Ultrafast lasers & THz Radiation for Accelerator Diagnostics & Beam Manipulation

S.P. Jamison
Accelerator Science and Technology Centre,
STFC Daresbury Laboratory

Electro-optic diagnostics

- Established capabilities & limits
- Spectral upconversion
- FROGs & fs diagnostics without a fs laser

Lasers and distributed fs timing

- Optical clocks and RF reference
- Distributing clocks
- Optical beam arrival monitors

THz driven modulation of electron beam

(some) Diagnostics for CLARA & VELA

- Transverse deflecting cavity
- Ultrafast Photon diagnostics

Femtosecond longitudinal diagnostics

Target applications & requirements

Light sources: Free electron Lasers

kA peak currents required for collective gain

• 200fs FWHM, 200pC (...2008 standard)

<10fs FWHM , 10pC (2008... increasing interest)

Particle physics: Linear colliders (CLIC, ILC)

Short bunches, high charge, high quality, for luminosity

• ~300fs rms, ~1nC

• stable, known (smooth?) longitudinal profile

Laser-plasma: Acceleration physics

Diagnostics needed for...

- Verification of optics
- Machine tune up
- Machine longitudinal feedback (non invasive)

Significant influence on bunch profile from

Wakefields, space charge, CSR, collective instabilities...

Machine stability & drift ⇒ *must be single shot diagnostic*

Electro-optic diagnostics

Encoding electric field temporal profiles into optical probe intensity variations

Many demonstrations...

Accelerator Bunch profile - FLASH, FELIX, SLAC, SLS, ALICE, FERMI

Laser Wakefield experiments - CLF, MPQ, Jena, Berkley, ...

CSR @FELIX

Emitted EM (CSR, CTR, FEL) - FLASH, FELIX, SLS, ...

Temporal Decoding @FLASH

Mid-IRFEL lasing @FELIX

Laser Wakefield @ Max Planck Garching

Few facility implementations: remaining as experimental / demonstration systems

- Complex & temperamental laser systems
- Time resolution "stalled" at ~100 fs FWHM

Phys Rev Lett **99** 164801 (2007) Phys. Rev. ST, **12** 032802 (2009)

EO Current status, future requirements

Low time resolution (>1ps structure)

- spectral decoding offers explicit temporal characterisation
- robust laser systems available
- diagnostic rep rate only limited by optical cameras

High time resolution (>60 fs rms structure)

- proven capability
- significant issues with laser complexity / robustness

Very higher time resolution (<60 fs rms structure)

Limited by

- EO material properties (phase matching, GVD, crystal reflection)
- Laser pulse duration (TD gate, SE probe)

Accelerator wish list - Missing capabilities

- Higher time resolution (20fs rms for light sources, CLIC)
- Higher reliability, lower cost (high resolution systems)
- Solution for feedback.

Electro-Optic temporal profile monitors

Spectral Decoding

- Chirped optical input
- Spectral readout
- o Use time-wavelength relationship
- o >1ps limited (?)

- Deconvolution for ~100fs resolution
- In beamline BAMs

Spatial Encoding

- o Ultrashort optical input
- Spatial readout (EO crystal)
- o Use time-space relationship

Temporal Decoding

- Long pulse + ultrashort pulse gate
- Spatial readout (cross-correlator crystal)
- o Use time-space relationship

Spectral upconversion**

- monochomatic optical input (long pulse)
- o Spectral readout
- **Implicit time domain information only

- Robust EO systems (no fs lasers required!)
- Extension to time domain readout (FROG)

Electro-optic detection

description of EO detection as sum- and difference-frequency mixing

This is "Small signal" solution. High field effects c.f. Jamison Appl Phys B 91 241 (2008)

Electro-optic process

sum & difference frequency mixing (optical probe & coulomb field)

This is "Small signal" solution. High field effects c.f. Jamison Appl Phys B 91 241 (2008)

$$\widetilde{A}(\omega, z) = \widetilde{A}_0(\omega) e^{-z\beta_{\text{opt}}} + \frac{i}{2c\eta} e^{-z\beta_{\text{opt}}} \omega \int d\omega' \widetilde{A}_{\text{eff}}^{\text{THz}}(\omega - \omega') \widetilde{A}(\omega'),$$

DC "THz" field....

$$\tilde{A}(\omega,z) \to \tilde{A}_0(\omega) \left[1 + i\alpha A_{DC}z\right]$$
$$\to \tilde{A}_0(\omega) e^{i\alpha A_{DC}z}$$

phase shift (pockels cell)

Delta-Fnc ultrafast pulse...

$$\tilde{A}_0(\omega) \to A_0 e^{i\omega\tau}$$

$$\int A_0 \tilde{A}_{\text{eff}}^{\text{THz}}(\omega - \omega') e^{i\omega\tau} \longrightarrow A_0 A_{\text{eff}}^{\text{THz}}(t - \tau)$$

temporal sampling of THz field

Monochromatic THz & optical

$$\tilde{A}_{THz}(\Omega), \tilde{A}_0(\omega_0)$$

$$\tilde{A}_0(\omega_0) + i\alpha \tilde{A}_0(\omega_0 - \Omega) + i\alpha \tilde{A}_0(\omega_0 + \Omega)$$

optical sidebands

Chirped optical

Parameter dependent results

Spectral or temporal measurements

$$\tilde{E}_{\mathrm{out}}^{\mathrm{opt}}(\omega) = \tilde{E}_{\mathrm{in}}^{\mathrm{opt}}(\omega) + i\omega a \tilde{E}_{\mathrm{in}}^{\mathrm{opt}}(\omega) * \begin{bmatrix} \tilde{E}^{\mathrm{Coul}}(\omega) \tilde{R}(\omega) \end{bmatrix}$$
 Coulomb spectrum shifted to optical region

$$E_{\text{out}}^{\text{opt}}(t) = E_{\text{in}}^{\text{opt}}(t) + a \left[E^{\text{Coul}}(t) * R(t) \right] \frac{d}{dt} E_{\text{in}}^{\text{opt}}(t)$$
envelope optical field

Coulomb pulse replicated in optical pulse

- Measuring optical spectrum straightforward
- measuring a femtosecond scale time profile more complex
- ...ultimately, time domain is what is wanted

Spectral decoding as optical Fourier transform

The spectrum can have functional form of time profile

Consider (positive) optical frequencies from mixing

$$\tilde{M}(\omega) = \int_{-\infty}^{\infty} d\Omega \tilde{E}_{\text{opt}}(\omega - \Omega) \tilde{E}_{THz}(\Omega)$$

Positive and negative Coulomb (THz) frequencies; sum and diff mixing

pulse:

Linear chirped pulse:
$$\tilde{E}_{\rm opt}(\omega) = A(\omega) \exp(-i\beta(\omega - \omega_0)^2) \exp(-i\omega t_0)$$

$$\tilde{M}(\omega) = \exp(-i\beta(\omega - \omega_0)^2) A(\omega) \int \exp(-i\beta\Omega^2) \tilde{E}_{THz}(\Omega) e^{i\Omega(\tau - t_0)}$$
Fourier transform form
$$\tau \equiv \beta(\omega - \omega_0)$$

$$\sqrt{\frac{\pi}{\beta}} \exp\left(\frac{i\tau^2}{4\beta} - \frac{i\pi}{4}\right) * E_{THz}(\tau - t_0)$$

Convolution function limits time resolution...

... but will aid in identifying the arrival time

long bunch modulation: spectrum gives time profile

Short bunch modulation: Spectral interpretation fails

Bandwidth of short modulation larger than 'local' bandwidth of input probe

ALICE Electro-optic experiments

- o Energy recovery test-accelerator intratrain diagnostics must be non-invasive
- o low charge, high repetition rate operation typically 40pC, 81MHz trains for 100us

Spectral decoding results for 40pC bunch

confirming compression for FEL commissioning
examine compression and arrival timing along train
demonstrated significant reduction in charge requirements

Spectral decoding deconvolution

"Balanced detection"

 $\chi^{(2)}$ optical pulse interferes with input probe (phase information retained)

$$S^{BD}(\omega) \equiv I_{\text{opt}}^{\text{in}}(\omega) - I_{\text{opt}}^{\text{in}}(\omega)$$

$$\propto I_{\text{opt}}^{\text{in}}(\omega) \left\{ E_{\text{Coul}}(\tau + t_0) * \cos(\frac{\tau^2}{4\beta} - \frac{\pi}{4}) \right\}.$$

Deconvolution possible.

"Crossed polariser detection" input probe extinguished...phase information lost

$$S(\omega)^{CP} \propto I_{\text{opt}}^{\text{in}}(\omega) \left\{ \left[E_{\text{Coul}}(\tau + t_0) * \cos\left(\frac{\tau^2}{4\beta} - \frac{\pi}{4}\right) \right]^2 + \left[E_{\text{Coul}}(\tau + t_0) * \sin\left(\frac{\tau^2}{4\beta} - \frac{\pi}{4}\right) \right]^2 \right\}$$

Deconvolution not possible [Kramers-Kronig(?)]

Oscillations from interference with probe bandwidth ⇒ resolution limited to probe duration

Spectral upconversion diagnostic

measure the bunch Fourier spectrum...

- ... accepting loss of phase information & explicit temporal information
- ... gaining potential for determining information on even shorter structure
- ... gaining measurement simplicity

Long pulse, narrow bandwidth, probe laser

$$\tilde{E}_{\mathrm{out}}^{\mathrm{opt}}(\omega) = \tilde{E}_{\mathrm{in}}^{\mathrm{opt}}(\omega) + i\omega a \tilde{E}_{\mathrm{in}}^{\mathrm{opt}}(\omega) * \left[\tilde{E}^{\mathrm{Coul}}(\omega)\tilde{R}(\omega)\right]$$
 same physics as "standard" EO $\rightarrow \delta$ -function

$$\tilde{E}(\omega_0 + \Omega) = \tilde{E}(\omega_0) + i\omega a \tilde{E}(\omega_0) \left[\tilde{E}^{\text{Coul}}(\Omega) \tilde{R}(\Omega) \right]$$
(\Omega can be < 0)

different observational outcome

NOTE: the long probe is still converted to optical replica

- Femtosecond diagnostic without femtosecond laser
- Capability for <20fs resolution

difference sum frequency mixing frequency mixing with electrons Intensity [arb.] without electrons reference Δf [THz] -1.5^L 785 790 795 Wavelength [nm] ω_{opt} - 2ω_{THz} Sidebands

FELIX FEL expt App Phys Lett (2010)

sidebands generated by 2.0THz FEL output

Spectral sidebands contain the temporal (phase) information

- Measure octave spanning THz spectrum in single optical spectrometer
 0-10 THz (λ= mm 30um) → 800nm □20nm
- Add temporal readout as extension. (FROG, SPIDER)

Laser based test-bed

Asymmetry in sum and difference spectra - not explainable by (co-linear) phase matching

Due angular separation of sum & difference waves - general implications for THz-TDS and EO diagnostics

Upconversion of laser driven THz source

Electric field time profile

2-decades in wavelength measured in single optical spectrum

In accelerator system, do not propagate the far-IR Conversion to optical *in situ*, in beam line

Upconversion spectrum (optical)

Inferred Far-IR spectra

Same spectrum

 $f \rightarrow \lambda$

Signal levels, measurability & scaling

Input pulse characteristics

- Optical probe length $\Delta t \sim 10 \text{ ps}$
- Optical probe energy S ~ 28 nJ
- THz field strength max E ~ 132 kV/m

Upconversion spectrum (4 mm ZnTe)

Up-conversion ~470pJ

Leaking probe

Signal levels, measurability & scaling

Scaling factors

$$Energy_{upconv} \propto Power_{probe} \times (E_{field} \times l \times r)^2$$

 $m{l}$ is the EO crystal length, $m{r}$ is the nonlinear coefficient

Example:

"Typical" nanosecond pulse laser as probe

Coulomb field for target CLIC bunch parameters (CDR)

Pulse energy 1mJ
Pulse duration 10ns

Bunch length 44µm
Bunch charge 0.6pC

 $Power_{probe} \sim 100 \text{kW}$

 $Efield \sim \frac{2Q}{4\pi\varepsilon_0 R l_b} = \underline{24.5 \text{MV/m}}$

Property	Factor of improvement
$Power_{probe}$	x36
l	÷100²
r	÷2 ²
Efield	x186 ²
Overall	x31

Pulse energy of ~15nJ is produced 1µJ required for single-shot FROG

pulse needs amplifying ~100x

An achievable goal!

Kramers-Kronig phase retrieval

Measure spectral intensity ⇒ phase not known phase required for temporal reconstruction

For *analytic* spectrum (electric field), real and imaginary parts related

$$\phi(\omega_0) = \frac{2\omega_0}{\pi} \int \frac{\ln\{|E(\omega)|/|E(\omega_0)|\}}{\omega_0^2 - \omega^2} d\omega$$

Phase inferred through Kramers-Kronig

L

K-K works partially

- Retrieves trailing dip
- Incorrect sharping of leading edge

Temporal measurement of Spectral upconversion

Unconverted optical probe retains temporal profile information

$$E_{\mathrm{out}}^{\mathrm{opt}}(t) = E_{\mathrm{in}}^{\mathrm{opt}}(t) + a \left[E^{\mathrm{Coul}}(t) * R(t) \right] \frac{\mathrm{d}}{\mathrm{d}t} E_{\mathrm{in}}^{\mathrm{opt}}(t)$$
Bunch profile determines envelope Quasi-CW beam

Self-referencing measurement of temporal profile

"Frequency resolved optical gating" FROG of upconversion optical pulse...

- Autocorrelation PLUS spectral information
- Sub-pulse time resolution retrievable from additional spectral information

Single-shot FROG requires more intensity than feasible with EO material limitations...

Spectral upconversion & FROG extension fs time domain diagnostic without fs laser

Problem: Up-conversion is relatively weak – our calculations suggest energies of a few nJ. Signal needs amplifying without loss of information.

Laser-lab development system

-Envisaged integrated system In beam pipe (Spectral intensity and phase distortions can be both modelled and measured) Single Shot FROG Stretcher Compressor NL crystal (1) up-convert (3) Measure: (2) Amplification Coulomb field $\tilde{E}(\omega) = \sqrt{S(\omega)}e^{-i\varphi(\omega)}$ (4) Calculate properties at NL crystal (to Commercial nanosecond Nd Laser remove remaining spectral amplitude and any residual phase distortion) Integrated frequency conversion (OPO)

- Confirmation of amplification parameters June/July
- Commercial "turn-key" laser procurement July-Sept
- Accelerator tests... early 2014(?)

Lasers for accelerator timing distribution...

10 femtoseconds:

Propagation at c

3mm path length stability

RF phase

 $\Delta \phi = 8 \times 10^{-5} \text{ rad. phase stability at } 1.3 \text{ GHz}$

Aluminium thermal expansion (23x10⁻⁶ / deg)

 $\Delta T < 0.1$ °C per meter

Optical Clocks, Distribution & Bunch measurement

Timing system consists of 3 sub-systems

- Generation of the ultrastable clock,
- The stabilized fibre link for delivery of the clock
- An end station, such as a beam arrival monitor.

Delivered clock stability target at the few femtosecond level.

Ultrastable clocks Stretched-pulse fibre ring lasers

- Mode-locked stretched-pulsed Eribum fibre ring laser from Toptica Photonics
- The oscillator output is amplified in an EDFA and recompressed in free space
- Output pulses are transform limited at 65fs long and has a bandwidth >80nm

Ultrastable clocks

- Passively mode-locked lasers (MLL) are quieter at high frequencies than microwave oscillators
- Ti:Sa oscillators are some of the quietest clocks currently available

- Fibre lasers at telecommunications wavelengths are particularly suitable for distribution
 - Low loss
 - mature components
 - high bandwidth components

Ultrastable clocks

2.637... m cavity length -> 81,250,000 Hz add **28 nm** -> 81,250,001 Hz

Cavity length susceptible to low frequency noise/drifts...

Fibre length changes are detected through phase comparison to RF

Feedback signal compensates for changes in path length

but very low noise at high frequencies

RF spectrum of photodiode output....

Distribution: optical path length stabilization

- Detect round trip travel time & compensate for length changes
 Compare reflected signals with reference
- Compensation based on 'same return path' assumption
- Transit time maintained with delay line and fibre stretcher

RF harmonic Delay Detection

(Source: F. Loehl, DESY)

Harmonic comparison

- Power of adjacent harmonics as monitor of relative train 1 train 2 delay
- The power of the harmonics increase/decrease together in the case of amplitude fluctuation
- Higher harmonics have greater time-sensitivity, but limited by the photodiode bandwidth

ASTeC system

- use the 42nd and 43rd harmonics of our 81.25MHz signal
- The measured signal used in a control loop to compensate for any measured drift in the link.
- We obtained 4 ps/mV sensitivity and a 150 ps maximum range.

Adjacent harmonic differences (H_n-H_{n-1}) of detected pulses as a function of delay.

Comparison of photodiode power against peak separation

Optical cross-correlator delay detection

Balanced

detection

- Dichroic mirrors select out the SFG and from the fundamental to enable double pass configuration.
- PPKTP uses quasi-phase matching to get high SHG conversion efficiency

 The type-II is cut for phase matching of orthogonal polarisations, which eliminates the background signal associated with each pulse's own SHG and generates only the SFG generated

 Balanced configuration increases sensitivity and reduces amplitude dependence of error signal.

ASTeC / ALICE link has been stabilized to 8 fs rms measured out-of-loop using a second balanced cross-correlator

distribution

link

m

MLL

Referen4

се

Carrier interferometry for <1 fs lock

- Monitoring effect of fibre stretching on changes in carrier phase offset
- Deliberate stretching of fibre enable studies of fibre response at different frequencies
- Feasibility study on locking both group and phase velocity in distribution link.
- Pulsed interferometric system can potentially give higher locking resolution while maintaining short pulse delivery.

Electron bunch arrival-time diagnostics

High bandwidth (>10GHz) RF pick-up on electron beam line

e.g. button pickups in Beam Position Monitor.

RF signal feed into fibre-optic electro-optic modulator

- Highly developed telecoms devices
- Converts input RF waveform into intensity modulation of transmitted optical signal.
- >40GHz bandwidth systems available

Ultrafast (~100fs) optical pulse probes the RF waveform

- Optical pulses from timing distribution (much shorter than telecoms applications)
- Effectivly time sampling of waveform

BAM characteristic

Provides sub-100fs level timing information on electron bunches Feedback; machine stability studies; time stamping (user experiments)

Electron bunch arrival-time diagnostics The BAM uses an optical pulse train which is signa **FRM** synchronised to the accelerator clock. Arrival time of electron bunches is sampled optical Scope pulses in a Mach-Zehnder modulator to gate them bias Gate signals driven by pickup in the beamline. trig. RF pickup Beamline ALICE (a.u) A combined experiment using multiple diagnostics was performed to study instabilities in the FEL and ALICE as a whole. 1000 Synchronised measurements of two BAMs, a BPM and the FEL output We were able to do bunch-by-bunch tracking of individual bunches and their photon output along a 100µs macropulse across all the diagnostics. Analogue triggers and time-stamping in EPICS were used to synchronise all the diagnostics together. Bunch number

Study of FEL with combined diagnostics

- Combine with fast FEL detector and BAM measurements, similar instabilities observed
- Correlations of diagnostics give information about Arc 2
- Tracing of trends though pre-lasing and lasing parts of pulse train.

- Several instabilities observed in beam by fast BPM system
 - > 100 kHz bunch position oscillation
 - 300 kHz charge oscillation. Confirmed in faraday cup and PI laser power
- On-going investigation into laser position stability

Analysis of correlations

Developing bunch-by-bunch understanding of how beam affects FEL and how FEL affects beam

The arrival time at energy recovery, FEL output and beam position in Arc 2 are highly correlated and show the same set of features.

- Timing fluctuations at D are not much larger when the FEL is lasing compared to when it is not.
- When detuned, the BAM and BPM measurements are completely decorrelated from the FEL output, but are still correlated to each other.
- Implies some energy fluctuations before entry to FEL, and are correlated to the FEL pulse energy through its coupled time and position changes.
- Only the 100 kHz oscillation in arrival time into the FEL shows up as a oscillation in the output. The 300 kHz oscillation is not seen.

EMMA BPM Diagnostics (EMMA BPMs used for ALICE stability expts)

EMMA was constructed for study of non-scaling FFAG acceleration rapid serpentine acceleration with large tune variation.

During accelerating the bunch executes up to ten turns

- Expanding trajectory sweeps about a half of the pickup aperture.
- For machine tuning, the bunch can be kept circulating > 1000 turns.
- Revolution period is *T*=55.2ns,
- bunch charge is up to 30pC, the bunch length is about 10ps.

The rapid dynamics needs advanced diagnostics.

The trajectory should be measured on each turn, in each of 42 F-D cells.

EMMA Beam Position Monitor System

High rep-rate BPM system, ASTeC designed, built and commissioned The system is applicable to ERL machines for bunch-by-bunch-in-train measurements, in particular, to ALICE.

Developed concept of BPM self-synchronisation with beam,

- •the BPM detector reference signals and the ADC clock are manufactured from the BPM input signal automatically synchronous with the beam signal.
- pipe-line-type ADC chip for single bunch/train measurements

- The EMMA system comprises total 53 of BPMs, approx 400 boards & cards.
- Functional architecture, solutions and design of electronics was done by ASTeC.
- In-house EPICS implementation
- In collaboration, a VME interface and its firmware was designed by WareWorks Ltd (UK).

Board/card fabrication was done by UK Electronics Ltd. Components & fabrication cost is about 150kGBP.

Laser driven THz sources for electron-beam manipulation

Picosecond periods match time scale of compressed bunches lengths in conventional accelerators.

- No oscillatory smearing as in optical bunch slicing
- Controllable field profile on sub-ps time scale.
- Octave spanning spectrum possible

Terahertz carrier-phase is synchronised to laser pulse envelope

• Potential for the whole bunch to be "resynchronised" or compressed (in contrast to the selection/tagging from within the bunch)

LASER DRIVEN SYNCHRONISATION?

AEMITR

ALICE Energy Modulation by Interaction with THz Radiation

Vacuum acceleration of bunch with TEM₁₀-like single-cycle THz pulses

- >>> 1 MV/m fields achievable
- \triangleright long slippage period ~1 m for 20 MeV (β = 1 10⁻³)

Electric field of a focussing TEM₁₀* terahertz pulse

Longitudinal polarised THz pulses from Photoconductive antenna

Longitudinal field implicit from $\nabla \cdot E = 0$

now working on nonlinear generation of longitudinal beams temporal shaping capability

- Two-bunch train, separation
- 790ns (reference & modulated)
- YAG:Ce screen (t~100ns)
- Double shutter gated camera, measuring both reference & modulated bunches

Electron beam parameters

Minimising projected energy spread "on-crest" acceleration. <50keV spread

- THz generation adjacent to accelerator
- <2 mJ, 50 fs TiS & photoconductive antenna

Two experimental periods completed, no acceleration observed yet

- Many issues resolved, improvement made
- Synchronisation significant remaining issue

Coping with ALICE energy jitter

Expecting small change in projected energy spread Energy and energy spread jitter

- large between macro-bunches
- lower jitter on short time scales
- YAG:Ce lifetime ~100ns..... observe bunches 780ns apart

Single gated/intensified camera captures both bunch spectra

- 100ns exposure
- 780ns delay

CLARA FEL Photon diagnostics

Photon temporal characterisation for evaluating FEL schemes

Expected FEL output from CLARA: 100nm-250 nm, <10 fs pulse duration.

Challenges in bandwidth, phase-matching, absorption

Chosen solution: surface sum/difference frequency generation

Time delay / ps

Schematic of SDFG setup

tem under development:

characterisation of EBTF photo-injector 266 nm, ~180 fs

e-shot amplitude/phase characterisation using G, BBO crystal.

acement of BBO crystal with gold mirror, repeat XFROG aracterisation.

Transverse Deflecting Cavity for VELA & CLARA

- TDC required for bunch profile measurement (40fs bunches)
- Central coupler greater 'near mode' separation
- Dummy port used for field symmetry and possible vacuum port
- CST used for cavity design
- Prototype developed to reduce project risk

Operating Frequency	2.9985	GHz
Bunch energy	5-6	MeV
Time resolution	10	fs
Phase stability required	0.1	deg
Operating mode	TM110-like	
Nearest mode separation	>5	MHz
Available RF power	5*	MW
Pulse length	3	μs
Repetition rate	10	Hz
Average RF power loss	<150	W

TDC Prototype Development

- Built by Research Instruments GmbH
- To confirm simulation technique
- To confirm braze technique/deformation
- Field flatness tuning system analysis
- Test results not as expected

TDC Simulation Discrepancy

- Prototype cavity measured to be 2.65 MHz from simulated results
- Cut open prototype and confirmed dimensions with design
- Discovered inaccuracy using Hexahedral mesh
- CST analysis Tetrahedral mesh 2nd order or better should be used

Cavity was re-designed, and is currently being manufactured

LPW (mesh refinement)

First order curvature

Acknowledgments

Trina Thakker Alexander Kalinin David Dunning

Timing, Beam arrival monitors, ALICE beam correlation experiments

Stephen Buckley Philippe Goudket

Deflecting cavity

David Walsh Matt Cliffe Spectral upconversion, amplification

AEMITR & THz sources

Ed Snedden

DFG, photon diagnostics

