

Nanometre-level stabilisation on nanosecond timescales

Neven Blaskovic Kraljevic

FONT group, John Adams Institute, Oxford University

About me

Madrid (Spain)

Born & raised

About me

Madrid (Spain)

Oxford (UK)

Born & raised

MPhys & DPhil

About me

Madrid (Spain)

Born & raised

Oxford (UK)

MPhys & DPhil

Tsukuba (Japan)

Travelled for experiment

Outline

- Introduction
 - Feedback at a linear collider
 - International Linear Collider
 - Feedback on Nanosecond Timescales
- Experimental setup at Accelerator Test Facility
- Beam position monitor signal processing
- Modes of feedback operation
- Results

Feedback at a Linear Collider

- Successful collision of bunches at a linear collider is critical
- A fast position feedback system is required

Misaligned beams at interaction point (IP) cause beam-beam deflection

Feedback at a Linear Collider

- Successful collision of bunches at a linear collider is critical
- A fast position feedback system is required

Misaligned beams at interaction point (IP) cause beam-beam deflection

Measure deflection on one of outgoing beams

Feedback at a Linear Collider

- Successful collision of bunches at a linear collider is critical
- A fast position feedback system is required

Misaligned beams at interaction point (IP) cause beam-beam deflection

Measure deflection on one of outgoing beams

Correct orbit of next bunch (correlated to previous bunch due to short bunch spacing)

International Linear Collider (ILC)

- Proposed linear electron-positron collider
- Centre-of-mass energy: 250-1000 GeV
- Vertical beamsize: 5.9 nm
- Bunch separation: 554 ns

- Test bed for the International Linear Collider
- Facility located at KEK in Tsukuba, Japan
- Goals:
 - 37 nm vertical spot size at final focus
 - Nanometre level vertical beam stability

- ATF can be operated with 2-bunch trains in the extraction line and final focus
- The separation of the bunches is ILC-like (tuneable up to ~300 ns)
- Our prototype feedback system:
 - Measures the position of the first bunch
 - Then corrects the path of the second bunch
- Train extraction frequency: ~3 Hz

Feedback on Nanosecond Timescales (FONT)

- Low-latency, high-precision feedback system
- We have previously demonstrated a system meeting ILC latency, BPM resolution and beam kick requirements
- We have extended the system for use at ATF
- We aim for nanometre level beam stabilisation

beam P3 P2

P Stripline BPM

- 12 cm long strips
- 12 mm radius
- On x and y mover system

- Analogue: latency 15 ns
- Dynamic range of ±500 μm
- Resolution of ~300 nm

IPB Cavity BPM at beam waist

- C-band: 6.4 GHz in y
- Low Q: decay time < 30 ns
- Resolve 2-bunch trains

Processor for cavity BPM

- Analogue, 2-stage downmixer
- Developed by Honda et al.
- Resolution of ~50 nm

Board

- 9 ADC channels at 357 MHz
- 2 DAC channels at 179 MHz
- Xilinx Virtex 5 FPGA

Amplifier

- Made by TMD Technologies
- ± 30 A drive current
- 35 ns rise time (90 % of peak)

K Kicker

- Vertical stripline kicker
- 30 cm long strips for K1 & K2
- 12.5 cm long strips for IPK

As the bunch travels through the BPM, it induces a bipolar signal on the strips In the frequency domain, this signal peaks at ~700 MHz

R. J. Apsimon et al., PRST-AB, 2015

The top and bottom strips are used to measure the vertical beam position.

The 'difference over sum' of the two signals gives the beam position.

simplified schematic

The signals from the two strips are subtracted using a 180° hybrid and added using a coupler

simplified schematic

An external 714 MHz local oscillator (LO) downmixes the signals to baseband The beam position is proportional to V_{Δ}/V_{Σ}

IPB cavity

Dipole mode frequency (in y) ~6426 MHz

Reference cavity

Monopole mode frequency (in y) ~6426 MHz

simplified schematic

The IPB and reference cavity signals are downmixed using a common, external 5712 MHz LO

The IPB signal is downmixed using the reference cavity signal as LO
The I and Q output signals at baseband are used to obtain the beam position

Upstream Feedback

- Coupled-loop feedback system allows correction of both position & angle
- P2 and P3 are used to drive K1 and K2
- Latency: 134 ns
- Effect measured at witness BPM MFB1FF, located 30 meters downstream from P3

Bunch 1

Upstream Feedback

Bunch 2

Upstream Feedback

Upstream Feedback

FB Off Correlation: 96.9 ± 0.3 %

FB On Correlation: -25 ± 4 %

FB Off Correlation: 93.3 ± 0.6 %

FB On Correlation: +15 ± 4 %

FB Off Correlation: 98.3 ± 0.2 %

FB On Correlation: -14 ± 4 %

Interaction Point Feedback

- IPB position is used to drive the local kicker IPK
- Latency: 212 ns
- Effect measured at IPB

Bunch 1

Interaction Point Feedback

FB Off Jitter:

412 ± 29 nm

FB On Jitter:

389 ± 28 nm

Bunch 2

Interaction Point Feedback

FB Off Jitter:

420 ± 30 nm

FB On Jitter:

74 ± 5 nm

Interaction Point Feedback

Outlook

Two IP BPMs
can be used to
stabilise the
beam at a
location
between them

Conclusions

- Demonstrated low-latency, high-precision, intra-train feedback systems
- Upstream coupled-loop position & angle feedback stabilises beam locally to 600 nm
- IP position feedback reduces jitter to 75 nm
- Future plans involve using 2 IP BPMs to drive IP feedback

Thank you for your attention!

Many thanks to the FONT team and our ATF colleagues

FONT group

Phil Burrows

Talitha Bromwich

Rebecca Ramjiawan

Project leader Colin Perry Engineer Glenn Christian Lecturer Ryan Bodenstein Postdoctoral researchers Neven Blaskovic Kraljevic **Jack Roberts** DPhil students (CERN) Davide Gamba

DPhil students (Oxford)

Ground Motion vs. Frequency

Vertical ground motion power spectral density integrated up from a range of cut-off frequencies to give the RMS ground motion as a function of frequency

R. Amirikas et al., EUROTeV, 2005

Monopole and Dipole Cavity Modes

Upstream Feedback

measured

MFB1FF bunch 2 120 100 80 60 40 20 -400 -300 -200 -100 Position (um)

propagated

