, 4-rod, 202 MHz

Linac: 70 MeV H⁻, 25 mA, 202 MHz, 200 μs, 50 pps

Synchrotron: 800 MeV proton, 50 Hz

5 μC each acceleration cycle

Dual harmonic RF system

Targets: $2 \times W$ (Ta coated)

Protons: $2 \times \sim 100$ ns pulses, ~ 300 ns apart

TS-1, 40 pps TS-2, 10 pps

Moderators: TS-1: $2 \times H_2O$, $1 \times liq$. CH_4 , $1 \times liq$. H_2

TS-2: $1 \times \text{liq. H}_2 / \text{solid CH}_4$, $1 \times \text{solid CH}_4$

Instruments: TS-1: 20 TS-2: 7 (+ 4 more being built)

-35 kV H⁻ ion source

665 keV 4-rod 202 MHz RFQ

70 MeV 202 MHz 4-tank H⁻ linac

1.3-3.1 + 2.6-6.2 MHz 70-800 MeV proton synchrotron

Superperiods 9, 0 and 1 of 800 MeV proton synchrotron

EPB1 and EPB2 to TS-1 and TS-2 above synchrotron

ISIS TS-1 experimental hall, 20 instruments

ISIS TS-2 experimental hall, 7 instruments + 4 under way

TS-1 tungsten target (plate target)

TS-2 tungsten target (solid cylinder)

ISIS linac and synchrotron

ISIS linac and synchrotron

Upgrades to ISIS

Why upgrade? Basically, to host more user experiments

Success of spallation neutron source user facility depends on

Source strength ← wrong to put emphasis just on this (ESS)

Proton conversion to neutrons

Reliability

Instrumentation

Innovation

Investment

Support facilities

Support staff

Cost effectiveness

User community

0) Linac refurbishment

0) Linac refurbishment and TS-1 upgrade

- 0) Linac refurbishment and TS-1 upgrade
- 1) Linac upgrade, ≤0.5 MW on TS-1

- 0) Linac refurbishment and TS-1 upgrade
- 1) Linac upgrade, ≤0.5 MW on TS-1
- 2) 3 GeV booster synchrotron: MW target

- 0) Linac refurbishment and TS-1 upgrade
- 1) Linac upgrade, ≤0.5 MW on TS-1
- 2) 3 GeV booster synchrotron: MW target

- 0) Linac refurbishment and TS-1 upgrade
- 1) Linac upgrade, ≤0.5 MW on TS-1
- 2) 3 GeV booster synchrotron: MW target
- 3) 800 MeV direct injection: 2–5 MW target

- 0) Linac refurbishment and TS-1 upgrade
- 1) Linac upgrade, ≤0.5 MW on TS-1
- 2) 3 GeV booster synchrotron: MW target
- 3) 800 MeV direct injection: 2–5 MW target

- 0) Linac refurbishment and TS-1 upgrade
- 1) Linac upgrade, ≤0.5 MW on TS-1
- 2) 3 GeV booster synchrotron: MW target
- 3) 800 MeV direct injection: 2–5 MW target
- 4) Upgrade 3) + long pulse mode option

0) Linac refurbishment and TS-1 upgrade

1) Linac upgrade, ≤180 MeV, ≤0.5 MW

Time line for TS-1 and linac upgrade

Advantages of upgraded target

Better neutronics, more useful neutrons per proton

TS-1 target is conservative 1970s design

Advantages of new higher energy linac

New

Inject into synchrotron at higher energy

- space charge limitations less
- so can get more charge into synchrotron and higher beam currents out of synchrotron

Will synchrotron accept more charge at higher injection energy?

- detailed studies done up to 180 MeV
- yes, but with care

Time (s)

Upgrade Parameters

- Space charge limit scales as β²γ³
- Peak space charge moves from 70 to 180 MeV ≈ factor of 2.60
 - RF acceleration parameters should be within present ISIS limits
 - Possible problems: instabilities, dynamics changes, activation, 180 MeV injection, RF systems, foils, loss, etc...

	Present ISIS	Upgrade Idea
Magnet Field	Sinusoidal	Sinusoidal
Energy Range	70 – 800 MeV	180 – 800 MeV
Longitudinal Trapping	"adiabatic capture"	chopped beam
Intensity	$2.5 - 3.0 \times 10^{13} \text{ ppp}$	≈ 8.0×10 ¹³ ppp
Mean Power	160 – 200 kW	≈ 0.5 MW
Injection	H ⁻ , inside, 250 μs	H ⁻ , outside, 500 μs
RF System DHRF: h=2, 4	$f_2 = 1.3 - 3.1 \text{ MHz}$ $V_{pk} = 80, 160 \text{ kV}$	$f_2 = 2.0 - 3.1 \text{ MHz}$ $V_{pk} = 80, 160 \text{ kV}$

Need to consider

Injection dynamics, injection straight and foil

Longitudinal and acceleration dynamics, associated high intensity limits

Transverse high intensity limitations

Full cycle, 3-D simulations: checks and optimisations of 3-D parameters

RF systems

Activation and collimation

Diagnostics and damping systems

Injection / H⁻ stripping

 $4 \times$ pulsed ferrite magnets (0.11 T, 45 mrad, 13,000 A in 250 μ s)

- Injection at 70 MeV over ≈ 250 µs before field minimum
- Symmetric, constant beam bump

Model of existing 70 MeV injection
use to benchmark 180 MeV design

Injection / H⁻ stripping

- Injection at 70 MeV over ≈ 250 µs before field minimum
- Symmetric, constant beam bump
- Injection at 180 MeV over ≈ 500 µs before around minimum
- Asymmetric, falling beam bump
- Higher power deposited on foil and dump

Synchrotron beam simulations

Aim: Simulate synchrotron beam to understand and minimise beam losses.

Model of ring injection and acceleration using 2 million particles tracked over 3000 turns with space charge, foil scattering, collectors, machine apertures and RF errors. Fitted to transverse and longitudinal profiles.

Result: Measured beam loss 7%, simulated 3% (right). Need to include envelope and closed orbit errors. Temporal beam loss structure looks good.

Simulation shows many high intensity effects for further study, tune spread (left), vertical emittance growth mechanisms, moments etc.

Studies of injection painting distributions may minimise some of these effects leading to higher intensity operation.

Conclusion

Linac upgrade can be done

Costs?

Being based on J-PARC 181 MeV linac ~£80M

Time scales?

Engineering design + preparations ~3 years
Building, installation + commissioning ~4 years
→ 2022 long shutdown

3) 800 MeV direct injection: 2–5 MW target

For longer term
— ESS not enough

Green field site — at RAL?

Accelerators for neutrons — to sum up

Continuing need

Always a rôle for proton or heavy-ion accelerators

STFC has stewardship of UK's high-power proton accelerators

Complemented by accelerator institutes

