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Future project. Aims to produce high intensity neutrino
beams to determine mass hierarchy and measure

neutrino parameters in unprecedented precision [1]
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Reference Cooling Lattice

...and recent studies indicated that high magnetic field at end of RF 
cavities can lead to RF breakdown

Reference ionisation cooling lattice of NF reduces successfully 
transverse emittance

Need to find alternative lattice that: 
a) reduces significantly magnetic field at RFs 
b) without compromising emittance reduction 

and muon transmission

...but has very large magnetic field at end of RF cavities...
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and opposite polarity coils, called Bucked Coils (BC), rather than a 
single one ...and with every repetition of the BC 

pair the polarity alternates

Ref: [2], [3], [4]

Pair of Bucked Coils (BC): 
co-axial and with opposite 

polarities

Polarity of BC 
alternates with every 

repeat

z

1 full cell of Bucked 
Coils Lattice
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15

In a real machine there are magnet errors and misalignments that 
lead to orbit distortions

Corrector magnets needed to reduce orbit distortion magnitude

x

s

ideal orbit

In ideal machine orbit is just a straight line

x

s

real orbit

Need to check if correctors strengths needed for HP-PS are within limit

x

s

corrected orbit
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Orbit correction (2/2)
Evaluate efficiency and performance of 
orbit correction system:  
1) distributed random field and 
misalignments errors around ideal HP-
PS; distorted ideal orbit 

Max H and V orbit deviation before and after correction

Before Correction After Correction

H

Orbit distortions reduced by factor 10 
Small orbit deviation for machine 
operation

Distribution of max H and V kicker strength

Correctors’ strength needed <0.2 
mrad (~0.05 T for E=50 GeV), i.e. 

well within the limits [7]

2) enabled corrector magnets and 
calculated strength needed to reduce 
amplitude of distorted orbit
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Why do we need collimators?

to prevent halo particles from hitting the superconducting 
magnets of the HP-PS ring (avoid magnets quenching)

to limit equipment irradiation close to the beam

to localise slow losses in controlled way in properly equipped 
locations: dedicated LSS (Long Straight Section) for transverse 
collimation
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of primary collimators

C chosen for primary collimators

W chosen for secondary collimators

Chapter 2

Material studies

Several simulations were performed for di↵erent scraper materials in order to examine their e↵ect

on ine�ciency. The materials considered were graphite, tungsten and copper. The following plots

(figures 2.1 a-c) show the ine�ciency of such scrapers for di↵erent halos (vertical/horizontal) with

respect to their thickness.
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Figure 2.1: Ine�ciencies for di↵erent materials

Another important property of the collimation system is the time it takes to absorb the

kicked particles (particles that interfered with a primary collimator). Ideally, particles should

get absorbed in the absorbers in the same turn as they first hit a scraper. To obtain a comparable

parameter, the cleaning speed vc is defined as the ratio between particles absorbed in the same

turn when they first hit a collimator (nabsorbed firstturn) to the total number of absorbed particles

(nabsorbedtotal) vc =
nabsorbed first turn

nabsorbed total
. Cleaning speed as a function of di↵erent scraper materials

and primary thicknesses is shown in figure 2.2 a-c. A high value implies fast cleaning of the

beam and is therefore desired. With a higher scraper thickness scattering angles are increased

(see figure 1.6 and 1.7), which leads to both a high number of lost (overkicked) and absorbed

(large impact parameter into the absorbers) particles. It is therefore clear that high cleaning

speed can result in a higher ine�ciency.
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Inefficiency: Nlost/Nabs
(C) (W)

W: Small inefficiency for very small thickness (feasibility) 
C: Small inefficiency for larger range of thickness

[8][8]
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Figure 2.1: Ine�ciencies for di↵erent materials

Another important property of the collimation system is the time it takes to absorb the

kicked particles (particles that interfered with a primary collimator). Ideally, particles should

get absorbed in the absorbers in the same turn as they first hit a scraper. To obtain a comparable

parameter, the cleaning speed vc is defined as the ratio between particles absorbed in the same

turn when they first hit a collimator (nabsorbed firstturn) to the total number of absorbed particles

(nabsorbedtotal) vc =
nabsorbed first turn

nabsorbed total
. Cleaning speed as a function of di↵erent scraper materials

and primary thicknesses is shown in figure 2.2 a-c. A high value implies fast cleaning of the

beam and is therefore desired. With a higher scraper thickness scattering angles are increased

(see figure 1.6 and 1.7), which leads to both a high number of lost (overkicked) and absorbed

(large impact parameter into the absorbers) particles. It is therefore clear that high cleaning

speed can result in a higher ine�ciency.

8

Inefficiency: Nlost/Nabs
(C) (W)

W: Small inefficiency for very small thickness (feasibility) 
C: Small inefficiency for larger range of thickness

[8]

CDR on its way

[8]
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• High energy electrons can emit extremely bright and coherent 
beams of high energy photons via synchrotron radiation; powerful 
microscopes: the higher the energy the better the resolution (E=h/λ)

Diamond Light Source

• Numerous uses in the study of atomic 
structure, chemistry, condensed matter 
physics, biology, and technology

Protein modelling: Synchrotron light 
allows scientists to solve 3D structure of 
proteins e.g. the Chikungunya virus. 
Image credit: Voss et al., Nature (2010) 
468, 709 (via Synchrotron Soleil, France)
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100 MeV 
linac

3 GeV 
booster, 

C=158.4m

3GeV Storage Ring, C=561.6 m

beamlines

Operates since 2007 with nominal parameters: 
• 2.7 nm H emittance (2nd best behind 

Advance Photon Source) 
•    8 pm V emittance in 2012 (<2 pm world 

record in fall 2009) 
• 300 mA reached in 2008

Diamond Light Source

A. Alekou, JAI Advisory Board & Governing Board 2015 meetings, 09Apr15 

DBA: bending section uses 2 dipoles; zero dispersion at 
entrance and exit of cell

Dipoles SextupolesQuadrupoles

• Diamond Light Source (DLS) consists of 24 cells;  
straight sections+Double Bend Achromat (DBA)

[9]
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  Bartolini
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A. Alekou, JAI Advisory Board & Governing Board 2015 meetings, 09Apr15 
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Abstract 
Many synchrotron radiation facilities are studying 

lattice upgrades in order to lower the natural emittance 
and hence increase the radiation brightness. At Diamond 
we are pursuing a novel alternative, not targeting the 
minimum possible emittance but instead introducing 
additional insertion device (ID) straights and hence 
increasing the capacity of the facility, while still possibly 
achieving a more limited reduction in emittance. The new 
scheme involves converting some of the DBA lattice 
cells into a double-DBA or DDBA, with a new ID straight 
between the two achromats. We present here the design 
concept and preliminary lattice design, and discuss the 
challenging magnet and engineering issues. 

INTRODUCTION 
Since the beginning of operation in January 2007 [1], 

Diamond has already completed several operational 
upgrades (e.g. Top-Up operation [2], low alpha lattice for 
short radiation pulses [3], low coupling operation [4]). To 
keep Diamond competitive with the newly built 
synchrotron light sources and the upgrade programmes at 
existing light sources, an ultra-low emittance lattice 
upgrade has been considered [5]. In the context of a 4BA 
lattice upgrade, it became apparent that it is possible to 
modify the 4BA cell to leave space for a mid-cell straight 
section: this creates an additional straight section while 
still achieving an emittance substantially lower than the 
present Diamond ring. While modified DBA lattices have 
already been proposed [6], key to this new lattice design 
is the careful control of the optics function in the newly 
created mid straight section in a 4BA cell, by minimizing 
the dispersion function and generating a minimum of the 
vertical beta function to allow the operation of in-vacuum 
insertion devices. The length of the mid-straight section 
was forced to be long enough to host an in-vacuum ID 
including the necessary space for tapers, flanges, bellows 
and BPMs. For this reason a 3.4 m straight section was 
created. The fact that each bend is essentially being 
converted into a DBA has led to this being termed a 
“double-double bend achromat (DDBA)” lattice. 

The benefits intrinsic with this solution have triggered a 
review of the plans for some of the upcoming Diamond 
Phase-III beamlines. The “Dual Imaging And Diffraction” 
(DIAD) beamline [7], originally meant to operate using a 
Superbend [8], can potentially gain at least two orders of 
magnitude in brightness at 10 keV. Another Phase-III 
beamline, with two branches called VMXi and VMXm 
[9], was originally proposed to be fed by two canted IDs 
in the same straight section, an in-vacuum ID at the centre 

of the straight section and a short out-of-vacuum ID at the 
end of the same straight section. With a DDBA 
arrangement however, the latter ID will be substituted by 
an additional ID in the new straight section, with a 
significant gain in the performance of the beamline. 

 Given this strong interest, we therefore decided to 
investigate further the implementation of one or more 
such modified DDBA cells in the present Diamond 
layout. While this approach offers interesting 
opportunities for R&D toward a possible upgrade of the 
whole ring, it is to be stressed that due to the limited time 
available within the scheduled plan for the beamline 
construction, we have decoupled the aim of our studies, 
no longer requiring that the modified cell design produce 
a lower emittance, as long as it does not increase the 
present operating value of 2.7 nm. 

MODIFIED CELL LAYOUT 
The modified cell is shown in Fig. 1 where the existing 

DBA cell is also shown. It consists of four dipoles, ten 
quadrupoles and eight sextupoles. A mid-straight of 3.4 m 
is created between the two quadrupoles in the new 
straight section and there are no sextupoles in the mid-
straight section. 

 
Figure 1: Layout of the DBA cell (top) and of the 
modified DDBA cell (bottom). 

The space between the two outer dipole pairs is used to 
generate dispersion bumps which provide ideal locations 
for chromatic sextupoles and was beneficial during the 
optimisation. The behaviour of the optics function in the 
modified DDBA cell is reported in Fig, 2. This cell was 
inserted in the present Diamond lattice and matched to the 
corresponding optics function at the beginning and end of 
the standard straight section so that the insertion is as 
transparent as possible. In particular the dispersion is no 
longer matched to zero in the straight section and the 
optics is not tailored to reduce the emittance. The analysis 
was first focused on inserting one single modified DDBA 
cell. Two such cells were installed subsequently and 
matched. They were initially located in symmetric 
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created. The fact that each bend is essentially being 
converted into a DBA has led to this being termed a 
“double-double bend achromat (DDBA)” lattice. 
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an additional ID in the new straight section, with a 
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investigate further the implementation of one or more 
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layout. While this approach offers interesting 
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whole ring, it is to be stressed that due to the limited time 
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Figure 1: Layout of the DBA cell (top) and of the 
modified DDBA cell (bottom). 

The space between the two outer dipole pairs is used to 
generate dispersion bumps which provide ideal locations 
for chromatic sextupoles and was beneficial during the 
optimisation. The behaviour of the optics function in the 
modified DDBA cell is reported in Fig, 2. This cell was 
inserted in the present Diamond lattice and matched to the 
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and hence increase the radiation brightness. At Diamond 
we are pursuing a novel alternative, not targeting the 
minimum possible emittance but instead introducing 
additional insertion device (ID) straights and hence 
increasing the capacity of the facility, while still possibly 
achieving a more limited reduction in emittance. The new 
scheme involves converting some of the DBA lattice 
cells into a double-DBA or DDBA, with a new ID straight 
between the two achromats. We present here the design 
concept and preliminary lattice design, and discuss the 
challenging magnet and engineering issues. 

INTRODUCTION 
Since the beginning of operation in January 2007 [1], 
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upgrades (e.g. Top-Up operation [2], low alpha lattice for 
short radiation pulses [3], low coupling operation [4]). To 
keep Diamond competitive with the newly built 
synchrotron light sources and the upgrade programmes at 
existing light sources, an ultra-low emittance lattice 
upgrade has been considered [5]. In the context of a 4BA 
lattice upgrade, it became apparent that it is possible to 
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section: this creates an additional straight section while 
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including the necessary space for tapers, flanges, bellows 
and BPMs. For this reason a 3.4 m straight section was 
created. The fact that each bend is essentially being 
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“double-double bend achromat (DDBA)” lattice. 
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(DIAD) beamline [7], originally meant to operate using a 
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beamline, with two branches called VMXi and VMXm 
[9], was originally proposed to be fed by two canted IDs 
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end of the same straight section. With a DDBA 
arrangement however, the latter ID will be substituted by 
an additional ID in the new straight section, with a 
significant gain in the performance of the beamline. 

 Given this strong interest, we therefore decided to 
investigate further the implementation of one or more 
such modified DDBA cells in the present Diamond 
layout. While this approach offers interesting 
opportunities for R&D toward a possible upgrade of the 
whole ring, it is to be stressed that due to the limited time 
available within the scheduled plan for the beamline 
construction, we have decoupled the aim of our studies, 
no longer requiring that the modified cell design produce 
a lower emittance, as long as it does not increase the 
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Figure 1: Layout of the DBA cell (top) and of the 
modified DDBA cell (bottom). 

The space between the two outer dipole pairs is used to 
generate dispersion bumps which provide ideal locations 
for chromatic sextupoles and was beneficial during the 
optimisation. The behaviour of the optics function in the 
modified DDBA cell is reported in Fig, 2. This cell was 
inserted in the present Diamond lattice and matched to the 
corresponding optics function at the beginning and end of 
the standard straight section so that the insertion is as 
transparent as possible. In particular the dispersion is no 
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DBA cell is also shown. It consists of four dipoles, ten 
quadrupoles and eight sextupoles. A mid-straight of 3.4 m 
is created between the two quadrupoles in the new 
straight section and there are no sextupoles in the mid-
straight section. 

 
Figure 1: Layout of the DBA cell (top) and of the 
modified DDBA cell (bottom). 

The space between the two outer dipole pairs is used to 
generate dispersion bumps which provide ideal locations 
for chromatic sextupoles and was beneficial during the 
optimisation. The behaviour of the optics function in the 
modified DDBA cell is reported in Fig, 2. This cell was 
inserted in the present Diamond lattice and matched to the 
corresponding optics function at the beginning and end of 
the standard straight section so that the insertion is as 
transparent as possible. In particular the dispersion is no 
longer matched to zero in the straight section and the 
optics is not tailored to reduce the emittance. The analysis 
was first focused on inserting one single modified DDBA 
cell. Two such cells were installed subsequently and 
matched. They were initially located in symmetric 
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•Upgrades SR facilities aim lower ε; increase brilliance and transverse 
coherent factor

Motivation

•Insertion Device (ID) radiation sources more intense + attractive than 
bending magnet (BM) sources

εx ∝Φ
3∝ 1

Nbending
3•Multi-Bend Achromats (MBA)

Modified 4BA (DDBA): additional straight in mid of arc + ε reduction!

NOVEL LATTICE UPGRADE STUDIES FOR DIAMOND LIGHT SOURCE 
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1Diamond Light Source Ltd, Oxfordshire, OX11 0QX, UK and  

2John Adams Institute, University of Oxford, OX1 3RH, UK  
 

Abstract 
Many synchrotron radiation facilities are studying 

lattice upgrades in order to lower the natural emittance 
and hence increase the radiation brightness. At Diamond 
we are pursuing a novel alternative, not targeting the 
minimum possible emittance but instead introducing 
additional insertion device (ID) straights and hence 
increasing the capacity of the facility, while still possibly 
achieving a more limited reduction in emittance. The new 
scheme involves converting some of the DBA lattice 
cells into a double-DBA or DDBA, with a new ID straight 
between the two achromats. We present here the design 
concept and preliminary lattice design, and discuss the 
challenging magnet and engineering issues. 

INTRODUCTION 
Since the beginning of operation in January 2007 [1], 

Diamond has already completed several operational 
upgrades (e.g. Top-Up operation [2], low alpha lattice for 
short radiation pulses [3], low coupling operation [4]). To 
keep Diamond competitive with the newly built 
synchrotron light sources and the upgrade programmes at 
existing light sources, an ultra-low emittance lattice 
upgrade has been considered [5]. In the context of a 4BA 
lattice upgrade, it became apparent that it is possible to 
modify the 4BA cell to leave space for a mid-cell straight 
section: this creates an additional straight section while 
still achieving an emittance substantially lower than the 
present Diamond ring. While modified DBA lattices have 
already been proposed [6], key to this new lattice design 
is the careful control of the optics function in the newly 
created mid straight section in a 4BA cell, by minimizing 
the dispersion function and generating a minimum of the 
vertical beta function to allow the operation of in-vacuum 
insertion devices. The length of the mid-straight section 
was forced to be long enough to host an in-vacuum ID 
including the necessary space for tapers, flanges, bellows 
and BPMs. For this reason a 3.4 m straight section was 
created. The fact that each bend is essentially being 
converted into a DBA has led to this being termed a 
“double-double bend achromat (DDBA)” lattice. 

The benefits intrinsic with this solution have triggered a 
review of the plans for some of the upcoming Diamond 
Phase-III beamlines. The “Dual Imaging And Diffraction” 
(DIAD) beamline [7], originally meant to operate using a 
Superbend [8], can potentially gain at least two orders of 
magnitude in brightness at 10 keV. Another Phase-III 
beamline, with two branches called VMXi and VMXm 
[9], was originally proposed to be fed by two canted IDs 
in the same straight section, an in-vacuum ID at the centre 

of the straight section and a short out-of-vacuum ID at the 
end of the same straight section. With a DDBA 
arrangement however, the latter ID will be substituted by 
an additional ID in the new straight section, with a 
significant gain in the performance of the beamline. 

 Given this strong interest, we therefore decided to 
investigate further the implementation of one or more 
such modified DDBA cells in the present Diamond 
layout. While this approach offers interesting 
opportunities for R&D toward a possible upgrade of the 
whole ring, it is to be stressed that due to the limited time 
available within the scheduled plan for the beamline 
construction, we have decoupled the aim of our studies, 
no longer requiring that the modified cell design produce 
a lower emittance, as long as it does not increase the 
present operating value of 2.7 nm. 

MODIFIED CELL LAYOUT 
The modified cell is shown in Fig. 1 where the existing 

DBA cell is also shown. It consists of four dipoles, ten 
quadrupoles and eight sextupoles. A mid-straight of 3.4 m 
is created between the two quadrupoles in the new 
straight section and there are no sextupoles in the mid-
straight section. 

 
Figure 1: Layout of the DBA cell (top) and of the 
modified DDBA cell (bottom). 

The space between the two outer dipole pairs is used to 
generate dispersion bumps which provide ideal locations 
for chromatic sextupoles and was beneficial during the 
optimisation. The behaviour of the optics function in the 
modified DDBA cell is reported in Fig, 2. This cell was 
inserted in the present Diamond lattice and matched to the 
corresponding optics function at the beginning and end of 
the standard straight section so that the insertion is as 
transparent as possible. In particular the dispersion is no 
longer matched to zero in the straight section and the 
optics is not tailored to reduce the emittance. The analysis 
was first focused on inserting one single modified DDBA 
cell. Two such cells were installed subsequently and 
matched. They were initially located in symmetric 
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lattice upgrades in order to lower the natural emittance 
and hence increase the radiation brightness. At Diamond 
we are pursuing a novel alternative, not targeting the 
minimum possible emittance but instead introducing 
additional insertion device (ID) straights and hence 
increasing the capacity of the facility, while still possibly 
achieving a more limited reduction in emittance. The new 
scheme involves converting some of the DBA lattice 
cells into a double-DBA or DDBA, with a new ID straight 
between the two achromats. We present here the design 
concept and preliminary lattice design, and discuss the 
challenging magnet and engineering issues. 

INTRODUCTION 
Since the beginning of operation in January 2007 [1], 

Diamond has already completed several operational 
upgrades (e.g. Top-Up operation [2], low alpha lattice for 
short radiation pulses [3], low coupling operation [4]). To 
keep Diamond competitive with the newly built 
synchrotron light sources and the upgrade programmes at 
existing light sources, an ultra-low emittance lattice 
upgrade has been considered [5]. In the context of a 4BA 
lattice upgrade, it became apparent that it is possible to 
modify the 4BA cell to leave space for a mid-cell straight 
section: this creates an additional straight section while 
still achieving an emittance substantially lower than the 
present Diamond ring. While modified DBA lattices have 
already been proposed [6], key to this new lattice design 
is the careful control of the optics function in the newly 
created mid straight section in a 4BA cell, by minimizing 
the dispersion function and generating a minimum of the 
vertical beta function to allow the operation of in-vacuum 
insertion devices. The length of the mid-straight section 
was forced to be long enough to host an in-vacuum ID 
including the necessary space for tapers, flanges, bellows 
and BPMs. For this reason a 3.4 m straight section was 
created. The fact that each bend is essentially being 
converted into a DBA has led to this being termed a 
“double-double bend achromat (DDBA)” lattice. 

The benefits intrinsic with this solution have triggered a 
review of the plans for some of the upcoming Diamond 
Phase-III beamlines. The “Dual Imaging And Diffraction” 
(DIAD) beamline [7], originally meant to operate using a 
Superbend [8], can potentially gain at least two orders of 
magnitude in brightness at 10 keV. Another Phase-III 
beamline, with two branches called VMXi and VMXm 
[9], was originally proposed to be fed by two canted IDs 
in the same straight section, an in-vacuum ID at the centre 

of the straight section and a short out-of-vacuum ID at the 
end of the same straight section. With a DDBA 
arrangement however, the latter ID will be substituted by 
an additional ID in the new straight section, with a 
significant gain in the performance of the beamline. 

 Given this strong interest, we therefore decided to 
investigate further the implementation of one or more 
such modified DDBA cells in the present Diamond 
layout. While this approach offers interesting 
opportunities for R&D toward a possible upgrade of the 
whole ring, it is to be stressed that due to the limited time 
available within the scheduled plan for the beamline 
construction, we have decoupled the aim of our studies, 
no longer requiring that the modified cell design produce 
a lower emittance, as long as it does not increase the 
present operating value of 2.7 nm. 

MODIFIED CELL LAYOUT 
The modified cell is shown in Fig. 1 where the existing 

DBA cell is also shown. It consists of four dipoles, ten 
quadrupoles and eight sextupoles. A mid-straight of 3.4 m 
is created between the two quadrupoles in the new 
straight section and there are no sextupoles in the mid-
straight section. 

 
Figure 1: Layout of the DBA cell (top) and of the 
modified DDBA cell (bottom). 

The space between the two outer dipole pairs is used to 
generate dispersion bumps which provide ideal locations 
for chromatic sextupoles and was beneficial during the 
optimisation. The behaviour of the optics function in the 
modified DDBA cell is reported in Fig, 2. This cell was 
inserted in the present Diamond lattice and matched to the 
corresponding optics function at the beginning and end of 
the standard straight section so that the insertion is as 
transparent as possible. In particular the dispersion is no 
longer matched to zero in the straight section and the 
optics is not tailored to reduce the emittance. The analysis 
was first focused on inserting one single modified DDBA 
cell. Two such cells were installed subsequently and 
matched. They were initially located in symmetric 
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Full lattice upgrade: replacement of existing 24 DBA cells with 24 
DDBA cells
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Upgrade
Although emittance of this lattice reduced by factor of 10, 
DA only (-4, 6)mm

-4 mm 6 mm
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x [m]
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Upgrade

Goal: increase DA to +-10 mm; cancel non-linear 
sextupole terms with phase advance manipulation

Although emittance of this lattice reduced by factor of 10, 
DA only (-4, 6)mm

-4 mm 6 mm

y [m]

x [m]
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—Any questions?



Androula Alekou, androula.alekou@physics.ox.ac.uk, JAI Seminar, 4June15
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