The IBEX Paul Trap:
 Studying accelerator physics without the accelerator

JAI Introducing Seminar 21/5/2015

Dr. Suzie Sheehy John Adams Institute for Accelerator Science \& STFC/ASTeC Intense Beams Group

Oct 2007 - Oct 2010

DPhil, Oxford

Design of a non-scaling fixed field alternating gradient accelerator for charged particle therapy

Nov 2010 - Nov 2013:

Research Fellowship (Brunel Fellow)

"Novel high power proton accelerators" based at RAL Focus on simulations of novel high power accelerators http://www.royalcommission1851.org.uk/ Collaborating with FNAL, PSI + others

Nov 2013 - March 2015:

Senior Accelerator Physicist, ASTeC Intense Beams Group, RAL Collaborating with Kyoto University, University of Hiroshima, CERN

April 2015 - present
Researcher, Joint Appointment
Science \& Technology Facilities Council

Challenges in accelerator simulation

Challenges in accelerator simulation

Every particle feels coulomb force...
... from every other particle

Challenges in accelerator simulation

And are moving ...more forces \& calculations

Challenges in accelerator simulation

There's a beam pipe as well... which interacts with the beam

Challenges in accelerator simulation

It's not always easy to include imperfections, can't always simplify...

$$
\begin{gathered}
H_{\text {bam }}=\frac{p_{x}^{2}+p_{v}^{2}}{2}+\frac{1}{2} K(s)\left(x^{2}-y^{2}\right)+\frac{q}{p_{0} \beta_{0} \gamma_{0}^{2}} \phi \\
\text { Hamiltonian for } \\
\text { transverse beam motion }
\end{gathered}
$$

S-POD: Simulator of Particle Orbit Dynamics at Hiroshima University

Paul Trap

Wolfgang Paul
Nobel Prize 1989 (shared)
$H_{\text {beam }}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{1}{2} K(s)\left(x^{2}-y^{2}\right)+\frac{q}{p_{0} \beta_{0} c \gamma_{0}^{2}} \phi$
Hamiltonian for transverse beam motion
$H_{\mathrm{S} . \mathrm{POD}}=\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{1}{2} K_{\mathrm{p}}(\tau)\left(x^{2}-y^{2}\right)+\frac{q}{m c^{2}} \phi_{\mathrm{sc}}$
Hamiltonian for Paul trap

Argon gas ionised by e- gun

Lattice Structures

Quadrupole mode

$$
n v_{x}+m v_{y}=0,1,2 \ldots
$$

Beam losses in SIS18 from tune scans

G. Franchetti et al, Phys. Rev. ST Accel.

Beams 13, 114203, 2010

S. Machida et. al., Nature Physics 8, 243-247 (2012)

Resonance crossing, particularly of integers is a key concern in the FFAG community, particularly with the development of non-scaling FFAGs.

In EMMA and other accelerators, it can be difficult to do slow resonance crossing studies due to:

- Limited parameter range (RF)
- Coupling to longitudinal plane
- Lack of range of control for driving terms
- Time consuming experiments

Quadrupole focusing

Quadrupole mode

Dipole mode

(a)
(b)

Sinusoidal

Quadrupole

Motion with dipole perturbation

Quadrupole focusing \quad Dipole perturbation

$\frac{d^{2} x_{\mathrm{COD}}}{d s^{2}}+K_{x}(s) x_{\mathrm{COD}}=-\frac{\Delta B}{B \rho}$
COD equation of motion in circular accelerator

$$
\frac{d^{2} x}{d \tau^{2}}+K_{r f}(\tau) x=-\frac{q}{m c^{2} r_{0}} V_{D}(\tau)
$$

Equation of motion in S-POD with dipole perturbation field

Ion losses on resonance

nb : each image is axially integrated distribution

On resonance, we clearly see large ion losses
Can also see a clear widening in the distribution

Establishing integer stopbands with dipole perturbation

Amplitude growth with error

Theory = Gaussian distribution integrated over COD trajectory
tune $=8.1$, varying perturbation strength

We wanted to confirm amplitude growth when OFF RESONANCE as well

Single resonance crossing

crossing speed, $\quad u=\frac{\delta v_{\text {cell }}}{n_{\mathrm{rf}}}$

In EMMA, for 10 turn extraction u is roughly 5×10^{-4} if the tune per cell decreases by 0.2 during acceleration

8th harmonic excited Tune varied 9.5 -> 7.5

Double resonance crossing

8th \& 9th harmonic excited
Tune varied 9.5 -> 7.5

Oscillatory behaviour for high perturbation strength... why?

- Single crossing for comparison (black)

Phase dependent effects

Vary phase of 8th harmonic, cross 9th \& 8th

Fixed perturbation
Varying crossing speed

Fixed crossing speed Varying perturbation

Non-linear fields play a role too...

Many interesting phenomena occur in accelerators which could be studied if the non-linear components are controlled

- K. Moriya, ..., S. L. Sheehy, et al., Experimental study of integer resonance crossing in a non-scaling fixed field alternating gradient accelerator with a Paul ion trap, Phys. Rev. ST-AB, 18, 034001 (2015).

IBEX Intense Beam Experiment

- Construction of a linear Paul Trap apparatus at RAL with funding from ASTeC $(£ 77,000)$
- Complementary to the existing setup at Hiroshima and built in close collaboration.
- Lots of interest from accelerator community already - FNAL (IOTA, S. Ngaitsev), CERN PS (M. Giovanozzi), ISIS (C. Warsop)

Image courtesy Technologę at Daresbury Laboratory

e-gun to ionize Ar

slide courtesy H. Okamoto's ${ }_{30}$ group, University of Hiroshima

Non-linear Paul trap

More info D. Kelliher, in Proceedings of IPAC 2015.

Future research topics

"This technique has wide-ranging applications and will allow us to establish understanding in beam dynamics topics which are vital for the design of future high power proton or ion accelerators."

- Combination of resonance crossing with intense beams is a natural extension
- Lattice variants and higher order stability regions
- Systematic study and control of non-linear effects (possible CERN PS topics)
- Integrable optics idea with FNAL
- More general non-linear beam dynamics (with ISIS \& CERN)

"Integrable Optics"

How to make the Hamiltonian time-independent?

$$
H_{N}=\frac{p_{x N}^{2}+p_{y N}^{2}}{2}+\frac{x_{N}^{2}+y_{N}^{2}}{2}+\beta(\psi) V\left(x_{N} \sqrt{\beta(\psi)}, y_{N} \sqrt{\beta(\psi)}, s(\psi)\right)
$$

$$
V(x, y, s)=\frac{q}{\beta(s)^{2}}\left(x^{2}-y^{2}\right) \quad U\left(x_{N}, y_{N}\right)=q\left(x_{N}^{2}-y_{N}^{2}\right)
$$

quadrupole amplitude

Tunes:

$$
\begin{aligned}
& v_{x}^{2}=v_{0}^{2}(1+2 q) \\
& v_{y}^{2}=v_{0}^{2}(1-2 q)
\end{aligned}
$$

Tune spread: zero
L

From IOTA Profile, A. Valishev, April 1,3 2015

Proposed Experiment	Trap Required
Half-integer studies of ISIS and other rings.	Quadrupole
Long-term stability studies at various intensities.	Quadrupole
Benchmarking codes to simulate high intensity rings.	Quadrupole
Halo production driven by space charge.	Quadrupole
Comparison of different lattice types.	Quad-Octupole
Resonance crossing studies in the presence of lattice non-linearities.	Quad-Octupole
Quasi-integrable optics.	Higher order trap
Space charge effects in scaling FFAGs.	Higher order trap
Integrable optics (IOTA).	

More info D. Kelliher, in Proceedings of IPAC 2015.

Interested in getting involved? Please get in touch!

Opportunities: 2 MPhys projects offered for 2015/2016:

1. A new electron gun for the Intense Beam Experiment (IBEX)
2. Design and simulation of a new multipole plasma trap for the Intense Beam Experiment (IBEX)
