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• Results 
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• Successful collision of bunches at a linear 
collider is critical 

• A fast position feedback system is required 

Misaligned beams at 
interaction point (IP) cause 

beam-beam deflection 
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• Successful collision of bunches at a linear 
collider is critical 

• A fast position feedback system is required 

Misaligned beams at 
interaction point (IP) cause 

beam-beam deflection 

Measure deflection on 
one of outgoing beams 

Correct orbit of next bunch 
(correlated to previous bunch 
due to short bunch spacing)  

(beam position monitor) 

Introduction 

Feedback at a Linear Collider 



Introduction 

International Linear Collider (ILC) 

 

Neven Blaskovic Kraljevic  9 

• Proposed linear electron-positron collider 

• Centre-of-mass energy: 250-1000 GeV 

• Vertical beamsize: 5.9 nm 

• Bunch separation: 554 ns 

ILC Technical Design Report 
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• Test bed for the International Linear Collider 

• Facility located at KEK in Tsukuba, Japan 

• Goals: 

– 37 nm vertical spot size at final focus 

– Nanometre level vertical beam stability 
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Electron source 

90 meters 
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Damping ring 

Electron source 

Extraction line Final focus 

Model interaction point (IP) 
of a collider 

Feedback system 

1.28 GeV linear accelerator 

90 meters 
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Accelerator Test Facility (ATF) at KEK 
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• ATF can be operated with 2-bunch trains in 
the extraction line and final focus 

• The separation of the bunches is ILC-like 
(tuneable up to ~300 ns) 

• Our prototype feedback system: 

– Measures the position of the first bunch 

– Then corrects the path of the second bunch 

• Train extraction frequency: ~3 Hz 
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Feedback on Nanosecond Timescales (FONT) 
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• Low-latency, high-precision feedback system 

• We have previously demonstrated a system 
meeting ILC latency, BPM resolution and beam 
kick requirements  

• We have extended the system for use at ATF 

• We aim for nanometre level beam stabilisation 
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P3 P2 P Stripline BPM 

• 12 cm long strips 
• 12 mm radius 
• On x and y mover system 

 

 

Experimental Setup 
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P3 P2 for stripline BPM 

• Analogue: latency 15 ns 
• Dynamic range of ±500 μm 
• Resolution of ~300 nm 
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IPB IPB Cavity BPM at beam waist 

• C-band: 6.4 GHz in y 
• Low Q: decay time < 30 ns 
• Resolve 2-bunch trains 

 

 

Experimental Setup 
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P3 P2 for cavity BPM 

• Analogue, 2-stage downmixer 
• Developed by Honda et al. 
• Resolution of ~50 nm 
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Board Board 

Board 

• 9 ADC channels at 357 MHz 
• 2 DAC channels at 179 MHz 
• Xilinx Virtex 5 FPGA 
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• Made by TMD Technologies 
• ± 30 A drive current 
• 35 ns rise time (90 % of peak) 

Amplifier 
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Board Board 

• Vertical stripline kicker 
• 30 cm long strips for K1 & K2 
• 12.5 cm long strips for IPK 

K Kicker 

 

Experimental Setup 
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for stripline BPM 

Σ 

Δ BPM top 

BPM bottom 

Processor 

 

Stripline BPM Signal Processing 
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As the bunch travels through the BPM, it induces a bipolar signal on the strips 
In the frequency domain, this signal peaks at ~700 MHz 

R. J. Apsimon et al., PRST-AB, 2015 



 

Stripline BPM Signal Processing 
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The top and bottom strips are used to measure the vertical beam position 
The ‘difference over sum’ of the two signals gives the beam position 
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Stripline BPM Signal Processing 

The signals from the two strips are 
subtracted using a 180° hybrid and added using a coupler 

simplified schematic 
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Stripline BPM Signal Processing 

An external 714 MHz local oscillator (LO) downmixes the signals to baseband 
The beam position is proportional to 𝑉Δ/𝑉Σ 

simplified schematic 
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for cavity BPM Processor 

 

Cavity BPM Signal Processing 



 

Cavity BPM Signal Processing 
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Reference cavity 
Monopole mode frequency (in y) 

~6426 MHz 

IPB cavity 
Dipole mode frequency (in y) 

~6426 MHz 
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Cavity BPM Signal Processing 

The IPB and reference cavity signals are downmixed 
using a common, external 5712 MHz LO 

simplified schematic 
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Cavity BPM Signal Processing 

The IPB signal is downmixed using the reference cavity signal as LO 
The I and Q output signals at baseband are used to obtain the beam position 

simplified schematic 
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Board Board 

• Coupled-loop feedback 
system allows correction 
of both position & angle 

• P2 and P3 are used to 
drive K1 and K2 

• Latency: 134 ns 
• Effect measured at 

witness BPM MFB1FF, 
located 30 meters 
downstream from P3 

 

Upstream Feedback 
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Upstream Feedback 

FB Off Jitter: 
1.80 ± 0.06 μm 

FB On Jitter: 
1.70 ± 0.05 μm 

FB Off Jitter: 
1.56 ± 0.05 μm 

FB On Jitter: 
1.66 ± 0.05 μm 

FB Off Jitter: 
29.9 ± 1.0 μm 

FB On Jitter: 
29.4 ± 0.9 μm 
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Upstream Feedback 

FB Off Jitter: 
1.74 ± 0.06 μm 

FB On Jitter: 
0.44 ± 0.01 μm 

FB Off Jitter: 
1.55 ± 0.05 μm 

FB On Jitter: 
0.61 ± 0.02 μm 

FB Off Jitter: 
27.5 ± 0.9 μm 

FB On Jitter: 
8.3 ± 0.3 μm 
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P2 P3 MFB1FF 



Neven Blaskovic Kraljevic  37 

 

Upstream Feedback 

FB Off Correlation: 
96.9 ± 0.3 % 

FB On Correlation: 
–25 ± 4 % 

FB Off Correlation: 
93.3 ± 0.6 % 

FB On Correlation: 
+15 ± 4 % 

FB Off Correlation: 
98.3 ± 0.2 % 

FB On Correlation: 
–14 ± 4 % 

P2 P3 MFB1FF 
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IPK IPB 

 

Interaction Point Feedback 

• IPB position is used to 
drive the local kicker IPK 

• Latency: 212 ns 
• Effect measured at IPB 
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Interaction Point Feedback 

FB Off Jitter: 
412 ± 29 nm 

FB On Jitter: 
389 ± 28 nm 
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Interaction Point Feedback 

FB Off Jitter: 
420 ± 30 nm 

FB On Jitter: 
74 ± 5 nm 
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Interaction Point Feedback 

FB Off Correlation: 
98.2 ± 0.4 % 

FB On Correlation: 
–13 ± 10 % 
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Outlook 

Two IP BPMs 
can be used to 

stabilise the 
beam at a 
location 

between them 



  

Conclusions 
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• Demonstrated low-latency, high-precision, 
intra-train feedback systems 

• Upstream coupled-loop position & angle 
feedback stabilises beam locally to 600 nm 

• IP position feedback reduces jitter to 75 nm 

• Future plans involve using 2 IP BPMs to drive 
IP feedback 
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Ground Motion vs. Frequency 
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Vertical ground motion power spectral density integrated up from a range of 
cut-off frequencies to give the RMS ground motion as a function of frequency 

R. Amirikas et al., EUROTeV, 2005 



  

Monopole and Dipole Cavity Modes 
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Monopole mode 
TMrφz = TM010 

Dipole mode 
TMrφz = TM110 

Electric field 
position independent 

Electric field 
proportional to position 

Y. Inoue et al., PRST-AB, 2008 
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Upstream Feedback 

measured propagated 


