# Accelerator Physics Around ¾ of the World

A Summary of Experiences & Planned Work at FONT

Dr. Ryan Bodenstein
Postdoctoral Research Assistant
FONT Group – JAI
University of Oxford

# Hello, 안녕하세요, Hello Again...

- Introductory talk to introduce myself and my work.
- PhD in 2012 from University of Virginia
  - Dissertation work at Jefferson Lab in Newport News, Virginia, USA
- Research Fellow at the Rare Isotope Science Project (RISP), part of the Institute for Basic Science (IBS) in Daejeon, South Korea.
- Postdoctoral Research Assistant here in the FONT group.
- Talk will be more conceptual than quantitative.

# So, where to begin...





## A bit about JLab

- 6 GeV (12 now) recirculating electron linac
  - Continuous Electron Beam Accelerator Facility (CEBAF)
- Essentially a linac folded over upon itself up to 5 times





# **How CEBAF Works**



~7/8 mile around Each linac ~1/4 mile

## What did I do at JLab?

- My first few jobs were in the SRF Institute
  - Bead pulls
  - HOM measurements in the cavity test cave
  - Vertical cavity tests











## What did I do at JLab?

- Then I moved to the Center for Advanced Study of Accelerators (CASA) Group (http://casa.jlab.org/)
- · Had to do a "warm-up" project

THPAS072

Proceedings of PAC07, Albuquerque, New Mexico, USA

#### MULTIPASS STEERING PROTOCOLS AT JEFFERSON LAB\*

R.M. Bodenstein#, M.G. Tiefenback, JLAB, Newport News, VA 24606, U.S.A.

#### Abstract

The CEBAF recirculating accelerator consists of two CW superconducting RF linacs, through which an electron beam is accelerated for up to 5 passes. Focusing and steering elements affect each pass differently, requiring a multipass steering protocol to correct the orbits. Perturbations include lens misalignments (including long-term ground motion), BPM offsets, and focusing and steering from RF fields inside the cavities. A previous treatment of this problem assumed all perturbations were localized at the quadrupoles and the absence of x-y coupling. Having analyzed the problem and characterized the solutions, we developed an empirical iterative protocol to compare against previous results in the presence of skew fields and cross-plane coupling. We plan to characterize static and accelerationdependent components of the beam line perturbations to allow systematic and rapid configuration of the accelerator at different linac energy gains.





## What did I do at JLab?

- Once I understood the CEBAF optics, the real work began.
- Developed procedure to characterize and tune beam

#### Circular Machine

- Many passes
  - Equilibrium orbit
- Global, self-consistent lattice
- Periodic condition
- Lattice defines Twiss Parameters
- Beam accommodates Twiss Parameters

#### **Open-Ended Machine**

- Single pass through system
  - No equilibrium orbit
- No periodicity constraints like circular
- Lattice defines path of beam
- Lattice transforms Twiss
   Parameters
- How can they be measured?





# JLab's Method 1: Quad Scan



# JLab's Method 1: Quad Scan The problems

- Noisy electronics (wire scanner)
- Sparse coverage
- Small emittance
- Time consuming takes ~30 minutes to complete for ONE location
- Invasive more time away from nuclear physics program

JLab's Method 2: Courant-Snyder
Used to maintain Tuning

 Used to maintain beam envelope matching

Takes x and x'
from measured
trajectories, and
uses α and β from
the design model
to calculate the
matched phase
ellipse
corresponding to
the measured
trajectory



## **JLab's Method 2: Problems**



# Addressing The Weaknesses

- CEBAF needed a method that is minimally invasive to the nuclear physics program
- Must be able to either take into account cumulative phase advance errors, or provide a way in which it can be ignored without detriment
- Must be able to characterize the beamline both locally and globally
- Developed rayTrace to achieve this

# rayTrace: What is it?

- Measures the differential orbit of the real beam at every location simultaneously
- Corrector kicks are set to follow the boundary of the model's phase ellipse
- Allows for calculation of the Twiss parameters of the real beam



# rayTrace - How it Works



# Data cleanup with SVD



# Data cleanup with SVD



#### **Resolution Test**

- Devised a Resolution Test as validation of rayTrace
  - Want basic test simple optics change analogous to optics error
- Goals:
  - 1. Localize a known optics change
  - 2. Resolve the magnitude of optics change
- The Test:
  - Create known optics change by varying strength of quadrupole
  - Take Baseline Data first, then change quad setting 20% Positive from Baseline, then 20% Negative from Baseline
  - Take second Baseline data set





### **Resolution Test**

 Localized optics change to region between two BPMs

- Resolved better than 95% of the change entered
- Estimated BPM system errors within expected range

#### Analysis - Beta Comparison



#### Analysis – Resolving the Change

$$\sum_{1}^{m} (u_2 - M_{ii}u_1 - M_{kl}u_1')^2 = \sum_{1}^{m} \Delta_m^2$$

$$\sigma = \sqrt{\frac{\sum_{1}^{m} \Delta_{m}^{2}}{N - 1}}$$

$$M_{11} = \cos(\sqrt{k}l) - \sqrt{k}l\sin(\sqrt{k}l)$$
  

$$M_{33} = \cosh(\sqrt{k}l) + \sqrt{k}l\sinh(\sqrt{k}l)$$

|                                                                  | ^ |
|------------------------------------------------------------------|---|
| $l_{1} = 1 \partial B_{y}$                                       | 4 |
| $\kappa = \frac{1}{B\rho} \frac{1}{\partial x}$                  |   |
| $\partial B_x = \partial B_y$                                    |   |
| $\frac{\partial y}{\partial y} = -\frac{\partial y}{\partial x}$ | 1 |
| $p_c = p/c$                                                      | ı |
| $D\rho = \frac{0.2008}{0.2008}$                                  |   |

| MQB1R01                        | Baseline 1 | RES     | (ga) 1 20 |         |
|--------------------------------|------------|---------|-----------|---------|
| Calculated Quad Value (Gauss)  | 2937.63    | 3508.57 | 2357.89   | 2915.46 |
| Percent Change From Baseline 1 | 0          | 19.44   | -19.73    | 0.75    |
| Archived Quad Value (Gauss)    | 2994.62    | 3593.45 | 2395.63   | 2994.63 |
| Sigma (microns)                | 30.69      | 50.83   | 37.81     | 53.17   |

#### REAL BEAM LINE OPTICS FROM A SYNTHETIC BEAM\*

R.M. Bodenstein<sup>#</sup>, M.G. Tiefenback, Y.R. Roblin Jefferson Lab, Newport News, VA 23606, U.S.A.

Proceedings of IPAC2012, New Orleans, Louisiana, USA

**TUPPC046** 

# FURTHER ANALYSIS OF REAL BEAM LINE OPTICS FROM A SYNTHETIC BEAM\*

R.M. Bodenstein<sup>#</sup>, Y.R. Roblin, M.G. Tiefenback Jefferson Lab, Newport News, VA, USA

A Procedure for Beamline Characterization and Tuning in Open-Ended Beamlines

#### A Dissertation







## Quick Info about the Rare Isotope Science Project

- Part of the Institute for Basic Science
  - Established by Korean government in 2011
- RISP officially established in 2011
  - In 2012, accelerator facility named RAON (라온), which is a traditional Korean word that translates to delightful, joyful, or happy.
- RISP goal: produce variety of stable and rare isotope beams for use in a variety of basic scientific research and applications
- Unique aspect:
  - Isotope production using both In-Flight Fragmentation (IFF) and Isotope Separation On-Line (ISOL)











## (Proposed) Layout Diagram and a Few Parameters



#### Ignoring the rest, here is the LEBT...



#### TRACK simulation of LEBT



## **LEBT Test Facility**







exit

#### X-Envelopes, Bismuth 209 +29, No Space Charge



#### Y-Envelopes, Bismuth 209 +29, No Space Charge



### **LEBT Test Facility**

#### The Baseline Model

- The good:
  - > Adequately small beam size
  - Matching section length reduced by nearly 2 meters
  - Excellent matching into the RFQ
- The bad:
  - Centroid offset, likely due to initial offset applied by TRACK code.
    - Not present in TRANSPORT

#### Baseline with Space Charge

- The good:
  - Beam size remains adequately small
  - Matching is still excellent
- The bad:
  - Difficulty adjusting mesh, which should be increased
    - Engineers using MWS need to do this.

#### **Baseline with Alignment Errors**

- The good:
  - Even with large alignment errors, beam in matching section shows resistance against errors
- The bad:
  - None yet, but further investigation will surely show some.







# Alright, so I'm here. Now what?

- I'm very excited to be here at JAI and Oxford
  - Opportunity to collaborate with ILC and CLIC
  - FONT provides place to both exercise and expand my experience
- Very happy to learn about feedback systems and linear colliders
  - Colliders are a different animal
  - Focus on a small but important aspect
    - How this applies to the greater aspects
- Looking forward to learning new programs and techniques for simulation
  - Taking up with Javier Resta-Lopez left off.
    - ILC & CLIC ground motion simulations for FB system
  - Overall beam delivery system simulations
- Given my background, I feel I will have much to contribute and even more to learn

Thanks!

감사합니다!