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Neutrino Factory

Future project. Aims to produce high intensity neutrino
beams to determine mass hierarchy and measure
neutrino parameters in unprecedented precision [1]
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accelerator target accelerator near far

detector detector
Problem: when muons are produced they

occupy a large transverse phase-space

In order for muons to fit within
acceptance of downstream
accelerator, phase-space
needs to reduce

..but muons decay very tast
SO only viable technique Is
X,y ionisation cooling
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Muons pass through absorbers;

momentum decreases in all directions Repeat
many

times

Net effect:
fransverse
emittance
reduction

Muons pass through RF cavities; momentum
restored only in longitudinal direction

Absorber
RF cavity
+ - SC coils
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Reference Cooling Lattice

Reference ionisation cooling lattice of NF reduces successtully
transverse emittance

...but has very large magnetic field at end of RF cavities...

...and recent studies indicated that high magnetic field at end of RF
cavities can lead to RF breakdown

RF edge

Need to find alternative lattice that:

a) reduces significantly magnetic field at RFs

b) without compromising emittance reduction
and muon transmission
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IDEA: Proposed and designed a new lattice that uses a pair of co-axial
and opposite polarity coils, called Bucked Coils (BC), rather than a
single one
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Pair of Bucked Coils (BC):
co-axial and with opposite
polarities

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15 Ref: [2], [3], [4] 7



Bucked Colls Lattice

IDEA: Proposed and designed a new lattice that uses a pair of co-axial
and opposite polarity coils, called Bucked Coils (BC), rather than a

single one ...and with every repetition of the BC

pair the polarity alternates

Inner, Coil Outer Coil

F

BC

Pair of Bucked Coils (BC):
co-axial and with opposite
polarities

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15 Ref: [2], [3], [4] 7



Bucked Colls Lattice

IDEA: Proposed and designed a new lattice that uses a pair of co-axial
and opposite polarity coils, called Bucked Coils (BC), rather than a

single one ...and with every repetition of the BC

pair the polarity alternates

Inner, Coil Outer Coil

. Polarity of BC
\ alternates with every
repeat

BC

Pair of Bucked Coils (BC):
co-axial and with opposite
polarities

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15 Ref: [2], [3], [4]

7



Bucked Colls Lattice

IDEA: Proposed and designed a new lattice that uses a pair of co-axial
and opposite polarity coils, called Bucked Coils (BC), rather than a

single one ...and with every repetition of the BC

pair the polarity alternates

Inner, Coil Outer Coil

r

Polarity of BC
alternates with every
repeat

BC

Pair of Bucked Coils (BC):
co-axial and with opposite
polarities

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15 Ref: [2], [3], [4]

7



Magnetic field

x=0=const

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15



Magnetic field

Btot vs R at endRF

—=— FSIIA
—a— BC-1
BC-II
—a— BC-III
BC-IV
—a— BC-V

Reference

BC versio

01 02 03 04 05 06
“*z=RF-edge R (m)

Edge of RFs, Biot:

Reference>4 T
BCs: x2-5 lower

x=0=const

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15



M t | ‘ | ‘ d
Btot vs R at endRF - Bz vs R at endRF
-= FSIIA u " - FS[IA
-= BC-I . n . = BC

BC-II . " BC-1 >
. BeAV . * e g:i:l

- [ | n

- BC-V -

Reference

BC versio

01 02 03 04 05 06 2 01 02 03 04 05 06
“*z=RF-edge R (m) “*z=RF-edge R (m)

Edge of RFs, Biot: Edge of RFs, B, at

Reference>4 T R=35cm (RF iris):

BCs: x2-5 lower Reference~25T

BCs:0T

x=0=const

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15



Cooling efficiency

BC: best transmission within 30 mm of At

E Reference
m .
v_| 1O
<
k=
=
9
7]
E
7]
§ Transrrll:igsion nA J_<30 mm
= . B%j?:?

BC-II

—e— BC-III
BC-1V
»— BC-V *
v Transverse
0 20 40 60 80 100 120 140 acceptance of
downstream
z (m) accelerator system

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15 [2]’ [3]’ [4] 9



Cooling efficiency

BC: best transmission within 30 mm of At

Transmission in A J_<3O mm
—e— FS2A
—e— BC-I
BC-II
—e— BC-III
BC-1V

-
v
<
=
=
2
&
2
-

T Bey *Transverse
0 20 40 60 80 100 120 140 acceptance of
downstream
z (m) accelerator system

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15 [2]’ [3]’ [4] 9



Cooling efficiency

BC: best transmission within 30 mm of At

Transmission in A J_<?O mm
—e— ES2A
—e— BC-I
BC-II
—e— BC-III
BC-1IV

Transmisg=

© BCY *Transverse
0 20 40 60 80 100 120 140 acceptance of
downstream
z (m) accelerator system

Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15 [2]’ [3]’ [4] 9



Cooling efficiency

BC: best transmission within 30 mm of At
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Main goal: feasibility study of new European research infrastructure
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LAGUNA-LBNO*

Main goal: feasibility study of new European research infrastructure

able to host a deep (~1,5 km) underground neutrino detector (mass:

~ 105—-106tons) for fundamental research in particle and
astroparticle physics

LAGUNA-LBNO will study matter-antimatter asymmetry using neutrinos

produced at CERN [6]
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Orbit correction (1/2)

n ideal machine orbit is just a straight line

n a real machine there are magnet errors and misalignments that
ead to orbit distortions

A A A

X X

/AN AT
S \/\S S

' 1 real orbit Lcorrected orbit

Corrector magnets needed to reduce orbit distortion magnitude

Need to check if correctors strengths needed for HP-PS are within limit
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Orbit correction (2/2)

Evaluate efficiency and performance of Max H and V orbit deviation and after correction
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Evaluate efficiency and performance of Max H and V orbit deviation and after correction
orbit correction system:

1) distributed random field and
misalignments errors around ideal HP-
PS; distorted ideal orbit
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Collimators

Why do we need collimators?

mto prevent halo particles from hitting the superconducting
magnets of the HP-PS ring (avoid magnets quenching)

mto limit equipment irradiation close to the beam

mto localise slow losses in controlled way in properly equipped
locations: dedicated LSS (Long Straight Section) for transverse
collimation
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= What type of collimators?

m Primaries (HP): increase chance that halo particles will be

absorbed later on by secondary collimators
m Secondaries (HS1, HS2): absorb halo particles

aperture (magnetic
elements, monitors etc)

| Primary collimator

Secondary collimator

It particle:

m stops In aperture: lost

m stops in collimators: absorbed (e.g.
green and purple)

dedicated LSS for collimation

LSS: Long Straight Section
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Optimising Collimation Efficiency
Parameters:
collimators thickness
collimators material (e.g. graphite (C), tungsten (W))
jaw opening
For different:
beam halo type (H or V)

beam halo size (No)

H halo )
X’ [mrad]
g
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Thickness and material
of primary collimators

Inefficiency: Niost/Nabs
Graphite primaries (C) Tungsten primaries (VW
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Inefficiency
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o
o © °
o U1 -

0.006 0.008 0.01 0.012 0.014 0.0005 0.001 0.0015

Thickness [m] Thickness [m]
*In collaboration with

Daniel Spitzbart

W: Small inefficiency for very small thickness (feasibility)
C: Small inefficiency for larger range of thickness

C chosen for primary collimators
W chosen tor secondary collimators



Thickness and material
of primary collimators

Inefficiency: Niost/Nabs
Tungsten primaries (W

>N
O
c
9
R
3=
)
£

0.006 0.008 0.0l 0.012 0.014
Thickness [m]

‘In collaboration with
y Daniel Spitzbart
W: Small inefficiency for very small thickness (feasibility)
C: Small inefficiency for larger range of thickness

C chosen for primary collimators
W chosen for secondary collimators



Timeline

2004 2008 2012 2014
Xz X
: >< ¥ + 1 2S |
BSci Physics PhD Particle and Postdoctoral Postdoctoral
University of Accelerator Physics  Fellowship Fellowship
Cyprus CERN Oxford
& Fermilab University &
| | @ 4D cooling, Neutrino ® HP-PS, optics A
sk Final year thesis, Factory correction and @ Diamond
!‘:LljoAsLil,og[I)\JI:’eson ® 6D cooling, Muon Collider ~ collimation upgrade
Polarisation” MICE, RAL, UK, target sk Fast Extraction ® FCC final
calculations and beam machine focusing triplet
commissioning development
@ COMET/PRISM, muon SPS

decelerator

Mu?2e, PSI, Switzerland,
detector calibration test run

® R&D and simulations

running experiment
Androula Alekou, androula.alekou@physics.ox.ac.uk, JAl Seminar, 4June15 23
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Diamond Light Source

* High energy electrons can emit extremely bright and coherent
beams of high energy photons via synchrotron radiation; powerful
microscopes: the higher the energy the better the resolution (E=h/A)
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* Numerous uses in the study of atomic
structure, chemistry, condensed matter
physics, biology, and technology
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Diamond Light Source

* High energy electrons can emit extremely bright and coherent
beams of high energy photons via synchrotron radiation; powerful
microscopes: the higher the energy the better the resolution (E=h/A)

* Numerous uses in the study of atomic
structure, chemistry, condensed matter
physics, biology, and technology

A R @@% Protein modelling: Synchrotron light

S aro b a allows scientists to solve 3D structure of

T e e proteins e.g. the Chikungunya virus.

B g e Image credit: Voss et al., Nature (2010)
T e W Ty 468, 709 (via Synchrotron Soleil, France)
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Diamond Light Source

beamlines

A. Alekou, JAI Advisory Board & Governing Board 2015 meetings, 09Apr15 [9] 25



Diamond Light Source

e Diamond Light Source (DLS) consists of 24 cells; beamlines

straight sections+Double Bend Achromat (DBA)
DBA

4
P 4

Dipoles Quadrupoles [ Sextupoles

DBA: bending section uses 2 dipoles; zero dispersion at
entrance and exit of cell

A. Alekou, JAI Advisory Board & Governing Board 2015 meetings, 09Apr15 [9]



Diamond Light Source

e Diamond Light Source (DLS) consists of 24 cells; beamlines

straight sections+Double Bend Achromat (DBA)
DBA

@ ~ - HHHH -
4 : |
4
'

—B

Dipoles Quadrupoles [ Sextupoles

DBA: bending section uses 2 dipoles; zero dispersion at
entrance and exit of cell

Operates since 2007 with nominal parameters:
e 2.7 nm H emittance (2nd best behind
Advance Photon Source)
e 8pmV emittance in 2012 (<2 pm world
record in fall 2009)
« 300 mA reached in 2008

A. Alekou, JAI Advisory Board & Governing Board 2015 meetings, 09Apr15 [9]
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SrEARC existing
ELETTRA
future

SuperKEKB

LCDR @

® Pep-X+DR

Diamond (561.6 m)
Presentemittance 2.75 nm

Target emittance < 0.275 nm TSR+ DR

1000
Circumference (m)

Courtesy: R. Bartolini

A. Alekou, JAI Advisory Board & Governing Board 2015 meetings, 09Apri15 26



Motivation

e Upgrades SR facilities aim lower €; increase brilliance and transverse
coherent factor
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Motivation

e Upgrades SR facilities aim lower €; increase brilliance and transverse
coherent factor —

e Multi-Bend Achromats (MBA)

¢ [nsertion Device (ID) radiation sources more intense + attractive than
bending magnet (BM) sources

Modified 4BA (DDBA): additional straight in mid of arc + € reduction!

\_/

Double.-DBA (DDBA or modified 4BA):
doubles Capacity and reduces emittance by factor of 10!
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Upgrade

Full lattice upgrade: replacement of existing 24 DBA cells with 24
DDBA cells
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Full lattice upgrade: replacement of existing 24 DBA cells with 24
DDBA cells

_existing (DBA)

8. | | future (DDBA)

2X zero dispersion
locations

—>2Xx number of
IDs

1 SPERIOD

28



Upgrade

Although emittance of this lattice reduced by factor of 10,
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Upgrade

Although emittance of this lattice reduced by tfactor of 10,
DA only (-4, 6)mm

-4 mm x [m] 6 mm

Goal: increase DA to +-10 mm; cancel non-linear
sextupole terms with phase advance manipulation
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Thavk you very much!

—Any questions?
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